mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-15 13:55:07 +00:00
1751 lines
75 KiB
Mathematica
1751 lines
75 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% vim: ft=mercury ts=4 sw=4 et
|
|
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1996-2012 The University of Melbourne.
|
|
% Copyright (C) 2015 The Mercury team.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% File: modecheck_unify.m.
|
|
% Main author: fjh.
|
|
%
|
|
% This module contains the code to modecheck a unification.
|
|
%
|
|
% Check that the unification doesn't attempt to unify two free variables
|
|
% (or in general two free sub-terms) unless one of them is dead. (Also we
|
|
% ought to split unifications up if necessary to avoid complicated
|
|
% sub-unifications.)
|
|
%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module check_hlds.modecheck_unify.
|
|
:- interface.
|
|
|
|
:- import_module check_hlds.mode_info.
|
|
:- import_module hlds.
|
|
:- import_module hlds.hlds_goal.
|
|
:- import_module parse_tree.prog_data.
|
|
|
|
% Modecheck a unification.
|
|
%
|
|
:- pred modecheck_unification(prog_var::in, unify_rhs::in, unification::in,
|
|
unify_context::in, hlds_goal_info::in, hlds_goal_expr::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
% Create a unification between the two given variables.
|
|
% The goal's mode and determinism information are not filled in.
|
|
%
|
|
:- pred create_var_var_unification(prog_var::in, prog_var::in,
|
|
mer_type::in, mode_info::in, hlds_goal::out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module check_hlds.inst_test.
|
|
:- import_module check_hlds.inst_match.
|
|
:- import_module check_hlds.inst_util.
|
|
:- import_module check_hlds.mode_debug.
|
|
:- import_module check_hlds.mode_errors.
|
|
:- import_module check_hlds.mode_util.
|
|
:- import_module check_hlds.modecheck_goal.
|
|
:- import_module check_hlds.modecheck_util.
|
|
:- import_module check_hlds.modes.
|
|
:- import_module check_hlds.polymorphism.
|
|
:- import_module check_hlds.proc_requests.
|
|
:- import_module check_hlds.type_util.
|
|
:- import_module check_hlds.unique_modes.
|
|
:- import_module hlds.const_struct.
|
|
:- import_module hlds.goal_util.
|
|
:- import_module hlds.hlds_module.
|
|
:- import_module hlds.hlds_pred.
|
|
:- import_module hlds.instmap.
|
|
:- import_module hlds.make_goal.
|
|
:- import_module hlds.vartypes.
|
|
:- import_module libs.
|
|
:- import_module libs.globals.
|
|
:- import_module libs.options.
|
|
:- import_module mdbcomp.
|
|
:- import_module mdbcomp.prim_data.
|
|
:- import_module mdbcomp.sym_name.
|
|
:- import_module parse_tree.
|
|
:- import_module parse_tree.builtin_lib_types.
|
|
:- import_module parse_tree.maybe_error.
|
|
:- import_module parse_tree.prog_mode.
|
|
:- import_module parse_tree.prog_type.
|
|
:- import_module parse_tree.set_of_var.
|
|
|
|
:- import_module assoc_list.
|
|
:- import_module bool.
|
|
:- import_module list.
|
|
:- import_module map.
|
|
:- import_module maybe.
|
|
:- import_module require.
|
|
:- import_module string.
|
|
:- import_module term.
|
|
:- import_module varset.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
modecheck_unification(LHSVar, RHS, Unification0, UnifyContext, UnifyGoalInfo0,
|
|
Goal, !ModeInfo) :-
|
|
% If a unification occurs in a negated context with an inst "any" argument
|
|
% then it has an explicit `impure' annotation.
|
|
%
|
|
% With lambdas, the lambda itself has a higher-order any inst if it
|
|
% includes any inst "any" nonlocals. The value of the lambda expression
|
|
% does not become fixed until all of the nonlocals become fixed.
|
|
% Executing such a lambda may constrain nonlocal solver variables,
|
|
% which in turn constrains the higher-order value itself. Effectively,
|
|
% call/N constrains the predicate value to be "some predicate that is
|
|
% true for the given arguments", and apply/N constrains the function
|
|
% value to be "some function that returns the given value for the given
|
|
% arguments".
|
|
%
|
|
% But we also allow a ground higher-order inst to be used with non-ground
|
|
% locals, provided the type of the higher-order value is impure.
|
|
%
|
|
(
|
|
RHS = rhs_var(RHSVar),
|
|
modecheck_unification_var(LHSVar, RHSVar,
|
|
Unification0, UnifyContext, UnifyGoalInfo0, Goal, !ModeInfo)
|
|
;
|
|
RHS = rhs_functor(ConsId, IsExistConstr, RHSVars),
|
|
modecheck_unification_functor(LHSVar, ConsId, IsExistConstr, RHSVars,
|
|
Unification0, UnifyContext, UnifyGoalInfo0, Goal, !ModeInfo)
|
|
;
|
|
RHS = rhs_lambda_goal(Purity, HOGroundness, _PredOrFunc,
|
|
_LambdaEvalMethod, LambdaNonLocals, _LambdaQuantVars, _ArgModes,
|
|
_Detism, _LambdaGoal),
|
|
( if
|
|
Purity \= purity_impure,
|
|
HOGroundness = ho_ground,
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
|
|
mode_info_get_instmap(!.ModeInfo, InstMap),
|
|
AnyVars = list.filter(var_inst_contains_any(ModuleInfo, InstMap),
|
|
LambdaNonLocals),
|
|
AnyVars = [_ | _]
|
|
then
|
|
set_of_var.init(WaitingVars),
|
|
mode_info_error(WaitingVars,
|
|
purity_error_lambda_should_be_any(AnyVars), !ModeInfo),
|
|
Goal = conj(plain_conj, [])
|
|
else
|
|
( if
|
|
goal_info_has_feature(UnifyGoalInfo0,
|
|
feature_lambda_undetermined_mode)
|
|
then
|
|
modecheck_unification_rhs_undetermined_mode_lambda(LHSVar,
|
|
RHS, Unification0, UnifyContext, UnifyGoalInfo0, Goal,
|
|
!ModeInfo)
|
|
else
|
|
modecheck_unification_rhs_lambda(LHSVar,
|
|
RHS, Unification0, UnifyContext, UnifyGoalInfo0, Goal,
|
|
!ModeInfo)
|
|
)
|
|
)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred modecheck_unification_var(prog_var::in, prog_var::in, unification::in,
|
|
unify_context::in, hlds_goal_info::in, hlds_goal_expr::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
modecheck_unification_var(X, Y, Unification0, UnifyContext,
|
|
UnifyGoalInfo0, UnifyGoalExpr, !ModeInfo) :-
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
mode_info_get_var_types(!.ModeInfo, VarTypes),
|
|
mode_info_get_instmap(!.ModeInfo, InstMap),
|
|
instmap_lookup_var(InstMap, X, InstOfX),
|
|
instmap_lookup_var(InstMap, Y, InstOfY),
|
|
mode_info_var_is_live(!.ModeInfo, X, LiveX),
|
|
mode_info_var_is_live(!.ModeInfo, Y, LiveY),
|
|
( if
|
|
( if LiveX = is_live, LiveY = is_live then
|
|
BothLive = is_live
|
|
else
|
|
BothLive = is_dead
|
|
),
|
|
abstractly_unify_inst(BothLive, InstOfX, InstOfY, real_unify,
|
|
UnifiedInst, Detism1, ModuleInfo0, ModuleInfo1),
|
|
% Don't allow free-free unifications if both variables are locked.
|
|
% (Normally the checks for binding locked variables are done in
|
|
% modecheck_set_var_inst, which is called below, but that won't catch
|
|
% this case, because the inst of the variable will remain `free'.
|
|
% XXX are there other cases like this one?)
|
|
not (
|
|
UnifiedInst = free,
|
|
mode_info_var_is_locked(!.ModeInfo, X, _XLockedReason),
|
|
mode_info_var_is_locked(!.ModeInfo, Y, _YLockedReason),
|
|
% a unification of the form `X = X' doesn't bind X,
|
|
% and thus should be allowed even if X is locked
|
|
X \= Y
|
|
)
|
|
then
|
|
Detism = Detism1,
|
|
mode_info_set_module_info(ModuleInfo1, !ModeInfo),
|
|
modecheck_set_var_inst(X, UnifiedInst, yes(InstOfY), !ModeInfo),
|
|
modecheck_set_var_inst(Y, UnifiedInst, yes(InstOfX), !ModeInfo),
|
|
FromToInstsOfX = from_to_insts(InstOfX, UnifiedInst),
|
|
FromToInstsOfY = from_to_insts(InstOfY, UnifiedInst),
|
|
categorize_unify_var_var(FromToInstsOfX, FromToInstsOfY, LiveX, LiveY,
|
|
X, Y, Detism, UnifyContext, UnifyGoalInfo0, VarTypes, Unification0,
|
|
UnifyGoalExpr, !ModeInfo)
|
|
else
|
|
set_of_var.list_to_set([X, Y], WaitingVars),
|
|
ModeError = mode_error_unify_var_var(X, Y, InstOfX, InstOfY),
|
|
mode_info_error(WaitingVars, ModeError, !ModeInfo),
|
|
% If we get an error, set the inst to not_reached to suppress
|
|
% follow-on errors. But don't call categorize_unification, because
|
|
% that could cause an invalid call to `unify_proc.request_unify'
|
|
UnifiedInst = not_reached,
|
|
modecheck_set_var_inst(X, UnifiedInst, no, !ModeInfo),
|
|
modecheck_set_var_inst(Y, UnifiedInst, no, !ModeInfo),
|
|
% Return any old garbage.
|
|
Unification = assign(X, Y),
|
|
FromToInstsOfX = from_to_insts(InstOfX, UnifiedInst),
|
|
FromToInstsOfY = from_to_insts(InstOfY, UnifiedInst),
|
|
UnifyMode = unify_modes_lhs_rhs(FromToInstsOfX, FromToInstsOfY),
|
|
UnifyGoalExpr = unify(X, rhs_var(Y), UnifyMode, Unification,
|
|
UnifyContext)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred modecheck_unification_functor(prog_var::in, cons_id::in,
|
|
is_exist_constr::in, list(prog_var)::in, unification::in,
|
|
unify_context::in, hlds_goal_info::in, hlds_goal_expr::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
modecheck_unification_functor(X, ConsId, IsExistConstruction, ArgVars0,
|
|
Unification0, UnifyContext, GoalInfo0, GoalExpr, !ModeInfo) :-
|
|
mode_info_get_var_types(!.ModeInfo, VarTypes0),
|
|
lookup_var_type(VarTypes0, X, TypeOfX),
|
|
|
|
( if
|
|
% We replace any unifications with higher-order pred constants
|
|
% by lambda expressions. For example, we replace
|
|
%
|
|
% X = list.append(Y) % Y::in, X::out
|
|
%
|
|
% with
|
|
%
|
|
% X = lambda [A1::in, A2::out] (list.append(Y, A1, A2))
|
|
%
|
|
% Normally this is done by polymorphism.process_unify_functor,
|
|
% but if we are re-modechecking goals after lambda.m has been run
|
|
% (e.g. for deforestation), then we may need to do it again here.
|
|
% Note that any changes to this code here will probably need to be
|
|
% duplicated there too.
|
|
|
|
type_is_higher_order_details(TypeOfX, Purity, _, EvalMethod,
|
|
PredArgTypes),
|
|
ConsId = closure_cons(ShroudedPredProcId, _)
|
|
then
|
|
% Convert the pred term to a lambda expression.
