Files
mercury/compiler/ml_elim_nested.m
Zoltan Somogyi 234501be75 Remove ml_tailcall.m and associated code.
Now that we can optimize tail recursion for all MLDS targets better via
the MLDS code generator than via ml_tailcall.m, we don't need it anymore.

compiler/ml_tailcall.m:
    Delete this module.

compiler/ml_backend.m:
compiler/notes/compiler_design.html:
    Delete the inclusion and the documentation of the deleted module.

compiler/mark_tail_calls.m:
    Update old references to the deleted module, as well as some comments.

compiler/mercury_compile_mlds_back_end.m:
    Don't invoke the deleted module.

compiler/options.m:
    Delete the (developer-only) options that used to control whether
    we did tail call optimization (TCO) via ml_tailcall.m or not.

compiler/ml_optimize.m:
    Delete the parts of this module that worked in concert with ml_tailcall.m
    to implement TCO.

compiler/mlds.m:
    Delete the field from ml_call_stmts that was needed only by ml_tailcall.m.

compiler/ml_call_gen.m:
    Don't fill in the deleted field.

    Shift here the only part of the old contents of ml_tailcall.m that is
    still needed, the check for whether rvals would become dangling references
    if we discarded the current call's stack frame.

compiler/ml_elim_nested.m:
    Conform to the change to mlds.m, and eliminate an unused field
    in elim_info.

compiler/ml_accurate_gc.m:
compiler/ml_code_util.m:
compiler/ml_commit_gen.m:
compiler/ml_proc_gen.m:
compiler/ml_rename_classes.m:
compiler/ml_util.m:
compiler/mlds_to_c.m:
compiler/mlds_to_cs.m:
compiler/mlds_to_java.m:
compiler/mlds_to_target_util.m:
    Conform to the changes above.
2017-11-10 14:26:32 +11:00

2616 lines
102 KiB
Mathematica

%---------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%---------------------------------------------------------------------------%
% Copyright (C) 1999-2011 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: ml_elim_nested.m.
% Main author: fjh.
%
% This module is an MLDS-to-MLDS transformation that has two functions:
%
% 1 Eliminating nested functions.
%
% 2 Putting local variables that might contain pointers into structs, and
% chaining these structs together, for use with accurate garbage collection.
%
% The two transformations are quite similar, so they are both handled by
% the same code; a flag is passed to say which transformation should be done.
%
% The word "environment" (as in "environment struct" or "environment pointer")
% is used to refer to both the environment structs used when eliminating
% nested functions and also to the frame structs used for accurate GC.
%
% XXX Would it be possible to do both in a single pass?
%
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% (1) eliminating nested functions
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
%
% Note that this module does not attempt to handle arbitrary MLDS as input;
% it will only work with the output of the current MLDS code generator.
% In particular, it assumes that local variables in nested functions can be
% hoisted into the outermost function's environment. That is not true
% in general (e.g. if the nested functions are recursive), but it is true
% for the code that ml_code_gen generates.
%
% As well as eliminating nested functions, this transformation also has
% the effect of fixing up the dangling `env_ptr' references that ml_code_gen.m
% leaves in the code.
%
%---------------------------------------------------------------------------%
% TRANSFORMATION SUMMARY
%---------------------------------------------------------------------------%
%
% We transform code of the form e.g.
%
% <OuterRet>
% outer(<OuterArgs>) {
% <OuterLocals>
%
% <Inner1Ret>
% inner(<Inner1Args>, void *env_ptr_arg) {
% <Inner1Locals>
%
% <NestedInnerRet>
% nested_inner(<NestedInnerArgs>, void *env_ptr_arg)
% {
% <NestedInnerLocals>
%
% <NestedInnerCode>
% }
%
% <Inner1Code>
% }
%
% <Inner2Ret>
% inner(<Inner2Args>, void *env_ptr_arg) {
% <Inner2Locals>
%
% <Inner2Code>
% }
%
% <OuterCode>
% }
%
% into
%
% struct OuterLocals_struct {
% <OuterArgs>
% <OuterLocals>
% <Inner1Locals>
% };
%
% <NestedInnerRet>
% nested_inner(<NestedInnerArgs>, void *env_ptr_arg) {
% OuterLocals *env_ptr = env_ptr_arg;
% <NestedInnerLocals>
%
% <NestedInnerCode'>
% }
%
% <Inner1Ret>
% inner(<Inner1Args>, void *env_ptr_arg) {
% OuterLocals *env_ptr = env_ptr_arg;
%
% <Inner1Code'>
% }
%
% <Inner2Ret>
% inner(<Inner2Args>, void *env_ptr_arg) {
% OuterLocals *env_ptr = env_ptr_arg;
% <Inner2Locals>
%
% <Inner2Code'>
% }
%
% <OuterRet>
% outer(<OuterArgs>) {
% OuterLocals env;
% OuterLocals *env_ptr = &env;
%
% env_ptr-><OuterArgs> = <OuterArgs>;
% <OuterCode'>
% }
%
% where <Inner1Code'>, <Inner2Code'> and <NestedInnerCode'> are the
% same as <Inner1Code>, <Inner2Code> and <NestedInnerCode> (respectively)
% except that any references to a local variable <Var> declared in outer()
% are replaced with `env_ptr -> <Var>', and likewise <OuterCode'> is
% the same as <OuterCode> with references to local variables replaced with
% `env_ptr->foo'. In the latter case it could (depending on how smart the C
% compiler is) potentially be more efficient to generate `env.foo', but
% currently we don't do that.
%
% Actually the description above is slightly over-simplified: not all local
% variables need to be put in the environment struct. Only those local
% variables which are referenced by nested functions need to be
% put in the environment struct. Also, if none of the nested functions
% refer to the locals in the outer function, we don't need to create
% an environment struct at all, we just need to hoist the definitions
% of the nested functions out to the top level.
%
% The `env_ptr' variables generated here serve as definitions for
% the (previously dangling) references to such variables that
% ml_code_gen puts in calls to the nested functions.
%
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% (2) accurate GC
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
%
% SUMMARY
%
% This is an MLDS-to-MLDS transformation that transforms the MLDS code
% to add the information needed to do accurate GC when compiling to C.
%
% Basically what we do is to put all local variables that might contain
% pointers in structs, with one struct for each stack frame, and chain
% these structs together. At GC time, we traverse the chain of structs.
% This allows us to accurately scan the C stack.
%
% This is described in more detail in the following paper:
%
% Fergus Henderson <fjh@cs.mu.oz.au>,
% "Accurate garbage collection in an uncooperative environment".
% International Symposium on Memory Management, Berlin, Germany, 2002.
%
% In theory, accurate GC is now fully implemented, i.e. it should support
% the whole Mercury language, modulo the caveats below.
%
% TODO:
% (The "I" below is fjh).
%
% - XXX Need to test the GC tracing code for type class methods.
% This code in theory ought to work, I think, but it has not really been
% tested.
%
% - XXX The garbage collector should resize the heap if/when it fills up.
% We should allocate a large amount of virtual memory for each heap,
% but we should collect when we have allocated a small part of it.
%
% - Heap reclamation on failure is not yet supported.
% One difficulty is that when resetting the heap, we need to also reset
% all the local variables which might point to reclaimed garbage, otherwise
% the collector might try to trace through them, which can result in an error
% since the data pointed to isn't of the right type because it has been
% overwritten.
%
% - The garbage collector should collect the solutions heap and the global heap
% as well as the ordinary heap.
%
% Note that this is currently not an issue, since currently we don't use
% these heaps, because we don't support heap reclamation on failure or
% tabling (respectively).
%
% Actually I think GC of these heaps should almost work already, or would
% once we start using these heaps, because we never allocate on the
% solutions heap or the global heap directly, instead we swap heaps to make
% the heap that we want to allocate on the main heap. Then if that heap
% runs out of space, we will invoke a garbage collection, and everything
% should work fine. However, there are a couple of problems.
%
% First, GC will swap the to-space heap and the from-space heap. So if the
% different heaps are different sizes, we may end up with the to-space heap
% being too small (e.g. because it was originally the solutions heap).
% To fix that, we can just allocate large total sizes for all the heaps;
% see the point above about heap resizing.
%
% Second, for GC of the global heap to work, the runtime routines which
% allocate stuff on that heap need to be modified to support GC.
% In particular, MR_deep_copy() and MR_make_long_lived() and its callers
% need be modified so that they are safe for GC (i.e. they must record
% all parameters and locals that point to the heap on the GC's shadow stack),
% and MR_deep_copy() needs to call MR_GC_check() before each heap allocation.
%
% - XXX We need to handle `pragma foreign_export'.
%
% The C interface in general is a bit problematic for GC. But for code which
% does not call back to Mercury, the way we currently handle it is fairly
% safe even if the C code uses pointers to the Mercury heap or allocates
% on the Mercury heap, because such code will not invoke the GC. So the worst
% that can go wrong is a heap overflow. Provided that the C code does not
% allocate too much (more than MR_heap_margin_size), it won't overflow the
% heap, and the heap will get GC'd next time you call some Mercury code
% which does a heap allocation. Of course you may run into problems if
% there is a loop that calls C code which allocates on the Mercury heap,
% and the loop contains no intervening calls to Mercury code that allocates
% heap space (and hence calls MR_GC_check()).
%
% But if Mercury code calls C code which calls back to Mercury code, and
% the C code uses pointers to the Mercury heap, then there could be
% serious problems (i.e. dangling pointers). Even if you just use `pragma
% foreign_export' to export a procedure and `pragma foreign_proc' to import
% it back again, there may be trouble. The code generated for the exported
% functions can include calls to MR_MAYBE_BOX_FOREIGN_TYPE, which may
% allocate heap; we ought to register the frame and call MR_GC_check()
% before each call to MR_MAYBE_BOX_FOREIGN_TYPE, but currently we don't.
%
% Even if that was solved, there is still the issue of what to do about
% any heap pointers held by user-written C code; we need to provide an API
% for registering pointers on the stack. (MR_agc_add_root() only works
% for globals, really, since there's no MR_agc_remove_root()).
%
% Various optional features of Mercury are not yet supported, e.g.
%
% - `--high-level-data' (fixup_newobj_in_atomic_statement
% gets the types wrong; see comment in ml_code_util.m)
%
% - trailing
%
% - tabling
%
% - multithreading
%
% There are also some things that could be done to improve efficiency, e.g.
%
% - optimize away temporary variables
%
% - put stack_chain and/or heap pointer in global register variables
%
% - move termination conditions (check for base case) outside of stack frame
% setup & GC check where possible
%
%---------------------------------------------------------------------------%
%
% DETAILED DESCRIPTION
%
% For each function, we generate a struct for that function.
% Each such struct starts with a sub-struct containing a couple of
% fixed fields, which allow the GC to traverse the chain:
%
% struct <function_name>_frame {
% struct MR_StackChain fixed_fields;
% ...
% };
%
% The fixed fields are as follows:
%
% struct MR_StackChain {
% struct MR_StackChain *prev;
% void (*trace)(void *this_frame);
% };
%
% Actually, rather than using a nested structure, we just put these fields
% directly in the <function_name>_frame struct. (This turned out to be
% a little easier.)
%
% The prev field holds a link to the entry for this function's caller.
% The trace field is the address of a function to trace everything pointed
% to by this stack frame.
%
% To ensure that we don't try to traverse uninitialized fields,
% we zero-initialize each struct before inserting it into the chain.
%
% We need to keep a link to the topmost frame on the stack. There are two
% possible ways that we could handle this. One way is to pass it down
% as an parameter. Each function would get an extra parameter `stack_chain'
% which points to the caller's struct. An alternative approach is to just
% have a global variable `stack_chain' that points to the top of the stack.
% We need extra code to set this pointer when entering and returning from
% functions. To make this approach thread-safe, the variable would actually
% need to be thread-local rather than global. This approach would probably
% work best if the variable is a GNU C global register variable, which would
% make it both efficient and thread-safe.
% XXX Currently, for simplicity, we are using a global variable.
%
% At each allocation, we do a call to MR_GC_check(), which checks for heap
% exhaustion, and if necessary calls MR_garbage_collect() in
% runtime/mercury_accurate_gc.c to do the collection. The calls to
% MR_GC_check() are inserted by compiler/mlds_to_c.m.
%
% As an optimization, we ought to not bother allocating a struct for functions
% that don't have any variables that might contain pointers. We also ought
% to not bother allocating a struct for leaf functions that don't contain
% any functions calls or memory allocations.
% XXX These optimizations are not yet implemented!
%
%---------------------------------------------------------------------------%
%
% EXAMPLE
%
% If we have a function
%
% RetType
% foo(Arg1Type arg1, Arg2Type arg2, ...)
% {
% Local1Type local1;
% Local2Type local2;
% ...
% local1 = MR_new_object(...);
% ...
% bar(arg1, arg2, local1, &local2);
% ...
% }
%
% where say Arg1Type and Local1Type might contain pointers,
% but Arg2Type and Local2Type don't, then we would transform it as follows:
%
% struct foo_frame {
% MR_StackChain fixed_fields;
% Arg1Type arg1;
% Local1Type local1;
% ...
% };
%
% static void
% foo_trace(void *this_frame) {
% struct foo_frame *frame = (struct foo_frame *)this_frame;
%
% ... code to construct TypeInfo for type of arg1 ...
% mercury__private_builtin__gc_trace_1_p_0(
% <TypeInfo for type of arg1>, &frame->arg1);
%
% ... code to construct TypeInfo for type of local1 ...
% mercury__private_builtin__gc_trace_1_p_0(
% <TypeInfo for type of local1>, &frame->local1);
%
% ...
