Files
mercury/compiler/polymorphism.m
Zoltan Somogyi 27aaaf412c Fix the failure of the invalid/modes_erroneous test case, whose symptom was
Estimated hours taken: 5
Branches: main

Fix the failure of the invalid/modes_erroneous test case, whose symptom was
an error message about a "mode error in unification of `X' and `X'".
The root cause of the problem was that the renaming of head variables
computed by headvar_names.m was being applied too early, during typechecking.
The fix is to apply it after the frontend (all the passes that can generate
error messages).

To avoid slowdowns from larger pred_infos, this diff also moves the least
frequently used fields of pred_infos to a subterm. (Proc_infos already had
a subterm.) This leads to an almost 3% speedup.

compiler/headvar_names.m:
	Store the renaming instead of applying it.

compiler/simplify.m:
	Apply the renaming in invocations after the front end, since doing so
	may allow some excess assignments to be eliminated.

compiler/hlds_pred.m:
	Add fields to pred_infos and proc_infos for the renaming.

	Move the least frequently used fields of pred_infos into a
	pred_sub_info.

	Some fields of pred_infos were being accessed using predicates
	that did not follow our naming conventions, and some were accessed
	using field access functions that are now inappropriate; fix them all.

	Require the caller to provide the renaming when creating new pred_infos
	and proc_infos. This is to force the compiler components that do this
	to propagate the renaming fields of the original predicates and/or
	procedures to their modified versions.

	Convert that some old code that used if-then-elses to use switches
	instead.

compiler/hlds_out.m:
	Write out the new pred_info and proc_info fields.

compiler/*.m:
	Conform to the changes in hlds_pred.m.

compiler/hlds_clauses.m:
	Avoid ambiguity by giving a prefix to the fields of the clauses_info
	type.

tests/invalid/ho_type_mode_bug.err_exp:
tests/invalid/merge_ground_any.err_exp:
	Don't expect error messages about "X = X" anymore.
2007-05-17 03:53:13 +00:00

3371 lines
145 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1995-2007 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: polymorphism.m.
% Main author: fjh.
%
% This module is a pass over the HLDS.
% It does a syntactic transformation to implement polymorphism, including
% typeclasses, by passing extra `type_info' and `typeclass_info' arguments.
% These arguments are structures that contain, amongst other things,
% higher order predicate terms for the polymorphic procedures or methods.
%
% See notes/type_class_transformation.html for a description of the
% transformation and data structures used to implement type classes.
%
% XXX The way the code in this module handles existential type classes
% and type class constraints is a bit ad hoc, in general; there are
% definitely parts of this code (marked with XXXs below) that could
% do with a rewrite to make it more consistent and hence more maintainable.
%
%-----------------------------------------------------------------------------%
%
% Transformation of polymorphic code:
%
% Every polymorphic predicate is transformed so that it takes one additional
% argument for every type variable in the predicate's type declaration.
% The argument gives information about the type, including higher order
% predicate variables for each of the builtin polymorphic operations
% (currently unify/2, compare/3).
%
%-----------------------------------------------------------------------------%
%
% Representation of type information:
%
% IMPORTANT: ANY CHANGES TO THE DOCUMENTATION HERE MUST BE REFLECTED BY
% SIMILAR CHANGES TO THE #defines IN "runtime/mercury_type_info.h" AND
% TO THE TYPE SPECIALIZATION CODE IN "compiler/higher_order.m".
%
% Type information is represented using one or two cells. The cell which
% is always present is the type_ctor_info structure, whose structure is
% defined in runtime/mercury_type_info.h. The other cell is the type_info
% structure, laid out like this:
%
% word 0 <pointer to the type_ctor_info structure>
% word 1+ <the type_infos for the type params, at least one>
%
% (but see note below for how variable arity types differ)
%
%-----------------------------------------------------------------------------%
%
% Optimization of common case (zero arity types):
%
% The type_info structure itself is redundant if the type has no type
% parameters (i.e. its arity is zero). Therefore if the arity is zero,
% we pass the address of the type_ctor_info structure directly, instead of
% wrapping it up in another cell. The runtime system will look at the first
% field of the cell it is passed. If this field is zero, the cell is a
% type_ctor_info structure for an arity zero type. If this field is not zero,
% the cell is a new type_info structure, with the first field being the
% pointer to the type_ctor_info structure.
%
%-----------------------------------------------------------------------------%
%
% Variable arity types:
%
% There is a slight variation on this for variable-arity type constructors, of
% there are exactly three: pred, func and tuple. Typeinfos of these types
% always have a pointer to the pred/0, func/0 or tuple/0 type_ctor_info,
% regardless of their true arity, so we store the real arity in the type_info
% as well.
%
% word 0 <pointer to the arity 0 type_ctor_info structure>
% word 1 <arity of predicate>
% word 2+ <the type_infos for the type params, if any>
%
%-----------------------------------------------------------------------------%
%
% Sharing type_ctor_info structures:
%
% For compilation models that can put code addresses in static ground terms,
% we can arrange to create one copy of the type_ctor_info structure statically,
% avoiding the need to create other copies at runtime. For compilation models
% that cannot put code addresses in static ground terms, there are a couple
% of things we could do:
%
% 1. allocate all cells at runtime.
% 2. use a shared static type_ctor_info, but initialize its code
% addresses during startup (that is, during the module
% initialization code).
%
% We use option 2.
%
%-----------------------------------------------------------------------------%
%
% Example of transformation:
%
% Take the following code as an example, ignoring the requirement for
% superhomogeneous form for clarity:
%
% :- pred p(T1).
% :- pred q(T2).
% :- pred r(T3).
%
% p(X) :- q([X]), r(0).
%
% We add an extra argument for each type variable:
%
% :- pred p(type_info(T1), T1).
% :- pred q(type_info(T2), T2).
% :- pred r(type_info(T3), T3).
%
% We transform the body of p to this:
%
% p(TypeInfoT1, X) :-
% TypeCtorInfoT2 = type_ctor_info(list/1),
% TypeInfoT2 = type_info(TypeCtorInfoT2, TypeInfoT1),
% q(TypeInfoT2, [X]),
% TypeInfoT3 = type_ctor_info(int/0),
% r(TypeInfoT3, 0).
%
% Note that type_ctor_infos are actually generated as references to a
% single shared type_ctor_info.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% Transformation of code using existentially quantified types:
%
% The transformation for existential types is similar to the transformation
% for universally quantified types, except that the type_infos and
% type_class_infos have mode `out' rather than mode `in'.
%
% The argument passing convention is that the new parameters
% introduced by this pass are placed in the following order:
%
% First the type_infos for unconstrained universally quantified type
% variables, in the order that the type variables first appear in the
% argument types;
%
% then the type_infos for unconstrained existentially quantified type
% variables, in the order that the type variables first appear in the
% argument types;
%
% then the typeclass_infos for universally quantified constraints,
% in the order that the constraints appear in the class context;
%
% then the typeclass_infos for existentially quantified constraints,
% in the order that the constraints appear in the class context;
%
% and finally the original arguments of the predicate.
%
% Bear in mind that for the purposes of this (and most other) calculations,
% the return parameter of a function counts as the _last_ argument.
%
% The convention for class method implementations is slightly different
% to match the order that the type_infos and typeclass_infos are passed
% in by do_call_class_method (in runtime/mercury_ho_call.c):
%
% First the type_infos for the unconstrained type variables in the
% instance declaration, in the order that the type variables first appear
% in the instance arguments;
%
% then the typeclass_infos for the class constraints on the instance
% declaration, in the order that the constraints appear in the declaration;
%
% then the remainder of the arguments as above.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module check_hlds.polymorphism.
:- interface.
:- import_module hlds.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module hlds.hlds_rtti.
:- import_module mdbcomp.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.
:- import_module parse_tree.prog_data.
:- import_module io.
:- import_module list.
:- import_module maybe.
:- import_module term.
%-----------------------------------------------------------------------------%
% Run the polymorphism pass over the whole HLDS.
%
:- pred polymorphism_process_module(module_info::in, module_info::out,
io::di, io::uo) is det.
% Run the polymorphism pass over a single pred. This is used to transform
% clauses introduced by unify_proc.m for complicated unification predicates
% for types for which unification predicates are generated lazily.
%
% This predicate should be used with caution. polymorphism.m expects that
% the argument types of called predicates have not been transformed yet.
% This predicate will not work correctly after the original pass of
% polymorphism has been run if the predicate to be processed calls
% any polymorphic predicates which require type_infos or typeclass_infos
% to be added to the argument list.
%
:- pred polymorphism_process_generated_pred(pred_id::in,
module_info::in, module_info::out) is det.
% Add the type_info variables for a complicated unification to
% the appropriate fields in the unification and the goal_info.
%
:- pred unification_typeinfos_rtti_varmaps(mer_type::in, rtti_varmaps::in,
unification::in, unification::out, hlds_goal_info::in, hlds_goal_info::out)
is det.
% Add the type_info variables for a new call goal. This predicate assumes
% that process_module has already been run so the called pred
% has already been processed.
%
% XXX This predicate does not yet handle calls whose arguments include
% existentially quantified types or type class constraints.
%
:- pred polymorphism_process_new_call(pred_info::in, proc_info::in,
pred_id::in, proc_id::in, list(prog_var)::in, builtin_state::in,
maybe(call_unify_context)::in, sym_name::in, hlds_goal_info::in,
hlds_goal::out, poly_info::in, poly_info::out) is det.
% Given a list of types, create a list of variables to hold the type_info
% for those types, and create a list of goals to initialize those type_info
% variables to the appropriate type_info structures for the types.
% Update the varset and vartypes accordingly.
%
:- pred polymorphism_make_type_info_vars(list(mer_type)::in, term.context::in,
list(prog_var)::out, list(hlds_goal)::out, poly_info::in, poly_info::out)
is det.
% Likewise, but for a single type.
%
:- pred polymorphism_make_type_info_var(mer_type::in, term.context::in,
prog_var::out, list(hlds_goal)::out, poly_info::in, poly_info::out) is det.
% gen_extract_type_info(TypeVar, Kind, TypeClassInfoVar,
% Index, ModuleInfo, Goals, TypeInfoVar, ...):
%
% Generate code to extract a type_info variable from a given slot of a
% typeclass_info variable, by calling type_info_from_typeclass_info from
% private_builtin. TypeVar is the type variable to which this type_info
% variable corresponds. Kind is the kind of the type variable.
% TypeClassInfoVar is the variable holding the type_class_info.
% Index specifies which slot it is. The procedure returns TypeInfoVar,
% which is a fresh variable holding the type_info, and Goals, which is
% the code generated to initialize TypeInfoVar.
%
:- pred gen_extract_type_info(tvar::in, kind::in, prog_var::in,
int::in, module_info::in, list(hlds_goal)::out, prog_var::out,
prog_varset::in, prog_varset::out, vartypes::in, vartypes::out,
rtti_varmaps::in, rtti_varmaps::out) is det.
:- type poly_info.
% Extract some fields from a pred_info and proc_info and use them to
% create a poly_info, for use by the polymorphism transformation.
%
:- pred create_poly_info(module_info::in, pred_info::in,
proc_info::in, poly_info::out) is det.
% Update the fields in a pred_info and proc_info with
% the values in a poly_info.
%
:- pred poly_info_extract(poly_info::in, pred_info::in, pred_info::out,
proc_info::in, proc_info::out, module_info::out) is det.
% Build the type describing the typeclass_info for the
% given prog_constraint.
%
:- pred build_typeclass_info_type(prog_constraint::in, mer_type::out) is det.
% Check if a type is the `typeclass_info' type introduced by this pass.
%
:- pred type_is_typeclass_info(mer_type::in) is semidet.
% Check if a type is either the `type_info' type or the
% `type_ctor_info' type introduced by this pass.
%
:- pred type_is_type_info_or_ctor_type(mer_type::in) is semidet.
% Construct the type of the type_info for the given type.
%
:- pred build_type_info_type(mer_type::in, mer_type::out) is det.
% Succeed if the predicate is one of the predicates defined in
% library/private_builtin.m to extract type_infos or typeclass_infos
% from typeclass_infos.
%
:- pred is_typeclass_info_manipulator(module_info::in, pred_id::in,
typeclass_info_manipulator::out) is semidet.
:- type typeclass_info_manipulator
---> type_info_from_typeclass_info
; superclass_from_typeclass_info
; instance_constraint_from_typeclass_info.
% Look up the pred_id and proc_id for a type specific
% unification/comparison/index/initialise predicate.
%
:- pred get_special_proc(mer_type::in, special_pred_id::in,
module_info::in, sym_name::out, pred_id::out, proc_id::out) is semidet.
:- pred get_special_proc_det(mer_type::in, special_pred_id::in,
module_info::in, sym_name::out, pred_id::out, proc_id::out) is det.
% Convert a higher order pred term to a lambda goal.
%
:- pred convert_pred_to_lambda_goal(purity::in, lambda_eval_method::in,
prog_var::in, pred_id::in, proc_id::in, list(prog_var)::in,
list(mer_type)::in, unify_context::in, hlds_goal_info::in, context::in,
module_info::in, unify_rhs::out, prog_varset::in, prog_varset::out,
vartypes::in, vartypes::out) is det.
% init_type_info_var(Type, ArgVars, TypeInfoVar, TypeInfoGoal,
% !VarSet, !VarTypes) :-
%
% Create the unification the constructs the second cell of a type_info
% for Type. ArgVars should contain the arguments of this unification.
%
% This unification WILL lead to the creation of cells on the heap
% at runtime.
%
% The first variable in ArgVars should be bound to the type_ctor_info
% for Type's principal type constructor. If that type constructor is
% variable arity, the next variable in ArgVars should be bound to an
% integer giving Type's actual arity. The remaining variables in
% ArgVars should be bound to the type_infos or type_ctor_infos giving
% Type's argument types.
%
:- pred init_type_info_var(mer_type::in, list(prog_var)::in,
maybe(prog_var)::in, prog_var::out, hlds_goal::out,
prog_varset::in, prog_varset::out, vartypes::in, vartypes::out,
rtti_varmaps::in, rtti_varmaps::out) is det.
% init_const_type_ctor_info_var(Type, TypeCtor,
% TypeCtorInfoVar, TypeCtorInfoGoal, ModuleInfo, !VarSet, !VarTypes):
%
% Create the unification (returned as TypeCtorInfoGoal) that binds a
% new variable (returned as TypeCtorInfoVar) to the type_ctor_info
% representing TypeCtor.
%
% This unification WILL NOT lead to the creation of a cell on the
% heap at runtime; it will cause TypeCtorInfoVar to refer to the
% statically allocated type_ctor_info cell for the type, allocated
% in the module that defines the type.
%
% We take Type as input for historical reasons: we record Type as
% the type whose type constructor TypeCtor is, in the type of
% TypeCtorInfoVar.
%
:- pred init_const_type_ctor_info_var(mer_type::in, type_ctor::in,
prog_var::out, hlds_goal::out, module_info::in,
prog_varset::in, prog_varset::out, vartypes::in, vartypes::out,
rtti_varmaps::in, rtti_varmaps::out) is det.
:- type type_info_kind
---> type_info
; type_ctor_info.
:- pred new_type_info_var_raw(mer_type::in, type_info_kind::in,
prog_var::out, prog_varset::in, prog_varset::out,
vartypes::in, vartypes::out, rtti_varmaps::in, rtti_varmaps::out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds.clause_to_proc.
:- import_module check_hlds.mode_util.
:- import_module check_hlds.type_util.
:- import_module hlds.goal_util.
:- import_module hlds.hlds_args.
:- import_module hlds.hlds_clauses.
:- import_module hlds.hlds_code_util.
:- import_module hlds.hlds_data.
:- import_module hlds.instmap.
:- import_module hlds.passes_aux.
:- import_module hlds.pred_table.
:- import_module hlds.quantification.
:- import_module hlds.special_pred.
:- import_module libs.
:- import_module libs.compiler_util.
:- import_module libs.compiler_util.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module mdbcomp.prim_data.
:- import_module mdbcomp.program_representation.
:- import_module parse_tree.prog_mode.
:- import_module parse_tree.prog_type.
:- import_module parse_tree.prog_type_subst.
:- import_module parse_tree.prog_util.
:- import_module assoc_list.
:- import_module bool.
:- import_module int.
:- import_module map.
:- import_module pair.
:- import_module set.
:- import_module string.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
%
% This whole section just traverses the module structure.
% We do two passes, the first to fix up the clauses_info and proc_infos
% (and in fact everything except the pred_info argtypes), the second to fix up
% the pred_info argtypes. The reason we need two passes is that the first pass
% looks at the argtypes of the called predicates, and so we need to make
% sure we don't muck them up before we've finished the first pass.
polymorphism_process_module(!ModuleInfo, !IO) :-
module_info_preds(!.ModuleInfo, Preds0),
map.keys(Preds0, PredIds0),
list.foldl2(maybe_polymorphism_process_pred, PredIds0, !ModuleInfo, !IO),
module_info_preds(!.ModuleInfo, Preds1),
map.keys(Preds1, PredIds1),
list.foldl(fixup_pred_polymorphism, PredIds1, !ModuleInfo),
expand_class_method_bodies(!ModuleInfo).
:- pred maybe_polymorphism_process_pred(pred_id::in,
module_info::in, module_info::out, io::di, io::uo) is det.
maybe_polymorphism_process_pred(PredId, !ModuleInfo, !IO) :-
module_info_pred_info(!.ModuleInfo, PredId, PredInfo),
(
PredModule = pred_info_module(PredInfo),
PredName = pred_info_name(PredInfo),
PredArity = pred_info_orig_arity(PredInfo),
no_type_info_builtin(PredModule, PredName, PredArity)
->
% Just copy the clauses to the proc_infos.
copy_module_clauses_to_procs([PredId], !ModuleInfo)
;
polymorphism_process_pred_msg(PredId, !ModuleInfo, !IO)
).
%---------------------------------------------------------------------------%
:- pred fixup_pred_polymorphism(pred_id::in,
module_info::in, module_info::out) is det.
fixup_pred_polymorphism(PredId, !ModuleInfo) :-
% Recompute the arg types by finding the headvars and the var->type mapping
% (from the clauses_info) and applying the type mapping to the extra
% headvars to get the new arg types. Note that we are careful to only apply
% the mapping to the extra head vars, not to the originals, because
% otherwise we would stuff up the arg types for unification predicates for
% equivalence types.
%
module_info_preds(!.ModuleInfo, PredTable0),
map.lookup(PredTable0, PredId, PredInfo0),
pred_info_get_clauses_info(PredInfo0, ClausesInfo0),
clauses_info_get_vartypes(ClausesInfo0, VarTypes0),
clauses_info_get_headvars(ClausesInfo0, HeadVars),
pred_info_get_arg_types(PredInfo0, TypeVarSet, ExistQVars, ArgTypes0),
proc_arg_vector_partition_poly_args(HeadVars, ExtraHeadVarList,
OldHeadVarList),
map.apply_to_list(ExtraHeadVarList, VarTypes0, ExtraArgTypes),
list.append(ExtraArgTypes, ArgTypes0, ArgTypes),
pred_info_set_arg_types(TypeVarSet, ExistQVars, ArgTypes,
PredInfo0, PredInfo1),
% If the clauses bind some existentially quantified type variables,
% introduce exists_casts goals for affected head variables, including
% the new type_info and typeclass_info arguments. Make sure the
% types of the internal versions of type_infos for those type
% variables in the variable types map are as specific as possible.