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
mode_info_get_varset(!.ModeInfo, VarSet0),
|
|
mode_info_get_context(!.ModeInfo, Context),
|
|
proc(PredId, ProcId) = unshroud_pred_proc_id(ShroudedPredProcId),
|
|
convert_pred_to_lambda_goal(Purity, EvalMethod, X, PredId, ProcId,
|
|
ArgVars0, PredArgTypes, UnifyContext, GoalInfo0, Context,
|
|
ModuleInfo0, MaybeRHS0, VarSet0, VarSet, VarTypes0, VarTypes),
|
|
mode_info_set_varset(VarSet, !ModeInfo),
|
|
mode_info_set_var_types(VarTypes, !ModeInfo),
|
|
|
|
(
|
|
MaybeRHS0 = ok1(RHS0),
|
|
% Modecheck this unification in its new form.
|
|
modecheck_unification(X, RHS0, Unification0, UnifyContext,
|
|
GoalInfo0, GoalExpr, !ModeInfo)
|
|
;
|
|
MaybeRHS0 = error1(_),
|
|
unexpected($module, $pred,
|
|
"could not convert pred to lambda goal; " ++
|
|
"polymorphism.m should have stopped us getting here")
|
|
)
|
|
else if
|
|
% Right hand sides that represent constant structures need to be
|
|
% handled specially, because the term is inherently shared.
|
|
cons_id_is_const_struct(ConsId, ConstNum)
|
|
then
|
|
expect(unify(IsExistConstruction, is_not_exist_constr), $module, $pred,
|
|
"const struct construction is existential"),
|
|
expect(unify(ArgVars0, []), $module, $pred,
|
|
"const struct construction has args"),
|
|
modecheck_unify_const_struct(X, ConsId, ConstNum, UnifyContext,
|
|
GoalExpr, !ModeInfo)
|
|
else
|
|
% It is not a higher-order pred unification or a unification with a
|
|
% constant structure, so just call modecheck_unify_functor to do
|
|
% the ordinary thing.
|
|
modecheck_unify_functor(X, TypeOfX, ConsId, IsExistConstruction,
|
|
ArgVars0, Unification0, UnifyContext, GoalInfo0, GoalExpr,
|
|
!ModeInfo)
|
|
).
|
|
|
|
:- pred modecheck_unification_rhs_lambda(prog_var::in,
|
|
unify_rhs::in(rhs_lambda_goal), unification::in, unify_context::in,
|
|
hlds_goal_info::in, hlds_goal_expr::out, mode_info::in, mode_info::out)
|
|
is det.
|
|
|
|
modecheck_unification_rhs_lambda(X, LambdaRHS, Unification0, UnifyContext, _,
|
|
UnifyGoalExpr, !ModeInfo) :-
|
|
LambdaRHS = rhs_lambda_goal(Purity, Groundness, PredOrFunc, EvalMethod,
|
|
ArgVars, Vars, Modes0, Det, Goal0),
|
|
|
|
% First modecheck the lambda goal itself:
|
|
%
|
|
% initialize the initial insts of the lambda variables;
|
|
% check that the non-local vars are ground or any;
|
|
% mark the non-local vars as shared;
|
|
% if the higher-order inst is ground lock the non-local vars,
|
|
% otherwise if it is `any' lock the non-local vars that themselves
|
|
% do not match_initial any;
|
|
% mark the non-clobbered lambda variables as live;
|
|
% modecheck the goal;
|
|
% check that the final insts are correct;
|
|
% unmark the live vars;
|
|
% unlock the locked vars;
|
|
% restore the original instmap.
|
|
%
|
|
% XXX or should we merge the original and the final instmaps???
|
|
%
|
|
% The reason that we need to merge the original and final instmaps is
|
|
% as follows. The lambda goal will not have bound any variables (since
|
|
% they were locked), but it may have added some information or lost some
|
|
% uniqueness. We cannot use the final instmap, because that may have
|
|
% too much information. If we use the initial instmap, variables will be
|
|
% considered as unique even if they become shared or clobbered in the
|
|
% lambda goal!
|
|
%
|
|
% However even this may not be enough. If a unique non-local variable
|
|
% is used in its unique inst (e.g. it's used in a ui mode) and then shared
|
|
% within the lambda body, this is unsound. This variable should be marked
|
|
% as shared at the _top_ of the lambda goal. As for implementing this,
|
|
% it probably means that the lambda goal should be re-modechecked,
|
|
% or even modechecked to a fixpoint.
|
|
%
|
|
% For the moment, since doing all that properly seems too hard, we just
|
|
% share all non-local variables at the top of the lambda goal. This is
|
|
% safe, but perhaps too conservative.
|
|
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
mode_info_get_how_to_check(!.ModeInfo, HowToCheckGoal),
|
|
|
|
(
|
|
HowToCheckGoal = check_modes,
|
|
% This only needs to be done once.
|
|
mode_info_get_types_of_vars(!.ModeInfo, Vars, VarTypes),
|
|
propagate_types_into_mode_list(ModuleInfo0, VarTypes, Modes0, Modes)
|
|
;
|
|
HowToCheckGoal = check_unique_modes,
|
|
Modes = Modes0
|
|
),
|
|
|
|
% Initialize the initial insts of the lambda variables.
|
|
mode_list_get_initial_insts(ModuleInfo0, Modes, VarInitialInsts),
|
|
assoc_list.from_corresponding_lists(Vars, VarInitialInsts, VarInstAL),
|
|
VarInstMapDelta = instmap_delta_from_assoc_list(VarInstAL),
|
|
mode_info_get_instmap(!.ModeInfo, InstMap0),
|
|
instmap.apply_instmap_delta(InstMap0, VarInstMapDelta, InstMap1),
|
|
mode_info_set_instmap(InstMap1, !ModeInfo),
|
|
|
|
% Mark the non-clobbered lambda variables as live.
|
|
get_arg_lives(ModuleInfo0, Modes, ArgLives),
|
|
get_live_vars(Vars, ArgLives, LiveVarsList),
|
|
set_of_var.list_to_set(LiveVarsList, LiveVars),
|
|
mode_info_add_live_vars(LiveVars, !ModeInfo),
|
|
|
|
% Lock the non-locals. A ground lambda goal is not allowed to bind any
|
|
% of the non-local variables, since it could get called more than once,
|
|
% or from inside a negation. So in this case we lock all non-locals
|
|
% (not counting the lambda quantified vars).
|
|
%
|
|
% If the lambda goal is inst `any', we don't lock the non-locals which
|
|
% match_initial any, since it is safe to bind these any time that it
|
|
% is safe to bind the lambda goal itself.
|
|
Goal0 = hlds_goal(_, GoalInfo0),
|
|
NonLocals0 = goal_info_get_nonlocals(GoalInfo0),
|
|
set_of_var.delete_list(Vars, NonLocals0, NonLocals1),
|
|
(
|
|
Groundness = ho_ground,
|
|
NonLocals = NonLocals1
|
|
;
|
|
Groundness = ho_any,
|
|
mode_info_get_var_types(!.ModeInfo, NonLocalTypes),
|
|
NonLocals = set_of_var.filter(
|
|
( pred(NonLocal::in) is semidet :-
|
|
lookup_var_type(NonLocalTypes, NonLocal, NonLocalType),
|
|
instmap_lookup_var(InstMap1, NonLocal, NonLocalInst),
|
|
% XXX should filter other higher-order any vars, not just
|
|
% functions with the default mode.
|
|
not inst_matches_initial(NonLocalInst,
|
|
any(shared, none_or_default_func),
|
|
NonLocalType, ModuleInfo0)
|
|
), NonLocals1)
|
|
),
|
|
set_of_var.to_sorted_list(NonLocals, NonLocalsList),
|
|
instmap_lookup_vars(InstMap1, NonLocalsList, NonLocalInsts),
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo2),
|
|
( if
|
|
% XXX This test is too conservative.
|
|
%
|
|
% We should allow non-local variables to be non-ground sometimes,
|
|
% possibly dependent on whether or not they are dead after this
|
|
% unification. In addition, we should not "share" a unique non-local
|
|
% variable if these two conditions hold:
|
|
%
|
|
% - It is dead after this unification.
|
|
% - It is not shared within the lambda body.
|
|
%
|
|
% Unfortunately, we can't test the latter condition until after
|
|
% we've mode-checked the lambda body. (See the above comment on
|
|
% merging the initial and final instmaps.)
|
|
|
|
( if
|
|
Groundness = ho_ground,
|
|
Purity \= purity_impure
|
|
then
|
|
inst_list_is_ground(NonLocalInsts, ModuleInfo2)
|
|
else
|
|
inst_list_is_ground_or_any(NonLocalInsts, ModuleInfo2)
|
|
)
|
|
then
|
|
make_shared_inst_list(NonLocalInsts, SharedNonLocalInsts,
|
|
ModuleInfo2, ModuleInfo3),
|
|
instmap_set_vars_corresponding(NonLocalsList, SharedNonLocalInsts,
|
|
InstMap1, InstMap2),
|
|
mode_info_set_module_info(ModuleInfo3, !ModeInfo),
|
|
mode_info_set_instmap(InstMap2, !ModeInfo),
|
|
|
|
mode_info_lock_vars(var_lock_lambda(PredOrFunc), NonLocals, !ModeInfo),
|
|
|
|
mode_checkpoint(enter, "lambda goal", !ModeInfo),
|
|
% If we're being called from unique_modes.m, then we need to
|
|
% call unique_modes_check_goal rather than modecheck_goal.
|
|
(
|
|
HowToCheckGoal = check_unique_modes,
|
|
unique_modes_check_goal(Goal0, Goal1, !ModeInfo)
|
|
;
|
|
HowToCheckGoal = check_modes,
|
|
modecheck_goal(Goal0, Goal1, !ModeInfo)
|
|
),
|
|
mode_list_get_final_insts(ModuleInfo0, Modes, FinalInsts),
|
|
modecheck_lambda_final_insts(Vars, FinalInsts, Goal1, Goal, !ModeInfo),
|
|
mode_checkpoint(exit, "lambda goal", !ModeInfo),
|
|
|
|
mode_info_remove_live_vars(LiveVars, !ModeInfo),
|
|
mode_info_unlock_vars(var_lock_lambda(PredOrFunc), NonLocals,
|
|
!ModeInfo),
|
|
|
|
% Ensure that the non-local vars are shared OUTSIDE the
|
|
% lambda unification as well as inside.
|
|
|
|
instmap_set_vars_corresponding(NonLocalsList, SharedNonLocalInsts,
|
|
InstMap0, InstMap11),
|
|
mode_info_set_instmap(InstMap11, !ModeInfo),
|
|
|
|
% Now modecheck the unification of X with the lambda-expression.