% }
%
% RetType
% foo(Arg1Type arg1, Arg2Type arg2, ...)
% {
% struct foo_frame this_frame;
% Local2Type local2;
%
% this_frame.fixed_fields.prev = stack_chain;
% this_frame.fixed_fields.trace = foo_trace;
% this_frame.arg1 = arg1;
% this_frame.local1 = NULL;
% stack_chain = &this_frame;
%
% ...
% this_frame.local1 = MR_new_object(...);
% ...
% bar(this_frame.arg1, arg2, this_frame.local1, &local2);
% ...
% stack_chain = stack_chain->prev;
% }
%
% Alternatively, if we were passing stack_chain as an argument,
% rather than treating it as a global variable, then the generated
% code for foo() would look like this:
%
% RetType
% foo(struct MR_StackChain *stack_chain,
% Arg1Type arg1, Arg2Type arg2, ...)
% {
% struct foo_frame this_frame;
% Local2Type local2;
%
% this_frame.fixed_fields.prev = stack_chain;
% this_frame.fixed_fields.trace = foo_trace;
% this_frame.arg1 = arg1;
% this_frame.local1 = NULL;
%
% ...
% this_frame.local1 = MR_new_object(&this_frame, ...);
% ...
% bar(&this_frame, this_frame.arg1, arg2,
% this_frame.local1, &local2);
% ...
% /* no need to explicitly unchain the stack frame here */
% }
%
% Currently, rather than initializing the fields of `this_frame'
% using a sequence of assignment statements, we actually just use
% an initializer:
% struct foo_frame this_frame = { stack_chain };
% This implicitly zeros out the remaining fields.
% Only the non-null fields, i.e. the arguments and the trace
% field, need to be explicitly assigned using assignment statements.
%
% The code in the Mercury runtime to traverse the stack frames would
% look something like this:
%
% void
% MR_traverse_stack(struct MR_StackChain *stack_chain)
% {
% while (stack_chain != NULL) {
% (*stack_chain->trace)(stack_chain);
% stack_chain = stack_chain->prev;
% }
% }
%
%---------------------------------------------------------------------------%
:- module ml_backend.ml_elim_nested.
:- interface.
:- import_module libs.
:- import_module libs.globals.
:- import_module ml_backend.mlds.
%---------------------------------------------------------------------------%
:- type action
---> hoist_nested_funcs
% Eliminate nested functions
; chain_gc_stack_frames.
% Add shadow stack for supporting accurate GC.
:- inst hoist for action/0
---> hoist_nested_funcs.
:- inst chain for action/0
---> chain_gc_stack_frames.
% Process the whole MLDS, performing the indicated action.
%
:- pred ml_elim_nested(action, globals, mlds_target_lang, mlds, mlds).
:- mode ml_elim_nested(in(hoist), in, in, in, out) is det.
:- mode ml_elim_nested(in(chain), in, in, in, out) is det.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
:- import_module hlds.
:- import_module hlds.hlds_data.
:- import_module hlds.hlds_pred.
:- import_module libs.options.
:- import_module mdbcomp.
:- import_module mdbcomp.builtin_modules.
:- import_module mdbcomp.prim_data.
:- import_module mdbcomp.sym_name.
:- import_module ml_backend.ml_code_util.
:- import_module ml_backend.ml_global_data.
:- import_module ml_backend.ml_util.
:- import_module parse_tree.
:- import_module parse_tree.prog_data.
:- import_module bool.
:- import_module cord.
:- import_module counter.
:- import_module list.
:- import_module maybe.
:- import_module require.
:- import_module set.
:- import_module string.
%---------------------------------------------------------------------------%
ml_elim_nested(Action, Globals, Target, MLDS0, MLDS) :-
MLDS0 = mlds(ModuleName, Imports, GlobalData0, TypeDefns0,
TableStructDefns, ProcDefns0, InitPreds, FinalPreds,
ForeignCode, ExportedEnums),
MLDS_ModuleName = mercury_module_name_to_mlds(ModuleName),
ml_global_data_get_closure_wrapper_func_defns(GlobalData0,
WrapperFuncsCord),
ProcDefns1 = ProcDefns0 ++ cord.to_list(WrapperFuncsCord),
ml_elim_nested_defns_in_funcs(Action, MLDS_ModuleName, Globals, Target,
ProcDefns1, cord.init, ProcDefnsCord, cord.init, EnvTypeDefnsCord),
ProcDefns = cord.to_list(ProcDefnsCord),
% The (flattened forms of) the closure wrapper functions are in ProcDefns;
% don't include them in the MLDS twice.
ml_global_data_set_closure_wrapper_func_defns(cord.init,
GlobalData0, GlobalData),
EnvTypeDefns = cord.to_list(EnvTypeDefnsCord),
TypeDefns = TypeDefns0 ++ EnvTypeDefns,
MLDS = mlds(ModuleName, Imports, GlobalData, TypeDefns,
TableStructDefns, ProcDefns, InitPreds, FinalPreds,
ForeignCode, ExportedEnums).
:- pred ml_elim_nested_defns_in_funcs(action, mlds_module_name,
globals, mlds_target_lang, list(mlds_function_defn),
cord(mlds_function_defn), cord(mlds_function_defn),
cord(mlds_class_defn), cord(mlds_class_defn)).
:- mode ml_elim_nested_defns_in_funcs(in(hoist), in, in, in, in,
in, out, in, out) is det.
:- mode ml_elim_nested_defns_in_funcs(in(chain), in, in, in, in,
in, out, in, out) is det.
ml_elim_nested_defns_in_funcs(_, _, _, _, [], !FuncDefnsCord, !ClassDefnsCord).
ml_elim_nested_defns_in_funcs(Action, ModuleName, Globals, Target,
[FuncDefn | FuncDefns], !FuncDefnsCord, !ClassDefnsCord) :-
FuncDefn = mlds_function_defn(Name, _Context, _Flags,
_PredProcId, _Params0, _Body0, _EnvVarNames, _MaybeRequiretailrecInfo),
% Don't add GC tracing code to the gc_trace/1 primitive!
% (Doing so would just slow things down unnecessarily.)
% And since it is implemented as a foreign proc, it has no
% nested definitions to flatten out either.
( if
Name = mlds_function_name(PlainFuncName),
PlainFuncName = mlds_plain_func_name(FuncLabel, _),
FuncLabel = mlds_func_label(ProcLabel, _MaybeSeqNum),
ProcLabel = mlds_proc_label(PredLabel, _ProcId),
PredLabel = mlds_user_pred_label(_, _, "gc_trace", 1, _, _),
PrivateBuiltin = mercury_private_builtin_module,
ModuleName = mercury_module_name_to_mlds(PrivateBuiltin)
then
!:FuncDefnsCord = cord.snoc(!.FuncDefnsCord, FuncDefn)
else
ml_elim_nested_defns_in_func(Action, ModuleName, Globals, Target,
FuncDefn, !FuncDefnsCord, !ClassDefnsCord)
),
ml_elim_nested_defns_in_funcs(Action, ModuleName, Globals, Target,
FuncDefns, !FuncDefnsCord, !ClassDefnsCord).
% Either eliminate nested functions:
% Hoist out any nested function occurring in a single mlds_defn.
% Return a list of mlds_defns that contains no nested functions,
% by adding them to the tail of !DefnsCord, in their desired order.
%
% Or handle accurate GC: put all variables that might contain pointers
% in structs and chain these structs together into a "shadow stack".
% Extract out the code to trace these variables, putting it in a function
% whose address is stored in the shadow stack frame.
%
:- pred ml_elim_nested_defns_in_func(action, mlds_module_name,
globals, mlds_target_lang, mlds_function_defn,
cord(mlds_function_defn), cord(mlds_function_defn),
cord(mlds_class_defn), cord(mlds_class_defn)).
:- mode ml_elim_nested_defns_in_func(in(hoist), in, in, in, in,
in, out, in, out) is det.
:- mode ml_elim_nested_defns_in_func(in(chain), in, in, in, in,
in, out, in, out) is det.
ml_elim_nested_defns_in_func(Action, ModuleName, Globals, Target, FuncDefn0,
!FuncDefnsCord, !ClassDefnsCord) :-
FuncDefn0 = mlds_function_defn(Name, Context, Flags, PredProcId,
Params0, Body0, EnvVarNames, MaybeRequiretailrecInfo),
(
Body0 = body_external,
!:FuncDefnsCord = cord.snoc(!.FuncDefnsCord, FuncDefn0)
;
Body0 = body_defined_here(FuncBody0),
EnvName = ml_env_name(Name, Action),
EnvClassId = ml_create_env_class_id(EnvName, ModuleName, Globals),
EnvPtrTypeName = ml_make_env_ptr_type(EnvClassId),
% Traverse the function body, finding (and removing) any nested
% functions, and fixing up any references to the arguments or to local
% variables or local static constants that need to be put in the
% environment structure (e.g. because they occur in nested functions,
% or to make them visible to the garbage collector)
%
% Also, for accurate GC, add code to save and restore the stack chain
% pointer at any `try_commit' statements.
ElimInfo0 = elim_info_init(EnvClassId, EnvPtrTypeName, Target),
Params0 = mlds_func_params(Arguments0, RetValues),
ml_maybe_add_args(Action, Arguments0, FuncBody0, ModuleName,
Context, ElimInfo0, ElimInfo1),
flatten_statement(Action, FuncBody0, FuncBody1, ElimInfo1, ElimInfo2),
fixup_gc_statements(Action, ElimInfo2, ElimInfo),
elim_info_finish(ElimInfo, NestedFuncs0, Locals),
(
NestedFuncs0 = [],
% When hoisting nested functions, if there were no nested
% functions, we have nothing to do.
% Likewise, when doing accurate GC, if there were no local
% variables (or arguments) that contained pointers, then we don't
% need to chain a stack frame for this function.
FuncBody = FuncBody1
;
NestedFuncs0 = [_ | _],
% Create a struct to hold the local variables, and initialize
% the environment pointers for both the containing function
% and the nested functions. Also generate the GC tracing function,
% if Action = chain_gc_stack_frames.
ml_create_env(Action, EnvName, EnvClassId, Locals, Context,
ModuleName, Name, Globals, EnvTypeDefn, EnvDefns, InitEnv,
GCTraceFuncDefns),
list.map_foldl(
ml_insert_init_env(Action, EnvClassId),
NestedFuncs0, NestedFuncs,
have_not_inserted_env, InsertedEnv),
% Hoist out the nested functions.
!:FuncDefnsCord = !.FuncDefnsCord ++
cord.from_list(GCTraceFuncDefns) ++
cord.from_list(NestedFuncs),
% When hoisting nested functions, it is possible that none of the
% nested functions reference the arguments or locals of the parent
% function. In that case, there is no need to create an
% environment, we just need to flatten the functions.
%
% Note that we don't generate the env_ptr_args in this module
% (instead they are generated when the nested functions are
% generated). This means that we don't avoid generating these
% arguments. This is not really a big problem, since the code
% that generates these arguments needs them.
( if
Action = hoist_nested_funcs,
InsertedEnv = have_not_inserted_env
then
FuncBody = FuncBody1
else
!:ClassDefnsCord = cord.snoc(!.ClassDefnsCord, EnvTypeDefn),
% If the function's arguments are referenced by nested
% functions, or (for accurate GC) may contain pointers,
% then we need to copy them to local variables in the
% environment structure.
ml_maybe_copy_args(Action, ElimInfo, Arguments0, FuncBody0,
EnvClassId, EnvPtrTypeName, Context,
_ArgsToCopy, CodeToCopyArgs),
% Insert code to unlink this stack frame before doing any tail
% calls or returning from the function, either explicitly
% or implicitly.
%
% Add unlink statements before any explicit returns or tail
% calls.
(
Action = hoist_nested_funcs,
FuncBody2 = FuncBody1
;
Action = chain_gc_stack_frames,
add_unchain_stack_to_stmt(Action, FuncBody1, FuncBody2,
ElimInfo, _ElimInfo)
),
% Add a final unlink statement at the end of the function,
% if needed. This is only needed if the function has no
% return values -- if there is a return value, then the
% function must exit with an explicit return statement.
( if
Action = chain_gc_stack_frames,
RetValues = []
then
UnchainFrame = [ml_gen_unchain_frame(Context, ElimInfo)]
else
UnchainFrame = []
),
% Insert the definition and initialization of the environment
% struct variable at the start of the top-level function's
% body, and append the final unlink statement (if any)
% at the end.
% XXX MLDS_DEFN
FuncBody = ml_gen_block(EnvDefns, [],
InitEnv ++ CodeToCopyArgs ++ [FuncBody2] ++ UnchainFrame,
Context)
)
),
(
Action = chain_gc_stack_frames,
% This pass will have put the GC tracing code for the arguments
% in the GC tracing function. So we don't need the GC tracing code
% annotation on the arguments anymore. We delete them here, because
% otherwise the `#if 0 ... #endif' blocks output for the
% annotations clutter up the generated C files.
Arguments = list.map(strip_gc_statement, Arguments0)
;
Action = hoist_nested_funcs,
Arguments = Arguments0
),
Params = mlds_func_params(Arguments, RetValues),
FuncDefn = mlds_function_defn(Name, Context, Flags,
PredProcId, Params, body_defined_here(FuncBody),
EnvVarNames, MaybeRequiretailrecInfo),
!:FuncDefnsCord = cord.snoc(!.FuncDefnsCord, FuncDefn)
).
:- func strip_gc_statement(mlds_argument) = mlds_argument.
strip_gc_statement(Argument0) = Argument :-
Argument0 = mlds_argument(Name, Type, _GCStmt),
Argument = mlds_argument(Name, Type, gc_no_stmt).