(
ExistQVars = [_ | _],
% This can fail for unification procedures
% of equivalence types.
map.apply_to_list(OldHeadVarList, VarTypes0, OldHeadVarTypes),
type_list_subsumes(ArgTypes0, OldHeadVarTypes, Subn),
\+ map.is_empty(Subn)
->
pred_info_set_existq_tvar_binding(Subn, PredInfo1, PredInfo2),
polymorphism_introduce_exists_casts_pred(!.ModuleInfo, PredInfo2,
PredInfo)
;
PredInfo = PredInfo1
),
map.det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(PredTable, !ModuleInfo).
:- pred polymorphism_introduce_exists_casts_pred(module_info::in,
pred_info::in, pred_info::out) is det.
polymorphism_introduce_exists_casts_pred(ModuleInfo, !PredInfo) :-
pred_info_get_procedures(!.PredInfo, Procs0),
map.map_values(
(pred(_::in, !.ProcInfo::in, !:ProcInfo::out) is det :-
% Add the extra goals to each procedure.
introduce_exists_casts_proc(ModuleInfo, !.PredInfo, !ProcInfo)
), Procs0, Procs),
pred_info_set_procedures(Procs, !PredInfo).
%---------------------------------------------------------------------------%
:- pred polymorphism_process_pred_msg(pred_id::in,
module_info::in, module_info::out, io::di, io::uo) is det.
polymorphism_process_pred_msg(PredId, !ModuleInfo, !IO) :-
write_pred_progress_message("% Transforming polymorphism for ",
PredId, !.ModuleInfo, !IO),
polymorphism_process_pred(PredId, !ModuleInfo).
polymorphism_process_generated_pred(PredId, !ModuleInfo) :-
polymorphism_process_pred(PredId, !ModuleInfo),
fixup_pred_polymorphism(PredId, !ModuleInfo).
:- pred polymorphism_process_pred(pred_id::in,
module_info::in, module_info::out) is det.
polymorphism_process_pred(PredId, !ModuleInfo) :-
module_info_pred_info(!.ModuleInfo, PredId, PredInfo0),
% Run the polymorphism pass over the clauses_info, updating the headvars,
% goals, varsets, types, etc., and computing some information in the
% poly_info.
pred_info_get_clauses_info(PredInfo0, ClausesInfo0),
polymorphism_process_clause_info(PredInfo0, !.ModuleInfo,
ClausesInfo0, ClausesInfo, Info, ExtraArgModes),
poly_info_get_module_info(Info, !:ModuleInfo),
poly_info_get_typevarset(Info, TypeVarSet),
pred_info_set_typevarset(TypeVarSet, PredInfo0, PredInfo1),
pred_info_set_clauses_info(ClausesInfo, PredInfo1, PredInfo2),
% Do a pass over the proc_infos, copying the relevant information
% from the clauses_info and the poly_info, and updating all the argmodes
% with modes for the extra arguments.
ProcIds = pred_info_procids(PredInfo2),
pred_info_get_procedures(PredInfo2, Procs0),
list.foldl(polymorphism_process_proc_in_table(PredInfo2, ClausesInfo,
ExtraArgModes), ProcIds, Procs0, Procs),
pred_info_set_procedures(Procs, PredInfo2, PredInfo),
module_info_set_pred_info(PredId, PredInfo, !ModuleInfo).
:- pred polymorphism_process_clause_info(pred_info::in, module_info::in,
clauses_info::in, clauses_info::out, poly_info::out,
poly_arg_vector(mer_mode)::out) is det.
polymorphism_process_clause_info(PredInfo0, ModuleInfo0, !ClausesInfo, !:Info,
ExtraArgModes) :-
init_poly_info(ModuleInfo0, PredInfo0, !.ClausesInfo, !:Info),
clauses_info_get_headvars(!.ClausesInfo, HeadVars0),
setup_headvars(PredInfo0, HeadVars0, HeadVars,
ExtraArgModes, UnconstrainedTVars,
ExtraTypeInfoHeadVars, ExistTypeClassInfoHeadVars, !Info),
clauses_info_clauses_only(!.ClausesInfo, Clauses0),
list.map_foldl(
polymorphism_process_clause(PredInfo0, HeadVars0, HeadVars,
UnconstrainedTVars, ExtraTypeInfoHeadVars,
ExistTypeClassInfoHeadVars),
Clauses0, Clauses, !Info),
% Set the new values of the fields in clauses_info.
poly_info_get_varset(!.Info, VarSet),
poly_info_get_var_types(!.Info, VarTypes),
poly_info_get_rtti_varmaps(!.Info, RttiVarMaps),
clauses_info_get_explicit_vartypes(!.ClausesInfo, ExplicitVarTypes),
set_clause_list(Clauses, ClausesRep),
map.init(TVarNameMap), % This is only used while adding the clauses.
!:ClausesInfo = clauses_info(VarSet, ExplicitVarTypes, TVarNameMap,
VarTypes, HeadVars, ClausesRep, RttiVarMaps,
!.ClausesInfo ^ have_foreign_clauses).
:- pred polymorphism_process_clause(pred_info::in,
proc_arg_vector(prog_var)::in, proc_arg_vector(prog_var)::in,
list(tvar)::in, list(prog_var)::in, list(prog_var)::in,
clause::in, clause::out, poly_info::in, poly_info::out) is det.
polymorphism_process_clause(PredInfo0, OldHeadVars, NewHeadVars,
UnconstrainedTVars, ExtraTypeInfoHeadVars,
ExistTypeClassInfoHeadVars, !Clause, !Info) :-
( pred_info_is_imported(PredInfo0) ->
true
;
Goal0 = !.Clause ^ clause_body,
% Process any polymorphic calls inside the goal.
polymorphism_process_goal(Goal0, Goal1, !Info),
% Generate code to construct the typeclass_infos and type_infos
% for existentially quantified type vars.
produce_existq_tvars(PredInfo0, OldHeadVars,
UnconstrainedTVars, ExtraTypeInfoHeadVars,
ExistTypeClassInfoHeadVars, Goal1, Goal2, !Info),
pred_info_get_exist_quant_tvars(PredInfo0, ExistQVars),
fixup_quantification(NewHeadVars, ExistQVars, Goal2, Goal, !Info),
!:Clause = !.Clause ^ clause_body := Goal
).
:- pred polymorphism_process_proc_in_table(pred_info::in, clauses_info::in,
poly_arg_vector(mer_mode)::in, proc_id::in,
proc_table::in, proc_table::out) is det.
polymorphism_process_proc_in_table(PredInfo, ClausesInfo, ExtraArgModes,
ProcId, !ProcTable) :-
map.lookup(!.ProcTable, ProcId, ProcInfo0),
polymorphism_process_proc(PredInfo, ClausesInfo, ExtraArgModes, ProcId,
ProcInfo0, ProcInfo),
map.det_update(!.ProcTable, ProcId, ProcInfo, !:ProcTable).
:- pred polymorphism_process_proc(pred_info::in, clauses_info::in,
poly_arg_vector(mer_mode)::in, proc_id::in, proc_info::in, proc_info::out)
is det.
polymorphism_process_proc(PredInfo, ClausesInfo, ExtraArgModes, ProcId,
!ProcInfo) :-
% Copy all the information from the clauses_info into the proc_info.
(
(
pred_info_is_imported(PredInfo)
;
pred_info_is_pseudo_imported(PredInfo),
hlds_pred.in_in_unification_proc_id(ProcId)
)
->
% We need to set these fields in the proc_info here, because some parts
% of the compiler (e.g. unused_args.m) depend on these fields being
% valid even for imported procedures.
% XXX ARGVEC - when the proc_info uses the proc_arg_vector just
% pass the headvar vector directly to the proc_info.
clauses_info_get_headvars(ClausesInfo, HeadVars),
HeadVarList = proc_arg_vector_to_list(HeadVars),
clauses_info_get_rtti_varmaps(ClausesInfo, RttiVarMaps),
clauses_info_get_varset(ClausesInfo, VarSet),
clauses_info_get_vartypes(ClausesInfo, VarTypes),
proc_info_set_headvars(HeadVarList, !ProcInfo),
proc_info_set_rtti_varmaps(RttiVarMaps, !ProcInfo),
proc_info_set_varset(VarSet, !ProcInfo),
proc_info_set_vartypes(VarTypes, !ProcInfo)
;
copy_clauses_to_proc(ProcId, ClausesInfo, !ProcInfo)
),
% Add the ExtraArgModes to the proc_info argmodes.
% XXX ARGVEC - revisit this when the proc_info uses proc_arg_vectors.
proc_info_get_argmodes(!.ProcInfo, ArgModes1),
ExtraArgModesList = poly_arg_vector_to_list(ExtraArgModes),
list.append(ExtraArgModesList, ArgModes1, ArgModes),
proc_info_set_argmodes(ArgModes, !ProcInfo).
% XXX document me
%
% XXX the following code ought to be rewritten to handle
% existential/universal type_infos and type_class_infos
% in a more consistent manner.
%
:- pred setup_headvars(pred_info::in, proc_arg_vector(prog_var)::in,
proc_arg_vector(prog_var)::out, poly_arg_vector(mer_mode)::out,
list(tvar)::out, list(prog_var)::out, list(prog_var)::out,
poly_info::in, poly_info::out) is det.
setup_headvars(PredInfo, !HeadVars, ExtraArgModes,
UnconstrainedTVars, ExtraHeadTypeInfoVars,
ExistHeadTypeClassInfoVars, !Info) :-
pred_info_get_origin(PredInfo, Origin),
ExtraArgModes0 = poly_arg_vector_init : poly_arg_vector(mer_mode),
( Origin = origin_instance_method(InstanceMethodConstraints) ->
setup_headvars_instance_method(PredInfo,
InstanceMethodConstraints, !HeadVars,
UnconstrainedTVars, ExtraHeadTypeInfoVars,
ExistHeadTypeClassInfoVars,
ExtraArgModes0, ExtraArgModes, !Info)
;
pred_info_get_class_context(PredInfo, ClassContext),
InstanceTVars = [],
InstanceUnconstrainedTVars = [],
InstanceUnconstrainedTypeInfoVars = [],
setup_headvars_2(PredInfo, ClassContext, InstanceTVars,
InstanceUnconstrainedTVars, InstanceUnconstrainedTypeInfoVars,
!HeadVars, UnconstrainedTVars,
ExtraHeadTypeInfoVars, ExistHeadTypeClassInfoVars,
ExtraArgModes0, ExtraArgModes, !Info)
).
% For class method implementations, do_call_class_method takes the
% type_infos and typeclass_infos from the typeclass_info and pastes them
% onto the front of the argument list. We need to match that order here.
%
:- pred setup_headvars_instance_method(pred_info::in,
instance_method_constraints::in,
proc_arg_vector(prog_var)::in, proc_arg_vector(prog_var)::out,
list(tvar)::out, list(prog_var)::out, list(prog_var)::out,
poly_arg_vector(mer_mode)::in, poly_arg_vector(mer_mode)::out,
poly_info::in, poly_info::out) is det.
setup_headvars_instance_method(PredInfo,
InstanceMethodConstraints, !HeadVars,
UnconstrainedTVars, ExtraHeadTypeInfoVars,
ExistHeadTypeClassInfoVars, !ExtraArgModes, !Info) :-
InstanceMethodConstraints = instance_method_constraints(_,
InstanceTypes, InstanceConstraints, ClassContext),
type_vars_list(InstanceTypes, InstanceTVars),
get_unconstrained_tvars(InstanceTVars, InstanceConstraints,
UnconstrainedInstanceTVars),
pred_info_get_arg_types(PredInfo, ArgTypeVarSet, _, _),
make_head_vars(UnconstrainedInstanceTVars,
ArgTypeVarSet, UnconstrainedInstanceTypeInfoVars, !Info),
make_typeclass_info_head_vars(do_record_type_info_locns,
InstanceConstraints, InstanceHeadTypeClassInfoVars, !Info),
proc_arg_vector_set_instance_type_infos(UnconstrainedInstanceTypeInfoVars,
!HeadVars),
proc_arg_vector_set_instance_typeclass_infos(InstanceHeadTypeClassInfoVars,
!HeadVars),
poly_info_get_rtti_varmaps(!.Info, RttiVarMaps0),
list.foldl(rtti_reuse_typeclass_info_var,
InstanceHeadTypeClassInfoVars, RttiVarMaps0, RttiVarMaps),
poly_info_set_rtti_varmaps(RttiVarMaps, !Info),
in_mode(InMode),
list.duplicate(list.length(UnconstrainedInstanceTypeInfoVars),
InMode, UnconstrainedInstanceTypeInfoModes),
list.duplicate(list.length(InstanceHeadTypeClassInfoVars),
InMode, InstanceHeadTypeClassInfoModes),
poly_arg_vector_set_instance_type_infos(
UnconstrainedInstanceTypeInfoModes, !ExtraArgModes),
poly_arg_vector_set_instance_typeclass_infos(
InstanceHeadTypeClassInfoModes, !ExtraArgModes),
setup_headvars_2(PredInfo, ClassContext,
InstanceTVars,
UnconstrainedInstanceTVars, UnconstrainedInstanceTypeInfoVars,
!HeadVars,
UnconstrainedTVars, ExtraHeadTypeInfoVars,
ExistHeadTypeClassInfoVars, !ExtraArgModes, !Info).
:- pred setup_headvars_2(pred_info::in, prog_constraints::in,
list(tvar)::in, list(tvar)::in, list(prog_var)::in,
proc_arg_vector(prog_var)::in, proc_arg_vector(prog_var)::out,
list(tvar)::out, list(prog_var)::out, list(prog_var)::out,
poly_arg_vector(mer_mode)::in, poly_arg_vector(mer_mode)::out,
poly_info::in, poly_info::out) is det.
setup_headvars_2(PredInfo, ClassContext,
InstanceTVars, UnconstrainedInstanceTVars,
UnconstrainedInstanceTypeInfoVars, HeadVars0,
HeadVars, AllUnconstrainedTVars,
AllExtraHeadTypeInfoVars, ExistHeadTypeClassInfoVars,
!ExtraArgModes, !Info) :-
% Grab the appropriate fields from the pred_info.
pred_info_get_arg_types(PredInfo, ArgTypeVarSet, ExistQVars, ArgTypes),
% Insert extra head variables to hold the address of the type_infos
% and typeclass_infos. We insert one variable for each unconstrained
% type variable (for the type_info) and one variable for each
% constraint (for the typeclass_info).
%
% The order of these variables is important, and must match the order
% specified at the top of this file.
% Make a fresh variable for each class constraint, returning a list of
% variables that appear in the constraints, along with the location of
% the type infos for them. For the existential constraints, we want
% the rtti_varmaps to contain the internal view of the types (that is,
% with type variables bound) so we may need to look up the actual
% constraints in the constraint map. For the universal constraints there
% is no distinction between the internal views and the external view, so
% we just use the constraints from the class context.
ClassContext = constraints(UnivConstraints, ExistConstraints),
prog_type.constraint_list_get_tvars(UnivConstraints,
UnivConstrainedTVars),
prog_type.constraint_list_get_tvars(ExistConstraints,
ExistConstrainedTVars),
poly_info_get_constraint_map(!.Info, ConstraintMap),
get_improved_exists_head_constraints(ConstraintMap, ExistConstraints,
ActualExistConstraints),
(
pred_info_get_markers(PredInfo, PredMarkers),
check_marker(PredMarkers, marker_class_method)
->
% For class methods we record the type_info_locns even for the
% existential constraints. It's easier to do it here than when we
% are expanding class method bodies, and we know there won't be any
% references to the type_info after the instance method call so
% recording them now won't be a problem.
RecordExistQLocns = do_record_type_info_locns
;
RecordExistQLocns = do_not_record_type_info_locns
),
make_typeclass_info_head_vars(RecordExistQLocns, ActualExistConstraints,
ExistHeadTypeClassInfoVars, !Info),
make_typeclass_info_head_vars(do_record_type_info_locns, UnivConstraints,
UnivHeadTypeClassInfoVars, !Info),
type_vars_list(ArgTypes, HeadTypeVars),
list.delete_elems(HeadTypeVars, UnivConstrainedTVars,
UnconstrainedTVars0),
list.delete_elems(UnconstrainedTVars0, ExistConstrainedTVars,
UnconstrainedTVars1),
% Typeinfos for the instance tvars have already been introduced by
% setup_headvars_instance_method.
list.delete_elems(UnconstrainedTVars1, InstanceTVars,
UnconstrainedTVars2),
list.remove_dups(UnconstrainedTVars2, UnconstrainedTVars),
(
ExistQVars = [],
% Optimize common case.
UnconstrainedUnivTVars = UnconstrainedTVars,
UnconstrainedExistTVars = [],
ExistHeadTypeInfoVars = []
;
ExistQVars = [_ | _],
list.delete_elems(UnconstrainedTVars, ExistQVars,
UnconstrainedUnivTVars),
list.delete_elems(UnconstrainedTVars, UnconstrainedUnivTVars,
UnconstrainedExistTVars),
make_head_vars(UnconstrainedExistTVars, ArgTypeVarSet,
ExistHeadTypeInfoVars, !Info)
),
make_head_vars(UnconstrainedUnivTVars, ArgTypeVarSet,
UnivHeadTypeInfoVars, !Info),
ExtraHeadTypeInfoVars = UnivHeadTypeInfoVars ++ ExistHeadTypeInfoVars,
AllExtraHeadTypeInfoVars = UnconstrainedInstanceTypeInfoVars
++ ExtraHeadTypeInfoVars,
list.condense([UnconstrainedInstanceTVars, UnconstrainedUnivTVars,
UnconstrainedExistTVars], AllUnconstrainedTVars),
proc_arg_vector_set_univ_type_infos(UnivHeadTypeInfoVars,
HeadVars0, HeadVars1),
proc_arg_vector_set_exist_type_infos(ExistHeadTypeInfoVars,
HeadVars1, HeadVars2),
proc_arg_vector_set_univ_typeclass_infos(UnivHeadTypeClassInfoVars,
HeadVars2, HeadVars3),
proc_arg_vector_set_exist_typeclass_infos(ExistHeadTypeClassInfoVars,
HeadVars3, HeadVars),
% Figure out the modes of the introduced type_info and typeclass_info
% arguments.
in_mode(In),
out_mode(Out),
list.length(UnconstrainedUnivTVars, NumUnconstrainedUnivTVars),
list.length(UnconstrainedExistTVars, NumUnconstrainedExistTVars),
list.length(UnivHeadTypeClassInfoVars, NumUnivClassInfoVars),
list.length(ExistHeadTypeClassInfoVars, NumExistClassInfoVars),
list.duplicate(NumUnconstrainedUnivTVars, In, UnivTypeInfoModes),
list.duplicate(NumUnconstrainedExistTVars, Out, ExistTypeInfoModes),
list.duplicate(NumUnivClassInfoVars, In, UnivTypeClassInfoModes),
list.duplicate(NumExistClassInfoVars, Out, ExistTypeClassInfoModes),
poly_arg_vector_set_univ_type_infos(UnivTypeInfoModes, !ExtraArgModes),
poly_arg_vector_set_exist_type_infos(ExistTypeInfoModes, !ExtraArgModes),
poly_arg_vector_set_univ_typeclass_infos(UnivTypeClassInfoModes,
!ExtraArgModes),
poly_arg_vector_set_exist_typeclass_infos(ExistTypeClassInfoModes,
!ExtraArgModes),
% Add the locations of the typeinfos for unconstrained, universally
% quantified type variables to the initial rtti_varmaps. Also add the
% locations of typeclass_infos.