|
|
|
|
RHS0 = rhs_lambda_goal(Purity, Groundness, PredOrFunc, EvalMethod,
|
|
ArgVars, Vars, Modes, Det, Goal),
|
|
modecheck_unify_lambda(X, PredOrFunc, ArgVars, Modes, Det,
|
|
RHS0, RHS, Unification0, Unification, UnifyMode, !ModeInfo)
|
|
else
|
|
list.filter(
|
|
( pred(Var :: in) is semidet :-
|
|
instmap_lookup_var(InstMap1, Var, Inst),
|
|
not inst_is_ground(ModuleInfo2, Inst)
|
|
), NonLocalsList, NonGroundNonLocals),
|
|
(
|
|
NonGroundNonLocals = [BadVar | _],
|
|
instmap_lookup_var(InstMap1, BadVar, BadInst),
|
|
WaitingVars = set_of_var.make_singleton(BadVar),
|
|
ModeError = mode_error_non_local_lambda_var(BadVar, BadInst),
|
|
mode_info_error(WaitingVars, ModeError, !ModeInfo)
|
|
;
|
|
NonGroundNonLocals = [],
|
|
unexpected($module, $pred, "very strange var")
|
|
),
|
|
% Return any old garbage.
|
|
RHS = rhs_lambda_goal(Purity, Groundness, PredOrFunc, EvalMethod,
|
|
ArgVars, Vars, Modes0, Det, Goal0),
|
|
UnifyMode = unify_modes_lhs_rhs(
|
|
from_to_insts(free, free),
|
|
from_to_insts(free, free)),
|
|
Unification = Unification0
|
|
),
|
|
UnifyGoalExpr = unify(X, RHS, UnifyMode, Unification, UnifyContext).
|
|
|
|
:- pred modecheck_unify_lambda(prog_var::in, pred_or_func::in,
|
|
list(prog_var)::in, list(mer_mode)::in, determinism::in,
|
|
unify_rhs::in, unify_rhs::out, unification::in, unification::out,
|
|
unify_mode::out, mode_info::in, mode_info::out) is det.
|
|
|
|
modecheck_unify_lambda(X, PredOrFunc, ArgVars, LambdaModes, LambdaDetism,
|
|
RHS0, RHS, Unification0, Unification, UnifyMode, !ModeInfo) :-
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
mode_info_get_instmap(!.ModeInfo, InstMap0),
|
|
instmap_lookup_var(InstMap0, X, InstOfX),
|
|
InstOfY = ground(unique, higher_order(LambdaPredInfo)),
|
|
LambdaPredInfo = pred_inst_info(PredOrFunc, LambdaModes,
|
|
arg_reg_types_unset, LambdaDetism),
|
|
( if
|
|
abstractly_unify_inst(is_dead, InstOfX, InstOfY, real_unify,
|
|
UnifyInst, _Detism, ModuleInfo0, ModuleInfo1)
|
|
then
|
|
Inst = UnifyInst,
|
|
mode_info_set_module_info(ModuleInfo1, !ModeInfo),
|
|
FromToInstsOfX = from_to_insts(InstOfX, Inst),
|
|
FromToInstsOfY = from_to_insts(InstOfY, Inst),
|
|
UnifyMode = unify_modes_lhs_rhs(FromToInstsOfX, FromToInstsOfY),
|
|
% the lambda expression just maps its argument variables
|
|
% from their current insts to the same inst
|
|
instmap_lookup_vars(InstMap0, ArgVars, ArgInsts),
|
|
ArgFromToInsts = list.map(func(I) = from_to_insts(I, I), ArgInsts),
|
|
categorize_unify_var_lambda(FromToInstsOfX, ArgFromToInsts, X, ArgVars,
|
|
PredOrFunc, RHS0, RHS, Unification0, Unification, !ModeInfo),
|
|
modecheck_set_var_inst(X, Inst, no, !ModeInfo)
|
|
else
|
|
set_of_var.list_to_set([X], WaitingVars),
|
|
ModeError = mode_error_unify_var_lambda(X, InstOfX, InstOfY),
|
|
mode_info_error(WaitingVars, ModeError, !ModeInfo),
|
|
% If we get an error, set the inst to not_reached to avoid cascading
|
|
% errors. But don't call categorize_unification, because that could
|
|
% cause an invalid call to `unify_proc.request_unify'
|
|
Inst = not_reached,
|
|
modecheck_set_var_inst(X, Inst, no, !ModeInfo),
|
|
FromToInstsOfX = from_to_insts(InstOfX, Inst),
|
|
FromToInstsOfY = from_to_insts(InstOfY, Inst),
|
|
UnifyMode = unify_modes_lhs_rhs(FromToInstsOfX, FromToInstsOfY),
|
|
|
|
% Return any old garbage.
|
|
Unification = Unification0,
|
|
RHS = RHS0
|
|
).
|
|
|
|
:- pred modecheck_unification_rhs_undetermined_mode_lambda(prog_var::in,
|
|
unify_rhs::in(rhs_lambda_goal), unification::in, unify_context::in,
|
|
hlds_goal_info::in, hlds_goal_expr::out, mode_info::in, mode_info::out)
|
|
is det.
|
|
|
|
modecheck_unification_rhs_undetermined_mode_lambda(X, RHS0, Unification,
|
|
UnifyContext, GoalInfo0, Goal, !ModeInfo) :-
|
|
RHS0 = rhs_lambda_goal(_, _, _, _, _, _, _, _, Goal0),
|
|
% Find out the predicate called in the lambda goal.
|
|
( if predids_with_args_from_goal(Goal0, [{PredId, ArgVars}]) then
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
|
|
mode_info_get_instmap(!.ModeInfo, InstMap),
|
|
mode_info_get_var_types(!.ModeInfo, VarTypes),
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
match_modes_by_higher_order_insts(ModuleInfo, VarTypes, InstMap,
|
|
ArgVars, PredInfo, MatchResult),
|
|
(
|
|
(
|
|
MatchResult = some_ho_args_not_ground(NonGroundArgVars),
|
|
MultiModeError = no_matching_mode(NonGroundArgVars)
|
|
;
|
|
MatchResult = possible_modes([]),
|
|
MultiModeError = no_matching_mode(ArgVars)
|
|
;
|
|
MatchResult = possible_modes([_, _ | _]),
|
|
MultiModeError = more_than_one_matching_mode(ArgVars)
|
|
),
|
|
WaitingVars = set_of_var.make_singleton(X),
|
|
ModeError =
|
|
mode_error_unify_var_multimode_pred(X, PredId, MultiModeError),
|
|
mode_info_error(WaitingVars, ModeError, !ModeInfo),
|
|
mode_info_get_pred_var_multimode_map(!.ModeInfo, MultiModeMap0),
|
|
map.set(X, pred_var_multimode_pred_error(PredId, MultiModeError),
|
|
MultiModeMap0, MultiModeMap),
|
|
mode_info_set_pred_var_multimode_map(MultiModeMap, !ModeInfo),
|
|
% Return any old garbage.
|
|
Goal = true_goal_expr
|
|
;
|
|
MatchResult = possible_modes([ProcId]),
|
|
fix_undetermined_mode_lambda_goal(ModuleInfo, ProcId, RHS0,
|
|
MaybeRHS),
|
|
(
|
|
MaybeRHS = ok1(RHS),
|
|
goal_info_remove_feature(feature_lambda_undetermined_mode,
|
|
GoalInfo0, GoalInfo),
|
|
% Modecheck this unification in its new form.
|
|
modecheck_unification_rhs_lambda(X, RHS, Unification,
|
|
UnifyContext, GoalInfo, Goal, !ModeInfo)
|
|
;
|
|
MaybeRHS = error1(_),
|
|
unexpected($pred, "could not fix up lambda goal; " ++
|
|
"polymorphism.m should have stopped us getting here")
|
|
)
|
|
)
|
|
else
|
|
unexpected($module, $pred, "expecting single call")
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred modecheck_unify_const_struct(prog_var::in, cons_id::in, int::in,
|
|
unify_context::in, hlds_goal_expr::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
modecheck_unify_const_struct(X, ConsId, ConstNum, UnifyContext,
|
|
UnifyGoalExpr, !ModeInfo) :-
|
|
mode_info_get_instmap(!.ModeInfo, InstMap),
|
|
instmap_lookup_var(InstMap, X, InstOfX),
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
module_info_get_const_struct_db(ModuleInfo0, ConstStructDb),
|
|
lookup_const_struct_num(ConstStructDb, ConstNum, ConstStruct),
|
|
ConstStruct = const_struct(_, _, _, InstOfY),
|
|
( if inst_is_free(ModuleInfo0, InstOfX) then
|
|
Inst = InstOfY,
|
|
modecheck_set_var_inst(X, Inst, yes(InstOfY), !ModeInfo),
|
|
Unification = construct(X, ConsId, [], [], construct_statically,
|
|
cell_is_shared, no_construct_sub_info),
|
|
FromToInstsOfX = from_to_insts(InstOfX, Inst),
|
|
FromToInstsOfY = from_to_insts(InstOfY, Inst),
|
|
UnifyMode = unify_modes_lhs_rhs(FromToInstsOfX, FromToInstsOfY),
|
|
UnifyGoalExpr = unify(X, rhs_functor(ConsId, is_not_exist_constr, []),
|
|
UnifyMode, Unification, UnifyContext)
|
|
% else if
|
|
% abstractly_unify_inst(LiveX, InstOfX, InstOfY, real_unify,
|
|
% UnifyInst, Det1, ModuleInfo0, ModuleInfo1)
|
|
% then
|
|
% Inst = UnifyInst,
|
|
% Detism = Detism1,
|
|
% mode_info_set_module_info(ModuleInfo1, !ModeInfo),
|
|
% modecheck_set_var_inst(Y, Inst, yes(InstOfX), !ModeInfo),
|
|
% ModeOfX = (InstOfX -> Inst),
|
|
% ModeOfY = (InstOfY -> Inst),
|
|
% categorize_unify_var_const_struct(ModeOfX, ModeOfY, LiveX, X, ConsId,
|
|
% Detism, UnifyContext, UnifyGoalInfo0, VarTypes, Unification0,
|
|
% UnifyGoalExpr0, !ModeInfo),
|
|
else
|
|
set_of_var.list_to_set([X], WaitingVars),
|
|
ModeError = mode_error_unify_var_functor(X, ConsId, [], InstOfX, []),
|
|
mode_info_error(WaitingVars, ModeError, !ModeInfo),
|
|
% If we get an error, set the inst to not_reached to suppress
|
|
% follow-on errors. But don't call categorize_unification, because
|
|
% that could cause an invalid call to `unify_proc.request_unify'
|
|
Inst = not_reached,
|
|
modecheck_set_var_inst(X, Inst, no, !ModeInfo),
|
|
% Return any old garbage.