% Add any arguments which are used in nested functions
% to the ei_local_vars field in the elim_info.
%
:- pred ml_maybe_add_args(action, list(mlds_argument), mlds_stmt,
mlds_module_name, prog_context, elim_info, elim_info).
:- mode ml_maybe_add_args(in(hoist), in, in, in, in, in, out) is det.
:- mode ml_maybe_add_args(in(chain), in, in, in, in, in, out) is det.
ml_maybe_add_args(_, [], _, _, _, !Info).
ml_maybe_add_args(Action, [Arg | Args], FuncBody, ModuleName, Context,
!Info) :-
Arg = mlds_argument(VarName, _Type, GCStmt),
( if ml_should_add_local_var(Action, VarName, GCStmt, [], [FuncBody]) then
ml_conv_arg_to_var(Context, Arg, ArgToCopy),
elim_info_add_local_var(ArgToCopy, !Info)
else
true
),
ml_maybe_add_args(Action, Args, FuncBody, ModuleName, Context, !Info).
% Generate code to copy any arguments which are used in nested functions
% to the environment struct.
%
:- pred ml_maybe_copy_args(action, elim_info, list(mlds_argument), mlds_stmt,
mlds_class_id, mlds_type, prog_context,
list(mlds_local_var_defn), list(mlds_stmt)).
:- mode ml_maybe_copy_args(in(hoist), in, in, in, in, in, in, out, out) is det.
:- mode ml_maybe_copy_args(in(chain), in, in, in, in, in, in, out, out) is det.
ml_maybe_copy_args(_, _, [], _, _, _, _, [], []).
ml_maybe_copy_args(Action, Info, [Arg | Args], FuncBody, ClassId,
EnvPtrTypeName, Context, ArgsToCopy, CodeToCopyArgs) :-
ml_maybe_copy_args(Action, Info, Args, FuncBody, ClassId,
EnvPtrTypeName, Context, ArgsToCopyTail, CodeToCopyArgsTail),
Arg = mlds_argument(VarName, FieldType, GCStmt),
( if ml_should_add_local_var(Action, VarName, GCStmt, [], [FuncBody]) then
ml_conv_arg_to_var(Context, Arg, ArgToCopy),
% Generate code to copy this arg to the environment struct:
% env_ptr->foo = foo;
%
Target = elim_info_get_target_lang(Info),
EnvModuleName = ml_env_module_name(Target, ClassId),
FieldName = ml_field_named(
qual_field_var_name(EnvModuleName, type_qual,
fvn_env_field_from_local_var(VarName)),
EnvPtrTypeName),
Tag = yes(0),
EnvPtrVarName = env_ptr_var(Action),
EnvPtr = ml_lval(ml_local_var(EnvPtrVarName, EnvPtrTypeName)),
EnvArgLval = ml_field(Tag, EnvPtr, FieldName, FieldType,
EnvPtrTypeName),
ArgRval = ml_lval(ml_local_var(VarName, FieldType)),
AssignToEnv = assign(EnvArgLval, ArgRval),
CodeToCopyArg = ml_stmt_atomic(AssignToEnv, Context),
ArgsToCopy = [ArgToCopy | ArgsToCopyTail],
CodeToCopyArgs = [CodeToCopyArg | CodeToCopyArgsTail]
else
ArgsToCopy = ArgsToCopyTail,
CodeToCopyArgs = CodeToCopyArgsTail
).
% Create the environment struct "type".
%
:- func ml_create_env_class_id(mlds_class_name, mlds_module_name, globals) =
mlds_class_id.
ml_create_env_class_id(EnvClassName, ModuleName, Globals) = ClassId :-
% If we are allocating it on the heap, then we need to use a class type
% rather than a struct (value type). This is needed for verifiable code
% on the IL back-end.
globals.lookup_bool_option(Globals, put_nondet_env_on_heap, OnHeap),
(
OnHeap = yes,
EnvClassKind = mlds_class
;
OnHeap = no,
EnvClassKind = mlds_struct
),
ClassName = qual_class_name(ModuleName, module_qual, EnvClassName),
ClassId = mlds_class_id(ClassName, 0, EnvClassKind).
% Create the environment struct type, the declaration of the environment
% variable, and the declaration and initializer for the environment
% pointer variable:
%
% struct <EnvClassName> {
% <LocalVars>
% };
% struct <EnvClassName> env;
% struct <EnvClassName> *env_ptr;
% env_ptr = &env;
%
% For accurate GC, we do something similar, but with a few differences:
%
% struct <EnvClassName> {
% /* these fixed fields match `struct MR_StackChain' */
% void *prev;
% void (*trace)(...);
% <LocalVars>
% };
% struct <EnvClassName> env = { stack_chain, foo_trace };
% struct <EnvClassName> *env_ptr;
% env_ptr = &env;
% stack_chain = env_ptr;
%
:- pred ml_create_env(action::in, mlds_class_name::in, mlds_class_id::in,
list(mlds_local_var_defn)::in, prog_context::in, mlds_module_name::in,
mlds_function_name::in, globals::in, mlds_class_defn::out,
list(mlds_local_var_defn)::out, list(mlds_stmt)::out,
list(mlds_function_defn)::out) is det.
ml_create_env(Action, EnvClassName, EnvClassId, LocalVars, Context,
ModuleName, FuncName, Globals, EnvClassDefn, EnvDefns, InitEnv,
GCTraceFuncDefns) :-
% Generate the following type:
%
% struct <EnvClassName> {
% #ifdef ACCURATE_GC
% /* these fixed fields match `struct MR_StackChain' */
% void *prev;
% void (*trace)(...);
% #endif
% <LocalVars>
% };
%
% If we are allocating it on the heap, then we need to use a class type
% rather than a struct (value type). This is needed for verifiable code
% on the IL back-end.
% XXX Which doesn't exist anymore. However, the Java and C# backends
% also set put_nondet_env_on_heap to true.
globals.lookup_bool_option(Globals, put_nondet_env_on_heap, OnHeap),
(
OnHeap = no,
EnvClassKind = mlds_struct,
Inherits = inherits_nothing
;
OnHeap = yes,
EnvClassKind = mlds_class,
Inherits = inherits_generic_env_ptr_type
),
EnvClassFlags =
mlds_class_decl_flags(class_private, overridable, modifiable),
Fields0 = list.map(convert_local_to_field, LocalVars),
% Extract the GC tracing code from the fields.
list.map3(extract_gc_statements, Fields0, Fields1,
GC_InitStmtLists, GC_TraceStmtLists),
GC_StmtLists = GC_InitStmtLists ++ GC_TraceStmtLists,
GC_Stmts = list.condense(GC_StmtLists),
(
Action = chain_gc_stack_frames,
ml_chain_stack_frames(ModuleName, FuncName, Context,
GC_Stmts, EnvClassId, Fields1, Fields, EnvInitializer,
LinkStackChain, GCTraceFuncDefns),
GCStmtEnv = gc_no_stmt
;
Action = hoist_nested_funcs,
(
GC_Stmts = [],
GCStmtEnv = gc_no_stmt
;
GC_Stmts = [_ | _],
GC_Block = ml_gen_block([], [], GC_Stmts, Context),
GCStmtEnv = gc_trace_code(GC_Block)
),
Fields = Fields1,
EnvInitializer = no_initializer,
LinkStackChain = [],
GCTraceFuncDefns = []
),
Imports = [],
Interfaces = [],
TypeParams = [],
Ctors = [],
EnvClassDefn = mlds_class_defn(EnvClassName, 0, Context,
EnvClassFlags, EnvClassKind, Imports, Inherits, Interfaces,
TypeParams, Fields, [], [], Ctors),
% Generate the following variable declaration:
%
% struct <EnvTypeName> env; // = { ... }
%
EnvVarName = env_var(Action),
EnvTypeName = mlds_class_type(EnvClassId),
EnvVarDecl = mlds_local_var_defn(EnvVarName, Context,
EnvTypeName, EnvInitializer, GCStmtEnv),
% Declare the `env_ptr' var, and initialize the `env_ptr' with the
% address of `env'.
% Generate code to initialize the environment pointer, either by
% allocating an object on the heap, or by taking the address of
% the struct we put on the stack.
(
OnHeap = yes,
EnvVarAddr = ml_lval(ml_local_var(EnvVarName, EnvTypeName)),
% OnHeap should be "yes" only on for the IL backend, for which
% the value of MayUseAtomic is immaterial.
% XXX The comment on the option lookup setting the value of OnHeap
% says OnHeap may be "yes" on current backends as well.
MayUseAtomic = may_not_use_atomic_alloc,
MaybeAllocId = no,
NewObj = [
ml_stmt_atomic(
new_object(ml_local_var(EnvVarName, EnvTypeName), no, no,
EnvTypeName, no, no, [], [], MayUseAtomic, MaybeAllocId),
Context)
]
;
OnHeap = no,
EnvVarAddr = ml_mem_addr(ml_local_var(EnvVarName, EnvTypeName)),
NewObj = []
),
ml_init_env(Action, EnvClassId, EnvVarAddr, Context,
EnvPtrVarDecl, InitEnv0),
EnvDefns = [EnvVarDecl, EnvPtrVarDecl],
InitEnv = NewObj ++ [InitEnv0] ++ LinkStackChain.
:- pred ml_chain_stack_frames(mlds_module_name::in,
mlds_function_name::in, prog_context::in, list(mlds_stmt)::in,
mlds_class_id::in,
list(mlds_field_var_defn)::in, list(mlds_field_var_defn)::out,
mlds_initializer::out, list(mlds_stmt)::out,
list(mlds_function_defn)::out) is det.
ml_chain_stack_frames(ModuleName, FuncName, Context, GCTraceStmts,
EnvClassId, Fields0, Fields, EnvInitializer,
LinkStackChain, GCTraceFuncDefns) :-
% Generate code to declare and initialize the environment pointer
% for the GC trace function from that function's `this_frame' parameter:
%
% struct foo_frame *frame_ptr;
% frame_ptr = (struct foo_frame *) this_frame;
%
ThisFrameName = lvn_comp_var(lvnc_this_frame),
ThisFrameRval = ml_lval(ml_local_var(ThisFrameName, mlds_generic_type)),
CastThisFrameRval = ml_unop(
cast(mlds_ptr_type(mlds_class_type(EnvClassId))),
ThisFrameRval),
ml_init_env(chain_gc_stack_frames, EnvClassId, CastThisFrameRval,
Context, FramePtrDecl, InitFramePtr),
% Put the environment pointer declaration and initialization
% and the GC tracing code in a function:
%
% void foo_trace(void *this_frame) {
% struct foo_frame *frame_ptr;
% frame_ptr = (struct foo_frame *) this_frame;
% <GCTraceStmts>
% }
%
gen_gc_trace_func(ModuleName, FuncName, FramePtrDecl,
[InitFramePtr | GCTraceStmts], Context,
GCTraceFuncLabel, GCTraceFuncSignature,
GCTraceFuncParams, GCTraceFuncDefn),
GCTraceFuncDefns = [GCTraceFuncDefn],
% Insert the fixed fields in the struct <EnvClassName>:
%
% void *prev;
% void (*trace)(...);
%
PrevFieldName = fvn_prev,
PrevFieldFlags = ml_gen_public_field_decl_flags,
PrevFieldType = ml_stack_chain_type,
PrevFieldDecl = mlds_field_var_defn(PrevFieldName, Context,
PrevFieldFlags, PrevFieldType, no_initializer, gc_no_stmt),
TraceFieldName = fvn_trace,
TraceFieldFlags = ml_gen_public_field_decl_flags,
TraceFieldType = mlds_func_type(GCTraceFuncParams),
TraceFieldDecl = mlds_field_var_defn(TraceFieldName, Context,
TraceFieldFlags, TraceFieldType, no_initializer, gc_no_stmt),
Fields = [PrevFieldDecl, TraceFieldDecl | Fields0],
% Set the initializer so that the `prev' field is initialized to the global
% stack chain, and the `trace' field is initialized to the address of
% the GC tracing function:
%
% ... = { stack_chain, foo_trace };
%
% Since there no values for the remaining fields in the initializer,
% this means the remaining fields will get initialized to zero
% (C99 6.7.8 #21).
%
% XXX This uses a non-const initializer, which is a feature that is only
% supported in C99 and GNU C; it won't work in C89. We should just generate
% a bunch of assignments to all the fields, rather than relying on
% initializers like this.
%
StackChain = ml_stack_chain_var,
EnvInitializer = init_struct(mlds_class_type(EnvClassId), [
init_obj(ml_lval(StackChain)),
init_obj(ml_const(mlconst_code_addr(
mlds_code_addr(GCTraceFuncLabel, GCTraceFuncSignature))))
]),
% Generate code to set the global stack chain
% to point to the current environment:
%
% stack_chain = frame_ptr;
%
EnvPtrTypeName = ml_make_env_ptr_type(EnvClassId),
EnvPtr = ml_lval(
ml_local_var(lvn_comp_var(lvnc_frame_ptr),
EnvPtrTypeName)),
AssignToStackChain = assign(StackChain, EnvPtr),
LinkStackChain = [ml_stmt_atomic(AssignToStackChain, Context)].
:- pred gen_gc_trace_func(mlds_module_name::in, mlds_function_name::in,
mlds_local_var_defn::in, list(mlds_stmt)::in, prog_context::in,
qual_func_label::out, mlds_func_signature::out,
mlds_func_params::out, mlds_function_defn::out) is det.
gen_gc_trace_func(PredModule, FuncName, FramePointerDefn, GCTraceStmts,
Context, QualGCTraceFuncLabel, Signature, FuncParams,
GCTraceFuncDefn) :-
% Compute the signature of the GC tracing function.