%
some [!RttiVarMaps] (
poly_info_get_rtti_varmaps(!.Info, !:RttiVarMaps),
ToLocn = (pred(TheVar::in, TheLocn::out) is det :-
TheLocn = type_info(TheVar)),
list.map(ToLocn, UnivHeadTypeInfoVars, UnivTypeLocns),
list.foldl_corresponding(rtti_det_insert_type_info_locn,
UnconstrainedUnivTVars, UnivTypeLocns, !RttiVarMaps),
list.map(ToLocn, ExistHeadTypeInfoVars, ExistTypeLocns),
list.foldl_corresponding(rtti_det_insert_type_info_locn,
UnconstrainedExistTVars, ExistTypeLocns, !RttiVarMaps),
list.map(ToLocn, UnconstrainedInstanceTypeInfoVars,
UnconstrainedInstanceTypeLocns),
list.foldl_corresponding(rtti_det_insert_type_info_locn,
UnconstrainedInstanceTVars,
UnconstrainedInstanceTypeLocns, !RttiVarMaps),
list.foldl(rtti_reuse_typeclass_info_var,
UnivHeadTypeClassInfoVars, !RttiVarMaps),
poly_info_set_rtti_varmaps(!.RttiVarMaps, !Info)
).
% Generate code to produce the values of type_infos and typeclass_infos
% for existentially quantified type variables in the head.
%
% XXX The following code ought to be rewritten to handle
% existential/universal type_infos and type_class_infos
% in a more consistent manner.
%
:- pred produce_existq_tvars(pred_info::in, proc_arg_vector(prog_var)::in,
list(tvar)::in, list(prog_var)::in, list(prog_var)::in,
hlds_goal::in, hlds_goal::out, poly_info::in, poly_info::out) is det.
produce_existq_tvars(PredInfo, HeadVars, UnconstrainedTVars,
TypeInfoHeadVars, ExistTypeClassInfoHeadVars, Goal0, Goal, !Info) :-
poly_info_get_var_types(!.Info, VarTypes0),
poly_info_get_constraint_map(!.Info, ConstraintMap),
pred_info_get_arg_types(PredInfo, ArgTypes),
pred_info_get_tvar_kinds(PredInfo, KindMap),
pred_info_get_class_context(PredInfo, PredClassContext),
% Generate code to produce values for any existentially quantified
% typeclass_info variables in the head.
PredExistConstraints = PredClassContext ^ exist_constraints,
get_improved_exists_head_constraints(ConstraintMap, PredExistConstraints,
ActualExistConstraints),
ExistQVarsForCall = [],
Goal0 = hlds_goal(_, GoalInfo),
goal_info_get_context(GoalInfo, Context),
make_typeclass_info_vars(ActualExistConstraints,
ExistQVarsForCall, Context, ExistTypeClassVars,
ExtraTypeClassGoals, !Info),
poly_info_get_rtti_varmaps(!.Info, RttiVarMaps0),
list.foldl(rtti_reuse_typeclass_info_var, ExistTypeClassVars,
RttiVarMaps0, RttiVarMaps),
poly_info_set_rtti_varmaps(RttiVarMaps, !Info),
assign_var_list(ExistTypeClassInfoHeadVars,
ExistTypeClassVars, ExtraTypeClassUnifyGoals),
% Figure out the bindings for any unconstrained existentially quantified
% type variables in the head.
( map.is_empty(VarTypes0) ->
% This can happen for compiler generated procedures.
map.init(PredToActualTypeSubst)
;
HeadVarList = proc_arg_vector_to_list(HeadVars),
map.apply_to_list(HeadVarList, VarTypes0, ActualArgTypes),
type_list_subsumes(ArgTypes, ActualArgTypes, ArgTypeSubst)
->
PredToActualTypeSubst = ArgTypeSubst
;
% This can happen for unification procedures of equivalence types
% error("polymorphism.m: type_list_subsumes failed")
map.init(PredToActualTypeSubst)
),
% Apply the type bindings to the unconstrained type variables to give
% the actual types, and then generate code to initialize the type_infos
% for those types.
apply_subst_to_tvar_list(KindMap, PredToActualTypeSubst,
UnconstrainedTVars, ActualTypes),
polymorphism_make_type_info_vars(ActualTypes, Context,
TypeInfoVars, ExtraTypeInfoGoals, !Info),
assign_var_list(TypeInfoHeadVars, TypeInfoVars,
ExtraTypeInfoUnifyGoals),
list.condense([[Goal0], ExtraTypeClassGoals, ExtraTypeClassUnifyGoals,
ExtraTypeInfoGoals, ExtraTypeInfoUnifyGoals], GoalList),
conj_list_to_goal(GoalList, GoalInfo, Goal).
:- pred assign_var_list(list(prog_var)::in, list(prog_var)::in,
list(hlds_goal)::out) is det.
assign_var_list([], [_ | _], _) :-
unexpected(this_file, "assign_var_list: length mismatch").
assign_var_list([_ | _], [], _) :-
unexpected(this_file, "assign_var_list: length mismatch").
assign_var_list([], [], []).
assign_var_list([Var1 | Vars1], [Var2 | Vars2], [Goal | Goals]) :-
assign_var(Var1, Var2, Goal),
assign_var_list(Vars1, Vars2, Goals).
:- pred assign_var(prog_var::in, prog_var::in, hlds_goal::out) is det.
assign_var(Var1, Var2, Goal) :-
( Var1 = Var2 ->
Goal = true_goal
;
term.context_init(Context),
create_pure_atomic_complicated_unification(Var1, rhs_var(Var2),
Context, umc_explicit, [], Goal)
).
:- pred get_improved_exists_head_constraints(constraint_map::in,
list(prog_constraint)::in, list(prog_constraint)::out) is det.
get_improved_exists_head_constraints(ConstraintMap, ExistConstraints,
ActualExistConstraints) :-
list.length(ExistConstraints, NumExistConstraints),
(
search_hlds_constraint_list(ConstraintMap, unproven, [],
NumExistConstraints, ActualExistConstraints0)
->
ActualExistConstraints = ActualExistConstraints0
;
% Some predicates, for example typeclass methods and predicates for
% which we inferred the type, don't have constraint map entries for
% the head constraints. In these cases we can just use the external
% constraints, since there can't be any difference between them and
% the internal ones.
ActualExistConstraints = ExistConstraints
).
%-----------------------------------------------------------------------------%
:- pred polymorphism_process_goal(hlds_goal::in, hlds_goal::out,
poly_info::in, poly_info::out) is det.
polymorphism_process_goal(Goal0, Goal, !Info) :-
Goal0 = hlds_goal(GoalExpr0, GoalInfo0),
polymorphism_process_goal_expr(GoalExpr0, GoalInfo0, Goal, !Info).
:- pred polymorphism_process_goal_expr(hlds_goal_expr::in, hlds_goal_info::in,
hlds_goal::out, poly_info::in, poly_info::out) is det.
polymorphism_process_goal_expr(GoalExpr0, GoalInfo0, Goal, !Info) :-
(
% We don't need to add type_infos for higher order calls, since the
% type_infos are added when the closures are constructed, not when
% they are called.
GoalExpr0 = generic_call(_, _, _, _),
Goal = hlds_goal(GoalExpr0, GoalInfo0)
;
GoalExpr0 = plain_call(PredId, _, ArgVars0, _, _, _),
polymorphism_process_call(PredId, ArgVars0, GoalInfo0, GoalInfo,
ExtraVars, ExtraGoals, !Info),
ArgVars = ExtraVars ++ ArgVars0,
CallExpr = GoalExpr0 ^ call_args := ArgVars,
Call = hlds_goal(CallExpr, GoalInfo),
list.append(ExtraGoals, [Call], GoalList),
conj_list_to_goal(GoalList, GoalInfo0, Goal)
;
GoalExpr0 = call_foreign_proc(_, PredId, _, _, _, _, _),
poly_info_get_module_info(!.Info, ModuleInfo),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
PredModule = pred_info_module(PredInfo),
PredName = pred_info_name(PredInfo),
PredArity = pred_info_orig_arity(PredInfo),
( no_type_info_builtin(PredModule, PredName, PredArity) ->
Goal = hlds_goal(GoalExpr0, GoalInfo0)
;
polymorphism_process_foreign_proc(ModuleInfo, PredInfo, GoalExpr0,
GoalInfo0, Goal, !Info)
)
;
GoalExpr0 = unify(XVar, Y, Mode, Unification, UnifyContext),
polymorphism_process_unify(XVar, Y, Mode, Unification, UnifyContext,
GoalInfo0, Goal, !Info)
;
% The rest of the cases just process goals recursively.
(
GoalExpr0 = conj(ConjType, Goals0),
polymorphism_process_goal_list(Goals0, Goals, !Info),
GoalExpr = conj(ConjType, Goals)
;
GoalExpr0 = disj(Goals0),
polymorphism_process_goal_list(Goals0, Goals, !Info),
GoalExpr = disj(Goals)
;
GoalExpr0 = negation(SubGoal0),
polymorphism_process_goal(SubGoal0, SubGoal, !Info),
GoalExpr = negation(SubGoal)
;
GoalExpr0 = switch(Var, CanFail, Cases0),
polymorphism_process_case_list(Cases0, Cases, !Info),
GoalExpr = switch(Var, CanFail, Cases)
;
GoalExpr0 = scope(Reason, SubGoal0),
polymorphism_process_goal(SubGoal0, SubGoal, !Info),
GoalExpr = scope(Reason, SubGoal)
;
GoalExpr0 = if_then_else(Vars, Cond0, Then0, Else0),
polymorphism_process_goal(Cond0, Cond, !Info),
polymorphism_process_goal(Then0, Then, !Info),
polymorphism_process_goal(Else0, Else, !Info),
GoalExpr = if_then_else(Vars, Cond, Then, Else)
),
Goal = hlds_goal(GoalExpr, GoalInfo0)
;
GoalExpr0 = shorthand(_),
unexpected(this_file, "process_goal_expr: unexpected shorthand")
).
% type_info_vars prepends a comma separated list of variables
% onto a string of variables.
% It places an & at the start of the variable name if the variable
% is an output variable.
%
:- func type_info_vars(module_info, list(foreign_arg), string) = string.
type_info_vars(_ModuleInfo, [], InitString) = InitString.
type_info_vars(ModuleInfo, [Arg | Args], InitString) = String :-
String0 = type_info_vars(ModuleInfo, Args, InitString),
MaybeNameMode = foreign_arg_maybe_name_mode(Arg),
(
MaybeNameMode = yes(ArgName0 - Mode),
( mode_is_output(ModuleInfo, Mode) ->
string.append("&", ArgName0, ArgName)
;
ArgName = ArgName0
),
( String0 = "" ->
String = ArgName
;
String = string.append_list([ArgName, ", ", String0])
)
;
MaybeNameMode = no,
String = String0
).
:- pred polymorphism_process_unify(prog_var::in, unify_rhs::in,
unify_mode::in, unification::in, unify_context::in, hlds_goal_info::in,
hlds_goal::out, poly_info::in, poly_info::out) is det.
polymorphism_process_unify(XVar, Y, Mode, Unification0, UnifyContext,
GoalInfo0, Goal, !Info) :-
(
Y = rhs_var(_YVar),
% Var-var unifications (simple_test, assign, or complicated_unify)
% are basically left unchanged. Complicated unifications will
% eventually get converted into calls, but that is done later on,
% by simplify.m, not now. At this point we just need to figure out
% which type_info/typeclass_info variables the unification might need,
% and insert them in the nonlocals. We have to do that for all var-var
% unifications, because at this point we haven't done mode analysis so
% we don't know which ones will become complicated_unifies.
% Note that we also store the type_info/typeclass_info variables
% in a field in the unification, which quantification.m uses when
% requantifying things.
poly_info_get_var_types(!.Info, VarTypes),
map.lookup(VarTypes, XVar, Type),
unification_typeinfos(Type, Unification0, Unification,
GoalInfo0, GoalInfo, !Info),
Goal = hlds_goal(unify(XVar, Y, Mode, Unification, UnifyContext),
GoalInfo)
;
Y = rhs_functor(ConsId, _, Args),
polymorphism_process_unify_functor(XVar, ConsId, Args, Mode,
Unification0, UnifyContext, GoalInfo0, Goal, !Info)
;
Y = rhs_lambda_goal(Purity, PredOrFunc, EvalMethod, ArgVars0,
LambdaVars, Modes, Det, LambdaGoal0),
% For lambda expressions, we must recursively traverse the lambda goal.
polymorphism_process_goal(LambdaGoal0, LambdaGoal1, !Info),
% Currently we don't allow lambda goals to be
% existentially typed
ExistQVars = [],
fixup_lambda_quantification(ArgVars0, LambdaVars, ExistQVars,
LambdaGoal1, LambdaGoal, NonLocalTypeInfos, !Info),
set.to_sorted_list(NonLocalTypeInfos, NonLocalTypeInfosList),
list.append(NonLocalTypeInfosList, ArgVars0, ArgVars),
Y1 = rhs_lambda_goal(Purity, PredOrFunc, EvalMethod, ArgVars,
LambdaVars, Modes, Det, LambdaGoal),
goal_info_get_nonlocals(GoalInfo0, NonLocals0),
set.union(NonLocals0, NonLocalTypeInfos, NonLocals),
goal_info_set_nonlocals(NonLocals, GoalInfo0, GoalInfo),
% Complicated (in-in) argument unifications are impossible for lambda
% expressions, so we don't need to worry about adding the type_infos
% that would be required for such unifications.
Goal = hlds_goal(unify(XVar, Y1, Mode, Unification0, UnifyContext),
GoalInfo)
).
:- pred unification_typeinfos(mer_type::in,
unification::in, unification::out, hlds_goal_info::in, hlds_goal_info::out,
poly_info::in, poly_info::out) is det.
unification_typeinfos(Type, !Unification, !GoalInfo, !Info) :-
% Compute the type_info/type_class_info variables that would be used
% if this unification ends up being a complicated_unify.
type_vars(Type, TypeVars),
list.map_foldl(get_type_info_locn, TypeVars, TypeInfoLocns, !Info),
add_unification_typeinfos(TypeInfoLocns, !Unification, !GoalInfo).
unification_typeinfos_rtti_varmaps(Type, RttiVarMaps, !Unification,
!GoalInfo) :-
% This variant is for use by modecheck_unify.m. During mode checking,
% all the type_infos should appear in the type_info_varmap.
% Compute the type_info/type_class_info variables that would be used
% if this unification ends up being a complicated_unify.
type_vars(Type, TypeVars),
list.map(rtti_lookup_type_info_locn(RttiVarMaps), TypeVars,
TypeInfoLocns),
add_unification_typeinfos(TypeInfoLocns, !Unification, !GoalInfo).
:- pred add_unification_typeinfos(list(type_info_locn)::in,
unification::in, unification::out,
hlds_goal_info::in, hlds_goal_info::out) is det.
add_unification_typeinfos(TypeInfoLocns, !Unification, !GoalInfo) :-
list.map(type_info_locn_var, TypeInfoLocns, TypeInfoVars0),
list.remove_dups(TypeInfoVars0, TypeInfoVars),
% Insert the TypeInfoVars into the nonlocals field of the goal_info
% for the unification goal.
goal_info_get_nonlocals(!.GoalInfo, NonLocals0),
set.insert_list(NonLocals0, TypeInfoVars, NonLocals),
goal_info_set_nonlocals(NonLocals, !GoalInfo),
% Also save those type_info vars into a field in the complicated_unify,
% so that quantification.m can recompute variable scopes properly.
% This field is also used by modecheck_unify.m -- for complicated
% unifications, it checks that all these variables are ground.
( !.Unification = complicated_unify(Modes, CanFail, _) ->
!:Unification = complicated_unify(Modes, CanFail, TypeInfoVars)
;
% This can happen if an earlier stage of compilation has already
% determined that this unification is particular kind of unification.
% In that case, the type_info vars won't be needed.
true
).
:- pred polymorphism_process_unify_functor(prog_var::in, cons_id::in,
list(prog_var)::in, unify_mode::in, unification::in, unify_context::in,
hlds_goal_info::in, hlds_goal::out, poly_info::in, poly_info::out) is det.
polymorphism_process_unify_functor(X0, ConsId0, ArgVars0, Mode0, Unification0,
UnifyContext, GoalInfo0, Goal, !Info) :-
poly_info_get_module_info(!.Info, ModuleInfo0),
poly_info_get_var_types(!.Info, VarTypes0),
map.lookup(VarTypes0, X0, TypeOfX),
list.length(ArgVars0, Arity),
(
%
% We replace any unifications with higher order pred constants
% by lambda expressions. For example, we replace
%
% X = list.append(Y) % Y::in, X::out
%
% with
%
% X = (pred(A1::in, A2::out) is ... :- list.append(Y, A1, A2))
%
% We do this because it makes two things easier. First, mode analysis
% needs to check that the lambda goal doesn't bind any nonlocal variables
% (e.g. `Y' in above example). This would require a bit of moderately
% tricky special case code if we didn't expand them here. Second, this pass
% (polymorphism.m) is a lot easier if we don't have to handle higher order
% pred consts. If it turns out that the predicate was nonpolymorphic,
% lambda.m will turn the lambda expression back into a higher order pred
% constant again.
%
% Note that this transformation is also done by modecheck_unify.m, in case
% we are rerunning mode analysis after lambda.m has already been run;
% any changes to the code here will also need to be duplicated there.
%
% Check if variable has a higher order type.
type_is_higher_order_details(TypeOfX, Purity, _PredOrFunc, EvalMethod,
CalleeArgTypes),
ConsId0 = pred_const(ShroudedPredProcId, _)
->
% Convert the higher order pred term to a lambda goal.
poly_info_get_varset(!.Info, VarSet0),
goal_info_get_context(GoalInfo0, Context),
proc(PredId, ProcId) = unshroud_pred_proc_id(ShroudedPredProcId),
convert_pred_to_lambda_goal(Purity, EvalMethod, X0, PredId, ProcId,
ArgVars0, CalleeArgTypes, UnifyContext, GoalInfo0, Context,
ModuleInfo0, Functor0, VarSet0, VarSet, VarTypes0, VarTypes),
poly_info_set_varset_and_types(VarSet, VarTypes, !Info),
% Process the unification in its new form.
polymorphism_process_unify(X0, Functor0, Mode0, Unification0,
UnifyContext, GoalInfo0, Goal, !Info)
;
% Is this a construction or deconstruction of an existentially
% typed data type?
% Check whether the functor had a "new " prefix.
% If so, assume it is a construction, and strip off the prefix.
% Otherwise, assume it is a deconstruction.