|
|
Unification = construct(X, ConsId, [], [], construct_statically,
|
|
cell_is_shared, no_construct_sub_info),
|
|
FromToInstsOfX = from_to_insts(InstOfX, Inst),
|
|
FromToInstsOfY = from_to_insts(InstOfY, Inst),
|
|
UnifyMode = unify_modes_lhs_rhs(FromToInstsOfX, FromToInstsOfY),
|
|
UnifyGoalExpr = unify(X, rhs_functor(ConsId, is_not_exist_constr, []),
|
|
UnifyMode, Unification, UnifyContext)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred modecheck_unify_functor(prog_var::in, mer_type::in, cons_id::in,
|
|
is_exist_constr::in, list(prog_var)::in, unification::in,
|
|
unify_context::in, hlds_goal_info::in, hlds_goal_expr::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
modecheck_unify_functor(X0, TypeOfX, ConsId0, IsExistConstruction, ArgVars0,
|
|
Unification0, UnifyContext, GoalInfo0, GoalExpr, !ModeInfo) :-
|
|
mode_info_get_instmap(!.ModeInfo, InstMap0),
|
|
ensure_exist_constr_is_construction(IsExistConstruction, X0, X,
|
|
InstOfX, LiveX, ExtraGoalsExistConstruct, !ModeInfo),
|
|
|
|
% The calls above may have changed the instmap.
|
|
mode_info_get_instmap(!.ModeInfo, InstMap1),
|
|
mode_info_get_how_to_check(!.ModeInfo, HowToCheckGoal),
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
mode_info_get_var_types(!.ModeInfo, VarTypes),
|
|
instmap_lookup_vars(InstMap1, ArgVars0, InstsOfArgVars),
|
|
mode_info_var_list_is_live(!.ModeInfo, ArgVars0, LiveArgs),
|
|
qualify_cons_id(ArgVars0, ConsId0, ConsId, InstConsId),
|
|
InstOfY = bound(unique, inst_test_no_results,
|
|
[bound_functor(InstConsId, InstsOfArgVars)]),
|
|
( if
|
|
% The occur check: is the unification of the form X = f(..., X, ...)?
|
|
list.member(X, ArgVars0)
|
|
then
|
|
( if inst_is_ground(ModuleInfo0, InstOfX) then
|
|
% If X is ground, then we don't consider X = f(..., X, ...)
|
|
% to be a mode error, but it is a unification that can never
|
|
% succeed, and thus it is very unlikely to be what the programmer
|
|
% intended to write.
|
|
%
|
|
% Unfortunately, if the unintended occurrence of X on the
|
|
% right hand side has more than one function symbol above it,
|
|
% then we won't generate this warning, because the compiler
|
|
% will transform X = f(g(X)) into superhomogeneous form as
|
|
% X = f(Y), Y = g(X), and neither of those unifications
|
|
% will pass the list.member(X, ArgVars0) test above.
|
|
Warning = cannot_succeed_ground_occur_check(X, ConsId),
|
|
mode_info_warning(Warning, !ModeInfo),
|
|
modecheck_set_var_inst(X, not_reached, no, !ModeInfo),
|
|
GoalExpr = disj([])
|
|
else
|
|
% If X is not ground, then X = f(..., X, ...) is a mode error.
|
|
handle_var_functor_mode_error(X, InstConsId, ArgVars0,
|
|
InstOfX, InstsOfArgVars, [X], GoalExpr, !ModeInfo)
|
|
)
|
|
else if
|
|
% XXX We forbid the construction of partially instantiated structures
|
|
% involving solver types. We'd like to forbid all such constructions
|
|
% here, but that causes trouble with the current implementation of
|
|
% term_conversion.term_to_univ_special_case which does use partial
|
|
% instantiation (in a rather horrible way). This is a hacky solution
|
|
% that gets us most of what we want w.r.t. solver types.
|
|
not (
|
|
inst_is_free(ModuleInfo0, InstOfX),
|
|
list.member(InstArg, InstsOfArgVars),
|
|
inst_is_free(ModuleInfo0, InstArg),
|
|
list.member(ArgVar, ArgVars0),
|
|
lookup_var_type(VarTypes, ArgVar, ArgType),
|
|
type_is_or_may_contain_solver_type(ModuleInfo0, ArgType)
|
|
),
|
|
abstractly_unify_inst_functor(LiveX, InstOfX, InstConsId,
|
|
InstsOfArgVars, LiveArgs, real_unify, TypeOfX,
|
|
UnifiedInst, Detism, ModuleInfo0, ModuleInfo1)
|
|
then
|
|
mode_info_set_module_info(ModuleInfo1, !ModeInfo),
|
|
FromToInstsOfX = from_to_insts(InstOfX, UnifiedInst),
|
|
FromToInstsOfY = from_to_insts(InstOfY, UnifiedInst),
|
|
UnifyMode = unify_modes_lhs_rhs(FromToInstsOfX, FromToInstsOfY),
|
|
get_mode_of_args(InstsOfArgVars, UnifiedInst, ArgFromToInsts),
|
|
inst_expand_and_remove_constrained_inst_vars(ModuleInfo1,
|
|
InstOfX, InstOfX1),
|
|
list.length(ArgVars0, Arity),
|
|
get_arg_insts_det(InstOfX1, InstConsId, Arity, InstOfXArgs),
|
|
get_mode_of_args(InstOfXArgs, UnifiedInst, ModeOfXArgs),
|
|
categorize_unify_var_functor(FromToInstsOfX, ModeOfXArgs,
|
|
ArgFromToInsts, X, ConsId, ArgVars0, VarTypes, UnifyContext,
|
|
Unification0, Unification1, !ModeInfo),
|
|
split_complicated_subunifies(Unification1, Unification,
|
|
ArgVars0, ArgVars, ExtraGoalsSplitSubUnifies, !ModeInfo),
|
|
modecheck_set_var_inst(X, UnifiedInst, yes(InstOfY), !ModeInfo),
|
|
bind_args_if_needed(InstOfX, UnifiedInst, ArgVars, InstOfXArgs,
|
|
!ModeInfo),
|
|
|
|
% Construct the final goal expression.
|
|
( if
|
|
Unification = construct(_, _, _, _, _, _, _),
|
|
LiveX = is_dead
|
|
then
|
|
% Optimize away construction of unused terms by replacing
|
|
% the unification with `true'.
|
|
GoalExpr = conj(plain_conj, [])
|
|
else if
|
|
Detism = detism_failure
|
|
then
|
|
% Optimize away unifications which always fail by replacing
|
|
% them with `fail'.
|
|
GoalExpr = disj([]),
|
|
maybe_generate_cannot_succeed_warning(X, InstOfX, ConsId,
|
|
!ModeInfo)
|
|
else
|
|
Functor = rhs_functor(ConsId, IsExistConstruction, ArgVars),
|
|
UnifyExpr = unify(X, Functor, UnifyMode, Unification,
|
|
UnifyContext),
|
|
|
|
% Modecheck_unification sometimes needs to introduce new goals
|
|
% to handle complicated sub-unifications in deconstructions.
|
|
% The only time this can happen during unique mode analysis is if
|
|
% the instmap is unreachable, since inst_is_bound succeeds for
|
|
% not_reached. (If it did in other cases, the code would be wrong
|
|
% since it wouldn't have the correct determinism annotations.)
|
|
|
|
append_extra_goals(ExtraGoalsExistConstruct,
|
|
ExtraGoalsSplitSubUnifies, ExtraGoals),
|
|
( if
|
|
HowToCheckGoal = check_unique_modes,
|
|
ExtraGoals = extra_goals(_, _),
|
|
instmap_is_reachable(InstMap1)
|
|
then
|
|
unexpected($module, $pred,
|
|
"re-modecheck of unification " ++
|
|
"encountered complicated sub-unifies")
|
|
else
|
|
true
|
|
),
|
|
handle_extra_goals(UnifyExpr, ExtraGoals, GoalInfo0,
|
|
[X0 | ArgVars0], [X | ArgVars], InstMap0, GoalExpr, !ModeInfo)
|
|
)
|
|
else
|
|
% Including all ArgVars0 in the waiting_vars is a conservative
|
|
% approximation.
|
|
handle_var_functor_mode_error(X, InstConsId, ArgVars0,
|
|
InstOfX, InstsOfArgVars, [X | ArgVars0], GoalExpr, !ModeInfo)
|
|
).
|
|
|
|
% If a unification was originally of the form X0 = 'new f'(Ys),
|
|
% then it must be classified as a construction. If it were classified
|
|
% as a deconstruction, the argument unifications would be ill-typed.
|
|
%
|
|
% If X0 is already bound, then, to make sure the unification is classified
|
|
% as a construction, we make a new variable X the target of the
|
|
% construction, and unify this new left-hand-side variable with the old,
|
|
% yielding code of the form X = 'new f'(Ys), X0 = X.
|
|
%
|
|
:- pred ensure_exist_constr_is_construction(is_exist_constr::in,
|
|
prog_var::in, prog_var::out, mer_inst::out, is_live::out, extra_goals::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
ensure_exist_constr_is_construction(IsExistConstruction, X0, X, InstOfX, LiveX,
|
|
ExtraGoals, !ModeInfo) :-
|
|
mode_info_get_instmap(!.ModeInfo, InstMap0),
|
|
instmap_lookup_var(InstMap0, X0, InstOfX0),
|
|
( if
|
|
IsExistConstruction = is_exist_constr,
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
not inst_is_free(ModuleInfo0, InstOfX0)
|
|
then
|
|
make_complicated_sub_unify(X0, X, ExtraGoals, !ModeInfo),
|
|
InstOfX = free,
|
|
LiveX = is_live
|
|
else
|
|
X = X0,
|
|
InstOfX = InstOfX0,
|
|
mode_info_var_is_live(!.ModeInfo, X, LiveX),
|
|
ExtraGoals = no_extra_goals
|
|
).
|
|
|
|
:- pred handle_var_functor_mode_error(prog_var::in, cons_id::in,
|
|
list(prog_var)::in, mer_inst::in, list(mer_inst)::in,
|
|
list(prog_var)::in, hlds_goal_expr::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
handle_var_functor_mode_error(X, InstConsId, ArgVars0,
|
|
InstOfX, InstArgs, WaitingVarsList, GoalExpr, !ModeInfo) :-
|
|
set_of_var.list_to_set(WaitingVarsList, WaitingVars),
|
|
ModeError = mode_error_unify_var_functor(X, InstConsId, ArgVars0,
|
|
InstOfX, InstArgs),
|
|
mode_info_error(WaitingVars, ModeError, !ModeInfo),
|
|
% If we get an error, set the inst to not_reached to avoid cascading
|
|
% errors. But don't call categorize_unification, because that could
|
|
% cause an invalid call to `unify_proc.request_unify'.
|
|
Inst = not_reached,
|
|
modecheck_set_var_inst(X, Inst, no, !ModeInfo),
|
|
NoArgInsts = list.duplicate(list.length(ArgVars0), no),
|
|
bind_args(Inst, ArgVars0, NoArgInsts, !ModeInfo),
|
|
% Return any old garbage.
|
|
GoalExpr = disj([]).
|
|
|
|
% Warn about unifications that always fail if the user has requested
|
|
% such warnings, and they are reasonably certain not to be misleading.
|
|
%
|
|
:- pred maybe_generate_cannot_succeed_warning(prog_var::in, mer_inst::in,
|
|
cons_id::in, mode_info::in, mode_info::out) is det.