ArgVarName = lvn_comp_var(lvnc_this_frame),
ArgType = mlds_generic_type,
Argument = mlds_argument(ArgVarName, ArgType, gc_no_stmt),
FuncParams = mlds_func_params([Argument], []),
Signature = mlds_get_func_signature(FuncParams),
% Compute the name of the GC tracing function.
(
FuncName = mlds_function_name(PlainFuncName),
PlainFuncName = mlds_plain_func_name(FuncLabel, PredId),
FuncLabel = mlds_func_label(ProcLabel, MaybeAux),
(
MaybeAux = proc_func,
GCTraceMaybeAux = gc_trace_for_proc_func
;
MaybeAux = proc_aux_func(SeqNum),
GCTraceMaybeAux = gc_trace_for_proc_aux_func(SeqNum)
;
( MaybeAux = gc_trace_for_proc_func
; MaybeAux = gc_trace_for_proc_aux_func(_)
),
unexpected($pred, "gc trace func for gc trace func")
),
GCTraceFuncLabel = mlds_func_label(ProcLabel, GCTraceMaybeAux),
QualGCTraceFuncLabel = qual_func_label(PredModule, GCTraceFuncLabel),
GCTracePlainFuncName = mlds_plain_func_name(GCTraceFuncLabel, PredId),
GCTraceFuncName = mlds_function_name(GCTracePlainFuncName)
;
FuncName = mlds_function_export(_),
% XXX I (zs) think that this abort is wrong for two reasons.
% First, a function with an exported name is still a function,
% so the text of the abort message is misleading. Second,
% I see no reasoning that guarantees that our caller will
% never call here with an exported function.
unexpected($pred, "not a function")
),
% Construct the function definition.
Stmt = ml_stmt_block([FramePointerDefn], [], GCTraceStmts, Context),
DeclFlags = mlds_function_decl_flags(func_private, one_copy),
MaybePredProcId = no,
EnvVarNames = set.init,
GCTraceFuncDefn = mlds_function_defn(GCTraceFuncName,
Context, DeclFlags, MaybePredProcId, FuncParams,
body_defined_here(Stmt), EnvVarNames, no).
:- pred extract_gc_statements(
mlds_field_var_defn::in, mlds_field_var_defn::out,
list(mlds_stmt)::out, list(mlds_stmt)::out) is det.
extract_gc_statements(FieldVarDefn0, FieldVarDefn,
GCInitStmts, GCTraceStmts) :-
FieldVarDefn0 = mlds_field_var_defn(Name, Context, Flags, Type,
Init, GCStmt),
(
GCStmt = gc_trace_code(GCTraceStmt),
FieldVarDefn = mlds_field_var_defn(Name, Context, Flags, Type,
Init, gc_no_stmt),
GCInitStmts = [],
GCTraceStmts = [GCTraceStmt]
;
GCStmt = gc_initialiser(GCInitStmt),
FieldVarDefn = mlds_field_var_defn(Name, Context, Flags, Type,
Init, gc_no_stmt),
GCInitStmts = [GCInitStmt],
GCTraceStmts = []
;
GCStmt = gc_no_stmt,
FieldVarDefn = FieldVarDefn0,
GCInitStmts = [],
GCTraceStmts = []
).
% When converting local variables into fields of the environment struct,
% we need to change `local' access into something else, since `local'
% is only supposed to be used for entities that are local to a function
% or block, not for fields. Currently we change it to `public'.
% (Perhaps changing it to `default' might be better?)
% XXX MLDS_DEFN
% Since we no longer distinguish between local variables and field
% variables using the *flags* of the old, replaced-by-now mlds_data_defn
% structure, we should set fields to public only if actually *want*
% them to be public.
%
:- func convert_local_to_field(mlds_local_var_defn) = mlds_field_var_defn.
convert_local_to_field(LocalVarDefn) = FieldVarDefn :-
LocalVarDefn = mlds_local_var_defn(LocalVarName, Context, Type,
Init, GcStmt),
FieldVarName = fvn_env_field_from_local_var(LocalVarName),
Flags = mlds_field_var_decl_flags(per_instance, modifiable),
FieldVarDefn = mlds_field_var_defn(FieldVarName, Context, Flags, Type,
Init, GcStmt).
:- type inserted_env
---> have_not_inserted_env
; have_inserted_env.
% ml_insert_init_env:
%
% If the definition is a nested function definition, and its body makes
% use of the environment pointer (`env_ptr'), then insert code to declare
% and initialize the environment pointer.
%
% We transform code of the form
% <Ret>
% <Func>(<Args>) {
% <Body>
% }
%
% to
%
% <Ret>
% <Func>(<Args>) {
% struct <EnvClassName> *env_ptr;
% env_ptr = (<EnvClassName> *) env_ptr_arg;
% <Body>
% }
%
% If we perform this transformation, set !:InsertedEnv to
% have_inserted_env, otherwise leave it unchanged.
%
:- pred ml_insert_init_env(action::in, mlds_class_id::in,
mlds_function_defn::in, mlds_function_defn::out,
inserted_env::in, inserted_env::out) is det.
ml_insert_init_env(Action, ClassId, FunctionDefn0, FunctionDefn,
!InsertedEnv) :-
FunctionDefn0 = mlds_function_defn(Name, Context, Flags, PredProcId,
Params, Body, EnvVarNames, MaybeRequiretailrecInfo),
( if
Body = body_defined_here(FuncBody0),
EnvPtrVar = lvn_comp_var(lvnc_env_ptr),
statement_contains_var(FuncBody0, EnvPtrVar) = yes
then
EnvPtrVal = ml_lval(
ml_local_var(lvn_comp_var(lvnc_env_ptr_arg),
mlds_generic_env_ptr_type)),
EnvPtrVarType = ml_make_env_ptr_type(ClassId),
% Insert a cast, to downcast from mlds_generic_env_ptr_type to the
% specific environment type for this procedure.
CastEnvPtrVal = ml_unop(cast(EnvPtrVarType), EnvPtrVal),
ml_init_env(Action, ClassId, CastEnvPtrVal, Context,
EnvPtrDefn, InitEnvPtr),
FuncBody = ml_stmt_block([EnvPtrDefn], [],
[InitEnvPtr, FuncBody0], Context),
FunctionDefn = mlds_function_defn(Name, Context, Flags,
PredProcId, Params, body_defined_here(FuncBody),
EnvVarNames, MaybeRequiretailrecInfo),
!:InsertedEnv = have_inserted_env
else
FunctionDefn = FunctionDefn0
).
:- func ml_make_env_ptr_type(mlds_class_id) = mlds_type.
ml_make_env_ptr_type(EnvClassId) = EnvPtrType :-
EnvPtrType = mlds_ptr_type(mlds_class_type(EnvClassId)).
% Create the environment pointer and initialize it:
%
% struct <EnvClassName> *env_ptr;
% env_ptr = <EnvPtrVal>;
%
:- pred ml_init_env(action::in, mlds_class_id::in, mlds_rval::in,
prog_context::in, mlds_local_var_defn::out, mlds_stmt::out) is det.
ml_init_env(Action, EnvClassId, EnvPtrVal, Context,
EnvPtrVarDecl, InitEnvPtr) :-
% Generate the following variable declaration:
%
% <EnvClassId> *env_ptr;
%
EnvPtrVarName = env_ptr_var(Action),
EnvPtrVarType = ml_make_env_ptr_type(EnvClassId),
% The env_ptr never needs to be traced by the GC, since the environment
% that it points to will always be on the stack, not into the heap.
GCStmt = gc_no_stmt,
EnvPtrVarDecl = mlds_local_var_defn(EnvPtrVarName, Context,
EnvPtrVarType, no_initializer, GCStmt),
% Generate the following statement:
%
% env_ptr = <EnvPtrVal>;
%
% (note that the caller of this routine is responsible
% for inserting a cast in <EnvPtrVal> if needed).
%
AssignEnvPtr =
assign(ml_local_var(EnvPtrVarName, EnvPtrVarType), EnvPtrVal),
InitEnvPtr = ml_stmt_atomic(AssignEnvPtr, Context).
% Given the declaration for a function parameter, produce a declaration
% for a corresponding local variable or environment struct field.
% We need to do this so as to include function parameter in the
% environment struct.
%
:- pred ml_conv_arg_to_var(prog_context::in, mlds_argument::in,
mlds_local_var_defn::out) is det.
ml_conv_arg_to_var(Context, Arg, LocalVarDefn) :-
Arg = mlds_argument(VarName, Type, GCStmt),
LocalVarDefn = mlds_local_var_defn(VarName, Context, Type,
no_initializer, GCStmt).
:- func ml_stack_chain_var = mlds_lval.
ml_stack_chain_var = StackChain :-
% XXX When we had module qualified variables, this code said that
% StackChain was defined in mercury_private_builtin_module.
% That looks wrong to me (zs), but it may be of interest to whoever
% wants to work on accurate gc in the future.
StackChain = ml_local_var(lvn_comp_var(lvnc_stack_chain),
ml_stack_chain_type).
% The type of the `stack_chain' pointer, i.e. `void *'.
%
:- func ml_stack_chain_type = mlds_type.
ml_stack_chain_type = mlds_generic_env_ptr_type.
%---------------------------------------------------------------------------%
%
% This code does some name mangling.
% It essentially duplicates the functionality in mlds_output_name.
%
% Doing name mangling here is probably a bad idea; it might be better
% to change the MLDS data structure to allow structured type names, so that
% we don't have to do any name mangling at this point.
% Compute the name to use for the environment struct
% for the specified function.
%
:- func ml_env_name(mlds_function_name, action) = mlds_class_name.
ml_env_name(FunctionName, Action) = ClassName :-
(
FunctionName = mlds_function_name(PlainFuncName),
PlainFuncName = mlds_plain_func_name(FuncLabel, _PredId),
FuncLabel = mlds_func_label(ProcLabel, MaybeAux),
ProcLabel = mlds_proc_label(PredLabel, ProcId),
PredLabelStr = ml_pred_label_name(PredLabel),
proc_id_to_int(ProcId, ModeNum),
Base = env_name_base(Action),
MaybeAuxSuffix = mlds_maybe_aux_func_id_to_suffix(MaybeAux),
ClassName = string.format("%s_%d%s_%s",
[s(PredLabelStr), i(ModeNum), s(MaybeAuxSuffix), s(Base)])
;
FunctionName = mlds_function_export(_),
% XXX I (zs) think that this abort here is a bug, and that
% our caller can legitimately give us an exported function.
unexpected($pred, "expected function, got export")
).
:- func env_name_base(action) = string.
env_name_base(chain_gc_stack_frames) = "frame".
env_name_base(hoist_nested_funcs) = "env".
:- func env_var(action) = mlds_local_var_name.
env_var(chain_gc_stack_frames) = lvn_comp_var(lvnc_frame).
env_var(hoist_nested_funcs) = lvn_comp_var(lvnc_env).
:- func env_ptr_var(action) = mlds_local_var_name.
env_ptr_var(chain_gc_stack_frames) = lvn_comp_var(lvnc_frame_ptr).
env_ptr_var(hoist_nested_funcs) = lvn_comp_var(lvnc_env_ptr).
:- func ml_pred_label_name(mlds_pred_label) = string.
ml_pred_label_name(mlds_user_pred_label(PredOrFunc, MaybeDefiningModule,
Name, Arity, _CodeModel, _NonOutputFunc)) = LabelName :-
( PredOrFunc = pf_predicate, Suffix = "p"
; PredOrFunc = pf_function, Suffix = "f"
),
(
MaybeDefiningModule = yes(DefiningModule),
ModuleNameString = ml_module_name_string(DefiningModule),
string.format("%s_%d_%s_in__%s",
[s(Name), i(Arity), s(Suffix), s(ModuleNameString)], LabelName)
;
MaybeDefiningModule = no,
string.format("%s_%d_%s",
[s(Name), i(Arity), s(Suffix)], LabelName)
).
ml_pred_label_name(mlds_special_pred_label(PredName, MaybeTypeModule,
TypeName, TypeArity)) = LabelName :-
(
MaybeTypeModule = yes(TypeModule),
TypeModuleString = ml_module_name_string(TypeModule),
string.format("%s__%s__%s_%d",
[s(PredName), s(TypeModuleString), s(TypeName), i(TypeArity)],
LabelName)
;
MaybeTypeModule = no,
string.format("%s__%s_%d",
[s(PredName), s(TypeName), i(TypeArity)], LabelName)
).
:- func ml_module_name_string(mercury_module_name) = string.
ml_module_name_string(ModuleName) = sym_name_to_string_sep(ModuleName, "__").
%---------------------------------------------------------------------------%
% flatten_function_body:
% flatten_maybe_statement:
% flatten_gc_statement:
% flatten_statements:
% flatten_statement:
%
% Recursively process the statement(s),
% - calling fixup_var on every use of a variable inside them,
% - calling flatten_nested_local_var_defns for every list of local variable
% definitions they contain, and
% - calling flatten_nested_function_defns for every list of local function
% definitions they contain.
%
% Also, for Action = chain_gc_stack_frames, add code to save and restore
% the stack chain pointer at any `try_commit' statements.
:- pred flatten_function_body(action, mlds_function_body, mlds_function_body,
elim_info, elim_info).
:- mode flatten_function_body(in(hoist), in, out, in, out) is det.
:- mode flatten_function_body(in(chain), in, out, in, out) is det.
flatten_function_body(Action, Body0, Body, !Info) :-
(
Body0 = body_external,
Body = Body0
;
Body0 = body_defined_here(Stmt0),
flatten_statement(Action, Stmt0, Stmt, !Info),
Body = body_defined_here(Stmt)
).