ConsId0 = cons(Functor0, Arity),
( remove_new_prefix(Functor0, OrigFunctor) ->
ConsId = cons(OrigFunctor, Arity),
IsConstruction = yes
;
ConsId = ConsId0,
IsConstruction = no
),
% Check whether the functor (with the "new " prefix removed)
% is an existentially typed functor.
type_util.get_existq_cons_defn(ModuleInfo0, TypeOfX, ConsId, ConsDefn)
->
% Add extra arguments to the unification for the
% type_info and/or type_class_info variables.
map.apply_to_list(ArgVars0, VarTypes0, ActualArgTypes),
polymorphism_process_existq_unify_functor(ConsDefn,
IsConstruction, ActualArgTypes, TypeOfX, GoalInfo0,
ExtraVars, ExtraGoals, !Info),
list.append(ExtraVars, ArgVars0, ArgVars),
goal_info_get_nonlocals(GoalInfo0, NonLocals0),
set.insert_list(NonLocals0, ExtraVars, NonLocals),
goal_info_set_nonlocals(NonLocals, GoalInfo0, GoalInfo1),
% Some of the argument unifications may be complicated unifications,
% which may need type_infos.
unification_typeinfos(TypeOfX,
Unification0, Unification, GoalInfo1, GoalInfo, !Info),
UnifyExpr = unify(X0, rhs_functor(ConsId, IsConstruction, ArgVars),
Mode0, Unification, UnifyContext),
Unify = hlds_goal(UnifyExpr, GoalInfo),
list.append(ExtraGoals, [Unify], GoalList),
conj_list_to_goal(GoalList, GoalInfo0, Goal)
;
% We leave construction/deconstruction unifications alone.
% Some of the argument unifications may be complicated unifications,
% which may need type_infos.
unification_typeinfos(TypeOfX,
Unification0, Unification, GoalInfo0, GoalInfo, !Info),
GoalExpr = unify(X0, rhs_functor(ConsId0, no, ArgVars0), Mode0,
Unification, UnifyContext),
Goal = hlds_goal(GoalExpr, GoalInfo)
).
convert_pred_to_lambda_goal(Purity, EvalMethod, X0, PredId, ProcId,
ArgVars0, PredArgTypes, UnifyContext, GoalInfo0, Context,
ModuleInfo0, Functor, !VarSet, !VarTypes) :-
% Create the new lambda-quantified variables.
create_fresh_vars(PredArgTypes, LambdaVars, !VarSet, !VarTypes),
list.append(ArgVars0, LambdaVars, Args),
% Build up the hlds_goal_expr for the call that will form the lambda goal.
module_info_pred_proc_info(ModuleInfo0, PredId, ProcId,
PredInfo, ProcInfo),
PredModule = pred_info_module(PredInfo),
PredName = pred_info_name(PredInfo),
QualifiedPName = qualified(PredModule, PredName),
CallUnifyContext = call_unify_context(X0,
rhs_functor(cons(QualifiedPName, list.length(ArgVars0)), no, ArgVars0),
UnifyContext),
LambdaGoalExpr = plain_call(PredId, ProcId, Args, not_builtin,
yes(CallUnifyContext), QualifiedPName),
% Construct a goal_info for the lambda goal, making sure to set up
% the nonlocals field in the goal_info correctly. The goal_path is needed
% to compute constraint_ids correctly.
%
goal_info_get_nonlocals(GoalInfo0, NonLocals),
set.insert_list(NonLocals, LambdaVars, OutsideVars),
set.list_to_set(Args, InsideVars),
set.intersect(OutsideVars, InsideVars, LambdaNonLocals),
goal_info_get_goal_path(GoalInfo0, GoalPath),
goal_info_init(LambdaGoalInfo0),
goal_info_set_context(Context, LambdaGoalInfo0, LambdaGoalInfo1),
goal_info_set_nonlocals(LambdaNonLocals, LambdaGoalInfo1, LambdaGoalInfo2),
goal_info_set_purity(Purity, LambdaGoalInfo2, LambdaGoalInfo3),
goal_info_set_goal_path(GoalPath, LambdaGoalInfo3, LambdaGoalInfo),
LambdaGoal = hlds_goal(LambdaGoalExpr, LambdaGoalInfo),
% Work out the modes of the introduced lambda variables and the determinism
% of the lambda goal.
proc_info_get_argmodes(ProcInfo, ArgModes),
list.length(ArgModes, NumArgModes),
list.length(LambdaVars, NumLambdaVars),
( list.drop(NumArgModes - NumLambdaVars, ArgModes, LambdaModes0) ->
LambdaModes = LambdaModes0
;
unexpected(this_file, "convert_pred_to_lambda_goal: list.drop failed")
),
proc_info_get_declared_determinism(ProcInfo, MaybeDet),
(
MaybeDet = yes(Det),
LambdaDet = Det
;
MaybeDet = no,
sorry(this_file,
"determinism inference for higher order predicate terms.")
),
% Construct the lambda expression.
PredOrFunc = pred_info_is_pred_or_func(PredInfo),
Functor = rhs_lambda_goal(Purity, PredOrFunc, EvalMethod, ArgVars0,
LambdaVars, LambdaModes, LambdaDet, LambdaGoal).
:- pred create_fresh_vars(list(mer_type)::in, list(prog_var)::out,
prog_varset::in, prog_varset::out, vartypes::in, vartypes::out) is det.
create_fresh_vars([], [], !VarSet, !VarTypes).
create_fresh_vars([Type | Types], [Var | Vars], !VarSet, !VarTypes) :-
varset.new_var(!.VarSet, Var, !:VarSet),
map.det_insert(!.VarTypes, Var, Type, !:VarTypes),
create_fresh_vars(Types, Vars, !VarSet, !VarTypes).
%-----------------------------------------------------------------------------%
% Compute the extra arguments that we need to add to a unification with
% an existentially quantified data constructor.
%
:- pred polymorphism_process_existq_unify_functor(ctor_defn::in, bool::in,
list(mer_type)::in, mer_type::in, hlds_goal_info::in, list(prog_var)::out,
list(hlds_goal)::out, poly_info::in, poly_info::out) is det.
polymorphism_process_existq_unify_functor(CtorDefn, IsConstruction,
ActualArgTypes, ActualRetType, GoalInfo,
ExtraVars, ExtraGoals, !Info) :-
CtorDefn = ctor_defn(CtorTypeVarSet, CtorExistQVars, CtorKindMap,
CtorExistentialConstraints, CtorArgTypes, CtorRetType),
% Rename apart the type variables in the constructor definition.
poly_info_get_typevarset(!.Info, TypeVarSet0),
tvarset_merge_renaming(TypeVarSet0, CtorTypeVarSet, TypeVarSet,
CtorToParentRenaming),
apply_variable_renaming_to_tvar_list(CtorToParentRenaming,
CtorExistQVars, ParentExistQVars),
apply_variable_renaming_to_tvar_kind_map(CtorToParentRenaming,
CtorKindMap, ParentKindMap),
apply_variable_renaming_to_prog_constraint_list(CtorToParentRenaming,
CtorExistentialConstraints, ParentExistentialConstraints),
apply_variable_renaming_to_type_list(CtorToParentRenaming,
CtorArgTypes, ParentArgTypes),
apply_variable_renaming_to_type(CtorToParentRenaming, CtorRetType,
ParentRetType),
poly_info_set_typevarset(TypeVarSet, !Info),
% Compute the type bindings resulting from the functor's actual argument
% and return types. These are the ones that might bind the ExistQVars.
type_list_subsumes_det([ParentRetType | ParentArgTypes],
[ActualRetType | ActualArgTypes], ParentToActualTypeSubst),
% Create type_class_info variables for the type class constraints.
poly_info_get_constraint_map(!.Info, ConstraintMap),
goal_info_get_goal_path(GoalInfo, GoalPath),
list.length(ParentExistentialConstraints, NumExistentialConstraints),
goal_info_get_context(GoalInfo, Context),
(
IsConstruction = yes,
% Assume it's a construction.
lookup_hlds_constraint_list(ConstraintMap, unproven, GoalPath,
NumExistentialConstraints, ActualExistentialConstraints),
make_typeclass_info_vars(ActualExistentialConstraints, [], Context,
ExtraTypeClassVars, ExtraTypeClassGoals, !Info)
;
IsConstruction = no,
% Assume it's a deconstruction.
lookup_hlds_constraint_list(ConstraintMap, assumed, GoalPath,
NumExistentialConstraints, ActualExistentialConstraints),
make_existq_typeclass_info_vars(ActualExistentialConstraints,
ExtraTypeClassVars, ExtraTypeClassGoals, !Info)
),
% Compute the set of _unconstrained_ existentially quantified type
% variables, and then apply the type bindings to those type variables
% to figure out what types they are bound to.
constraint_list_get_tvars(ParentExistentialConstraints,
ParentExistConstrainedTVars),
list.delete_elems(ParentExistQVars, ParentExistConstrainedTVars,
ParentUnconstrainedExistQVars),
apply_rec_subst_to_tvar_list(ParentKindMap, ParentToActualTypeSubst,
ParentUnconstrainedExistQVars, ActualExistentialTypes),
% Create type_info variables for the _unconstrained_ existentially
% quantified type variables.
polymorphism_make_type_info_vars(ActualExistentialTypes, Context,
ExtraTypeInfoVars, ExtraTypeInfoGoals, !Info),
% The type_class_info variables go AFTER the type_info variables
% (for consistency with the order for argument passing,
% and because the RTTI support in the runtime system relies on it)
ExtraGoals = ExtraTypeInfoGoals ++ ExtraTypeClassGoals,
ExtraVars = ExtraTypeInfoVars ++ ExtraTypeClassVars.
%-----------------------------------------------------------------------------%
:- pred polymorphism_process_foreign_proc(module_info::in, pred_info::in,
hlds_goal_expr::in(bound(call_foreign_proc(ground,ground,ground,ground,
ground,ground,ground))), hlds_goal_info::in, hlds_goal::out,
poly_info::in, poly_info::out) is det.
polymorphism_process_foreign_proc(ModuleInfo, PredInfo, Goal0, GoalInfo0, Goal,
!Info) :-
% Insert the type_info vars into the argname map, so that the foreign_proc
% can refer to the type_info variable for type T as `TypeInfo_for_T'.
Goal0 = call_foreign_proc(Attributes, PredId, ProcId, Args0, ProcExtraArgs,
MaybeTraceRuntimeCond, Impl0),
ArgVars0 = list.map(foreign_arg_var, Args0),
polymorphism_process_call(PredId, ArgVars0, GoalInfo0, GoalInfo,
ExtraVars, ExtraGoals, !Info),
( Impl0 = fc_impl_import(_, _, _, _) ->
% The reference manual guarantees a one-to-one correspondence between
% the arguments of the predicate (as augmented by with type_info and/or
% typeclass_info arguments by polymorphism.m) and the arguments of the
% imported function.
CanOptAwayUnnamed = no
;
CanOptAwayUnnamed = yes
),
polymorphism_process_foreign_proc_args(PredInfo, CanOptAwayUnnamed, Impl0,
ExtraVars, ExtraArgs),
Args = ExtraArgs ++ Args0,
% Add the type info arguments to the list of variables
% to call for a pragma import.
( Impl0 = fc_impl_import(Name, HandleReturn, Variables0, MaybeContext) ->
Variables = type_info_vars(ModuleInfo, ExtraArgs, Variables0),
Impl = fc_impl_import(Name, HandleReturn, Variables, MaybeContext)
;
Impl = Impl0
),
% Plug it all back together.
CallExpr = call_foreign_proc(Attributes, PredId, ProcId,
Args, ProcExtraArgs, MaybeTraceRuntimeCond, Impl),
Call = hlds_goal(CallExpr, GoalInfo),
list.append(ExtraGoals, [Call], GoalList),
conj_list_to_goal(GoalList, GoalInfo0, Goal).
:- pred polymorphism_process_foreign_proc_args(pred_info::in, bool::in,
pragma_foreign_code_impl::in, list(prog_var)::in, list(foreign_arg)::out)
is det.
polymorphism_process_foreign_proc_args(PredInfo, CanOptAwayUnnamed, Impl, Vars,
Args) :-
pred_info_get_arg_types(PredInfo, PredTypeVarSet, ExistQVars,
PredArgTypes),
% Find out which variables are constrained (so that we don't add
% type_infos for them.
pred_info_get_class_context(PredInfo, constraints(UnivCs, ExistCs)),
UnivVars0 = list.map(get_constrained_vars, UnivCs),
list.condense(UnivVars0, UnivConstrainedVars),
ExistVars0 = list.map(get_constrained_vars, ExistCs),
list.condense(ExistVars0, ExistConstrainedVars),
type_vars_list(PredArgTypes, PredTypeVars0),
list.remove_dups(PredTypeVars0, PredTypeVars1),
list.delete_elems(PredTypeVars1, UnivConstrainedVars, PredTypeVars2),
list.delete_elems(PredTypeVars2, ExistConstrainedVars, PredTypeVars),
% The argument order is described at the top of this file.
in_mode(In),
out_mode(Out),
list.map(foreign_proc_add_typeclass_info(CanOptAwayUnnamed, Out, Impl,
PredTypeVarSet), ExistCs, ExistTypeClassArgInfos),
list.map(foreign_proc_add_typeclass_info(CanOptAwayUnnamed, In, Impl,
PredTypeVarSet), UnivCs, UnivTypeClassArgInfos),
TypeClassArgInfos = UnivTypeClassArgInfos ++ ExistTypeClassArgInfos,
list.filter((pred(X::in) is semidet :- list.member(X, ExistQVars)),
PredTypeVars, ExistUnconstrainedVars, UnivUnconstrainedVars),
list.map(foreign_proc_add_typeinfo(CanOptAwayUnnamed, Out, Impl,
PredTypeVarSet), ExistUnconstrainedVars, ExistTypeArgInfos),
list.map(foreign_proc_add_typeinfo(CanOptAwayUnnamed, In, Impl,
PredTypeVarSet), UnivUnconstrainedVars, UnivTypeArgInfos),
TypeInfoArgInfos = UnivTypeArgInfos ++ ExistTypeArgInfos,
ArgInfos = TypeInfoArgInfos ++ TypeClassArgInfos,
% Insert type_info/typeclass_info types for all the inserted
% type_info/typeclass_info vars into the argument type list.
TypeInfoTypes = list.map((func(_) = type_info_type), PredTypeVars),
list.map(build_typeclass_info_type, UnivCs, UnivTypes),
list.map(build_typeclass_info_type, ExistCs, ExistTypes),
OrigArgTypes = TypeInfoTypes ++ UnivTypes ++ ExistTypes,
make_foreign_args(Vars, ArgInfos, OrigArgTypes, Args).
:- pred foreign_proc_add_typeclass_info(bool::in, mer_mode::in,
pragma_foreign_code_impl::in, tvarset::in, prog_constraint::in,
pair(maybe(pair(string, mer_mode)), box_policy)::out) is det.
foreign_proc_add_typeclass_info(CanOptAwayUnnamed, Mode, Impl, TypeVarSet,
Constraint, MaybeArgName - native_if_possible) :-
Constraint = constraint(SymName, Types),
Name = sym_name_to_string_sep(SymName, "__"),
type_vars_list(Types, TypeVars),
TypeVarNames = list.map(underscore_and_tvar_name(TypeVarSet), TypeVars),
string.append_list(["TypeClassInfo_for_", Name | TypeVarNames],
ConstraintVarName),
% If the variable name corresponding to the typeclass_info isn't mentioned
% in the C code fragment, don't pass the variable to the C code at all.
(
CanOptAwayUnnamed = yes,
foreign_code_does_not_use_variable(Impl, ConstraintVarName)
->
MaybeArgName = no
;
MaybeArgName = yes(ConstraintVarName - Mode)
).
:- pred foreign_proc_add_typeinfo(bool::in, mer_mode::in,
pragma_foreign_code_impl::in, tvarset::in, tvar::in,
pair(maybe(pair(string, mer_mode)), box_policy)::out) is det.
foreign_proc_add_typeinfo(CanOptAwayUnnamed, Mode, Impl, TypeVarSet, TVar,
MaybeArgName - native_if_possible) :-
( varset.search_name(TypeVarSet, TVar, TypeVarName) ->
string.append("TypeInfo_for_", TypeVarName, C_VarName),
% If the variable name corresponding to the type_info isn't mentioned
% in the C code fragment, don't pass the variable to the C code at all.
(
CanOptAwayUnnamed = yes,
foreign_code_does_not_use_variable(Impl, C_VarName)
->
MaybeArgName = no
;
MaybeArgName = yes(C_VarName - Mode)
)
;
MaybeArgName = no
).
:- pred foreign_code_does_not_use_variable(pragma_foreign_code_impl::in,
string::in) is semidet.
foreign_code_does_not_use_variable(Impl, VarName) :-
% XXX This test used to be turned off with the semidet_fail, as it caused
% the compiler to abort when compiling declarative_execution.m in stage2,
% but this is no longer the case.
% semidet_fail,
\+ foreign_code_uses_variable(Impl, VarName).
:- func underscore_and_tvar_name(tvarset, tvar) = string.
underscore_and_tvar_name(TypeVarSet, TVar) = TVarName :-
varset.lookup_name(TypeVarSet, TVar, TVarName0),
string.append("_", TVarName0, TVarName).
:- pred polymorphism_process_goal_list(list(hlds_goal)::in,
list(hlds_goal)::out, poly_info::in, poly_info::out) is det.
polymorphism_process_goal_list([], [], !Info).
polymorphism_process_goal_list([Goal0 | Goals0], [Goal | Goals], !Info) :-
polymorphism_process_goal(Goal0, Goal, !Info),
polymorphism_process_goal_list(Goals0, Goals, !Info).
:- pred polymorphism_process_case_list(list(case)::in, list(case)::out,
poly_info::in, poly_info::out) is det.
polymorphism_process_case_list([], [], !Info).
polymorphism_process_case_list([Case0 | Cases0], [Case | Cases], !Info) :-
Case0 = case(ConsId, Goal0),
polymorphism_process_goal(Goal0, Goal, !Info),
Case = case(ConsId, Goal),
polymorphism_process_case_list(Cases0, Cases, !Info).
%-----------------------------------------------------------------------------%
% XXX document me
%
% XXX the following code ought to be rewritten to handle
% existential/universal type_infos and type_class_infos
% in a more consistent manner.
%
:- pred polymorphism_process_call(pred_id::in, list(prog_var)::in,
hlds_goal_info::in, hlds_goal_info::out,
list(prog_var)::out, list(hlds_goal)::out,
poly_info::in, poly_info::out) is det.
polymorphism_process_call(PredId, ArgVars0, GoalInfo0, GoalInfo,
ExtraVars, ExtraGoals, !Info) :-
poly_info_get_var_types(!.Info, VarTypes),
poly_info_get_typevarset(!.Info, TypeVarSet0),
poly_info_get_module_info(!.Info, ModuleInfo),
% The order of the added variables is important, and must match the
% order specified at the top of this file.
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_get_arg_types(PredInfo, PredTypeVarSet, PredExistQVars,
PredArgTypes),
pred_info_get_tvar_kinds(PredInfo, PredKindMap),
pred_info_get_class_context(PredInfo, PredClassContext),
% VarTypes, TypeVarSet* etc come from the caller.
% PredTypeVarSet, PredArgTypes, PredExistQVars, etc come
% directly from the callee.