|
|
|
|
maybe_generate_cannot_succeed_warning(X, InstOfX, ConsId, !ModeInfo) :-
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
|
|
module_info_get_globals(ModuleInfo, Globals),
|
|
globals.lookup_bool_option(Globals, warn_unification_cannot_succeed,
|
|
WarnCannotSucceed),
|
|
(
|
|
WarnCannotSucceed = yes,
|
|
mode_info_get_in_dupl_for_switch(!.ModeInfo, InDuplForSwitch),
|
|
(
|
|
InDuplForSwitch = in_dupl_for_switch
|
|
% Suppress the warning, since the unification may succeed
|
|
% in another copy of this duplicated switch arm.
|
|
;
|
|
InDuplForSwitch = not_in_dupl_for_switch,
|
|
mode_info_get_pred_id(!.ModeInfo, PredId),
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
pred_info_get_origin(PredInfo, Origin),
|
|
ReportWarning =
|
|
should_report_mode_warning_for_pred_origin(Origin),
|
|
(
|
|
ReportWarning = yes,
|
|
Warning = cannot_succeed_var_functor(X, InstOfX, ConsId),
|
|
mode_info_warning(Warning, !ModeInfo)
|
|
;
|
|
ReportWarning = no
|
|
)
|
|
)
|
|
;
|
|
WarnCannotSucceed = no
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% The argument unifications in a construction or deconstruction
|
|
% unification must be simple assignments, they cannot be
|
|
% complicated unifications. If they are, we split them out
|
|
% into separate unifications by introducing fresh variables here.
|
|
%
|
|
:- pred split_complicated_subunifies(unification::in, unification::out,
|
|
list(prog_var)::in, list(prog_var)::out, extra_goals::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
split_complicated_subunifies(Unification0, Unification, ArgVars0, ArgVars,
|
|
ExtraGoals, !ModeInfo) :-
|
|
( if
|
|
Unification0 = deconstruct(X, ConsId, ArgVars0, ArgModes0, Det, CanCGC)
|
|
then
|
|
( if
|
|
split_complicated_subunifies_2(ArgVars0, ArgModes0,
|
|
ArgVars1, ExtraGoals1, !ModeInfo)
|
|
then
|
|
ExtraGoals = ExtraGoals1,
|
|
ArgVars = ArgVars1,
|
|
Unification = deconstruct(X, ConsId, ArgVars, ArgModes0, Det,
|
|
CanCGC)
|
|
else
|
|
unexpected($module, $pred, "split_complicated_subunifies_2 failed")
|
|
)
|
|
else
|
|
Unification = Unification0,
|
|
ArgVars = ArgVars0,
|
|
ExtraGoals = no_extra_goals
|
|
).
|
|
|
|
:- pred split_complicated_subunifies_2(list(prog_var)::in,
|
|
list(unify_mode)::in, list(prog_var)::out, extra_goals::out,
|
|
mode_info::in, mode_info::out) is semidet.
|
|
|
|
split_complicated_subunifies_2([], [], [], no_extra_goals, !ModeInfo).
|
|
split_complicated_subunifies_2([Var0 | Vars0], [ArgMode0 | ArgModes0],
|
|
Vars, ExtraGoals, !ModeInfo) :-
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
|
|
ArgMode0 = unify_modes_lhs_rhs(FromToInstsX, FromToInstsY),
|
|
mode_info_get_var_types(!.ModeInfo, VarTypes0),
|
|
lookup_var_type(VarTypes0, Var0, VarType),
|
|
( if
|
|
from_to_insts_to_top_functor_mode(ModuleInfo, FromToInstsX, VarType,
|
|
top_in),
|
|
from_to_insts_to_top_functor_mode(ModuleInfo, FromToInstsY, VarType,
|
|
top_in)
|
|
then
|
|
make_complicated_sub_unify(Var0, Var, ExtraGoals0, !ModeInfo),
|
|
|
|
% Recursive call to handle the remaining variables...
|
|
split_complicated_subunifies_2(Vars0, ArgModes0,
|
|
Vars1, ExtraGoals1, !ModeInfo),
|
|
Vars = [Var | Vars1],
|
|
append_extra_goals(ExtraGoals0, ExtraGoals1, ExtraGoals)
|
|
else
|
|
split_complicated_subunifies_2(Vars0, ArgModes0, Vars1,
|
|
ExtraGoals, !ModeInfo),
|
|
Vars = [Var0 | Vars1]
|
|
).
|
|
|
|
:- pred make_complicated_sub_unify(prog_var::in, prog_var::out,
|
|
extra_goals::out, mode_info::in, mode_info::out) is det.
|
|
|
|
make_complicated_sub_unify(Var0, Var, ExtraGoals0, !ModeInfo) :-
|
|
% introduce a new variable `Var'
|
|
mode_info_get_varset(!.ModeInfo, VarSet0),
|
|
mode_info_get_var_types(!.ModeInfo, VarTypes0),
|
|
varset.new_var(Var, VarSet0, VarSet),
|
|
lookup_var_type(VarTypes0, Var0, VarType),
|
|
add_var_type(Var, VarType, VarTypes0, VarTypes),
|
|
mode_info_set_varset(VarSet, !ModeInfo),
|
|
mode_info_set_var_types(VarTypes, !ModeInfo),
|
|
|
|
create_var_var_unification(Var0, Var, VarType, !.ModeInfo, ExtraGoal),
|
|
|
|
% Insert the new unification at the start of the extra goals.
|
|
ExtraGoals0 = extra_goals([], [ExtraGoal]).
|
|
|
|
create_var_var_unification(Var0, Var, Type, ModeInfo, Goal) :-
|
|
Goal = hlds_goal(GoalExpr, GoalInfo),
|
|
mode_info_get_context(ModeInfo, Context),
|
|
mode_info_get_mode_context(ModeInfo, ModeContext),
|
|
mode_context_to_unify_context(ModeInfo, ModeContext, UnifyContext),
|
|
UnifyContext = unify_context(MainContext, SubContexts),
|
|
|
|
create_pure_atomic_complicated_unification(Var0, rhs_var(Var), Context,
|
|
MainContext, SubContexts, hlds_goal(GoalExpr0, GoalInfo0)),
|
|
|
|
% Compute the goal_info nonlocal vars for the newly created goal
|
|
% (excluding the type_info vars -- they are added below).
|
|
% N.B. This may overestimate the set of non-locals,
|
|
% but that shouldn't cause any problems.
|
|
|
|
set_of_var.list_to_set([Var0, Var], NonLocals),
|
|
goal_info_set_nonlocals(NonLocals, GoalInfo0, GoalInfo1),
|
|
goal_info_set_context(Context, GoalInfo1, GoalInfo2),
|
|
|
|
% Look up the map(tvar, type_info_locn) in the proc_info,
|
|
% since it is needed by polymorphism.unification_typeinfos.
|
|
|
|
mode_info_get_module_info(ModeInfo, ModuleInfo),
|
|
mode_info_get_pred_id(ModeInfo, PredId),
|
|
mode_info_get_proc_id(ModeInfo, ProcId),
|
|
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
|
|
_PredInfo, ProcInfo),
|
|
proc_info_get_rtti_varmaps(ProcInfo, RttiVarMaps),
|
|
|
|
% Call polymorphism.unification_typeinfos to add the appropriate
|
|
% type-info and type-class-info variables to the nonlocals
|
|
% and to the unification.
|
|
|
|
( if GoalExpr0 = unify(X, Y, Mode, Unification0, FinalUnifyContext) then
|
|
unification_typeinfos_rtti_varmaps(Type, RttiVarMaps,
|
|
Unification0, Unification, GoalInfo2, GoalInfo),
|
|
GoalExpr = unify(X, Y, Mode, Unification, FinalUnifyContext)
|
|
else
|
|
unexpected($module, $pred, "unexpected GoalExpr0")
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% categorize_unify_var_var works out which category a unification
|
|
% between a variable and another variable expression is - whether it is
|
|
% an assignment, a simple test or a complicated unify.
|
|
%
|
|
:- pred categorize_unify_var_var(from_to_insts::in, from_to_insts::in,
|
|
is_live::in, is_live::in, prog_var::in,
|
|
prog_var::in, determinism::in, unify_context::in, hlds_goal_info::in,
|
|
vartypes::in, unification::in, hlds_goal_expr::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
categorize_unify_var_var(FromToInstsOfX, FromToInstsOfY, LiveX, LiveY, X, Y,
|
|
Detism, UnifyContext, GoalInfo, VarTypes, Unification0, Unify,
|
|
!ModeInfo) :-
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
( if
|
|
from_to_insts_is_output(ModuleInfo0, FromToInstsOfX)
|
|
then
|
|
Unification = assign(X, Y)
|
|
else if
|
|
from_to_insts_is_output(ModuleInfo0, FromToInstsOfY)
|
|
then
|
|
Unification = assign(Y, X)
|
|
else if
|
|
from_to_insts_is_unused(ModuleInfo0, FromToInstsOfX),
|
|
from_to_insts_is_unused(ModuleInfo0, FromToInstsOfY)
|
|
then
|
|
% For free-free unifications, we pretend for a moment that they are
|
|
% an assignment to the dead variable - they will then be optimized
|
|
% away.
|
|
(
|
|
LiveX = is_dead,
|
|
Unification = assign(X, Y)
|
|
;
|
|
LiveX = is_live,
|
|
(
|
|
LiveY = is_dead,
|
|
Unification = assign(Y, X)
|
|
;
|
|
LiveY = is_live,
|
|
unexpected($module, $pred, "free-free unify!")
|
|
)
|
|
)
|
|
else if
|
|
% Check for unreachable unifications.
|
|
( FromToInstsOfX = from_to_insts(not_reached, _)
|
|
; FromToInstsOfY = from_to_insts(not_reached, _)
|
|
)
|
|
then
|
|
% For these, we can generate any old junk here --
|
|
% we just need to avoid calling modecheck_complicated_unify,
|
|
% since that might abort.
|
|
|
|
Unification = simple_test(X, Y)
|
|
else
|
|
lookup_var_type(VarTypes, X, Type),
|
|
( if
|
|
type_is_atomic(ModuleInfo0, Type),
|
|
not type_has_user_defined_equality_pred(ModuleInfo0, Type, _)
|
|
then
|
|
Unification = simple_test(X, Y)
|
|
else if
|
|
% Unification of c_pointers is a runtime error unless introduced by
|
|
% the compiler.
|
|
Type = c_pointer_type,
|
|
goal_info_has_feature(GoalInfo, feature_pretest_equality_condition)
|
|
then
|
|
Unification = simple_test(X, Y)
|
|
else
|
|
modecheck_complicated_unify(X, Y, Type,
|
|
FromToInstsOfX, FromToInstsOfY, Detism, UnifyContext,
|
|
Unification0, Unification, !ModeInfo)
|
|
)
|
|
),
|
|
|
|
% Optimize away unifications with dead variables and simple tests that
|
|
% cannot fail by replacing them with `true'. (The optimization of simple
|
|
% tests is necessary because otherwise determinism analysis assumes they
|
|
% can fail. The optimization of assignments to dead variables may be
|
|
% necessary to stop the code generator from getting confused.)
|
|
%
|
|
% Optimize away unifications which always fail by replacing them with
|
|
% `fail'.