:- pred flatten_maybe_statement(action, maybe(mlds_stmt), maybe(mlds_stmt),
elim_info, elim_info).
:- mode flatten_maybe_statement(in(hoist), in, out, in, out) is det.
:- mode flatten_maybe_statement(in(chain), in, out, in, out) is det.
flatten_maybe_statement(_, no, no, !Info).
flatten_maybe_statement(Action, yes(Stmt0), yes(Stmt), !Info) :-
flatten_statement(Action, Stmt0, Stmt, !Info).
:- pred flatten_gc_statement(action, mlds_gc_statement, mlds_gc_statement,
elim_info, elim_info).
:- mode flatten_gc_statement(in(hoist), in, out, in, out) is det.
:- mode flatten_gc_statement(in(chain), in, out, in, out) is det.
flatten_gc_statement(Action, GCStmt0, GCStmt, !Info) :-
(
GCStmt0 = gc_no_stmt,
GCStmt = gc_no_stmt
;
GCStmt0 = gc_trace_code(Stmt0),
flatten_statement(Action, Stmt0, Stmt, !Info),
GCStmt = gc_trace_code(Stmt)
;
GCStmt0 = gc_initialiser(Stmt0),
flatten_statement(Action, Stmt0, Stmt, !Info),
GCStmt = gc_initialiser(Stmt)
).
:- pred flatten_statements(action, list(mlds_stmt), list(mlds_stmt),
elim_info, elim_info).
:- mode flatten_statements(in(hoist), in, out, in, out) is det.
:- mode flatten_statements(in(chain), in, out, in, out) is det.
flatten_statements(_, [], [], !Info).
flatten_statements(Action, [Stmt0 | Stmts0], [Stmt | Stmts], !Info) :-
flatten_statement(Action, Stmt0, Stmt, !Info),
flatten_statements(Action, Stmts0, Stmts, !Info).
:- pred flatten_statement(action, mlds_stmt, mlds_stmt, elim_info, elim_info).
:- mode flatten_statement(in(hoist), in, out, in, out) is det.
:- mode flatten_statement(in(chain), in, out, in, out) is det.
flatten_statement(Action, Stmt0, Stmt, !Info) :-
(
Stmt0 = ml_stmt_block(LocalVarDefns0, FuncDefns0, SubStmts0, Context),
flatten_nested_local_var_defns(Action, LocalVarDefns0, LocalVarDefns,
FuncDefns0, SubStmts0, InitStmts, !Info),
flatten_nested_function_defns(Action, FuncDefns0, FuncDefns, !Info),
flatten_statements(Action,
InitStmts ++ SubStmts0, SubStmts, !Info),
Stmt = ml_stmt_block(LocalVarDefns, FuncDefns, SubStmts, Context)
;
Stmt0 = ml_stmt_while(Kind, Rval0, SubStmt0, Context),
fixup_rval(Action, !.Info, Rval0, Rval),
flatten_statement(Action, SubStmt0, SubStmt, !Info),
Stmt = ml_stmt_while(Kind, Rval, SubStmt, Context)
;
Stmt0 = ml_stmt_if_then_else(Cond0, Then0, MaybeElse0, Context),
fixup_rval(Action, !.Info, Cond0, Cond),
flatten_statement(Action, Then0, Then, !Info),
flatten_maybe_statement(Action, MaybeElse0, MaybeElse, !Info),
Stmt = ml_stmt_if_then_else(Cond, Then, MaybeElse, Context)
;
Stmt0 = ml_stmt_switch(Type, Val0, Range, Cases0, Default0, Context),
fixup_rval(Action, !.Info, Val0, Val),
flatten_cases(Action, Cases0, Cases, !Info),
flatten_default(Action, Default0, Default, !Info),
Stmt = ml_stmt_switch(Type, Val, Range, Cases, Default, Context)
;
Stmt0 = ml_stmt_label(_, _Context),
Stmt = Stmt0
;
Stmt0 = ml_stmt_goto(_, _Context),
Stmt = Stmt0
;
Stmt0 = ml_stmt_computed_goto(Rval0, Labels, Context),
fixup_rval(Action, !.Info, Rval0, Rval),
Stmt = ml_stmt_computed_goto(Rval, Labels, Context)
;
Stmt0 = ml_stmt_call(Sig, Func0, Args0, RetLvals0, TailCall, Context),
fixup_rval(Action, !.Info, Func0, Func),
fixup_rvals(Action, !.Info, Args0, Args),
fixup_lvals(Action, !.Info, RetLvals0, RetLvals),
Stmt = ml_stmt_call(Sig, Func, Args, RetLvals, TailCall, Context)
;
Stmt0 = ml_stmt_return(Rvals0, Context),
fixup_rvals(Action, !.Info, Rvals0, Rvals),
Stmt = ml_stmt_return(Rvals, Context)
;
Stmt0 = ml_stmt_do_commit(Ref0, Context),
fixup_rval(Action, !.Info, Ref0, Ref),
Stmt = ml_stmt_do_commit(Ref, Context)
;
Stmt0 = ml_stmt_try_commit(Ref0, BodyStmt0, HandlerStmt0, Context),
fixup_lval(Action, !.Info, Ref0, Ref),
flatten_statement(Action, BodyStmt0, BodyStmt, !Info),
flatten_statement(Action, HandlerStmt0, HandlerStmt1, !Info),
Stmt1 = ml_stmt_try_commit(Ref, BodyStmt, HandlerStmt1, Context),
(
Action = chain_gc_stack_frames,
save_and_restore_stack_chain(Stmt1, Stmt, !Info)
;
Action = hoist_nested_funcs,
Stmt = Stmt1
)
;
Stmt0 = ml_stmt_atomic(AtomicStmt0, Context),
fixup_atomic_stmt(Action, !.Info, AtomicStmt0, AtomicStmt),
Stmt = ml_stmt_atomic(AtomicStmt, Context)
).
:- pred flatten_cases(action, list(mlds_switch_case), list(mlds_switch_case),
elim_info, elim_info).
:- mode flatten_cases(in(hoist), in, out, in, out) is det.
:- mode flatten_cases(in(chain), in, out, in, out) is det.
flatten_cases(_, [], [], !Info).
flatten_cases(Action, [Case0 | Cases0], [Case | Cases], !Info) :-
flatten_case(Action, Case0, Case, !Info),
flatten_cases(Action, Cases0, Cases, !Info).
:- pred flatten_case(action, mlds_switch_case, mlds_switch_case,
elim_info, elim_info).
:- mode flatten_case(in(hoist), in, out, in, out) is det.
:- mode flatten_case(in(chain), in, out, in, out) is det.
flatten_case(Action, Case0, Case, !Info) :-
Case0 = mlds_switch_case(FirstCond0, LaterConds0, Stmt0),
fixup_case_cond(Action, !.Info, FirstCond0, FirstCond),
fixup_case_conds(Action, !.Info, LaterConds0, LaterConds),
flatten_statement(Action, Stmt0, Stmt, !Info),
Case = mlds_switch_case(FirstCond, LaterConds, Stmt).
:- pred flatten_default(action, mlds_switch_default, mlds_switch_default,
elim_info, elim_info).
:- mode flatten_default(in(hoist), in, out, in, out) is det.
:- mode flatten_default(in(chain), in, out, in, out) is det.
flatten_default(Action, Default0, Default, !Info) :-
(
Default0 = default_is_unreachable,
Default = default_is_unreachable
;
Default0 = default_do_nothing,
Default = default_do_nothing
;
Default0 = default_case(Stmt0),
flatten_statement(Action, Stmt0, Stmt, !Info),
Default = default_case(Stmt)
).
%---------------------------------------------------------------------------%
% Add code to save/restore the stack chain pointer. This means converting
%
% try {
% Stmt
% } commit {
% Handler
% }
%
% into
%
% {
% void *saved_stack_chain;
% try {
% saved_stack_chain = stack_chain;
% Stmt
% } commit {
% stack_chain = saved_stack_chain;
% Handler
% }
% }
%
:- inst try_commit for mlds_stmt/0
---> ml_stmt_try_commit(ground, ground, ground, ground).
:- pred save_and_restore_stack_chain(mlds_stmt::in(try_commit),
mlds_stmt::out, elim_info::in, elim_info::out) is det.
save_and_restore_stack_chain(Stmt0, Stmt, !ElimInfo) :-
elim_info_allocate_saved_stack_chain_id(Id, !ElimInfo),
Stmt0 = ml_stmt_try_commit(Ref, BodyStmt0, HandlerStmt0, Context),
BodyContext = get_mlds_stmt_context(BodyStmt0),
HandlerContext = get_mlds_stmt_context(HandlerStmt0),
SavedVarDefn = gen_saved_stack_chain_var(Id, BodyContext),
gen_save_and_restore_of_stack_chain_var(Id, BodyContext,
SaveStmt, RestoreStmt),
BodyStmt =
ml_stmt_block([], [], [SaveStmt, BodyStmt0], BodyContext),
HandlerStmt =
ml_stmt_block([], [], [RestoreStmt, HandlerStmt0], HandlerContext),
TryCommit = ml_stmt_try_commit(Ref, BodyStmt, HandlerStmt, Context),
Stmt = ml_stmt_block([SavedVarDefn], [], [TryCommit], Context).
%---------------------------------------------------------------------------%
% flatten_nested_function_defns:
% flatten_nested_function_defn:
% flatten_nested_local_var_defns:
% flatten_nested_local_var_defn:
%
% Hoist out nested function definitions, and any local variables that need
% to go in the environment struct (e.g. because they are referenced by
% nested functions), storing them both in the elim_info. Convert initializers
% for local variables that need to go in the environment struct into assignment
% statements. Return the remaining (non-hoisted) definitions, the list of
% assignment statements, and the updated elim_info.
:- pred flatten_nested_function_defns(action,
list(mlds_function_defn), list(mlds_function_defn), elim_info, elim_info).
:- mode flatten_nested_function_defns(in(hoist), in, out, in, out) is det.
:- mode flatten_nested_function_defns(in(chain), in, out, in, out) is det.
flatten_nested_function_defns(_, [], [], !Info).
flatten_nested_function_defns(Action,
[HeadFuncDefn0 | TailFuncDefns0], FuncDefns, !Info) :-
flatten_nested_function_defn(Action, HeadFuncDefn0, HeadFuncDefns,
!Info),
flatten_nested_function_defns(Action, TailFuncDefns0, TailFuncDefns,
!Info),
FuncDefns = HeadFuncDefns ++ TailFuncDefns.
:- pred flatten_nested_function_defn(action,
mlds_function_defn, list(mlds_function_defn), elim_info, elim_info).
:- mode flatten_nested_function_defn(in(hoist), in, out, in, out) is det.
:- mode flatten_nested_function_defn(in(chain), in, out, in, out) is det.
flatten_nested_function_defn(Action, FuncDefn0, FuncDefns, !Info) :-
FuncDefn0 = mlds_function_defn(Name, Context, Flags0, PredProcId, Params,
FuncBody0, EnvVarNames, MaybeRequiretailrecInfo),
% Recursively flatten the nested function.
flatten_function_body(Action, FuncBody0, FuncBody, !Info),
% Mark the function as private / one_copy, rather than as
% local / per_instance, if we are about to hoist it out to the
% top level.
(
Action = hoist_nested_funcs,
Flags = mlds_function_decl_flags(func_private, one_copy)
;
Action = chain_gc_stack_frames,
Flags = Flags0
),
FuncDefn = mlds_function_defn(Name, Context, Flags, PredProcId, Params,
FuncBody, EnvVarNames, MaybeRequiretailrecInfo),
(
Action = hoist_nested_funcs,
% Note that we assume that we can safely hoist stuff inside nested
% functions into the containing function. If that wasn't the case,
% we would need code something like this:
% LocalVars = elim_info_get_local_vars(ElimInfo),
% OuterVars0 = elim_info_get_outer_vars(ElimInfo),
% OuterVars = [LocalVars | OuterVars0],
% FlattenedDefns = ml_elim_nested_defns(ModuleName,
% OuterVars, Defn0),
% list.foldl(elim_info_add_nested_func, FlattenedDefns),
% Strip out the now flattened nested function, and store it
% in the elim_info.
elim_info_add_nested_func(FuncDefn, !Info),
FuncDefns = []
;
Action = chain_gc_stack_frames,
FuncDefns = [FuncDefn]
).
:- pred flatten_nested_local_var_defns(action,
list(mlds_local_var_defn), list(mlds_local_var_defn),
list(mlds_function_defn), list(mlds_stmt), list(mlds_stmt),
elim_info, elim_info).
:- mode flatten_nested_local_var_defns(in(hoist), in, out, in, in, out,
in, out) is det.
:- mode flatten_nested_local_var_defns(in(chain), in, out, in, in, out,
in, out) is det.
flatten_nested_local_var_defns(_, [], [], _, _, [], !Info).
flatten_nested_local_var_defns(Action,
[HeadLocalVarDefn0 | TailLocalVarDefns0], LocalVarDefns, FuncDefns,
Stmts, InitStmts, !Info) :-
flatten_nested_local_var_defn(Action,
HeadLocalVarDefn0, TailLocalVarDefns0, HeadLocalVarDefns,
FuncDefns, Stmts, HeadInitStmts, !Info),
flatten_nested_local_var_defns(Action,
TailLocalVarDefns0, TailLocalVarDefns,
FuncDefns, Stmts, TailInitStmts, !Info),
LocalVarDefns = HeadLocalVarDefns ++ TailLocalVarDefns,
InitStmts = HeadInitStmts ++ TailInitStmts.