% ParentArgTypes, ParentExistQVars etc come from a version
% of the callee that has been renamed apart from the caller.
%
% The difference between e.g. PredArgTypes and ParentArgTypes is the
% application of PredToParentTypeRenaming, which maps the type variables
% in the callee to new type variables in the caller. Adding the new type
% variables to TypeVarSet0 yields TypeVarSet.
( varset.is_empty(PredTypeVarSet) ->
% optimize a common case
map.init(PredToParentTypeRenaming),
TypeVarSet = TypeVarSet0,
ParentArgTypes = PredArgTypes,
ParentKindMap = PredKindMap,
ParentTVars = [],
ParentExistQVars = []
;
% This merge might be a performance bottleneck?
tvarset_merge_renaming(TypeVarSet0, PredTypeVarSet, TypeVarSet,
PredToParentTypeRenaming),
apply_variable_renaming_to_type_list(PredToParentTypeRenaming,
PredArgTypes, ParentArgTypes),
type_vars_list(ParentArgTypes, ParentTVars),
apply_variable_renaming_to_tvar_kind_map(PredToParentTypeRenaming,
PredKindMap, ParentKindMap),
apply_variable_renaming_to_tvar_list(PredToParentTypeRenaming,
PredExistQVars, ParentExistQVars)
),
PredModule = pred_info_module(PredInfo),
PredName = pred_info_name(PredInfo),
PredArity = pred_info_orig_arity(PredInfo),
(
(
% Optimize for the common case of nonpolymorphic call
% with no constraints.
ParentTVars = [],
PredClassContext = constraints([], [])
;
% Some builtins don't need or want the type_info.
no_type_info_builtin(PredModule, PredName, PredArity)
)
->
GoalInfo = GoalInfo0,
ExtraGoals = [],
ExtraVars = []
;
poly_info_set_typevarset(TypeVarSet, !Info),
% Compute which "parent" type variables are constrained
% by the type class constraints.
apply_variable_renaming_to_prog_constraints(PredToParentTypeRenaming,
PredClassContext, ParentClassContext),
ParentClassContext = constraints(ParentUnivConstraints,
ParentExistConstraints),
constraint_list_get_tvars(ParentUnivConstraints,
ParentUnivConstrainedTVars),
constraint_list_get_tvars(ParentExistConstraints,
ParentExistConstrainedTVars),
% Calculate the set of unconstrained type vars. Split these into
% existential and universal type vars.
list.remove_dups(ParentTVars, ParentUnconstrainedTVars0),
list.delete_elems(ParentUnconstrainedTVars0,
ParentUnivConstrainedTVars, ParentUnconstrainedTVars1),
list.delete_elems(ParentUnconstrainedTVars1,
ParentExistConstrainedTVars, ParentUnconstrainedTVars),
list.delete_elems(ParentUnconstrainedTVars, ParentExistQVars,
ParentUnconstrainedUnivTVars),
list.delete_elems(ParentUnconstrainedTVars,
ParentUnconstrainedUnivTVars, ParentUnconstrainedExistTVars),
% Calculate the "parent to actual" binding.
map.apply_to_list(ArgVars0, VarTypes, ActualArgTypes),
type_list_subsumes_det(ParentArgTypes, ActualArgTypes,
ParentToActualTypeSubst),
% Make the universally quantified typeclass_infos for the call.
poly_info_get_constraint_map(!.Info, ConstraintMap),
goal_info_get_goal_path(GoalInfo0, GoalPath),
list.length(ParentUnivConstraints, NumUnivConstraints),
lookup_hlds_constraint_list(ConstraintMap, unproven, GoalPath,
NumUnivConstraints, ActualUnivConstraints),
apply_rec_subst_to_tvar_list(ParentKindMap, ParentToActualTypeSubst,
ParentExistQVars, ActualExistQVarTypes),
(
prog_type.type_list_to_var_list(ActualExistQVarTypes,
ActualExistQVars0)
->
ActualExistQVars = ActualExistQVars0
;
unexpected(this_file, "existq_tvar bound")
),
goal_info_get_context(GoalInfo0, Context),
make_typeclass_info_vars(ActualUnivConstraints, ActualExistQVars,
Context, ExtraUnivClassVars, ExtraUnivClassGoals, !Info),
% Make variables to hold any existentially quantified typeclass_infos
% in the call, insert them into the typeclass_info map.
list.length(ParentExistConstraints, NumExistConstraints),
lookup_hlds_constraint_list(ConstraintMap, assumed, GoalPath,
NumExistConstraints, ActualExistConstraints),
make_existq_typeclass_info_vars(
ActualExistConstraints, ExtraExistClassVars,
ExtraExistClassGoals, !Info),
% Make variables to hold typeinfos for unconstrained universal type
% vars.
apply_rec_subst_to_tvar_list(ParentKindMap, ParentToActualTypeSubst,
ParentUnconstrainedUnivTVars, ActualUnconstrainedUnivTypes),
polymorphism_make_type_info_vars(ActualUnconstrainedUnivTypes,
Context, ExtraUnivTypeInfoVars, ExtraUnivTypeInfoGoals, !Info),
% Make variables to hold typeinfos for unconstrained existential type
% vars.
apply_rec_subst_to_tvar_list(ParentKindMap, ParentToActualTypeSubst,
ParentUnconstrainedExistTVars, ActualUnconstrainedExistTypes),
polymorphism_make_type_info_vars(ActualUnconstrainedExistTypes,
Context, ExtraExistTypeInfoVars, ExtraExistTypeInfoGoals, !Info),
% Add up the extra vars and goals.
ExtraGoals = ExtraUnivClassGoals ++ ExtraExistClassGoals
++ ExtraUnivTypeInfoGoals ++ ExtraExistTypeInfoGoals,
ExtraVars = ExtraUnivTypeInfoVars ++ ExtraExistTypeInfoVars
++ ExtraUnivClassVars ++ ExtraExistClassVars,
% Update the nonlocals.
goal_info_get_nonlocals(GoalInfo0, NonLocals0),
set.insert_list(NonLocals0, ExtraVars, NonLocals),
goal_info_set_nonlocals(NonLocals, GoalInfo0, GoalInfo)
).
%-----------------------------------------------------------------------------%
% document me
%
% XXX This predicate does not yet handle calls whose arguments include
% existentially quantified types or type class constraints.
%
polymorphism_process_new_call(CalleePredInfo, CalleeProcInfo, PredId, ProcId,
CallArgs0, BuiltinState, MaybeCallUnifyContext, SymName,
GoalInfo0, Goal, !Info) :-
poly_info_get_typevarset(!.Info, TVarSet0),
poly_info_get_var_types(!.Info, VarTypes0),
ActualArgTypes0 = map.apply_to_list(CallArgs0, VarTypes0),
pred_info_get_arg_types(CalleePredInfo, PredTVarSet, _PredExistQVars,
PredArgTypes),
proc_info_get_headvars(CalleeProcInfo, CalleeHeadVars),
proc_info_get_rtti_varmaps(CalleeProcInfo, CalleeRttiVarMaps),
% Work out how many type_info args we need to prepend.
NCallArgs0 = list.length(ActualArgTypes0),
NPredArgs = list.length(PredArgTypes),
NExtraArgs = NPredArgs - NCallArgs0,
(
list.drop(NExtraArgs, PredArgTypes, OrigPredArgTypes0),
list.take(NExtraArgs, CalleeHeadVars, CalleeExtraHeadVars0)
->
OrigPredArgTypes = OrigPredArgTypes0,
CalleeExtraHeadVars = CalleeExtraHeadVars0
;
unexpected(this_file,
"polymorphism_process_new_call: extra args not found")
),
% Work out the bindings of type variables in the call.
tvarset_merge_renaming(TVarSet0, PredTVarSet, TVarSet,
PredToParentRenaming),
apply_variable_renaming_to_type_list(PredToParentRenaming,
OrigPredArgTypes, OrigParentArgTypes),
type_list_subsumes_det(OrigParentArgTypes, ActualArgTypes0,
ParentToActualTSubst),
poly_info_set_typevarset(TVarSet, !Info),
% Look up the type variables that the type_infos in the caller are for,
% and apply the type bindings to calculate the types that the caller
% should pass type_infos for.
GetTypeInfoTypes = (pred(ProgVar::in, TypeInfoType::out) is det :-
rtti_varmaps_var_info(CalleeRttiVarMaps, ProgVar, VarInfo),
(
VarInfo = type_info_var(TypeInfoType)
;
VarInfo = typeclass_info_var(_),
unexpected(this_file,
"unsupported: constraints on initialisation preds")
;
VarInfo = non_rtti_var,
unexpected(this_file,
"missing rtti_var_info for initialisation pred")
)
),
list.map(GetTypeInfoTypes, CalleeExtraHeadVars, PredTypeInfoTypes),
apply_variable_renaming_to_type_list(PredToParentRenaming,
PredTypeInfoTypes, ParentTypeInfoTypes),
apply_rec_subst_to_type_list(ParentToActualTSubst, ParentTypeInfoTypes,
ActualTypeInfoTypes),
% Construct goals to make the required type_infos.
Ctxt = term.context_init,
polymorphism_make_type_info_vars(ActualTypeInfoTypes, Ctxt,
ExtraArgs, ExtraGoals, !Info),
CallArgs = ExtraArgs ++ CallArgs0,
goal_info_get_nonlocals(GoalInfo0, NonLocals0),
NonLocals1 = set.list_to_set(ExtraArgs),
NonLocals = set.union(NonLocals0, NonLocals1),
goal_info_set_nonlocals(NonLocals, GoalInfo0, GoalInfo),
CallGoalExpr = plain_call(PredId, ProcId, CallArgs, BuiltinState,
MaybeCallUnifyContext, SymName),
CallGoal = hlds_goal(CallGoalExpr, GoalInfo),
conj_list_to_goal(ExtraGoals ++ [CallGoal], GoalInfo, Goal).
%-----------------------------------------------------------------------------%
% If the pred we are processing is a polymorphic predicate, or contains
% polymorphically-typed goals, we may need to fix up the quantification
% (nonlocal variables) of the goal so that it includes the extra type_info
% variables and typeclass_info variables that we added to the headvars
% or the arguments of existentially typed predicate calls, function calls
% and deconstruction unifications.
%
% Type(class)-infos for ground types added to predicate calls, function
% calls and existentially typed construction unifications do not require
% requantification because they are local to the conjunction containing
% the type(class)-info construction and the goal which uses the
% type(class)-info. The nonlocals for those goals are adjusted by
% the code which creates/alters them.
%
:- pred fixup_quantification(proc_arg_vector(prog_var)::in,
existq_tvars::in, hlds_goal::in, hlds_goal::out,
poly_info::in, poly_info::out) is det.
fixup_quantification(HeadVars, ExistQVars, Goal0, Goal, !Info) :-
(
% Optimize common case.
ExistQVars = [],
rtti_varmaps_no_tvars(!.Info ^ rtti_varmaps)
->
Goal = Goal0
;
poly_info_get_varset(!.Info, VarSet0),
poly_info_get_var_types(!.Info, VarTypes0),
poly_info_get_rtti_varmaps(!.Info, RttiVarMaps0),
OutsideVars = proc_arg_vector_to_set(HeadVars),
implicitly_quantify_goal(OutsideVars, _Warnings, Goal0, Goal,
VarSet0, VarSet, VarTypes0, VarTypes, RttiVarMaps0, RttiVarMaps),
poly_info_set_varset_and_types(VarSet, VarTypes, !Info),
poly_info_set_rtti_varmaps(RttiVarMaps, !Info)
).
% If the lambda goal we are processing is polymorphically typed, we may
% need to fix up the quantification (nonlocal variables) so that it
% includes the type_info variables and typeclass_info variables for
% any polymorphically typed variables in the nonlocals set or in the
% arguments (either the lambda vars or the implicit curried argument
% variables). Including typeinfos for arguments which are not in the
% nonlocals set of the goal, i.e. unused arguments, is necessary only
% if typeinfo_liveness is set, but we do it always, since we don't have
% the options available here, and the since cost is pretty minimal.
%
:- pred fixup_lambda_quantification(list(prog_var)::in,
list(prog_var)::in, existq_tvars::in, hlds_goal::in, hlds_goal::out,
set(prog_var)::out, poly_info::in, poly_info::out) is det.
fixup_lambda_quantification(ArgVars, LambdaVars, ExistQVars, !Goal,
NewOutsideVars, !Info) :-
poly_info_get_rtti_varmaps(!.Info, RttiVarMaps0),
( rtti_varmaps_no_tvars(RttiVarMaps0) ->
set.init(NewOutsideVars)
;
poly_info_get_varset(!.Info, VarSet0),
poly_info_get_var_types(!.Info, VarTypes0),
!.Goal = hlds_goal(_, GoalInfo0),
goal_info_get_nonlocals(GoalInfo0, NonLocals),
set.insert_list(NonLocals, ArgVars, NonLocalsPlusArgs0),
set.insert_list(NonLocalsPlusArgs0, LambdaVars, NonLocalsPlusArgs),
goal_util.extra_nonlocal_typeinfos(RttiVarMaps0, VarTypes0,
ExistQVars, NonLocalsPlusArgs, NewOutsideVars),
set.union(NonLocals, NewOutsideVars, OutsideVars),
implicitly_quantify_goal(OutsideVars, _Warnings, !Goal,
VarSet0, VarSet, VarTypes0, VarTypes, RttiVarMaps0, RttiVarMaps),
poly_info_set_varset_and_types(VarSet, VarTypes, !Info),
poly_info_set_rtti_varmaps(RttiVarMaps, !Info)
).
%-----------------------------------------------------------------------------%
% Given the list of constraints for a called predicate, create a list of
% variables to hold the typeclass_info for those constraints, and create
% a list of goals to initialize those typeclass_info variables to the
% appropriate typeclass_info structures for the constraints.
%
% Constraints should be renamed-apart and actual-to-formal substituted
% constraints. Constraints which are already in the rtti_varmaps are
% assumed to have already had their typeclass_infos initialized; for them,
% we just return the variable in the rtti_varmaps.
%
:- pred make_typeclass_info_vars(list(prog_constraint)::in,
existq_tvars::in, prog_context::in,
list(prog_var)::out, list(hlds_goal)::out,
poly_info::in, poly_info::out) is det.
make_typeclass_info_vars(Constraints, ExistQVars, Context,
ExtraVars, ExtraGoals, !Info) :-
% Initialise the accumulators
RevExtraVars0 = [],
RevExtraGoals0 = [],
SeenInstances = [],
% Do the work.
make_typeclass_info_vars_2(Constraints, SeenInstances,
ExistQVars, Context, RevExtraVars0, RevExtraVars,
RevExtraGoals0, RevExtraGoals, !Info),
% We build up the vars and goals in reverse order.
list.reverse(RevExtraVars, ExtraVars),
list.reverse(RevExtraGoals, ExtraGoals).
% Accumulator version of the above.
%
:- pred make_typeclass_info_vars_2(list(prog_constraint)::in,
list(prog_constraint)::in, existq_tvars::in, prog_context::in,
list(prog_var)::in, list(prog_var)::out,
list(hlds_goal)::in, list(hlds_goal)::out,
poly_info::in, poly_info::out) is det.
make_typeclass_info_vars_2([], _Seen, _ExistQVars,
_Context, !ExtraVars, !ExtraGoals, !Info).
make_typeclass_info_vars_2([Constraint | Constraints],
Seen, ExistQVars, Context, !ExtraVars, !ExtraGoals, !Info) :-
make_typeclass_info_var(Constraint, [Constraint | Seen],
ExistQVars, Context, !ExtraGoals, !Info, MaybeExtraVar),
maybe_insert_var(MaybeExtraVar, !ExtraVars),
make_typeclass_info_vars_2(Constraints, Seen, ExistQVars,
Context, !ExtraVars, !ExtraGoals, !Info).
:- pred make_typeclass_info_var(prog_constraint::in,
list(prog_constraint)::in, existq_tvars::in, prog_context::in,
list(hlds_goal)::in, list(hlds_goal)::out,
poly_info::in, poly_info::out, maybe(prog_var)::out) is det.
make_typeclass_info_var(Constraint, Seen, ExistQVars,
Context, !ExtraGoals, !Info, MaybeVar) :-
(
rtti_search_typeclass_info_var(!.Info ^ rtti_varmaps, Constraint, Var)
->
% We already have a typeclass_info for this constraint, either from
% a parameter to the pred or from an existentially quantified goal
% that we have already processed.
MaybeVar = yes(Var)
;
% We don't have the typeclass_info, we must either have a proof that
% tells us how to make it, or it will be produced by an existentially
% typed goal that we will process later on.
map.search(!.Info ^ proof_map, Constraint, Proof)
->
make_typeclass_info_from_proof(Constraint, Seen, Proof, ExistQVars,
Context, MaybeVar, !ExtraGoals, !Info)
;
make_typeclass_info_head_var(do_record_type_info_locns, Constraint,
NewVar, !Info),
poly_info_get_rtti_varmaps(!.Info, RttiVarMaps0),
rtti_reuse_typeclass_info_var(NewVar, RttiVarMaps0, RttiVarMaps),
poly_info_set_rtti_varmaps(RttiVarMaps, !Info),
MaybeVar = yes(NewVar)
).
:- pred make_typeclass_info_from_proof(prog_constraint::in,
list(prog_constraint)::in, constraint_proof::in, existq_tvars::in,
prog_context::in, maybe(prog_var)::out,
list(hlds_goal)::in, list(hlds_goal)::out,
poly_info::in, poly_info::out) is det.
make_typeclass_info_from_proof(Constraint, Seen, Proof,
ExistQVars, Context, MaybeVar, !ExtraGoals, !Info) :-
Constraint = constraint(ClassName, ConstrainedTypes),
list.length(ConstrainedTypes, ClassArity),
ClassId = class_id(ClassName, ClassArity),
(
% We have to construct the typeclass_info using an instance
% declaration.
Proof = apply_instance(InstanceNum),
make_typeclass_info_from_instance(Constraint, Seen, ClassId,
InstanceNum, ExistQVars, Context, MaybeVar, !ExtraGoals, !Info)
;
% XXX MR_Dictionary should have MR_Dictionaries for superclass
% We have to extract the typeclass_info from another one.
Proof = superclass(SubClassConstraint),
make_typeclass_info_from_subclass(Constraint, Seen, ClassId,
SubClassConstraint, ExistQVars, Context, MaybeVar,
!ExtraGoals, !Info)
).