|
|
( if
|
|
Unification = assign(AssignTarget, AssignSource),
|
|
mode_info_var_is_live(!.ModeInfo, AssignTarget, is_dead)
|
|
then
|
|
Unify = conj(plain_conj, []),
|
|
record_optimize_away(GoalInfo, AssignTarget, AssignSource, !ModeInfo)
|
|
else if
|
|
Unification = simple_test(TestVar1, TestVar2),
|
|
Detism = detism_det
|
|
then
|
|
Unify = conj(plain_conj, []),
|
|
record_optimize_away(GoalInfo, TestVar1, TestVar2, !ModeInfo)
|
|
else if
|
|
Detism = detism_failure
|
|
then
|
|
% This optimisation is safe because the only way that we can analyse
|
|
% a unification as having no solutions is that the unification
|
|
% always fails.
|
|
%
|
|
% Unifying two preds is not erroneous as far as the
|
|
% mode checker is concerned, but a mode _error_.
|
|
Unify = disj([]),
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
|
|
module_info_get_globals(ModuleInfo, Globals),
|
|
globals.lookup_bool_option(Globals, warn_unification_cannot_succeed,
|
|
WarnCannotSucceed),
|
|
(
|
|
WarnCannotSucceed = yes,
|
|
FromToInstsOfX = from_to_insts(InitInstOfX, _),
|
|
FromToInstsOfY = from_to_insts(InitInstOfY, _),
|
|
mode_info_get_pred_id(!.ModeInfo, PredId),
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
pred_info_get_origin(PredInfo, Origin),
|
|
ReportWarning = should_report_mode_warning_for_pred_origin(Origin),
|
|
(
|
|
ReportWarning = yes,
|
|
Warning = cannot_succeed_var_var(X, Y,
|
|
InitInstOfX, InitInstOfY),
|
|
mode_info_warning(Warning, !ModeInfo)
|
|
;
|
|
ReportWarning = no
|
|
)
|
|
;
|
|
WarnCannotSucceed = no
|
|
)
|
|
else
|
|
UnifyModes = unify_modes_lhs_rhs(FromToInstsOfX, FromToInstsOfY),
|
|
Unify = unify(X, rhs_var(Y), UnifyModes, Unification, UnifyContext)
|
|
).
|
|
|
|
% If we optimize away a singleton variable in a unification in one branch
|
|
% of e.g. a switch, it is possible that the same variable is a singleton
|
|
% in another branch, but cannot be optimized away because it is bound in
|
|
% a call (which cannot be optimized away). In such cases, we must make sure
|
|
% that we call requantification to delete the variable from the nonlocals
|
|
% set of the switch, because otherwise, the arms of the switch would
|
|
% disagree on which nonlocals are bound.
|
|
%
|
|
:- pred record_optimize_away(hlds_goal_info::in, prog_var::in, prog_var::in,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
record_optimize_away(GoalInfo, Var1, Var2, !ModeInfo) :-
|
|
NonLocals = goal_info_get_nonlocals(GoalInfo),
|
|
( if
|
|
set_of_var.member(NonLocals, Var1),
|
|
set_of_var.member(NonLocals, Var2)
|
|
then
|
|
true
|
|
else
|
|
mode_info_need_to_requantify(!ModeInfo)
|
|
).
|
|
|
|
% Modecheck_complicated_unify does some extra checks that are needed
|
|
% for mode-checking complicated unifications.
|
|
%
|
|
:- pred modecheck_complicated_unify(prog_var::in, prog_var::in,
|
|
mer_type::in, from_to_insts::in, from_to_insts::in, determinism::in,
|
|
unify_context::in, unification::in, unification::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
modecheck_complicated_unify(X, Y, Type, FromToInstsOfX, FromToInstsOfY,
|
|
Detism, UnifyContext, Unification0, Unification, !ModeInfo) :-
|
|
% Build up the unification.
|
|
FromToInstsOfX = from_to_insts(InitialInstX, _FinalInstX),
|
|
FromToInstsOfY = from_to_insts(InitialInstY, _FinalInstY),
|
|
UnifyMode = unify_modes_lhs_rhs(FromToInstsOfX, FromToInstsOfY),
|
|
determinism_components(Detism, CanFail, _),
|
|
( if Unification0 = complicated_unify(_, _, UnifyTypeInfoVars0) then
|
|
UnifyTypeInfoVars = UnifyTypeInfoVars0
|
|
else
|
|
unexpected($module, $pred, "non-complicated unify")
|
|
),
|
|
Unification = complicated_unify(UnifyMode, CanFail, UnifyTypeInfoVars),
|
|
|
|
% Check that all the type_info or type_class_info variables used
|
|
% by the polymorphic unification are ground.
|
|
(
|
|
% Optimize common case.
|
|
UnifyTypeInfoVars = []
|
|
;
|
|
UnifyTypeInfoVars = [_ | _],
|
|
list.length(UnifyTypeInfoVars, NumTypeInfoVars),
|
|
list.duplicate(NumTypeInfoVars, ground(shared, none_or_default_func),
|
|
ExpectedInsts),
|
|
mode_info_set_call_context(call_context_unify(UnifyContext),
|
|
!ModeInfo),
|
|
InitialArgNum = 0,
|
|
modecheck_var_has_inst_list_no_exact_match(UnifyTypeInfoVars,
|
|
ExpectedInsts, InitialArgNum, _InstVarSub, !ModeInfo),
|
|
% we can ignore _InstVarSub since type_info variables
|
|
% should not have variable insts.
|
|
mode_info_unset_call_context(!ModeInfo)
|
|
),
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
( if
|
|
mode_info_get_errors(!.ModeInfo, Errors),
|
|
Errors = [_ | _]
|
|
then
|
|
true
|
|
else if
|
|
% Check that we're not trying to do a polymorphic unification
|
|
% in a mode other than (in, in).
|
|
% [Actually we also allow `any' insts, since the (in, in)
|
|
% mode of unification for types which have `any' insts must
|
|
% also be able to handle (in(any), in(any)) unifications.]
|
|
Type = type_variable(_, _),
|
|
not inst_is_ground_or_any(ModuleInfo0, InitialInstX)
|
|
then
|
|
WaitingVars = set_of_var.make_singleton(X),
|
|
ModeError = mode_error_poly_unify(X, InitialInstX),
|
|
mode_info_error(WaitingVars, ModeError, !ModeInfo)
|
|
else if
|
|
Type = type_variable(_, _),
|
|
not inst_is_ground_or_any(ModuleInfo0, InitialInstY)
|
|
then
|
|
WaitingVars = set_of_var.make_singleton(Y),
|
|
ModeError = mode_error_poly_unify(Y, InitialInstY),
|
|
mode_info_error(WaitingVars, ModeError, !ModeInfo)
|
|
else if
|
|
% Check that we are not trying to do a higher-order unification.
|
|
type_is_higher_order_details(Type, _, PredOrFunc, _, _)
|
|
then
|
|
% We do not want to report this as an error if it occurs in a
|
|
% compiler-generated predicate - instead, we delay the error
|
|
% until runtime so that it only occurs if the compiler-generated
|
|
% predicate gets called. not_reached is considered bound, so the
|
|
% error message would be spurious if the instmap is unreachable.
|
|
mode_info_get_pred_id(!.ModeInfo, PredId),
|
|
module_info_pred_info(ModuleInfo0, PredId, PredInfo),
|
|
mode_info_get_instmap(!.ModeInfo, InstMap0),
|
|
( if
|
|
( is_unify_or_compare_pred(PredInfo)
|
|
; instmap_is_unreachable(InstMap0)
|
|
)
|
|
then
|
|
true
|
|
else
|
|
set_of_var.init(WaitingVars),
|
|
ModeError =
|
|
mode_error_unify_pred(X, error_at_var(Y), Type, PredOrFunc),
|
|
mode_info_error(WaitingVars, ModeError, !ModeInfo)
|
|
)
|
|
else if
|
|
% Ensure that we will generate code for the unification procedure
|
|
% that will be used to implement this complicated unification.
|
|
type_to_ctor(Type, TypeCtor)
|
|
then
|
|
mode_info_get_context(!.ModeInfo, Context),
|
|
mode_info_get_instvarset(!.ModeInfo, InstVarSet),
|
|
UnifyProcId = unify_proc_id(TypeCtor, UnifyMode),
|
|
request_unify(UnifyProcId, InstVarSet, Detism, Context,
|
|
ModuleInfo0, ModuleInfo),
|
|
mode_info_set_module_info(ModuleInfo, !ModeInfo)
|
|
else
|
|
true
|
|
).
|
|
|
|
% Categorize_unify_var_lambda works out which category a unification
|
|
% between a variable and a lambda expression is - whether it is a
|
|
% construction unification or a deconstruction. It also works out
|
|
% whether it will be deterministic or semideterministic.
|
|
%
|
|
:- pred categorize_unify_var_lambda(from_to_insts::in, list(from_to_insts)::in,
|
|
prog_var::in, list(prog_var)::in, pred_or_func::in,
|
|
unify_rhs::in, unify_rhs::out, unification::in, unification::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
categorize_unify_var_lambda(FromToInstsOfX, ArgFromToInsts, X, ArgVars,
|
|
PredOrFunc, RHS0, RHS, Unification0, Unification, !ModeInfo) :-
|
|
% If we are re-doing mode analysis, preserve the existing cons_id.
|
|
list.length(ArgVars, Arity),
|
|
(
|
|
Unification0 = construct(_, ConsId, _, _, _, _, SubInfo),
|
|
(
|
|
SubInfo = construct_sub_info(MaybeTakeAddr, _MaybeSize),
|
|
expect(unify(MaybeTakeAddr, no), $module, $pred, "take_addr")
|
|
;
|
|
SubInfo = no_construct_sub_info
|
|
)
|
|
;
|
|
Unification0 = deconstruct(_, ConsId, _, _, _, _),
|
|
SubInfo = no_construct_sub_info
|
|
;
|
|
( Unification0 = assign(_, _)
|
|
; Unification0 = simple_test(_, _)
|
|
; Unification0 = complicated_unify(_, _, _)
|
|
),
|
|
SubInfo = no_construct_sub_info,
|
|
% The real cons_id will be computed by lambda.m;
|
|
% we just put in a dummy one for now.
|
|
TypeCtor = type_ctor(unqualified("int"), 0),
|
|
ConsId = cons(unqualified("__LambdaGoal__"), Arity, TypeCtor)
|
|
),
|
|
from_to_insts_to_unify_modes(ArgFromToInsts, ArgFromToInsts,
|
|
ArgModes),
|
|
mode_info_get_instmap(!.ModeInfo, InstMap),
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
|
|
( if from_to_insts_is_output(ModuleInfo, FromToInstsOfX) then
|
|
( if
|
|
% If pred_consts are present, lambda expansion has already been
|
|
% done. Rerunning mode analysis should not produce a lambda_goal
|
|
% which cannot be directly converted back into a higher-order
|
|
% predicate constant. If the instmap is not reachable, the call
|
|
% may have been handled as an implied mode, since not_reached
|
|
% is considered to be bound. In this case the lambda_goal may
|
|
% not be converted back to a predicate constant, but that doesn't
|
|
% matter since the code will be pruned away later by simplify.m.