:- pred flatten_nested_local_var_defn(action,
mlds_local_var_defn, list(mlds_local_var_defn), list(mlds_local_var_defn),
list(mlds_function_defn), list(mlds_stmt), list(mlds_stmt),
elim_info, elim_info).
:- mode flatten_nested_local_var_defn(in(hoist), in, in, out, in, in, out,
in, out) is det.
:- mode flatten_nested_local_var_defn(in(chain), in, in, out, in, in, out,
in, out) is det.
flatten_nested_local_var_defn(Action, HeadLocalVarDefn0, _TailLocalVarDefns0,
HeadLocalVarDefns, FuncDefns, Stmts, InitStmts, !Info) :-
HeadLocalVarDefn0 = mlds_local_var_defn(LocalVarName, Context,
Type, Init0, GCStmt),
% For local variable definitions, if they are referenced by any nested
% functions, then strip them out and store them in the elim_info.
( if
% Hoist ordinary local variables.
ml_should_add_local_var(Action, LocalVarName, GCStmt,
FuncDefns, Stmts)
then
% We need to strip out the initializer (if any) and convert it
% into an assignment statement, since this local variable
% is going to become a field, and fields can't have initializers.
(
Init0 = init_obj(Rval),
Init = no_initializer,
HeadLocalVarDefn = mlds_local_var_defn(LocalVarName, Context,
Type, Init, GCStmt),
% XXX BUG! Converting the initializer to an assignment doesn't
% work, because it doesn't handle the case when initializers in
% _TailLocalVarDefns0 reference this variable.
VarLval = ml_local_var(LocalVarName, Type),
InitStmt = ml_stmt_atomic(assign(VarLval, Rval), Context),
InitStmts = [InitStmt]
;
Init0 = init_struct(_, _),
unexpected($pred, "init_struct")
;
Init0 = init_array(_),
% XXX We do generate init_array initializers for some local
% variables.
unexpected($pred, "init_array")
;
Init0 = no_initializer,
HeadLocalVarDefn = HeadLocalVarDefn0,
InitStmts = []
),
elim_info_add_local_var(HeadLocalVarDefn, !Info),
HeadLocalVarDefns = []
else
fixup_initializer(Action, !.Info, Init0, Init),
HeadLocalVarDefn = mlds_local_var_defn(LocalVarName, Context,
Type, Init, GCStmt),
HeadLocalVarDefns = [HeadLocalVarDefn],
InitStmts = []
).
% Succeed iff we should add the definition of this variable to the
% ei_local_vars field of the elim_info, meaning that it should be added
% to the environment struct (if it is a variable) or hoisted out to the
% top level (if it is a static const).
%
:- pred ml_should_add_local_var(action, mlds_local_var_name,
mlds_gc_statement, list(mlds_function_defn), list(mlds_stmt)).
:- mode ml_should_add_local_var(in(hoist), in, in, in, in) is semidet.
:- mode ml_should_add_local_var(in(chain), in, in, in, in) is semidet.
ml_should_add_local_var(Action, VarName, GCStmt, FuncDefns, FollowingStmts) :-
(
Action = chain_gc_stack_frames,
( GCStmt = gc_trace_code(_)
; GCStmt = gc_initialiser(_)
)
;
Action = hoist_nested_funcs,
ml_need_to_hoist(VarName, FuncDefns, FollowingStmts)
).
% This checks for a nested function definition.
%
% XXX Do we need to check for references from the GCStmt fields here?
%
% XXX This algorithm is quadratic. For a block with N defs, each of which
% is referenced in a later definition, we do N^2 tests.
%
:- pred ml_need_to_hoist(mlds_local_var_name::in,
list(mlds_function_defn)::in, list(mlds_stmt)::in) is semidet.
ml_need_to_hoist(VarName, FuncDefns, FollowingStmts) :-
Filter = ml_need_to_hoist_defn(VarName),
(
list.find_first_match(Filter, FuncDefns, _)
;
statements_contains_matching_defn(Filter, FollowingStmts)
).
:- pred ml_need_to_hoist_defn(mlds_local_var_name::in, mlds_function_defn::in)
is semidet.
ml_need_to_hoist_defn(QualVarName, FuncDefn) :-
function_defn_contains_var(FuncDefn, QualVarName) = yes.
%---------------------------------------------------------------------------%
% fixup_initializers:
% fixup_initializer:
% fixup_atomic_stmt:
% fixup_case_conds:
% fixup_case_cond:
% fixup_target_code_components:
% fixup_target_code_component:
% fixup_trail_op:
% fixup_rvals:
% fixup_rval:
% fixup_lvals:
% fixup_lval:
%
% Recursively process the specified construct, calling fixup_var on
% every variable inside it.
:- pred fixup_initializers(action, elim_info,
list(mlds_initializer), list(mlds_initializer)).
:- mode fixup_initializers(in(hoist), in, in, out) is det.
:- mode fixup_initializers(in(chain), in, in, out) is det.
fixup_initializers(_, _, [], []).
fixup_initializers(Action, Info,
[Initializer0 | Initializers0], [Initializer | Initializers]) :-
fixup_initializer(Action, Info, Initializer0, Initializer),
fixup_initializers(Action, Info, Initializers0, Initializers).
:- pred fixup_initializer(action, elim_info,
mlds_initializer, mlds_initializer).
:- mode fixup_initializer(in(hoist), in, in, out) is det.
:- mode fixup_initializer(in(chain), in, in, out) is det.
fixup_initializer(Action, Info, Initializer0, Initializer) :-
(
Initializer0 = no_initializer,
Initializer = Initializer0
;
Initializer0 = init_obj(Rval0),
fixup_rval(Action, Info, Rval0, Rval),
Initializer = init_obj(Rval)
;
Initializer0 = init_struct(Type, Members0),
fixup_initializers(Action, Info, Members0, Members),
Initializer = init_struct(Type, Members)
;
Initializer0 = init_array(Elements0),
fixup_initializers(Action, Info, Elements0, Elements),
Initializer = init_array(Elements)
).
:- pred fixup_atomic_stmt(action, elim_info,
mlds_atomic_statement, mlds_atomic_statement).
:- mode fixup_atomic_stmt(in(hoist), in, in, out) is det.
:- mode fixup_atomic_stmt(in(chain), in, in, out) is det.
fixup_atomic_stmt(Action, Info, Atomic0, Atomic) :-
(
( Atomic0 = comment(_)
; Atomic0 = gc_check
),
Atomic = Atomic0
;
Atomic0 = assign(Lval0, Rval0),
fixup_lval(Action, Info, Lval0, Lval),
fixup_rval(Action, Info, Rval0, Rval),
Atomic = assign(Lval, Rval)
;
Atomic0 = assign_if_in_heap(Lval0, Rval0),
fixup_lval(Action, Info, Lval0, Lval),
fixup_rval(Action, Info, Rval0, Rval),
Atomic = assign_if_in_heap(Lval, Rval)
;
Atomic0 = delete_object(Rval0),
fixup_rval(Action, Info, Rval0, Rval),
Atomic = delete_object(Rval)
;
Atomic0 = new_object(Target0, MaybeTag, ExplicitSecTag, Type,
MaybeSize, MaybeCtorName, Args0, ArgTypes, MayUseAtomic,
MaybeAllocId),
fixup_lval(Action, Info, Target0, Target),
fixup_rvals(Action, Info, Args0, Args),
Atomic = new_object(Target, MaybeTag, ExplicitSecTag, Type,
MaybeSize, MaybeCtorName, Args, ArgTypes, MayUseAtomic,
MaybeAllocId)
;
Atomic0 = mark_hp(Lval0),
fixup_lval(Action, Info, Lval0, Lval),
Atomic = mark_hp(Lval)
;
Atomic0 = restore_hp(Rval0),
fixup_rval(Action, Info, Rval0, Rval),
Atomic = restore_hp(Rval)
;
Atomic0 = trail_op(TrailOp0),
fixup_trail_op(Action, Info, TrailOp0, TrailOp),
Atomic = trail_op(TrailOp)
;
Atomic0 = inline_target_code(Lang, Components0),
fixup_target_code_components(Action, Info, Components0, Components),
Atomic = inline_target_code(Lang, Components)
;
Atomic0 = outline_foreign_proc(Lang, Vs, Lvals0, Code),
fixup_lvals(Action, Info, Lvals0, Lvals),
Atomic = outline_foreign_proc(Lang, Vs, Lvals, Code)
).
:- pred fixup_case_conds(action, elim_info,
list(mlds_case_match_cond), list(mlds_case_match_cond)).
:- mode fixup_case_conds(in(hoist), in, in, out) is det.
:- mode fixup_case_conds(in(chain), in, in, out) is det.
fixup_case_conds(_, _, [], []).
fixup_case_conds(Action, Info, [Cond0 | Conds0], [Cond | Conds]) :-
fixup_case_cond(Action, Info, Cond0, Cond),
fixup_case_conds(Action, Info, Conds0, Conds).
:- pred fixup_case_cond(action, elim_info,
mlds_case_match_cond, mlds_case_match_cond).
:- mode fixup_case_cond(in(hoist), in, in, out) is det.
:- mode fixup_case_cond(in(chain), in, in, out) is det.
fixup_case_cond(Action, Info, Cond0, Cond) :-
(
Cond0 = match_value(Rval0),
fixup_rval(Action, Info, Rval0, Rval),
Cond = match_value(Rval)
;
Cond0 = match_range(Low0, High0),
fixup_rval(Action, Info, Low0, Low),
fixup_rval(Action, Info, High0, High),
Cond = match_range(Low, High)
).
:- pred fixup_target_code_components(action, elim_info,
list(target_code_component), list(target_code_component)).
:- mode fixup_target_code_components(in(hoist), in, in, out) is det.
:- mode fixup_target_code_components(in(chain), in, in, out) is det.
fixup_target_code_components(_, _, [], []).
fixup_target_code_components(Action, Info,
[Component0 | Components0], [Component | Components]) :-
fixup_target_code_component(Action, Info, Component0, Component),
fixup_target_code_components(Action, Info, Components0, Components).
:- pred fixup_target_code_component(action, elim_info,
target_code_component, target_code_component).
:- mode fixup_target_code_component(in(hoist), in, in, out) is det.
:- mode fixup_target_code_component(in(chain), in, in, out) is det.
fixup_target_code_component(Action, Info, Component0, Component) :-
(
( Component0 = raw_target_code(_Code)
; Component0 = user_target_code(_Code, _Context)
; Component0 = target_code_type(_Type)
; Component0 = target_code_function_name(_Name)
; Component0 = target_code_alloc_id(_AllocId)
),
Component = Component0
;
Component0 = target_code_input(Rval0),
fixup_rval(Action, Info, Rval0, Rval),
Component = target_code_input(Rval)
;
Component0 = target_code_output(Lval0),
fixup_lval(Action, Info, Lval0, Lval),
Component = target_code_output(Lval)
).
:- pred fixup_trail_op(action, elim_info, trail_op, trail_op).
:- mode fixup_trail_op(in(hoist), in, in, out) is det.
:- mode fixup_trail_op(in(chain), in, in, out) is det.
fixup_trail_op(Action, Info, Op0, Op) :-
(
Op0 = store_ticket(Lval0),
fixup_lval(Action, Info, Lval0, Lval),
Op = store_ticket(Lval)
;
Op0 = reset_ticket(Rval0, Reason),
fixup_rval(Action, Info, Rval0, Rval),
Op = reset_ticket(Rval, Reason)
;
( Op0 = discard_ticket
; Op0 = prune_ticket
),
Op = Op0
;
Op0 = mark_ticket_stack(Lval0),
fixup_lval(Action, Info, Lval0, Lval),
Op = mark_ticket_stack(Lval)
;
Op0 = prune_tickets_to(Rval0),
fixup_rval(Action, Info, Rval0, Rval),
Op = prune_tickets_to(Rval)
).
:- pred fixup_rvals(action, elim_info, list(mlds_rval), list(mlds_rval)).
:- mode fixup_rvals(in(hoist), in, in, out) is det.
:- mode fixup_rvals(in(chain), in, in, out) is det.
fixup_rvals(_, _, [], []).
fixup_rvals(Action, Info, [Rval0 | Rvals0], [Rval | Rvals]) :-
fixup_rval(Action, Info, Rval0, Rval),
fixup_rvals(Action, Info, Rvals0, Rvals).
:- pred fixup_rval(action, elim_info, mlds_rval, mlds_rval).
:- mode fixup_rval(in(hoist), in, in, out) is det.
:- mode fixup_rval(in(chain), in, in, out) is det.
fixup_rval(Action, Info, Rval0, Rval) :-
(
Rval0 = ml_lval(Lval0),
fixup_lval(Action, Info, Lval0, Lval),
Rval = ml_lval(Lval)
;
Rval0 = ml_mem_addr(Lval0),
fixup_lval(Action, Info, Lval0, Lval),
Rval = ml_mem_addr(Lval)
;
Rval0 = ml_mkword(Tag, BaseRval0),
fixup_rval(Action, Info, BaseRval0, BaseRval),
Rval = ml_mkword(Tag, BaseRval)
;
Rval0 = ml_unop(UnOp, XRval0),
fixup_rval(Action, Info, XRval0, XRval),
Rval = ml_unop(UnOp, XRval)
;
Rval0 = ml_binop(BinOp, XRval0, YRval0),
fixup_rval(Action, Info, XRval0, XRval),
fixup_rval(Action, Info, YRval0, YRval),
Rval = ml_binop(BinOp, XRval, YRval)
;
Rval0 = ml_vector_common_row_addr(VectorCommon, RowRval0),
fixup_rval(Action, Info, RowRval0, RowRval),
Rval = ml_vector_common_row_addr(VectorCommon, RowRval)
;
( Rval0 = ml_const(_)
; Rval0 = ml_scalar_common(_)
; Rval0 = ml_scalar_common_addr(_)
; Rval0 = ml_self(_)
),
Rval = Rval0
).