:- pred make_typeclass_info_from_instance(prog_constraint::in,
list(prog_constraint)::in, class_id::in, int::in, existq_tvars::in,
prog_context::in, maybe(prog_var)::out,
list(hlds_goal)::in, list(hlds_goal)::out,
poly_info::in, poly_info::out) is det.
make_typeclass_info_from_instance(Constraint, Seen, ClassId, InstanceNum,
ExistQVars, Context, MaybeVar, !ExtraGoals, !Info) :-
Constraint = constraint(_ClassName, ConstrainedTypes),
TypeVarSet = !.Info ^ typevarset,
Proofs0 = !.Info ^ proof_map,
ModuleInfo = !.Info ^ module_info,
module_info_get_instance_table(ModuleInfo, InstanceTable),
map.lookup(InstanceTable, ClassId, InstanceList),
list.index1_det(InstanceList, InstanceNum, ProofInstanceDefn),
ProofInstanceDefn = hlds_instance_defn(_, _, _, InstanceConstraints,
InstanceTypes, _, _, InstanceTVarset, InstanceProofs),
% XXX kind inference:
% we assume all tvars have kind `star'.
map.init(KindMap),
type_vars_list(InstanceTypes, InstanceTvars),
get_unconstrained_tvars(InstanceTvars, InstanceConstraints,
UnconstrainedTvars),
% We can ignore the new typevarset because all the type variables in the
% instance constraints and superclass proofs must appear in the arguments
% of the instance, and all such variables are bound when we call
% type_list_subsumes then apply the resulting bindings.
tvarset_merge_renaming(TypeVarSet, InstanceTVarset, _NewTVarset, Renaming),
apply_variable_renaming_to_type_list(Renaming, InstanceTypes,
RenamedInstanceTypes),
type_list_subsumes_det(RenamedInstanceTypes, ConstrainedTypes,
InstanceSubst),
apply_variable_renaming_to_prog_constraint_list(Renaming,
InstanceConstraints, RenamedInstanceConstraints),
apply_rec_subst_to_prog_constraint_list(InstanceSubst,
RenamedInstanceConstraints, ActualInstanceConstraints0),
% XXX document diamond as guess
% XXX does anyone know what the preceding line means?
ActualInstanceConstraints =
ActualInstanceConstraints0 `list.delete_elems` Seen,
apply_variable_renaming_to_constraint_proofs(Renaming,
InstanceProofs, RenamedInstanceProofs),
apply_rec_subst_to_constraint_proofs(InstanceSubst,
RenamedInstanceProofs, ActualInstanceProofs),
apply_variable_renaming_to_tvar_list(Renaming, UnconstrainedTvars,
RenamedUnconstrainedTvars),
apply_variable_renaming_to_tvar_kind_map(Renaming, KindMap,
RenamedKindMap),
apply_rec_subst_to_tvar_list(RenamedKindMap, InstanceSubst,
RenamedUnconstrainedTvars, ActualUnconstrainedTypes),
map.overlay(Proofs0, ActualInstanceProofs, Proofs),
% Make the type_infos for the types that are constrained by this.
% These are packaged in the typeclass_info.
polymorphism_make_type_info_vars(ConstrainedTypes, Context,
InstanceExtraTypeInfoVars, TypeInfoGoals, !Info),
% Make the typeclass_infos for the constraints from the context of the
% instance decl.
make_typeclass_info_vars_2(ActualInstanceConstraints, Seen, ExistQVars,
Context, [], InstanceExtraTypeClassInfoVars0, !ExtraGoals, !Info),
% Make the type_infos for the unconstrained type variables from the head
% of the instance declaration.
polymorphism_make_type_info_vars(ActualUnconstrainedTypes, Context,
InstanceExtraTypeInfoUnconstrainedVars, UnconstrainedTypeInfoGoals,
!Info),
% The variables are built up in reverse order.
list.reverse(InstanceExtraTypeClassInfoVars0,
InstanceExtraTypeClassInfoVars),
construct_typeclass_info(InstanceExtraTypeInfoUnconstrainedVars,
InstanceExtraTypeInfoVars, InstanceExtraTypeClassInfoVars,
ClassId, Constraint, InstanceNum, ConstrainedTypes,
Proofs, ExistQVars, Var, NewGoals, !Info),
MaybeVar = yes(Var),
% Oh, yuck. The type_info goals have already been reversed, so lets
% reverse them back.
list.reverse(TypeInfoGoals, RevTypeInfoGoals),
list.reverse(UnconstrainedTypeInfoGoals,
RevUnconstrainedTypeInfoGoals),
list.condense([RevUnconstrainedTypeInfoGoals, NewGoals,
!.ExtraGoals, RevTypeInfoGoals], !:ExtraGoals).
:- pred make_typeclass_info_from_subclass(prog_constraint::in,
list(prog_constraint)::in, class_id::in, prog_constraint::in,
existq_tvars::in, prog_context::in, maybe(prog_var)::out,
list(hlds_goal)::in, list(hlds_goal)::out,
poly_info::in, poly_info::out) is det.
make_typeclass_info_from_subclass(Constraint, Seen, ClassId,
SubClassConstraint, ExistQVars, Context, MaybeVar,
!ExtraGoals, !Info) :-
ClassId = class_id(ClassName, _ClassArity),
% First create a variable to hold the new typeclass_info.
ClassNameString = unqualify_name(ClassName),
new_typeclass_info_var(Constraint, ClassNameString, Var, !Info),
MaybeVar = yes(Var),
% Then work out where to extract it from.
SubClassConstraint = constraint(SubClassName, SubClassTypes),
list.length(SubClassTypes, SubClassArity),
SubClassId = class_id(SubClassName, SubClassArity),
% Make the typeclass_info for the subclass.
make_typeclass_info_var(SubClassConstraint, Seen, ExistQVars, Context,
!ExtraGoals, !Info, MaybeSubClassVar),
(
MaybeSubClassVar = yes(SubClassVar0),
SubClassVar = SubClassVar0
;
MaybeSubClassVar = no,
unexpected(this_file, "MaybeSubClassVar = no")
),
% Look up the definition of the subclass.
poly_info_get_module_info(!.Info, ModuleInfo),
module_info_get_class_table(ModuleInfo, ClassTable),
map.lookup(ClassTable, SubClassId, SubClassDefn),
% Work out which superclass typeclass_info to take.
map.from_corresponding_lists(SubClassDefn ^ class_vars, SubClassTypes,
SubTypeSubst),
apply_subst_to_prog_constraint_list(SubTypeSubst,
SubClassDefn ^ class_supers, SuperClasses),
( list.nth_member_search(SuperClasses, Constraint, SuperClassIndex0) ->
SuperClassIndex0 = SuperClassIndex
;
% We shouldn't have got this far if the constraints were not satisfied.
unexpected(this_file, "constraint not in constraint list")
),
poly_info_get_varset(!.Info, VarSet0),
poly_info_get_var_types(!.Info, VarTypes0),
make_int_const_construction_alloc(SuperClassIndex, yes("SuperClassIndex"),
IndexGoal, IndexVar, VarSet0, VarSet, VarTypes0, VarTypes),
poly_info_set_varset_and_types(VarSet, VarTypes, !Info),
% We extract the superclass typeclass_info by inserting a call
% to superclass_from_typeclass_info in private_builtin.
goal_util.generate_simple_call(mercury_private_builtin_module,
"superclass_from_typeclass_info", pf_predicate, only_mode,
detism_det, purity_pure, [SubClassVar, IndexVar, Var], [], [],
ModuleInfo, term.context_init, SuperClassGoal),
!:ExtraGoals = [SuperClassGoal, IndexGoal | !.ExtraGoals].
:- pred construct_typeclass_info(list(prog_var)::in, list(prog_var)::in,
list(prog_var)::in, class_id::in, prog_constraint::in, int::in,
list(mer_type)::in, constraint_proof_map::in, existq_tvars::in,
prog_var::out, list(hlds_goal)::out, poly_info::in, poly_info::out) is det.
construct_typeclass_info(ArgUnconstrainedTypeInfoVars, ArgTypeInfoVars,
ArgTypeClassInfoVars, ClassId, Constraint, InstanceNum, InstanceTypes,
SuperClassProofs, ExistQVars, NewVar, NewGoals, !Info) :-
poly_info_get_module_info(!.Info, ModuleInfo),
module_info_get_class_table(ModuleInfo, ClassTable),
map.lookup(ClassTable, ClassId, ClassDefn),
get_arg_superclass_vars(ClassDefn, InstanceTypes, SuperClassProofs,
ExistQVars, ArgSuperClassVars, SuperClassGoals, !Info),
% Lay out the argument variables as expected in the typeclass_info.
list.append(ArgTypeClassInfoVars, ArgSuperClassVars, ArgVars0),
list.append(ArgVars0, ArgTypeInfoVars, ArgVars1),
list.append(ArgUnconstrainedTypeInfoVars, ArgVars1, ArgVars),
ClassId = class_id(ClassName, _Arity),
ClassNameString = unqualify_name(ClassName),
new_typeclass_info_var(Constraint, ClassNameString, BaseVar, !Info),
module_info_get_instance_table(ModuleInfo, InstanceTable),
map.lookup(InstanceTable, ClassId, InstanceList),
list.index1_det(InstanceList, InstanceNum, InstanceDefn),
InstanceModuleName = InstanceDefn ^ instance_module,
make_instance_string(InstanceTypes, InstanceString),
ConsId = base_typeclass_info_const(InstanceModuleName, ClassId,
InstanceNum, InstanceString),
BaseTypeClassInfoTerm = rhs_functor(ConsId, no, []),
% Create the construction unification to initialize the variable.
BaseUnification = construct(BaseVar, ConsId, [], [],
construct_dynamically, cell_is_shared, no_construct_sub_info),
BaseUnifyMode = (free -> ground(shared, none)) -
(ground(shared, none) -> ground(shared, none)),
BaseUnifyContext = unify_context(umc_explicit, []),
% XXX The UnifyContext is wrong.
BaseUnify = unify(BaseVar, BaseTypeClassInfoTerm, BaseUnifyMode,
BaseUnification, BaseUnifyContext),
% Create a goal_info for the unification.
set.list_to_set([BaseVar], NonLocals),
instmap_delta_from_assoc_list([BaseVar - ground(shared, none)],
InstmapDelta),
goal_info_init(NonLocals, InstmapDelta, detism_det, purity_pure,
BaseGoalInfo),
BaseGoal = hlds_goal(BaseUnify, BaseGoalInfo),
% Build a unification to add the argvars to the base_typeclass_info.
NewConsId = typeclass_info_cell_constructor,
NewArgVars = [BaseVar | ArgVars],
TypeClassInfoTerm = rhs_functor(NewConsId, no, NewArgVars),
new_typeclass_info_var(Constraint, ClassNameString, NewVar, !Info),
% Create the construction unification to initialize the variable.
UniMode = (free - ground(shared, none) ->
ground(shared, none) - ground(shared, none)),
list.length(NewArgVars, NumArgVars),
list.duplicate(NumArgVars, UniMode, UniModes),
Unification = construct(NewVar, NewConsId, NewArgVars, UniModes,
construct_dynamically, cell_is_unique, no_construct_sub_info),
UnifyMode = (free -> ground(shared, none)) -
(ground(shared, none) -> ground(shared, none)),
UnifyContext = unify_context(umc_explicit, []),
% XXX The UnifyContext is wrong.
Unify = unify(NewVar, TypeClassInfoTerm, UnifyMode, Unification,
UnifyContext),
% Create a goal_info for the unification.
goal_info_init(GoalInfo0),
set.list_to_set([NewVar | NewArgVars], TheNonLocals),
goal_info_set_nonlocals(TheNonLocals, GoalInfo0, GoalInfo1),
list.duplicate(NumArgVars, ground(shared, none), ArgInsts),
% Note that we could perhaps be more accurate than `ground(shared)',
% but it shouldn't make any difference.
InstConsId = cell_inst_cons_id(typeclass_info_cell, NumArgVars),
instmap_delta_from_assoc_list(
[NewVar - bound(unique, [bound_functor(InstConsId, ArgInsts)])],
InstMapDelta),
goal_info_set_instmap_delta(InstMapDelta, GoalInfo1, GoalInfo2),
goal_info_set_determinism(detism_det, GoalInfo2, GoalInfo),
TypeClassInfoGoal = hlds_goal(Unify, GoalInfo),
NewGoals0 = [TypeClassInfoGoal, BaseGoal],
list.append(NewGoals0, SuperClassGoals, NewGoals).
%---------------------------------------------------------------------------%
:- pred get_arg_superclass_vars(hlds_class_defn::in, list(mer_type)::in,
constraint_proof_map::in, existq_tvars::in, list(prog_var)::out,
list(hlds_goal)::out, poly_info::in, poly_info::out) is det.
get_arg_superclass_vars(ClassDefn, InstanceTypes, SuperClassProofs, ExistQVars,
NewVars, NewGoals, !Info) :-
poly_info_get_proofs(!.Info, Proofs),
poly_info_get_typevarset(!.Info, TVarSet0),
SuperClasses0 = ClassDefn ^ class_supers,
ClassVars0 = ClassDefn ^ class_vars,
ClassTVarSet = ClassDefn ^ class_tvarset,
tvarset_merge_renaming(TVarSet0, ClassTVarSet, TVarSet1, Renaming),
poly_info_set_typevarset(TVarSet1, !Info),
apply_variable_renaming_to_tvar_list(Renaming, ClassVars0, ClassVars),
map.from_corresponding_lists(ClassVars, InstanceTypes, TypeSubst),
apply_variable_renaming_to_prog_constraint_list(Renaming,
SuperClasses0, SuperClasses1),
apply_rec_subst_to_prog_constraint_list(TypeSubst, SuperClasses1,
SuperClasses),
poly_info_set_proofs(SuperClassProofs, !Info),
make_superclasses_from_proofs(SuperClasses, ExistQVars, [], NewGoals,
!Info, [], NewVars),
poly_info_set_proofs(Proofs, !Info).
:- pred make_superclasses_from_proofs(list(prog_constraint)::in,
existq_tvars::in, list(hlds_goal)::in, list(hlds_goal)::out,
poly_info::in, poly_info::out, list(prog_var)::in, list(prog_var)::out)
is det.
make_superclasses_from_proofs([], _, !Goals, !Info, !Vars).
make_superclasses_from_proofs([Constraint | Constraints], ExistQVars,
!Goals, !Info, !Vars) :-
make_superclasses_from_proofs(Constraints, ExistQVars,
!Goals, !Info, !Vars),
term.context_init(Context),
make_typeclass_info_var(Constraint, [], ExistQVars, Context,
!Goals, !Info, MaybeVar),
maybe_insert_var(MaybeVar, !Vars).
:- pred maybe_insert_var(maybe(prog_var)::in, list(prog_var)::in,
list(prog_var)::out) is det.
maybe_insert_var(no, Vars, Vars).
maybe_insert_var(yes(Var), Vars, [Var | Vars]).
%-----------------------------------------------------------------------------%
% Produce the typeclass_infos for the existential class constraints
% for a call or deconstruction unification.
%
:- pred make_existq_typeclass_info_vars(
list(prog_constraint)::in, list(prog_var)::out, list(hlds_goal)::out,
poly_info::in, poly_info::out) is det.
make_existq_typeclass_info_vars(ExistentialConstraints, ExtraTypeClassVars,
ExtraGoals, !Info) :-
poly_info_get_rtti_varmaps(!.Info, OldRttiVarMaps),
make_typeclass_info_head_vars(do_record_type_info_locns,
ExistentialConstraints, ExtraTypeClassVars, !Info),
poly_info_get_rtti_varmaps(!.Info, RttiVarMaps0),
list.foldl(rtti_reuse_typeclass_info_var, ExtraTypeClassVars,
RttiVarMaps0, RttiVarMaps),
poly_info_set_rtti_varmaps(RttiVarMaps, !Info),
constraint_list_get_tvars(ExistentialConstraints, TVars0),
list.sort_and_remove_dups(TVars0, TVars),
list.foldl2(polymorphism_maybe_extract_type_info(OldRttiVarMaps), TVars,
[], ExtraGoals, !Info).
% For code which requires mode reordering, we may have already seen uses
% of some of the type variables produced by this call. At the point of the
% use of a type variable that we haven't seen before, we assume that it is
% unconstrained. If it turns out that the type variable is constrained,
% and the type_info is contained in a typeclass_info, we need to generate
% code to extract it here.
%
:- pred polymorphism_maybe_extract_type_info(rtti_varmaps::in, tvar::in,
list(hlds_goal)::in, list(hlds_goal)::out, poly_info::in, poly_info::out)
is det.
polymorphism_maybe_extract_type_info(OldRttiVarMaps, TVar, !ExtraGoals,
!Info) :-
poly_info_get_rtti_varmaps(!.Info, RttiVarMaps),
(
rtti_search_type_info_locn(OldRttiVarMaps, TVar,
type_info(TypeInfoVar0)),
rtti_search_type_info_locn(RttiVarMaps, TVar,
typeclass_info(TypeClassInfoVar, Index))
->
polymorphism_extract_type_info(TVar, TypeClassInfoVar, Index, NewGoals,
TypeInfoVar1, !Info),
assign_var(TypeInfoVar0, TypeInfoVar1, AssignGoal),
!:ExtraGoals = NewGoals ++ [AssignGoal | !.ExtraGoals]
;
true
).
%---------------------------------------------------------------------------%
polymorphism_make_type_info_vars([], _, [], [], !Info).
polymorphism_make_type_info_vars([Type | Types], Context,
ExtraVars, ExtraGoals, !Info) :-
polymorphism_make_type_info_var(Type, Context, Var, ExtraGoals1, !Info),
polymorphism_make_type_info_vars(Types, Context, ExtraVars2, ExtraGoals2,
!Info),
ExtraVars = [Var | ExtraVars2],
ExtraGoals = ExtraGoals1 ++ ExtraGoals2.
polymorphism_make_type_info_var(Type, Context, Var, ExtraGoals, !Info) :-
% First handle statically known types (i.e. types which are not
% type variables).
( type_has_variable_arity_ctor(Type, TypeCtor, TypeArgs) ->
% This occurs for code where a predicate calls a polymorphic predicate
% with a type whose type constructor is of variable arity. The
% transformation we perform is basically the same as in the usual case
% below, except that we map pred types to pred/0, func types to func/0
% and tuple types to tuple/0 for the purposes of creating type_infos.
% To allow univ_to_type to check the type_infos correctly, the actual
% arity is added to the type_info we create.
%
% XXX FIXME (RTTI for higher order impure code)
% we should not ignore the purity of higher order procs;
% it should get included in the RTTI.
polymorphism_construct_type_info(Type, TypeCtor, TypeArgs, yes,
Context, Var, ExtraGoals, !Info)
; type_to_ctor_and_args(Type, TypeCtor, TypeArgs) ->
% This occurs for code where a predicate calls a polymorphic predicate
% with a known value of the type variable. The transformation we
% perform is shown in the comment at the top of the module.
polymorphism_construct_type_info(Type, TypeCtor, TypeArgs, no,
Context, Var, ExtraGoals, !Info)
;
% Now handle the cases of types which are not known statically
% (i.e. type variables)
( Type = type_variable(TypeVar, _) ->
get_type_info_locn(TypeVar, TypeInfoLocn, !Info),
get_type_info(TypeInfoLocn, TypeVar, ExtraGoals, Var, !Info)
;
unexpected(this_file, "make_var: unknown type")
)
).
:- pred get_type_info_locn(tvar::in, type_info_locn::out, poly_info::in,
poly_info::out) is det.
get_type_info_locn(TypeVar, TypeInfoLocn, !Info) :-
% If we have already allocated a location for this type_info, then all
% we need to do is to extract the type_info variable from its location.
(
rtti_search_type_info_locn(!.Info ^ rtti_varmaps, TypeVar,
TypeInfoLocnPrime)
->
TypeInfoLocn = TypeInfoLocnPrime
;
% Otherwise, we need to create a new type_info variable, and set the
% location for this type variable to be that type_info variable.