|
|
ConsId = closure_cons(ShroudedPredProcId, EvalMethod),
|
|
instmap_is_reachable(InstMap)
|
|
then
|
|
proc(PredId, ProcId) = unshroud_pred_proc_id(ShroudedPredProcId),
|
|
( if
|
|
RHS0 = rhs_lambda_goal(_, _, _, EvalMethod, _, _, _, _, Goal),
|
|
Goal = hlds_goal(plain_call(PredId, ProcId, _, _, _, _), _)
|
|
then
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
PredModule = pred_info_module(PredInfo),
|
|
PredName = pred_info_name(PredInfo),
|
|
mode_info_get_var_types(!.ModeInfo, VarTypes),
|
|
lookup_var_type(VarTypes, X, Type),
|
|
( if Type = higher_order_type(PorF, _, _, _, _) then
|
|
(
|
|
PorF = pf_predicate,
|
|
RHSTypeCtor = type_ctor(unqualified("pred"), 0)
|
|
;
|
|
PorF = pf_function,
|
|
RHSTypeCtor = type_ctor(unqualified("func"), 0)
|
|
)
|
|
else
|
|
unexpected($module, $pred, "bad HO type")
|
|
),
|
|
RHSConsId = cons(qualified(PredModule, PredName), Arity,
|
|
RHSTypeCtor),
|
|
RHS = rhs_functor(RHSConsId, is_not_exist_constr, ArgVars)
|
|
else
|
|
unexpected($module, $pred, "reintroduced lambda goal")
|
|
)
|
|
else
|
|
RHS = RHS0
|
|
),
|
|
Unification = construct(X, ConsId, ArgVars, ArgModes,
|
|
construct_dynamically, cell_is_unique, SubInfo)
|
|
else if instmap_is_reachable(InstMap) then
|
|
% If it is a deconstruction, it is a mode error.
|
|
% The error message would be incorrect in unreachable code,
|
|
% since not_reached is considered bound.
|
|
set_of_var.init(WaitingVars),
|
|
mode_info_get_var_types(!.ModeInfo, VarTypes0),
|
|
lookup_var_type(VarTypes0, X, Type),
|
|
ModeError = mode_error_unify_pred(X,
|
|
error_at_lambda(ArgVars, ArgFromToInsts), Type, PredOrFunc),
|
|
mode_info_error(WaitingVars, ModeError, !ModeInfo),
|
|
% Return any old garbage.
|
|
Unification = Unification0,
|
|
RHS = RHS0
|
|
else
|
|
Unification = Unification0,
|
|
RHS = RHS0
|
|
).
|
|
|
|
% Categorize_unify_var_functor works out which category a unification
|
|
% between a variable and a functor is - whether it is a construction
|
|
% unification or a deconstruction. It also works out whether it will be
|
|
% deterministic or semideterministic.
|
|
%
|
|
:- pred categorize_unify_var_functor(from_to_insts::in,
|
|
list(from_to_insts)::in, list(from_to_insts)::in,
|
|
prog_var::in, cons_id::in, list(prog_var)::in, vartypes::in,
|
|
unify_context::in, unification::in, unification::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
categorize_unify_var_functor(FromToInstsOfX, FromToInstsOfXArgs,
|
|
ArgFromToInsts, X, NewConsId, ArgVars, VarTypes, UnifyContext,
|
|
Unification0, Unification, !ModeInfo) :-
|
|
lookup_var_type(VarTypes, X, TypeOfX),
|
|
% If we are redoing mode analysis, preserve the existing cons_id.
|
|
(
|
|
Unification0 = construct(_, ConsIdPrime, _, _, _, _, SubInfo0),
|
|
(
|
|
SubInfo0 = construct_sub_info(MaybeTakeAddr, _MaybeSize0),
|
|
expect(unify(MaybeTakeAddr, no), $module, $pred, "take_addr")
|
|
;
|
|
SubInfo0 = no_construct_sub_info
|
|
),
|
|
SubInfo = SubInfo0,
|
|
ConsId = ConsIdPrime
|
|
;
|
|
Unification0 = deconstruct(_, ConsIdPrime, _, _, _, _),
|
|
SubInfo = no_construct_sub_info,
|
|
ConsId = ConsIdPrime
|
|
;
|
|
( Unification0 = assign(_, _)
|
|
; Unification0 = simple_test(_, _)
|
|
; Unification0 = complicated_unify(_, _, _)
|
|
),
|
|
SubInfo = no_construct_sub_info,
|
|
ConsId = NewConsId
|
|
),
|
|
from_to_insts_to_unify_modes(FromToInstsOfXArgs, ArgFromToInsts,
|
|
ArgModes),
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
|
|
( if from_to_insts_is_output(ModuleInfo, FromToInstsOfX) then
|
|
% It is a construction.
|
|
Unification = construct(X, ConsId, ArgVars, ArgModes,
|
|
construct_dynamically, cell_is_unique, SubInfo),
|
|
|
|
% For existentially quantified data types, check that any type_info
|
|
% or type_class_info variables in the construction are ground.
|
|
mode_info_set_call_context(call_context_unify(UnifyContext),
|
|
!ModeInfo),
|
|
check_type_info_args_are_ground(ArgVars, VarTypes, UnifyContext,
|
|
!ModeInfo),
|
|
mode_info_unset_call_context(!ModeInfo)
|
|
else
|
|
% It is a deconstruction.
|
|
( if
|
|
% If the variable was already known to be bound to a single
|
|
% particular functor, then the unification either always succeeds
|
|
% or always fails. In the latter case, the final inst will be
|
|
% `not_reached' or `bound([])'. So if both the initial and final
|
|
% inst are `bound([_])', then the unification must be
|
|
% deterministic.
|
|
FromToInstsOfX = from_to_insts(InitialInst0, FinalInst0),
|
|
inst_expand(ModuleInfo, InitialInst0, InitialInst),
|
|
inst_expand(ModuleInfo, FinalInst0, FinalInst),
|
|
InitialInst = bound(_, _, [_]),
|
|
FinalInst = bound(_, _, [_])
|
|
then
|
|
CanFail = cannot_fail
|
|
else if
|
|
% If the type has only one constructor, then the unification
|
|
% cannot fail.
|
|
type_constructors(ModuleInfo, TypeOfX, Constructors),
|
|
Constructors = [_]
|
|
then
|
|
CanFail = cannot_fail
|
|
else
|
|
% Otherwise, it can fail.
|
|
CanFail = can_fail,
|
|
mode_info_get_instmap(!.ModeInfo, InstMap0),
|
|
( if
|
|
type_is_higher_order_details(TypeOfX, _, PredOrFunc, _, _),
|
|
instmap_is_reachable(InstMap0)
|
|
then
|
|
set_of_var.init(WaitingVars),
|
|
ModeError = mode_error_unify_pred(X,
|
|
error_at_functor(ConsId, ArgVars), TypeOfX, PredOrFunc),
|
|
mode_info_error(WaitingVars, ModeError, !ModeInfo)
|
|
else
|
|
true
|
|
)
|
|
),
|
|
Unification = deconstruct(X, ConsId, ArgVars, ArgModes, CanFail,
|
|
cannot_cgc)
|
|
).
|
|
|
|
% Check that any type_info or type_class_info variables
|
|
% in the argument list are ground.
|
|
%
|
|
:- pred check_type_info_args_are_ground(list(prog_var)::in,
|
|
vartypes::in, unify_context::in, mode_info::in, mode_info::out) is det.
|
|
|
|
check_type_info_args_are_ground([], _VarTypes, _UnifyContext, !ModeInfo).
|
|
check_type_info_args_are_ground([ArgVar | ArgVars], VarTypes, UnifyContext,
|
|
!ModeInfo) :-
|
|
( if
|
|
lookup_var_type(VarTypes, ArgVar, ArgType),
|
|
is_introduced_type_info_type(ArgType)
|
|
then
|
|
mode_info_set_call_arg_context(1, !ModeInfo),
|
|
modecheck_introduced_type_info_var_has_inst_no_exact_match(ArgVar,
|
|
ArgType, ground(shared, none_or_default_func), !ModeInfo),
|
|
check_type_info_args_are_ground(ArgVars, VarTypes, UnifyContext,
|
|
!ModeInfo)
|
|
else
|
|
true
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- type match_modes_result
|
|
---> possible_modes(list(proc_id))
|
|
; some_ho_args_not_ground(list(prog_var)).
|
|
|
|
:- pred match_modes_by_higher_order_insts(module_info::in,
|
|
vartypes::in, instmap::in, prog_vars::in, pred_info::in,
|
|
match_modes_result::out) is det.
|
|
|
|
match_modes_by_higher_order_insts(ModuleInfo, VarTypes, InstMap, ArgVars,
|
|
CalleePredInfo, Result) :-
|
|
CalleeProcIds = pred_info_procids(CalleePredInfo),
|
|
match_modes_by_higher_order_insts_2(ModuleInfo, VarTypes, InstMap,
|
|
ArgVars, CalleePredInfo, CalleeProcIds, [], [], Result).
|
|
|
|
:- pred match_modes_by_higher_order_insts_2(module_info::in,
|
|
vartypes::in, instmap::in, prog_vars::in, pred_info::in,
|
|
list(proc_id)::in, list(proc_id)::in, list(prog_var)::in,
|
|
match_modes_result::out) is det.
|
|
|
|
match_modes_by_higher_order_insts_2(_, _, _, _, _, [],
|
|
!.RevMatchedProcIds, !.NonGroundNonLocals, Result) :-
|
|
(
|
|
!.NonGroundNonLocals = [],
|
|
Result = possible_modes(list.reverse(!.RevMatchedProcIds))
|
|
;
|
|
!.NonGroundNonLocals = [_ | _],
|
|
!:NonGroundNonLocals = list.sort_and_remove_dups(!.NonGroundNonLocals),
|
|
Result = some_ho_args_not_ground(!.NonGroundNonLocals)
|
|
).
|
|
match_modes_by_higher_order_insts_2(ModuleInfo, VarTypes, InstMap,
|
|
ArgVars, CalleePredInfo, [ProcId | ProcIds],
|
|
!.RevMatchedProcIds, !.NonGroundNonLocals, Result) :-
|
|
pred_info_proc_info(CalleePredInfo, ProcId, CalleeProcInfo),
|
|
proc_info_get_argmodes(CalleeProcInfo, ArgModes),
|
|
match_mode_by_higher_order_insts(ModuleInfo, VarTypes, InstMap, ArgVars,
|
|
ArgModes, ProcNonGroundNonLocals, ProcResult),
|
|
!:NonGroundNonLocals = ProcNonGroundNonLocals ++ !.NonGroundNonLocals,
|
|
(
|
|
ProcResult = ho_insts_match,
|
|
!:RevMatchedProcIds = [ProcId | !.RevMatchedProcIds]
|
|
;
|
|
ProcResult = ho_insts_do_not_match
|
|
),
|
|
match_modes_by_higher_order_insts_2(ModuleInfo, VarTypes, InstMap,
|
|
ArgVars, CalleePredInfo, ProcIds,
|
|
!.RevMatchedProcIds, !.NonGroundNonLocals, Result).
|
|
|
|
:- type match_mode_result
|
|
---> ho_insts_match
|
|
; ho_insts_do_not_match.