:- pred fixup_lvals(action, elim_info, list(mlds_lval), list(mlds_lval)).
:- mode fixup_lvals(in(hoist), in, in, out) is det.
:- mode fixup_lvals(in(chain), in, in, out) is det.
fixup_lvals(_, _, [], []).
fixup_lvals(Action, Info, [X0 | Xs0], [X | Xs]) :-
fixup_lval(Action, Info, X0, X),
fixup_lvals(Action, Info, Xs0, Xs).
:- pred fixup_lval(action, elim_info, mlds_lval, mlds_lval).
:- mode fixup_lval(in(hoist), in, in, out) is det.
:- mode fixup_lval(in(chain), in, in, out) is det.
fixup_lval(Action, Info, Lval0, Lval) :-
(
Lval0 = ml_field(MaybeTag, Rval0, FieldId, FieldType, PtrType),
fixup_rval(Action, Info, Rval0, Rval),
Lval = ml_field(MaybeTag, Rval, FieldId, FieldType, PtrType)
;
Lval0 = ml_mem_ref(Rval0, Type),
fixup_rval(Action, Info, Rval0, Rval),
Lval = ml_mem_ref(Rval, Type)
;
( Lval0 = ml_global_var(_, _)
; Lval0 = ml_target_global_var_ref(_)
),
Lval = Lval0
;
Lval0 = ml_local_var(Var0, VarType),
fixup_var(Action, Info, Var0, VarType, Lval)
).
% fixup_gc_statements:
%
% Process the trace code in the locals that have been hoisted to the stack
% frame structure so that the code correctly refers to any variables that
% have been pulled out. It assumes the locals don't actually change during
% the process. I think this should be safe. (schmidt)
:- pred fixup_gc_statements(action, elim_info, elim_info).
:- mode fixup_gc_statements(in(hoist), in, out) is det.
:- mode fixup_gc_statements(in(chain), in, out) is det.
fixup_gc_statements(Action, !Info) :-
% We must preserve the order for the Java backend, otherwise the generated
% code may contain closure_layout vectors that reference typevar vectors
% which are defined later.
LocalsCord0 = elim_info_get_local_vars(!.Info),
cord.map_foldl(fixup_gc_statements_defn(Action),
LocalsCord0, LocalsCord, !Info),
elim_info_set_local_vars(LocalsCord, !Info).
:- pred fixup_gc_statements_defn(action,
mlds_local_var_defn, mlds_local_var_defn, elim_info, elim_info).
% We need this predicate to have a single mode for cord.map_foldl.
:- mode fixup_gc_statements_defn(in, in, out, in, out) is det.
fixup_gc_statements_defn(Action, Defn0, Defn, !Info) :-
Defn0 = mlds_local_var_defn(Name, Context, Type, Init, GCStmt0),
(
Action = hoist_nested_funcs,
flatten_gc_statement(Action, GCStmt0, GCStmt, !Info)
;
Action = chain_gc_stack_frames,
flatten_gc_statement(Action, GCStmt0, GCStmt, !Info)
),
Defn = mlds_local_var_defn(Name, Context, Type, Init, GCStmt).
%---------------------------------------------------------------------------%
% Change up any references to local vars in the containing function
% to go via the environment pointer.
%
:- pred fixup_var(action, elim_info, mlds_local_var_name, mlds_type,
mlds_lval).
:- mode fixup_var(in(hoist), in, in, in, out) is det.
:- mode fixup_var(in(chain), in, in, in, out) is det.
fixup_var(Action, Info, ThisVarName, ThisVarType, Lval) :-
Locals = elim_info_get_local_vars(Info),
ClassId = elim_info_get_env_type_name(Info),
EnvPtrVarType = elim_info_get_env_ptr_type_name(Info),
Target = elim_info_get_target_lang(Info),
( if
% Check for references to local variables that are used by
% nested functions, and replace them with `env_ptr->foo'.
DefnIsThisVar =
( pred(Defn::in) is semidet :-
Defn ^ mlvd_name = ThisVarName
),
cord.find_first_match(DefnIsThisVar, Locals, ThisVarDefn)
then
FieldType = ThisVarDefn ^ mlvd_type,
EnvPtr = ml_lval(ml_local_var(env_ptr_var(Action), EnvPtrVarType)),
EnvModuleName = ml_env_module_name(Target, ClassId),
FieldName = ml_field_named(
qual_field_var_name(EnvModuleName, type_qual,
fvn_env_field_from_local_var(ThisVarName)),
EnvPtrVarType),
Tag = yes(0),
Lval = ml_field(Tag, EnvPtr, FieldName, FieldType, EnvPtrVarType)
else if
% Check for references to the env_ptr itself.
% For those, the code generator will have left the type as
% mlds_unknown_type, and we need to fill it in here.
Action = hoist_nested_funcs,
ThisVarName = lvn_comp_var(lvnc_env_ptr),
ThisVarType = mlds_unknown_type
then
Lval = ml_local_var(ThisVarName, EnvPtrVarType)
else
% Leave everything else unchanged.
Lval = ml_local_var(ThisVarName, ThisVarType)
).
% The following code is what we would have to use if we couldn't
% just hoist all local variables out to the outermost function.
% ( if
% % Check for references to local variables
% % that are used by nested functions,
% % and replace them with `(&env)->foo'.
% % (The MLDS doesn't have any representation
% % for `env.foo'.)
% %
% list.member(Var, Locals),
% Var = mlds_defn(data(var(ThisVarName)), _, _, _)
% then
% Env = var(qual(ModuleName, module_qual, "env")),
% FieldName = named_field(ThisVar),
% Tag = yes(0),
% Lval = field(Tag, mem_addr(Env), FieldName)
% else if
% % Check for references to variables in the
% % containing function(s), and replace them
% % with envptr->foo, envptr->envptr->foo, etc.
% % depending on the depth of nesting.
% %
% outervar_member(ThisVarName, OuterVars, 1, Depth)
% then
% EnvPtrName = qual(ModuleName, module_qual, "env_ptr"),
% EnvPtr = lval(var(EnvPtrName)),
% Lval = make_envptr_ref(Depth, EnvPtr, EnvPtrName, ThisVar)
% else
% %
% % leave everything else unchanged
% %
% Lval = var(ThisVar, ThisVarType)
% ).
%
% % check if the specified variable is contained in the
% % outervars, and if so, return the depth of nesting
% %
% :- pred outervar_member(mlds_var_name::in, outervars::in, int::in, int::out)
% is semidet.
%
% outervar_member(ThisVarName, [OuterVars | OtherOuterVars], Depth0, Depth) :-
% ( if
% list.member(Var, OuterVars),
% Var = mlds_defn(data(var(ThisVarName)), _, _, _)
% then
% Depth = Depth0
% else
% outervar_member(ThisVarName, OtherOuterVars, Depth0 + 1, Depth)
% ).
%
% % Produce a reference to a variable via `Depth' levels
% % of `envptr->' indirections.
% %
% :- func make_envptr_ref(int, mlds_rval, mlds_var, mlds_var) = lval.
%
% make_envptr_ref(Depth, CurEnvPtr, EnvPtrVar, Var) = Lval :-
% ( if Depth = 1 then
% Tag = yes(0),
% Lval = field(Tag, CurEnvPtr, named_field(Var))
% else
% Tag = yes(0),
% NewEnvPtr = lval(field(Tag, CurEnvPtr, named_field(EnvPtrVar))),
% Lval = make_envptr_ref(Depth - 1, NewEnvPtr, EnvPtrVar, Var)
% ).
:- func ml_env_module_name(mlds_target_lang, mlds_class_id) = mlds_module_name.
ml_env_module_name(Target, ClassId) = EnvModuleName :-
ClassId = mlds_class_id(ClassModuleName, Arity, _Kind),
ClassModuleName = qual_class_name(ClassModule, QualKind, ClassName),
EnvModuleName = mlds_append_class_qualifier(Target, ClassModule,
QualKind, ClassName, Arity).
%---------------------------------------------------------------------------%
%
% Succeed if the specified construct contains a definition for which the
% given filter predicate succeeds.
%
:- pred statements_contains_matching_defn(
pred(mlds_function_defn)::in(pred(in) is semidet),
list(mlds_stmt)::in) is semidet.
statements_contains_matching_defn(Filter, [Stmt | Stmts]) :-
(
statement_contains_matching_defn(Filter, Stmt)
;
statements_contains_matching_defn(Filter, Stmts)
).
:- pred statement_contains_matching_defn(
pred(mlds_function_defn)::in(pred(in) is semidet),
mlds_stmt::in) is semidet.
statement_contains_matching_defn(Filter, Stmt) :-
require_complete_switch [Stmt]
(
Stmt = ml_stmt_block(_LocalVarDefns, FuncDefns, SubStmts, _Context),
% Local var definitions contain no other definitions.
( function_defns_contains_matching_defn(Filter, FuncDefns)
; statements_contains_matching_defn(Filter, SubStmts)
)
;
Stmt = ml_stmt_while(_Kind, _Rval, SubStmt, _Context),
statement_contains_matching_defn(Filter, SubStmt)
;
Stmt = ml_stmt_if_then_else(_Cond, SubThen, MaybeSubElse, _Context),
(
statement_contains_matching_defn(Filter, SubThen)
;
MaybeSubElse = yes(SubElse),
statement_contains_matching_defn(Filter, SubElse)
)
;
Stmt = ml_stmt_switch(_Type, _Val, _Range, SubCases, SubDefault,
_Context),
( cases_contains_matching_defn(Filter, SubCases)
; default_contains_matching_defn(Filter, SubDefault)
)
;
Stmt = ml_stmt_try_commit(_Ref, SubStmt, SubHandler, _Context),
( statement_contains_matching_defn(Filter, SubStmt)
; statement_contains_matching_defn(Filter, SubHandler)
)
;
( Stmt = ml_stmt_label(_Label, _Context)
; Stmt = ml_stmt_goto(_Target, _Context)
; Stmt = ml_stmt_computed_goto(_Rval, _Labels, _Context)
; Stmt = ml_stmt_call(_Sig, _Func, _Args, _RetLvals, _TailCall,
_Context)
; Stmt = ml_stmt_return(_Rvals, _Context)
; Stmt = ml_stmt_do_commit(_Ref, _Context)
; Stmt = ml_stmt_atomic(_AtomicStmt, _Context)
),
fail
).
:- pred cases_contains_matching_defn(
pred(mlds_function_defn)::in(pred(in) is semidet),
list(mlds_switch_case)::in) is semidet.
cases_contains_matching_defn(Filter, [Case | Cases]) :-
(
case_contains_matching_defn(Filter, Case)
;
cases_contains_matching_defn(Filter, Cases)
).
:- pred case_contains_matching_defn(
pred(mlds_function_defn)::in(pred(in) is semidet),
mlds_switch_case::in) is semidet.
case_contains_matching_defn(Filter, Case) :-
Case = mlds_switch_case(_FirstMatchCond, _LaterMatchConds, Stmt),
statement_contains_matching_defn(Filter, Stmt).
:- pred default_contains_matching_defn(
pred(mlds_function_defn)::in(pred(in) is semidet), mlds_switch_default::in)
is semidet.
% default_contains_matching_defn(_, default_do_nothing) :- fail.
% default_contains_matching_defn(_, default_is_unreachable) :- fail.
default_contains_matching_defn(Filter, default_case(Stmt)) :-
statement_contains_matching_defn(Filter, Stmt).
:- pred function_defns_contains_matching_defn(
pred(mlds_function_defn)::in(pred(in) is semidet),
list(mlds_function_defn)::in) is semidet.
function_defns_contains_matching_defn(Filter, [FuncDefn | FuncDefns]) :-
(
Filter(FuncDefn)
;
function_defn_contains_matching_defn(Filter, FuncDefn)
;
function_defns_contains_matching_defn(Filter, FuncDefns)
).
:- pred function_defn_contains_matching_defn(
pred(mlds_function_defn)::in(pred(in) is semidet), mlds_function_defn::in)
is semidet.
function_defn_contains_matching_defn(Filter, FuncDefn) :-
FuncDefn = mlds_function_defn(_Name, _Ctxt, _Flags, _PredProcId, _Params,
FunctionBody, _EnvVarNames, _MaybeRequiretailrecInfo),
FunctionBody = body_defined_here(Stmt),
statement_contains_matching_defn(Filter, Stmt).
%---------------------------------------------------------------------------%
% Add code to unlink the stack chain before any explicit returns or
% tail calls.
%
:- pred add_unchain_stack_to_maybe_statement(action,
maybe(mlds_stmt), maybe(mlds_stmt), elim_info, elim_info).
% :- mode add_unchain_stack_to_maybe_statement(in(hoist), in, out, in, out)
% is det.
:- mode add_unchain_stack_to_maybe_statement(in(chain), in, out, in, out)
is det.
add_unchain_stack_to_maybe_statement(_, no, no, !Info).
add_unchain_stack_to_maybe_statement(Action, yes(Stmt0), yes(Stmt), !Info) :-
add_unchain_stack_to_stmt(Action, Stmt0, Stmt, !Info).
:- pred add_unchain_stack_to_stmts(action,
list(mlds_stmt), list(mlds_stmt), elim_info, elim_info).
% :- mode add_unchain_stack_to_stmts(in(hoist), in, out, in, out) is det.