%
% This is wrong if the type variable is one of the existentially
% quantified variables of a called predicate and the variable occurs
% in an existential typeclass constraint. In that case the type_info
% will be stored in the typeclass_info variable produced by the
% predicate, not in a type_info variable. maybe_extract_type_info
% will fix this up when the typeclass_info is created.
%
get_tvar_kind(!.Info ^ tvar_kinds, TypeVar, Kind),
Type = type_variable(TypeVar, Kind),
new_type_info_var(Type, type_info, Var, !Info),
TypeInfoLocn = type_info(Var),
poly_info_get_rtti_varmaps(!.Info, RttiVarMaps0),
rtti_det_insert_type_info_locn(TypeVar, TypeInfoLocn,
RttiVarMaps0, RttiVarMaps),
poly_info_set_rtti_varmaps(RttiVarMaps, !Info)
).
:- pred polymorphism_construct_type_info(mer_type::in, type_ctor::in,
list(mer_type)::in, bool::in, prog_context::in, prog_var::out,
list(hlds_goal)::out, poly_info::in, poly_info::out) is det.
polymorphism_construct_type_info(Type, TypeCtor, TypeArgs, TypeCtorIsVarArity,
Context, Var, ExtraGoals, !Info) :-
% Create the typeinfo vars for the arguments.
polymorphism_make_type_info_vars(TypeArgs, Context,
ArgTypeInfoVars, ArgTypeInfoGoals, !Info),
poly_info_get_varset(!.Info, VarSet0),
poly_info_get_var_types(!.Info, VarTypes0),
poly_info_get_module_info(!.Info, ModuleInfo),
poly_info_get_rtti_varmaps(!.Info, RttiVarMaps0),
init_const_type_ctor_info_var(Type, TypeCtor, TypeCtorVar, TypeCtorGoal,
ModuleInfo, VarSet0, VarSet1, VarTypes0, VarTypes1,
RttiVarMaps0, RttiVarMaps1),
maybe_init_second_cell(Type, TypeCtorVar, TypeCtorIsVarArity,
ArgTypeInfoVars, Context, Var, VarSet1, VarSet, VarTypes1, VarTypes,
RttiVarMaps1, RttiVarMaps, ArgTypeInfoGoals, [TypeCtorGoal],
ExtraGoals),
poly_info_set_varset_and_types(VarSet, VarTypes, !Info),
poly_info_set_rtti_varmaps(RttiVarMaps, !Info).
% maybe_init_second_cell(Type, TypeCtorVar, TypeCtorIsVarArity,
% ArgTypeInfoVars, Context, Var, VarSet0, VarSet,
% VarTypes0, VarTypes, ArgTypeInfoGoals, ExtraGoals0, ExtraGoals):
%
% Create a unification the constructs the second cell of a type_info
% for Type if necessary. This cell will usually be of the form:
%
% TypeInfoVar = type_info(TypeCtorVar, ArgTypeInfoVars...)
%
% However, if TypeCtorIsVarArity is true, then it will be of the form
%
% TypeInfoVar = type_info(TypeCtorVar, Arity, ArgTypeInfoVars...)
%
% TypeCtorVar should be the variable holding the type_ctor_info for the
% principal type constructor of Type, and TypeCtorIsVarArity should be
% true iff the type constructor it represents has a variable arity.
%
% ArgTypeInfoVars should be variables holding the type_infos (or
% type_ctor_infos for zero-arity types) of the argument types of Type.
%
% The returned Var will be bound to the type_info cell of Type if such
% a cell had to be allocated, and to the type_ctor_info of Type's only
% type constructor if it didn't. The returned ExtraGoals is a
% concatenation of ArgTypeInfoGoals, ExtraGoals0, and any goals needed
% to construct Var.
%
:- pred maybe_init_second_cell(mer_type::in, prog_var::in,
bool::in, list(prog_var)::in, prog_context::in, prog_var::out,
prog_varset::in, prog_varset::out,
vartypes::in, vartypes::out,
rtti_varmaps::in, rtti_varmaps::out,
list(hlds_goal)::in, list(hlds_goal)::in, list(hlds_goal)::out) is det.
maybe_init_second_cell(Type, TypeCtorVar, TypeCtorIsVarArity, ArgTypeInfoVars,
_Context, Var, !VarSet, !VarTypes, !RttiVarMaps, ArgTypeInfoGoals,
ExtraGoals0, ExtraGoals) :-
(
TypeCtorIsVarArity = yes,
% Unfortunately, if the type's type constructor has variable arity,
% we cannot use a one-cell representation for that type.
list.length(ArgTypeInfoVars, ActualArity),
make_int_const_construction_alloc(ActualArity, yes("ActualArity"),
ArityGoal, ArityVar, !VarSet, !VarTypes),
init_type_info_var(Type, [TypeCtorVar, ArityVar | ArgTypeInfoVars],
no, Var, TypeInfoGoal, !VarSet, !VarTypes, !RttiVarMaps),
ExtraGoals = ExtraGoals0 ++ [ArityGoal | ArgTypeInfoGoals]
++ [TypeInfoGoal]
;
TypeCtorIsVarArity = no,
(
ArgTypeInfoVars = [_ | _],
init_type_info_var(Type, [TypeCtorVar | ArgTypeInfoVars], no, Var,
TypeInfoGoal, !VarSet, !VarTypes, !RttiVarMaps),
ExtraGoals = ExtraGoals0 ++ ArgTypeInfoGoals ++ [TypeInfoGoal]
;
ArgTypeInfoVars = [],
% Since this type_ctor_info is pretending to be a type_info,
% we need to adjust its type. Since type_ctor_info_const cons_ids
% are handled specially, this should not cause problems.
TypeInfoType = type_info_type,
map.det_update(!.VarTypes, TypeCtorVar, TypeInfoType, !:VarTypes),
Var = TypeCtorVar,
list.append(ArgTypeInfoGoals, ExtraGoals0, ExtraGoals)
% The type_info to represent Type is just a type_ctor_info. We used
% to simply change the type of TypeCtorVar from type_ctor_info to
% type_info, but that would confuse size_prof.m. We cannot leave
% its type as it is without extending type_util.type_unify to
% consider type_ctor_info and type_info interchangeable.
% We therefore create a new variable of type type_info,
% and cast TypeCtorVar to it.
%
% new_type_info_var_raw(Type, type_info, Var, !VarSet, !VarTypes),
% generate_unsafe_cast(TypeCtorVar, Var, Context, CastGoal),
% list.append(ArgTypeInfoGoals, [CastGoal], ExtraGoals1),
% list.append(ExtraGoals0, ExtraGoals1, ExtraGoals)
)
).
get_special_proc(Type, SpecialPredId, ModuleInfo, PredName, PredId, ProcId) :-
TypeCategory = classify_type(ModuleInfo, Type),
get_category_name(TypeCategory) = MaybeCategoryName,
(
MaybeCategoryName = no,
module_info_get_special_pred_map(ModuleInfo, SpecialPredMap),
( type_to_ctor_and_args(Type, TypeCtor, _TypeArgs) ->
map.search(SpecialPredMap, SpecialPredId - TypeCtor, PredId)
;
unexpected(this_file,
"get_special_proc: type_to_ctor_and_args failed")
),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
Module = pred_info_module(PredInfo),
Name = pred_info_name(PredInfo),
PredName = qualified(Module, Name),
special_pred_mode_num(SpecialPredId, ProcInt),
proc_id_to_int(ProcId, ProcInt)
;
MaybeCategoryName = yes(CategoryName),
special_pred_name_arity(SpecialPredId, SpecialName, _, Arity),
Name = "builtin_" ++ SpecialName ++ "_" ++ CategoryName,
lookup_builtin_pred_proc_id(ModuleInfo, mercury_private_builtin_module,
Name, pf_predicate, Arity, only_mode, PredId, ProcId),
PredName = qualified(mercury_private_builtin_module, Name)
).
get_special_proc_det(Type, SpecialPredId, ModuleInfo, PredName,
PredId, ProcId) :-
(
get_special_proc(Type, SpecialPredId, ModuleInfo,
PredNamePrime, PredIdPrime, ProcIdPrime)
->
PredName = PredNamePrime,
PredId = PredIdPrime,
ProcId = ProcIdPrime
;
unexpected(this_file, "get_special_proc_det: get_special_proc failed")
).
:- func get_category_name(type_category) = maybe(string).
get_category_name(type_cat_int) = yes("int").
get_category_name(type_cat_char) = yes("int").
get_category_name(type_cat_enum) = no.
get_category_name(type_cat_dummy) = no.
get_category_name(type_cat_float) = yes("float").
get_category_name(type_cat_string) = yes("string").
get_category_name(type_cat_higher_order) = yes("pred").
get_category_name(type_cat_tuple) = yes("tuple").
get_category_name(type_cat_variable) = _ :-
unexpected(this_file, "get_category_name: variable type").
get_category_name(type_cat_void) = _ :-
unexpected(this_file, "get_category_name: void_type").
get_category_name(type_cat_user_ctor) = no.
get_category_name(type_cat_type_info) = no.
get_category_name(type_cat_type_ctor_info) = no.
get_category_name(type_cat_typeclass_info) = no.
get_category_name(type_cat_base_typeclass_info) = no.
init_type_info_var(Type, ArgVars, MaybePreferredVar, TypeInfoVar, TypeInfoGoal,
!VarSet, !VarTypes, !RttiVarMaps) :-
( type_to_ctor_and_args(Type, Ctor, _) ->
Cell = type_info_cell(Ctor)
;
unexpected(this_file,
"init_type_info_var: type_to_ctor_and_args failed")
),
ConsId = cell_cons_id(Cell),
TypeInfoTerm = rhs_functor(ConsId, no, ArgVars),
% Introduce a new variable.
(
MaybePreferredVar = yes(TypeInfoVar)
;
MaybePreferredVar = no,
new_type_info_var_raw(Type, type_info,
TypeInfoVar, !VarSet, !VarTypes, !RttiVarMaps)
),
% Create the construction unification to initialize the variable.
UniMode = (free - ground(shared, none) ->
ground(shared, none) - ground(shared, none)),
list.length(ArgVars, NumArgVars),
list.duplicate(NumArgVars, UniMode, UniModes),
Unification = construct(TypeInfoVar, ConsId, ArgVars, UniModes,
construct_dynamically, cell_is_unique, no_construct_sub_info),
UnifyMode = (free -> ground(shared, none)) -
(ground(shared, none) -> ground(shared, none)),
UnifyContext = unify_context(umc_explicit, []),
% XXX The UnifyContext is wrong.
Unify = unify(TypeInfoVar, TypeInfoTerm, UnifyMode, Unification,
UnifyContext),
% Create a goal_info for the unification.
set.list_to_set([TypeInfoVar | ArgVars], NonLocals),
list.duplicate(NumArgVars, ground(shared, none), ArgInsts),
% note that we could perhaps be more accurate than `ground(shared)',
% but it shouldn't make any difference.
InstConsId = cell_inst_cons_id(Cell, NumArgVars),
instmap_delta_from_assoc_list(
[TypeInfoVar - bound(unique, [bound_functor(InstConsId, ArgInsts)])],
InstMapDelta),
goal_info_init(NonLocals, InstMapDelta, detism_det, purity_pure, GoalInfo),
TypeInfoGoal = hlds_goal(Unify, GoalInfo).
init_const_type_ctor_info_var(Type, TypeCtor, TypeCtorInfoVar,
TypeCtorInfoGoal, ModuleInfo, !VarSet, !VarTypes, !RttiVarMaps) :-
ModuleName = type_util.type_ctor_module(ModuleInfo, TypeCtor),
TypeName = type_util.type_ctor_name(ModuleInfo, TypeCtor),
TypeCtor = type_ctor(_, Arity),
ConsId = type_ctor_info_const(ModuleName, TypeName, Arity),
TypeInfoTerm = rhs_functor(ConsId, no, []),
% Introduce a new variable.
new_type_info_var_raw(Type, type_ctor_info, TypeCtorInfoVar,
!VarSet, !VarTypes, !RttiVarMaps),
% Create the construction unification to initialize the variable.
Unification = construct(TypeCtorInfoVar, ConsId, [], [],
construct_dynamically, cell_is_shared, no_construct_sub_info),
UnifyMode = (free -> ground(shared, none)) -
(ground(shared, none) -> ground(shared, none)),
UnifyContext = unify_context(umc_explicit, []),
% XXX The UnifyContext is wrong.
Unify = unify(TypeCtorInfoVar, TypeInfoTerm, UnifyMode,
Unification, UnifyContext),
% Create a goal_info for the unification.
set.list_to_set([TypeCtorInfoVar], NonLocals),
instmap_delta_from_assoc_list([TypeCtorInfoVar - ground(shared, none)],
InstmapDelta),
goal_info_init(NonLocals, InstmapDelta, detism_det, purity_pure, GoalInfo),
TypeCtorInfoGoal = hlds_goal(Unify, GoalInfo).
%---------------------------------------------------------------------------%
:- pred make_head_vars(list(tvar)::in, tvarset::in,
list(prog_var)::out, poly_info::in, poly_info::out) is det.
make_head_vars([], _, [], !Info).
make_head_vars([TypeVar | TypeVars], TypeVarSet, TypeInfoVars, !Info) :-
get_tvar_kind(!.Info ^ tvar_kinds, TypeVar, Kind),
Type = type_variable(TypeVar, Kind),
new_type_info_var(Type, type_info, Var, !Info),
( varset.search_name(TypeVarSet, TypeVar, TypeVarName) ->
poly_info_get_varset(!.Info, VarSet0),
string.append("TypeInfo_for_", TypeVarName, VarName),
varset.name_var(VarSet0, Var, VarName, VarSet),
poly_info_set_varset(VarSet, !Info)
;
true
),
make_head_vars(TypeVars, TypeVarSet, TypeInfoVars1, !Info),
TypeInfoVars = [Var | TypeInfoVars1].
:- pred new_type_info_var(mer_type::in, type_info_kind::in,
prog_var::out, poly_info::in, poly_info::out) is det.
new_type_info_var(Type, Kind, Var, !Info) :-
poly_info_get_varset(!.Info, VarSet0),
poly_info_get_var_types(!.Info, VarTypes0),
poly_info_get_rtti_varmaps(!.Info, RttiVarMaps0),
new_type_info_var_raw(Type, Kind, Var, VarSet0, VarSet,
VarTypes0, VarTypes, RttiVarMaps0, RttiVarMaps),
poly_info_set_varset_and_types(VarSet, VarTypes, !Info),
poly_info_set_rtti_varmaps(RttiVarMaps, !Info).
new_type_info_var_raw(Type, Kind, Var, !VarSet, !VarTypes, !RttiVarMaps) :-
% Introduce new variable.
varset.new_var(!.VarSet, Var, !:VarSet),
term.var_to_int(Var, VarNum),
string.int_to_string(VarNum, VarNumStr),
(
Kind = type_info,
Prefix = typeinfo_prefix,
rtti_det_insert_type_info_type(Var, Type, !RttiVarMaps)
;
Kind = type_ctor_info,
Prefix = typectorinfo_prefix
% XXX Perhaps we should record the variables holding
% type_ctor_infos in the rtti_varmaps somewhere.
),
string.append(Prefix, VarNumStr, Name),
varset.name_var(!.VarSet, Var, Name, !:VarSet),
map.set(!.VarTypes, Var, type_info_type, !:VarTypes).
:- func typeinfo_prefix = string.
typeinfo_prefix = "TypeInfo_".
:- func typectorinfo_prefix = string.
typectorinfo_prefix = "TypeCtorInfo_".
%---------------------------------------------------------------------------%
% Generate code to get the value of a type variable.
%
:- pred get_type_info(type_info_locn::in, tvar::in, list(hlds_goal)::out,
prog_var::out, poly_info::in, poly_info::out) is det.
get_type_info(TypeInfoLocn, TypeVar, ExtraGoals, Var, !Info) :-
(
% If the typeinfo is available in a variable, just use it
TypeInfoLocn = type_info(TypeInfoVar),
Var = TypeInfoVar,
ExtraGoals = []
;
% If the typeinfo is in a typeclass_info, then we need to extract it
% before using it
TypeInfoLocn = typeclass_info(TypeClassInfoVar, Index),
polymorphism_extract_type_info(TypeVar, TypeClassInfoVar, Index,
ExtraGoals, Var, !Info)
).
:- pred polymorphism_extract_type_info(tvar::in, prog_var::in, int::in,
list(hlds_goal)::out, prog_var::out, poly_info::in, poly_info::out) is det.
polymorphism_extract_type_info(TypeVar, TypeClassInfoVar, Index, Goals,
TypeInfoVar, !Info) :-
poly_info_get_varset(!.Info, VarSet0),
poly_info_get_var_types(!.Info, VarTypes0),
poly_info_get_rtti_varmaps(!.Info, RttiVarMaps0),
poly_info_get_module_info(!.Info, ModuleInfo),
poly_info_get_tvar_kinds(!.Info, TVarKinds),
get_tvar_kind(TVarKinds, TypeVar, Kind),
gen_extract_type_info(TypeVar, Kind, TypeClassInfoVar, Index, ModuleInfo,
Goals, TypeInfoVar, VarSet0, VarSet, VarTypes0, VarTypes,
RttiVarMaps0, RttiVarMaps),
poly_info_set_varset_and_types(VarSet, VarTypes, !Info),
poly_info_set_rtti_varmaps(RttiVarMaps, !Info).
gen_extract_type_info(TypeVar, Kind, TypeClassInfoVar, Index, ModuleInfo,
Goals, TypeInfoVar, !VarSet, !VarTypes, !RttiVarMaps) :-
make_int_const_construction_alloc(Index, yes("TypeInfoIndex"),
IndexGoal, IndexVar, !VarSet, !VarTypes),
Type = type_variable(TypeVar, Kind),
new_type_info_var_raw(Type, type_info, TypeInfoVar,
!VarSet, !VarTypes, !RttiVarMaps),
goal_util.generate_simple_call(mercury_private_builtin_module,
"type_info_from_typeclass_info", pf_predicate, only_mode,
detism_det, purity_pure, [TypeClassInfoVar, IndexVar, TypeInfoVar], [],
[TypeInfoVar - ground(shared, none)], ModuleInfo,
term.context_init, CallGoal),
Goals = [IndexGoal, CallGoal].
%-----------------------------------------------------------------------------%
% Usually when we call make_typeclass_info_head_var, we want to record
% the type_info_locn for each constrained type var so that later goals
% will know where to get the type_info from. However, when setting up
% head vars for existential constraints on the predicate/function we
% are processing, we assume that the type_infos will be produced
% somewhere else in the goal. In this case, we don't want to record
% the type_info_locns (if we did, then the code to actually produce the
% type_info will just try to get it from here, which would be a mode
% error).
%
:- type record_type_info_locns
---> do_record_type_info_locns
; do_not_record_type_info_locns.
% Create a head var for each class constraint.
%
:- pred make_typeclass_info_head_vars(record_type_info_locns::in,
list(prog_constraint)::in, list(prog_var)::out,
poly_info::in, poly_info::out) is det.
make_typeclass_info_head_vars(RecordLocns, Constraints, ExtraHeadVars,
!Info) :-
list.map_foldl(make_typeclass_info_head_var(RecordLocns), Constraints,
ExtraHeadVars, !Info).