|
|
|
|
:- pred match_mode_by_higher_order_insts(module_info::in,
|
|
vartypes::in, instmap::in, prog_vars::in, list(mer_mode)::in,
|
|
list(prog_var)::out, match_mode_result::out) is det.
|
|
|
|
match_mode_by_higher_order_insts(_ModuleInfo, _VarTypes, _InstMap,
|
|
[], _, [], ho_insts_match).
|
|
match_mode_by_higher_order_insts(ModuleInfo, VarTypes, InstMap,
|
|
[ArgVar | ArgVars], ArgModesList, NonGroundArgVars, Result) :-
|
|
(
|
|
ArgModesList = [ArgMode | ArgModes]
|
|
;
|
|
ArgModesList = [],
|
|
unexpected($module, $pred, "too many arguments")
|
|
),
|
|
match_mode_by_higher_order_insts(ModuleInfo, VarTypes, InstMap,
|
|
ArgVars, ArgModes, TailNonGroundArgVars, TailResult),
|
|
|
|
% For arguments with higher order initial insts, check if the variable in
|
|
% that position has a matching inst. If the variable is free, then we need
|
|
% to delay the goal.
|
|
Initial = mode_get_initial_inst(ModuleInfo, ArgMode),
|
|
( if Initial = ground(_, higher_order(_)) then
|
|
instmap_lookup_var(InstMap, ArgVar, ArgInst),
|
|
lookup_var_type(VarTypes, ArgVar, ArgType),
|
|
( if inst_matches_initial(ArgInst, Initial, ArgType, ModuleInfo) then
|
|
NonGroundArgVars = TailNonGroundArgVars,
|
|
Result = TailResult
|
|
else
|
|
( if inst_is_ground(ModuleInfo, ArgInst) then
|
|
NonGroundArgVars = TailNonGroundArgVars
|
|
else
|
|
NonGroundArgVars = [ArgVar | TailNonGroundArgVars]
|
|
),
|
|
Result = ho_insts_do_not_match
|
|
)
|
|
else
|
|
NonGroundArgVars = TailNonGroundArgVars,
|
|
Result = TailResult
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% The call to bind_args below serves to update the insts of the
|
|
% argument variables on the right hand side of the unification,
|
|
% putting into them any information we can derive from the original
|
|
% inst of the variable on the left hand side.
|
|
%
|
|
% Unfortunately, the update can be very expensive. For example,
|
|
% for a ground list with N elements, there will be N variables
|
|
% bound to the cons cells of the list. Since the average size of the
|
|
% insts of these variables is proportional to N/2, the task
|
|
% of recording all their insts is at least quadratic in N.
|
|
% In practice, it can actually be worse, because of the way the code
|
|
% called by bind_args works. It keeps track of sets of insts seen
|
|
% so far, and checks new insts for membership of such sets.
|
|
% If the initial elements of a list are repeated, then the membership
|
|
% test can try to unify e.g. [a, a, a, a] with [], [a], [a, a]
|
|
% and [a, a, a]. This means that each step of the quadratic algorithm
|
|
% is itself quadratic, for an overall complexity of O(n^4).
|
|
%
|
|
% It is therefore crucial that we avoid calling bind_args if at all
|
|
% possible.
|
|
%
|
|
% There are two cases in which we definitely know we can avoid
|
|
% calling bind_args. First, if the variable on the left hand side, X,
|
|
% is originally free, then it cannot change the already recorded insts
|
|
% of the variables on the right hand side. Second, in from_ground_term
|
|
% scopes, the variables on the right hand sides of construct
|
|
% unifications are all local to the scope of the from_ground_term
|
|
% scope. We can avoid updating their insts because no part of the
|
|
% compiler will ever want to see their insts.
|
|
%
|
|
% We test for the first case first, because we expect it to be
|
|
% much more common.
|
|
%
|
|
:- pred bind_args_if_needed(mer_inst::in, mer_inst::in,
|
|
list(prog_var)::in, list(mer_inst)::in,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
bind_args_if_needed(InstOfX, Inst, ArgVars, InstOfXArgs, !ModeInfo) :-
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
|
|
( if inst_is_free(ModuleInfo, InstOfX) then
|
|
true
|
|
else
|
|
mode_info_get_in_from_ground_term(!.ModeInfo, InFromGroundTerm),
|
|
(
|
|
InFromGroundTerm = in_from_ground_term_scope
|
|
;
|
|
InFromGroundTerm = not_in_from_ground_term_scope,
|
|
UnifyArgInsts = list.map(func(I) = yes(I), InstOfXArgs),
|
|
bind_args(Inst, ArgVars, UnifyArgInsts, !ModeInfo)
|
|
)
|
|
).
|
|
|
|
:- pred bind_args(mer_inst::in, list(prog_var)::in, list(maybe(mer_inst))::in,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
bind_args(Inst, Args, UnifyArgInsts, !ModeInfo) :-
|
|
( if try_bind_args(Inst, Args, UnifyArgInsts, !ModeInfo) then
|
|
true
|
|
else
|
|
unexpected($module, $pred, "try_bind_args failed")
|
|
).
|
|
|
|
:- pred try_bind_args(mer_inst::in, list(prog_var)::in,
|
|
list(maybe(mer_inst))::in, mode_info::in, mode_info::out) is semidet.
|
|
|
|
try_bind_args(Inst, ArgVars, UnifyArgInsts, !ModeInfo) :-
|
|
(
|
|
Inst = not_reached,
|
|
instmap.init_unreachable(InstMap),
|
|
mode_info_set_instmap(InstMap, !ModeInfo)
|
|
;
|
|
Inst = ground(Uniq, none_or_default_func),
|
|
ground_args(Uniq, ArgVars, UnifyArgInsts, !ModeInfo)
|
|
;
|
|
Inst = bound(_Uniq, _InstResults, BoundInsts),
|
|
(
|
|
BoundInsts = [],
|
|
% The code is unreachable.
|
|
instmap.init_unreachable(InstMap),
|
|
mode_info_set_instmap(InstMap, !ModeInfo)
|
|
;
|
|
BoundInsts = [bound_functor(_, ArgInsts)],
|
|
try_bind_args_2(ArgVars, ArgInsts, UnifyArgInsts, !ModeInfo)
|
|
)
|
|
;
|
|
Inst = constrained_inst_vars(_, SubInst),
|
|
try_bind_args(SubInst, ArgVars, UnifyArgInsts, !ModeInfo)
|
|
).
|
|
|
|
:- pred try_bind_args_2(list(prog_var)::in, list(mer_inst)::in,
|
|
list(maybe(mer_inst))::in, mode_info::in, mode_info::out) is semidet.
|
|
|
|
try_bind_args_2([], [], [], !ModeInfo).
|
|
try_bind_args_2([Arg | Args], [Inst | Insts], [UnifyArgInst | UnifyArgInsts],
|
|
!ModeInfo) :-
|
|
modecheck_set_var_inst(Arg, Inst, UnifyArgInst, !ModeInfo),
|
|
try_bind_args_2(Args, Insts, UnifyArgInsts, !ModeInfo).
|
|
|
|
:- pred ground_args(uniqueness::in, list(prog_var)::in,
|
|
list(maybe(mer_inst))::in, mode_info::in, mode_info::out) is semidet.
|
|
|
|
ground_args(_Uniq, [], [], !ModeInfo).
|
|
ground_args(Uniq, [Arg | Args], [UnifyArgInst | UnifyArgInsts], !ModeInfo) :-
|
|
Ground = ground(Uniq, none_or_default_func),
|
|
modecheck_set_var_inst(Arg, Ground, UnifyArgInst, !ModeInfo),
|
|
ground_args(Uniq, Args, UnifyArgInsts, !ModeInfo).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% get_mode_of_args(InitialArgInsts, FinalInst, ArgFromToInsts):
|
|
%
|
|
% For a var-functor unification, given the initial insts of the functor
|
|
% arguments and the final inst of the var, compute the modes of the
|
|
% functor arguments.
|
|
%
|
|
:- pred get_mode_of_args(list(mer_inst)::in, mer_inst::in,
|
|
list(from_to_insts)::out) is det.
|
|
|
|
get_mode_of_args(ArgInitInsts, FinalInst, ArgFromToInsts) :-
|
|
( if
|
|
try_get_mode_of_args(ArgInitInsts, FinalInst, ArgFromToInstsPrime)
|
|
then
|
|
ArgFromToInsts = ArgFromToInstsPrime
|
|
else
|
|
unexpected($module, $pred, "try_get_mode_of_args failed")
|
|
).
|
|
|
|
:- pred try_get_mode_of_args(list(mer_inst)::in, mer_inst::in,
|
|
list(from_to_insts)::out) is semidet.
|
|
|
|
try_get_mode_of_args(ArgInitInsts, FinalInst, ArgFromToInsts) :-
|
|
(
|
|
FinalInst = not_reached,
|
|
pair_with_final_inst(ArgInitInsts, FinalInst, ArgFromToInsts)
|
|
;
|
|
FinalInst = any(_Uniq, none_or_default_func),
|
|
pair_with_final_inst(ArgInitInsts, FinalInst, ArgFromToInsts)
|
|
;
|
|
FinalInst = ground(_Uniq, none_or_default_func),
|
|
pair_with_final_inst(ArgInitInsts, FinalInst, ArgFromToInsts)
|
|
;
|
|
FinalInst = bound(_Uniq, _InstResults, BoundInsts),
|
|
(
|
|
BoundInsts = [],
|
|
% The code is unreachable.
|
|
pair_with_final_inst(ArgInitInsts, not_reached, ArgFromToInsts)
|
|
;
|
|
BoundInsts = [bound_functor(_Name, FunctorArgInsts)],
|
|
pair_up_insts(ArgInitInsts, FunctorArgInsts, ArgFromToInsts)
|
|
)
|
|
;
|
|
FinalInst = constrained_inst_vars(_, SubInst),
|
|
try_get_mode_of_args(ArgInitInsts, SubInst, ArgFromToInsts)
|
|
).
|
|
|
|
:- pred pair_up_insts(list(mer_inst)::in, list(mer_inst)::in,
|
|
list(from_to_insts)::out) is det.
|
|
|
|
pair_up_insts([], [], []).
|
|
pair_up_insts([], [_ | _], _) :-
|
|
unexpected($module, $pred, "mismatched list lengths").
|
|
pair_up_insts([_ | _], [], _) :-
|
|
unexpected($module, $pred, "mismatched list lengths").
|
|
pair_up_insts([InstA | InstsA], [InstB | InstsB],
|
|
[FromToInst | FromToInsts]) :-
|
|
FromToInst = from_to_insts(InstA, InstB),
|
|
pair_up_insts(InstsA, InstsB, FromToInsts).
|
|
|
|
:- pred pair_with_final_inst(list(mer_inst)::in, mer_inst::in,
|
|
list(from_to_insts)::out) is det.
|
|
|
|
pair_with_final_inst([], _, []).
|
|
pair_with_final_inst([InitInst | InitInsts], FinalInst,
|
|
[FromToInst | FromToInsts]) :-
|
|
FromToInst = from_to_insts(InitInst, FinalInst),
|
|
pair_with_final_inst(InitInsts, FinalInst, FromToInsts).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
:- end_module check_hlds.modecheck_unify.
|
|
%-----------------------------------------------------------------------------%
|