:- mode add_unchain_stack_to_stmts(in(chain), in, out, in, out) is det.
add_unchain_stack_to_stmts(_, [], [], !Info).
add_unchain_stack_to_stmts(Action, [Stmt0 | Stmts0], [Stmt | Stmts], !Info) :-
add_unchain_stack_to_stmt(Action, Stmt0, Stmt, !Info),
add_unchain_stack_to_stmts(Action, Stmts0, Stmts, !Info).
:- pred add_unchain_stack_to_stmt(action,
mlds_stmt, mlds_stmt, elim_info, elim_info).
% :- mode add_unchain_stack_to_stmt(in(hoist), in, out, in, out) is det.
:- mode add_unchain_stack_to_stmt(in(chain), in, out, in, out) is det.
add_unchain_stack_to_stmt(Action, Stmt0, Stmt, !Info) :-
(
Stmt0 = ml_stmt_block(LocalVarDefns, FuncDefns, SubStmts0, Context),
add_unchain_stack_to_stmts(Action, SubStmts0, SubStmts, !Info),
Stmt = ml_stmt_block(LocalVarDefns, FuncDefns, SubStmts, Context)
;
Stmt0 = ml_stmt_while(Kind, Rval, SubStmt0, Context),
add_unchain_stack_to_stmt(Action, SubStmt0, SubStmt, !Info),
Stmt = ml_stmt_while(Kind, Rval, SubStmt, Context)
;
Stmt0 = ml_stmt_if_then_else(Cond, Then0, MaybeElse0, Context),
add_unchain_stack_to_stmt(Action, Then0, Then, !Info),
add_unchain_stack_to_maybe_statement(Action, MaybeElse0, MaybeElse,
!Info),
Stmt = ml_stmt_if_then_else(Cond, Then, MaybeElse, Context)
;
Stmt0 = ml_stmt_switch(Type, Val, Range, Cases0, Default0, Context),
add_unchain_stack_to_cases(Action, Cases0, Cases, !Info),
add_unchain_stack_to_default(Action, Default0, Default, !Info),
Stmt = ml_stmt_switch(Type, Val, Range, Cases, Default, Context)
;
Stmt0 = ml_stmt_call(_Sig, _Func, _Args, RetLvals, CallKind, Context),
add_unchain_stack_to_call(Stmt0, RetLvals, CallKind, Context,
Stmt, !Info)
;
Stmt0 = ml_stmt_return(_Rvals, Context),
Stmt = prepend_unchain_frame(Stmt0, Context, !.Info)
;
Stmt0 = ml_stmt_try_commit(Ref, BodyStmt0, HandlerStmt0, Context),
add_unchain_stack_to_stmt(Action, BodyStmt0, BodyStmt, !Info),
add_unchain_stack_to_stmt(Action, HandlerStmt0, HandlerStmt, !Info),
Stmt = ml_stmt_try_commit(Ref, BodyStmt, HandlerStmt, Context)
;
( Stmt0 = ml_stmt_label(_Label, _Context)
; Stmt0 = ml_stmt_goto(_Target, _Context)
; Stmt0 = ml_stmt_computed_goto(_Rval, _Labels, _Context)
; Stmt0 = ml_stmt_do_commit(_Ref, _Context)
; Stmt0 = ml_stmt_atomic(_AtomicStmt0, _Context)
),
Stmt = Stmt0
).
:- pred add_unchain_stack_to_call(mlds_stmt::in, list(mlds_lval)::in,
ml_call_kind::in, prog_context::in, mlds_stmt::out,
elim_info::in, elim_info::out) is det.
add_unchain_stack_to_call(Stmt0, RetLvals, CallKind, Context, Stmt, !Info) :-
(
CallKind = no_return_call,
% For no-return calls, we just unchain the stack
% frame before the call.
Stmt = prepend_unchain_frame(Stmt0, Context, !.Info)
;
CallKind = tail_call,
% For tail calls, we unchain the stack frame before the call,
% and then we insert a return statement after the call.
% The return statement is needed ensure that the code doesn't
% fall through (past the tail call) and then try to unchain
% the already-unchained stack frame.
UnchainFrame = ml_gen_unchain_frame(Context, !.Info),
RetRvals = list.map(func(Rval) = ml_lval(Rval), RetLvals),
RetStmt = ml_stmt_return(RetRvals, Context),
Stmt = ml_stmt_block([], [], [UnchainFrame, Stmt0, RetStmt], Context)
;
CallKind = ordinary_call,
Stmt = Stmt0
).
:- pred add_unchain_stack_to_cases(action,
list(mlds_switch_case), list(mlds_switch_case), elim_info, elim_info).
% :- mode add_unchain_stack_to_cases(in(hoist), in, out, in, out) is det.
:- mode add_unchain_stack_to_cases(in(chain), in, out, in, out) is det.
add_unchain_stack_to_cases(_, [], [], !Info).
add_unchain_stack_to_cases(Action, [Case0 | Cases0], [Case | Cases], !Info) :-
add_unchain_stack_to_case(Action, Case0, Case, !Info),
add_unchain_stack_to_cases(Action, Cases0, Cases, !Info).
:- pred add_unchain_stack_to_case(action,
mlds_switch_case, mlds_switch_case, elim_info, elim_info).
% :- mode add_unchain_stack_to_case(in(hoist), in, out, in, out) is det.
:- mode add_unchain_stack_to_case(in(chain), in, out, in, out) is det.
add_unchain_stack_to_case(Action, Case0, Case, !Info) :-
Case0 = mlds_switch_case(FirstCond0, LaterConds0, Stmt0),
fixup_case_cond(Action, !.Info, FirstCond0, FirstCond),
fixup_case_conds(Action, !.Info, LaterConds0, LaterConds),
add_unchain_stack_to_stmt(Action, Stmt0, Stmt, !Info),
Case = mlds_switch_case(FirstCond, LaterConds, Stmt).
:- pred add_unchain_stack_to_default(action,
mlds_switch_default, mlds_switch_default, elim_info, elim_info).
% :- mode add_unchain_stack_to_default(in(hoist), in, out, in, out) is det.
:- mode add_unchain_stack_to_default(in(chain), in, out, in, out) is det.
add_unchain_stack_to_default(Action, Default0, Default, !Info) :-
(
Default0 = default_is_unreachable,
Default = default_is_unreachable
;
Default0 = default_do_nothing,
Default = default_do_nothing
;
Default0 = default_case(Stmt0),
add_unchain_stack_to_stmt(Action, Stmt0, Stmt, !Info),
Default = default_case(Stmt)
).
:- func prepend_unchain_frame(mlds_stmt, prog_context, elim_info) = mlds_stmt.
prepend_unchain_frame(Stmt0, Context, ElimInfo) = Stmt :-
UnchainFrame = ml_gen_unchain_frame(Context, ElimInfo),
Stmt = ml_stmt_block([], [], [UnchainFrame, Stmt0], Context).
:- func ml_gen_unchain_frame(prog_context, elim_info) = mlds_stmt.
ml_gen_unchain_frame(Context, ElimInfo) = UnchainFrame :-
EnvPtrTypeName = elim_info_get_env_ptr_type_name(ElimInfo),
% Generate code to remove this frame from the stack chain:
%
% stack_chain = stack_chain->prev;
%
% Actually, it is not quite as simple as that. The global `stack_chain'
% has type `void *', rather than `MR_StackChain *', and the MLDS has
% no way of representing the `struct MR_StackChain' type (which we would
% need to cast it to) or of accessing an unqualified field name
% like `prev' (rather than `modulename__prev').
%
% So we do this in a slightly lower-level fashion, using a field offset
% rather than a field name:
%
% stack_chain = MR_hl_field(stack_chain, 0);
StackChain = ml_stack_chain_var,
Tag = yes(0),
PrevFieldId = ml_field_offset(ml_const(mlconst_int(0))),
PrevFieldType = mlds_generic_type,
PrevFieldRval = ml_lval(ml_field(Tag, ml_lval(StackChain), PrevFieldId,
PrevFieldType, EnvPtrTypeName)),
Assignment = assign(StackChain, PrevFieldRval),
UnchainFrame = ml_stmt_atomic(Assignment, Context).
% Generate a local variable declaration to hold the saved stack chain
% pointer:
%
% void *saved_stack_chain;
%
:- func gen_saved_stack_chain_var(int, prog_context) = mlds_local_var_defn.
gen_saved_stack_chain_var(Id, Context) = Defn :-
Name = lvn_comp_var(lvnc_saved_stack_chain(Id)),
Type = ml_stack_chain_type,
Initializer = no_initializer,
% The saved stack chain never needs to be traced by the GC,
% since it will always point to the stack, not into the heap.
GCStmt = gc_no_stmt,
Defn = mlds_local_var_defn(Name, Context, Type, Initializer, GCStmt).
% Generate two statements, one to save the stack chain pointer:
%
% saved_stack_chain = stack_chain;
%
% and one to restore it:
%
% stack_chain = saved_stack_chain;
%
:- pred gen_save_and_restore_of_stack_chain_var(int::in, prog_context::in,
mlds_stmt::out, mlds_stmt::out) is det.
gen_save_and_restore_of_stack_chain_var(Id, Context, SaveStmt, RestoreStmt) :-
SavedStackChain = ml_local_var(lvn_comp_var(lvnc_saved_stack_chain(Id)),
ml_stack_chain_type),
SaveAssignment = assign(SavedStackChain, ml_lval(ml_stack_chain_var)),
SaveStmt = ml_stmt_atomic(SaveAssignment, Context),
RestoreAssignment = assign(ml_stack_chain_var, ml_lval(SavedStackChain)),
RestoreStmt = ml_stmt_atomic(RestoreAssignment, Context).
%---------------------------------------------------------------------------%
%
% The elim_info type holds information that we use or accumulate
% as we traverse through the function body.
%
% The lists of local variables for each of the containing functions,
% innermost first.
:- type outervars == list(list(mlds_local_var_defn)).
:- type elim_info
---> elim_info(
% The lists of local variables for each of the containing
% functions, innermost first.
% XXX this is not used.
% It would be needed if we want to handle arbitrary nesting.
% Currently we assume that any variables can safely be hoisted
% to the outermost function, so this field is not needed.
% outer_vars :: outervars,
% The nested function definitions that we must hoist out.
ei_nested_funcs :: cord(mlds_function_defn),
% The local variables that we must put in the
% environment structure.
ei_local_vars :: cord(mlds_local_var_defn),
% The "type" of the introduced environment struct.
ei_env_type_name :: mlds_class_id,
% Type of the introduced environment struct pointer.
% This might not just be just a pointer to the env_type_name
% (in the IL backend we don't necessarily use a pointer).
ei_env_ptr_type_name :: mlds_type,
% A counter used to number the local variables
% used to save the stack chain
ei_saved_stack_chain_counter :: counter,
ei_target_lang :: mlds_target_lang
).
:- func elim_info_init(mlds_class_id, mlds_type,
mlds_target_lang) = elim_info.
elim_info_init(EnvClassId, EnvPtrTypeName, Target) =
elim_info(cord.init, cord.init, EnvClassId, EnvPtrTypeName,
counter.init(0), Target).
:- func elim_info_get_local_vars(elim_info) = cord(mlds_local_var_defn).
:- func elim_info_get_env_type_name(elim_info) = mlds_class_id.
:- func elim_info_get_env_ptr_type_name(elim_info) = mlds_type.
:- func elim_info_get_target_lang(elim_info) = mlds_target_lang.
:- pred elim_info_set_local_vars(cord(mlds_local_var_defn)::in,
elim_info::in, elim_info::out) is det.
elim_info_get_local_vars(ElimInfo) = X :-
X = ElimInfo ^ ei_local_vars.
elim_info_get_env_type_name(ElimInfo) = X :-
X = ElimInfo ^ ei_env_type_name.
elim_info_get_env_ptr_type_name(ElimInfo) = X :-
X = ElimInfo ^ ei_env_ptr_type_name.
elim_info_get_target_lang(ElimInfo) = X :-
X = ElimInfo ^ ei_target_lang.
elim_info_set_local_vars(X, !ElimInfo) :-
!ElimInfo ^ ei_local_vars := X.
:- pred elim_info_add_nested_func(mlds_function_defn::in,
elim_info::in, elim_info::out) is det.
elim_info_add_nested_func(NestedFunc, !ElimInfo) :-
NestedFuncs0 = !.ElimInfo ^ ei_nested_funcs,
NestedFuncs = cord.snoc(NestedFuncs0, NestedFunc),
!ElimInfo ^ ei_nested_funcs := NestedFuncs.
:- pred elim_info_add_local_var(mlds_local_var_defn::in,
elim_info::in, elim_info::out) is det.
elim_info_add_local_var(LocalVar, !ElimInfo) :-
LocalVars0 = !.ElimInfo ^ ei_local_vars,
LocalVars = cord.snoc(LocalVars0, LocalVar),
!ElimInfo ^ ei_local_vars := LocalVars.
:- pred elim_info_allocate_saved_stack_chain_id(int::out,
elim_info::in, elim_info::out) is det.
elim_info_allocate_saved_stack_chain_id(Id, !ElimInfo) :-
Counter0 = !.ElimInfo ^ ei_saved_stack_chain_counter,
counter.allocate(Id, Counter0, Counter),
!ElimInfo ^ ei_saved_stack_chain_counter := Counter.
:- pred elim_info_finish(elim_info::in,
list(mlds_function_defn)::out, list(mlds_local_var_defn)::out) is det.
elim_info_finish(ElimInfo, NestedFuncs, LocalVars) :-
NestedFuncs = cord.to_list(ElimInfo ^ ei_nested_funcs),
LocalVars = cord.to_list(ElimInfo ^ ei_local_vars).
%---------------------------------------------------------------------------%
:- end_module ml_backend.ml_elim_nested.
%---------------------------------------------------------------------------%