:- pred make_typeclass_info_head_var(record_type_info_locns::in,
prog_constraint::in, prog_var::out, poly_info::in, poly_info::out) is det.
make_typeclass_info_head_var(RecordLocns, Constraint, ExtraHeadVar, !Info) :-
(
poly_info_get_rtti_varmaps(!.Info, RttiVarMaps0),
rtti_search_typeclass_info_var(RttiVarMaps0, Constraint, ExistingVar)
->
ExtraHeadVar = ExistingVar
;
% Make a new variable to contain the dictionary for this typeclass
% constraint.
Constraint = constraint(ClassSymName, _ClassTypes),
ClassName = unqualify_name(ClassSymName),
new_typeclass_info_var(Constraint, ClassName, ExtraHeadVar, !Info),
(
RecordLocns = do_record_type_info_locns,
record_constraint_type_info_locns(Constraint, ExtraHeadVar, !Info)
;
RecordLocns = do_not_record_type_info_locns
)
).
:- pred record_constraint_type_info_locns(prog_constraint::in, prog_var::in,
poly_info::in, poly_info::out) is det.
record_constraint_type_info_locns(Constraint, ExtraHeadVar, !Info) :-
poly_info_get_module_info(!.Info, ModuleInfo),
% Work out how many superclasses the class has.
Constraint = constraint(ClassName, ClassTypes),
list.length(ClassTypes, ClassArity),
ClassId = class_id(ClassName, ClassArity),
module_info_get_class_table(ModuleInfo, ClassTable),
map.lookup(ClassTable, ClassId, ClassDefn),
SuperClasses = ClassDefn ^ class_supers,
list.length(SuperClasses, NumSuperClasses),
% Find all the type variables in the constraint, and remember what
% index they appear in in the typeclass info.
% The first type_info will be just after the superclass infos.
First = NumSuperClasses + 1,
Last = NumSuperClasses + ClassArity,
assoc_list.from_corresponding_lists(ClassTypes, First `..` Last,
IndexedClassTypes),
% Work out which type variables we haven't seen before, or which we
% assumed earlier would be produced in a type_info (this can happen for
% code which needs mode reordering and which calls existentially
% quantified predicates or deconstructs existentially quantified
% terms).
poly_info_get_rtti_varmaps(!.Info, RttiVarMaps0),
IsNew = (pred(TypeAndIndex::in, TVarAndIndex::out) is semidet :-
TypeAndIndex = Type - Index,
Type = type_variable(TypeVar, _),
( rtti_search_type_info_locn(RttiVarMaps0, TypeVar, TypeInfoLocn) ->
TypeInfoLocn = type_info(_)
;
true
),
TVarAndIndex = TypeVar - Index
),
list.filter_map(IsNew, IndexedClassTypes, NewClassTypeVars),
% Make an entry in the TypeInfo locations map for each new type
% variable. The type variable can be found at the previously calculated
% offset with the new typeclass_info.
MakeEntry =
(pred(IndexedTypeVar::in, R0::in, R::out) is det :-
IndexedTypeVar = TheTypeVar - Index,
Location = typeclass_info(ExtraHeadVar, Index),
rtti_set_type_info_locn(TheTypeVar, Location, R0, R)
),
list.foldl(MakeEntry, NewClassTypeVars, RttiVarMaps0, RttiVarMaps),
poly_info_set_rtti_varmaps(RttiVarMaps, !Info).
:- pred make_index(T::in, pair(T, int)::out, int::in, int::out) is det.
make_index(Item, Item - Index, Index, Index + 1).
:- pred new_typeclass_info_var(prog_constraint::in, string::in,
prog_var::out, poly_info::in, poly_info::out) is det.
new_typeclass_info_var(Constraint, ClassString, Var, !Info) :-
poly_info_get_varset(!.Info, VarSet0),
poly_info_get_var_types(!.Info, VarTypes0),
poly_info_get_rtti_varmaps(!.Info, RttiVarMaps0),
% Introduce new variable.
varset.new_var(VarSet0, Var, VarSet1),
string.append("TypeClassInfo_for_", ClassString, Name),
varset.name_var(VarSet1, Var, Name, VarSet),
build_typeclass_info_type(Constraint, DictionaryType),
map.set(VarTypes0, Var, DictionaryType, VarTypes),
rtti_det_insert_typeclass_info_var(Constraint, Var,
RttiVarMaps0, RttiVarMaps),
poly_info_set_varset_and_types(VarSet, VarTypes, !Info),
poly_info_set_rtti_varmaps(RttiVarMaps, !Info).
build_typeclass_info_type(_Constraint, DictionaryType) :-
PrivateBuiltin = mercury_private_builtin_module,
TypeclassInfoTypeName = qualified(PrivateBuiltin, "typeclass_info"),
DictionaryType = defined_type(TypeclassInfoTypeName, [], kind_star).
%---------------------------------------------------------------------------%
type_is_typeclass_info(TypeClassInfoType) :-
type_to_ctor_and_args(TypeClassInfoType, TypeCtor, [_ConstraintTerm]),
TypeCtor = type_ctor(qualified(ModuleName, "typeclass_info"), 0),
ModuleName = mercury_private_builtin_module.
type_is_type_info_or_ctor_type(TypeInfoType) :-
type_to_ctor_and_args(TypeInfoType, TypeCtor, []),
TypeCtor = type_ctor(qualified(ModuleName, TypeName), 0),
ModuleName = mercury_private_builtin_module,
( TypeName = "type_info"
; TypeName = "type_ctor_info"
).
build_type_info_type(Type, TypeInfoType) :-
% XXX TypeInfoType = type_ctor_info_type.
( type_has_variable_arity_ctor(Type, _, _) ->
% We cannot use a plain type_ctor_info because we need to
% record the arity.
Kind = type_info
; type_to_ctor_and_args(Type, _Ctor, Args) ->
(
Args = [],
Kind = type_ctor_info
;
Args = [_ | _],
Kind = type_info
)
;
% The type is variable, which means we have a type_info for it.
% That type_info may actually be a type_ctor_info, but the code
% of the current predicate won't treat it as such.
Kind = type_info
),
build_type_info_type_2(Kind, TypeInfoType).
:- pred build_type_info_type_2(type_info_kind::in, mer_type::out) is det.
build_type_info_type_2(Kind, TypeInfoType) :-
(
Kind = type_info,
TypeInfoType = type_info_type
;
Kind = type_ctor_info,
TypeInfoType = type_ctor_info_type
).
%---------------------------------------------------------------------------%
is_typeclass_info_manipulator(ModuleInfo, PredId, TypeClassManipulator) :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
mercury_private_builtin_module = pred_info_module(PredInfo),
PredName = pred_info_name(PredInfo),
(
PredName = "type_info_from_typeclass_info",
TypeClassManipulator = type_info_from_typeclass_info
;
PredName = "superclass_from_typeclass_info",
TypeClassManipulator = superclass_from_typeclass_info
;
PredName = "instance_constraint_from_typeclass_info",
TypeClassManipulator = instance_constraint_from_typeclass_info
).
%---------------------------------------------------------------------------%
% Expand the bodies of all class methods. Class methods for imported
% classes are only expanded if we are performing type specialization,
% so that method lookups for imported classes can be optimized.
%
% The expansion involves inserting a class_method_call with the appropriate
% arguments, which is responsible for extracting the appropriate part
% of the dictionary.
%
:- pred expand_class_method_bodies(module_info::in, module_info::out) is det.
expand_class_method_bodies(!ModuleInfo) :-
module_info_get_class_table(!.ModuleInfo, Classes),
module_info_get_name(!.ModuleInfo, ModuleName),
map.keys(Classes, ClassIds0),
module_info_get_globals(!.ModuleInfo, Globals),
globals.lookup_bool_option(Globals, user_guided_type_specialization,
TypeSpec),
(
TypeSpec = no,
% Don't expand classes from other modules.
list.filter(class_id_is_from_given_module(ModuleName),
ClassIds0, ClassIds)
;
TypeSpec = yes,
ClassIds = ClassIds0
),
map.apply_to_list(ClassIds, Classes, ClassDefns),
list.foldl(expand_class_method_bodies_2, ClassDefns, !ModuleInfo).
:- pred class_id_is_from_given_module(module_name::in, class_id::in)
is semidet.
class_id_is_from_given_module(ModuleName, ClassId) :-
ClassId = class_id(qualified(ModuleName, _), _).
:- pred expand_class_method_bodies_2(hlds_class_defn::in,
module_info::in, module_info::out) is det.
expand_class_method_bodies_2(ClassDefn, !ModuleInfo) :-
Interface = ClassDefn ^ class_hlds_interface,
list.foldl2(expand_class_method_body, Interface, 1, _, !ModuleInfo).
:- pred expand_class_method_body(hlds_class_proc::in, int::in, int::out,
module_info::in, module_info::out) is det.
expand_class_method_body(hlds_class_proc(PredId, ProcId), !ProcNum,
!ModuleInfo) :-
module_info_preds(!.ModuleInfo, PredTable0),
map.lookup(PredTable0, PredId, PredInfo0),
pred_info_get_procedures(PredInfo0, ProcTable0),
map.lookup(ProcTable0, ProcId, ProcInfo0),
% Find which of the constraints on the pred is the one introduced
% because it is a class method.
pred_info_get_class_context(PredInfo0, ClassContext),
( ClassContext = constraints([Head | _], _) ->
InstanceConstraint = Head
;
unexpected(this_file,
"expand_one_body: class method is not constrained")
),
proc_info_get_rtti_varmaps(ProcInfo0, RttiVarMaps),
rtti_lookup_typeclass_info_var(RttiVarMaps, InstanceConstraint,
TypeClassInfoVar),
proc_info_get_headvars(ProcInfo0, HeadVars0),
proc_info_get_argmodes(ProcInfo0, Modes0),
proc_info_get_declared_determinism(ProcInfo0, MaybeDetism0),
(
MaybeDetism0 = yes(Detism)
;
MaybeDetism0 = no,
% Omitting the determinism for a method is not allowed. But make_hlds
% will have already detected and reported the error. So here we can
% just pick some value at random; hopefully something that won't cause
% flow-on errors. We also mark the predicate as invalid, also to avoid
% flow-on errors.
Detism = detism_non,
module_info_remove_predid(PredId, !ModuleInfo)
),
% Work out which argument corresponds to the constraint which is introduced
% because this is a class method, then delete it from the list of args to
% the class_method_call. That variable becomes the "dictionary" variable
% for the class_method_call. (cf. the closure for a higher order call).
(
list.nth_member_search(HeadVars0, TypeClassInfoVar, N),
delete_nth(HeadVars0, N, HeadVarsPrime),
delete_nth(Modes0, N, ModesPrime)
->
HeadVars = HeadVarsPrime,
Modes = ModesPrime
;
unexpected(this_file, "expand_class_method_body: " ++
"typeclass_info var not found")
),
InstanceConstraint = constraint(ClassName, InstanceArgs),
list.length(InstanceArgs, InstanceArity),
pred_info_get_call_id(PredInfo0, CallId),
BodyGoalExpr = generic_call(
class_method(TypeClassInfoVar, !.ProcNum,
class_id(ClassName, InstanceArity), CallId),
HeadVars, Modes, Detism),
% Make the goal info for the call.
set.list_to_set(HeadVars0, NonLocals),
instmap_delta_from_mode_list(HeadVars0, Modes0, !.ModuleInfo,
InstmapDelta),
pred_info_get_purity(PredInfo0, Purity),
goal_info_init(NonLocals, InstmapDelta, Detism, Purity, GoalInfo),
BodyGoal = hlds_goal(BodyGoalExpr, GoalInfo),
proc_info_set_goal(BodyGoal, ProcInfo0, ProcInfo),
map.det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(ProcTable, PredInfo0, PredInfo1),
( pred_info_is_imported(PredInfo1) ->
pred_info_set_import_status(status_opt_imported, PredInfo1, PredInfo)
;
PredInfo = PredInfo1
),
map.det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(PredTable, !ModuleInfo),
!:ProcNum = !.ProcNum + 1.
:- pred delete_nth(list(T)::in, int::in, list(T)::out) is semidet.
delete_nth([X | Xs], N0, Result) :-
( N0 > 1 ->
N = N0 - 1,
delete_nth(Xs, N, TheRest),
Result = [X | TheRest]
;
Result = Xs
).
%---------------------------------------------------------------------------%
:- func get_constrained_vars(prog_constraint) = list(tvar).
get_constrained_vars(Constraint) = CVars :-
Constraint = constraint(_, CTypes),
type_vars_list(CTypes, CVars).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- type poly_info
---> poly_info(
% The first two fields are from the proc_info.
varset :: prog_varset,
vartypes :: vartypes,
% The next two fields from the pred_info.
typevarset :: tvarset,
tvar_kinds :: tvar_kind_map,
rtti_varmaps :: rtti_varmaps,
% Gives information about the locations
% of type_infos and typeclass_infos.
proof_map :: constraint_proof_map,
% Specifies why each constraint
% that was eliminated from the
% pred was able to be eliminated
% (this allows us to efficiently
% construct the dictionary)
% Note that the two maps above
% are separate since the second
% is the information calculated
% by typecheck.m, while the
% first is the information
% calculated here in polymorphism.m
constraint_map :: constraint_map,
% Specifies the constraints at each
% location in the goal.
pred_info :: pred_info,
module_info :: module_info
).
%---------------------------------------------------------------------------%
% Init_poly_info initializes a poly_info from a pred_info and clauses_info.
% (See also create_poly_info.)
%
:- pred init_poly_info(module_info::in, pred_info::in, clauses_info::in,
poly_info::out) is det.
init_poly_info(ModuleInfo, PredInfo, ClausesInfo, PolyInfo) :-
clauses_info_get_varset(ClausesInfo, VarSet),
clauses_info_get_vartypes(ClausesInfo, VarTypes),
pred_info_get_typevarset(PredInfo, TypeVarSet),
pred_info_get_tvar_kinds(PredInfo, TypeVarKinds),
pred_info_get_constraint_proofs(PredInfo, Proofs),
pred_info_get_constraint_map(PredInfo, ConstraintMap),
rtti_varmaps_init(RttiVarMaps),
PolyInfo = poly_info(VarSet, VarTypes, TypeVarSet, TypeVarKinds,
RttiVarMaps, Proofs, ConstraintMap, PredInfo, ModuleInfo).
% Create_poly_info creates a poly_info for an existing procedure.
% (See also init_poly_info.)
%
create_poly_info(ModuleInfo, PredInfo, ProcInfo, PolyInfo) :-
pred_info_get_typevarset(PredInfo, TypeVarSet),
pred_info_get_tvar_kinds(PredInfo, TypeVarKinds),
pred_info_get_constraint_proofs(PredInfo, Proofs),
pred_info_get_constraint_map(PredInfo, ConstraintMap),
proc_info_get_varset(ProcInfo, VarSet),
proc_info_get_vartypes(ProcInfo, VarTypes),
proc_info_get_rtti_varmaps(ProcInfo, RttiVarMaps),
PolyInfo = poly_info(VarSet, VarTypes, TypeVarSet, TypeVarKinds,
RttiVarMaps, Proofs, ConstraintMap, PredInfo, ModuleInfo).
poly_info_extract(Info, !PredInfo, !ProcInfo, ModuleInfo) :-
Info = poly_info(VarSet, VarTypes, TypeVarSet, TypeVarKinds,
RttiVarMaps, _Proofs, _ConstraintMap, _OldPredInfo, ModuleInfo),
% Set the new values of the fields in proc_info and pred_info.
proc_info_set_varset(VarSet, !ProcInfo),
proc_info_set_vartypes(VarTypes, !ProcInfo),
proc_info_set_rtti_varmaps(RttiVarMaps, !ProcInfo),
pred_info_set_typevarset(TypeVarSet, !PredInfo),
pred_info_set_tvar_kinds(TypeVarKinds, !PredInfo).
%---------------------------------------------------------------------------%
:- pred poly_info_get_varset(poly_info::in, prog_varset::out) is det.
:- pred poly_info_get_var_types(poly_info::in, vartypes::out) is det.
:- pred poly_info_get_typevarset(poly_info::in, tvarset::out) is det.
:- pred poly_info_get_tvar_kinds(poly_info::in, tvar_kind_map::out) is det.
:- pred poly_info_get_rtti_varmaps(poly_info::in, rtti_varmaps::out) is det.
:- pred poly_info_get_proofs(poly_info::in, constraint_proof_map::out) is det.
:- pred poly_info_get_constraint_map(poly_info::in, constraint_map::out)
is det.
:- pred poly_info_get_pred_info(poly_info::in, pred_info::out) is det.
:- pred poly_info_get_module_info(poly_info::in, module_info::out) is det.
poly_info_get_varset(PolyInfo, PolyInfo ^ varset).
poly_info_get_var_types(PolyInfo, PolyInfo ^ vartypes).
poly_info_get_typevarset(PolyInfo, PolyInfo ^ typevarset).
poly_info_get_tvar_kinds(PolyInfo, PolyInfo ^ tvar_kinds).
poly_info_get_rtti_varmaps(PolyInfo, PolyInfo ^ rtti_varmaps).
poly_info_get_proofs(PolyInfo, PolyInfo ^ proof_map).
poly_info_get_constraint_map(PolyInfo, PolyInfo ^ constraint_map).
poly_info_get_pred_info(PolyInfo, PolyInfo ^ pred_info).
poly_info_get_module_info(PolyInfo, PolyInfo ^ module_info).
:- pred poly_info_set_varset(prog_varset::in,
poly_info::in, poly_info::out) is det.
:- pred poly_info_set_varset_and_types(prog_varset::in, vartypes::in,
poly_info::in, poly_info::out) is det.
:- pred poly_info_set_typevarset(tvarset::in,
poly_info::in, poly_info::out) is det.
:- pred poly_info_set_tvar_kinds(tvar_kind_map::in,
poly_info::in, poly_info::out) is det.
:- pred poly_info_set_rtti_varmaps(rtti_varmaps::in,
poly_info::in, poly_info::out) is det.
:- pred poly_info_set_proofs(constraint_proof_map::in,
poly_info::in, poly_info::out) is det.
:- pred poly_info_set_constraint_map(constraint_map::in,
poly_info::in, poly_info::out) is det.
:- pred poly_info_set_module_info(module_info::in,
poly_info::in, poly_info::out) is det.
poly_info_set_varset(VarSet, PI, PI ^ varset := VarSet).
poly_info_set_varset_and_types(VarSet, VarTypes, PI,
(PI ^ varset := VarSet) ^ vartypes := VarTypes).
poly_info_set_typevarset(TVarSet, PI, PI ^ typevarset := TVarSet).
poly_info_set_tvar_kinds(TVarKinds, PI, PI ^ tvar_kinds := TVarKinds).
poly_info_set_rtti_varmaps(RttiVarMaps, PI, PI ^ rtti_varmaps := RttiVarMaps).
poly_info_set_proofs(Proofs, PI, PI ^ proof_map := Proofs).
poly_info_set_constraint_map(ConstraintMap, PI,
PI ^ constraint_map := ConstraintMap).
poly_info_set_module_info(ModuleInfo, PI, PI ^ module_info := ModuleInfo).
%---------------------------------------------------------------------------%
:- func this_file = string.
this_file = "polymorphism.m".
%---------------------------------------------------------------------------%
:- end_module check_hlds.polymorphism.
%---------------------------------------------------------------------------%