Files
mercury/compiler/lco.m
Zoltan Somogyi b56885be93 Fix a bug that caused bootchecks with --optimize-constructor-last-call to fail.
Estimated hours taken: 12
Branches: main

Fix a bug that caused bootchecks with --optimize-constructor-last-call to fail.

The problem was not in lco.m, but in follow_code.m. In some cases,
(specifically, the LCMC version of insert_2 in sparse_bitset.m),
follow_code.m moved an impure goal (store_at_ref) into the arms of an
if-then-else without marking those arms, or the if-then-else, as impure.
The next pass, simplify, then deleted the entire if-then-else, since it
had no outputs. (The store_at_ref that originally appeared after the
if-then-else was the only consumer of its only output.)

The fix is to get follow_code.m to make branched control structures such as
if-then-elses, as well as their arms, semipure or impure if a goal being moved
into them is semipure or impure, or if they came from an semipure or impure
conjunction.

Improve the optimization of the LCMC version of sparse_bitset.insert_2, which
had a foreign_proc invocation of bits_per_int in it: replace such invocations
with a unification of the bits_per_int constant if not cross compiling.

Add a new option, --optimize-constructor-last-call-null. When set, LCMC will
assign NULLs to the fields not yet filled in, to avoid any junk happens to be
there from being followed by the garbage collector's mark phase.

This diff also makes several other changes that helped me to track down
the bug above.

compiler/follow_code.m:
	Make the fix described above.

	Delete all the provisions for --prev-code; it won't be implemented.

	Don't export a predicate that is not now used anywhere else.

compiler/simplify.m:
	Make the optimization described above.

compiler/lco.m:
	Make sure that the LCMC specialized procedure is a predicate, not a
	function: having a function with the mode LCMC_insert_2(in, in) = in
	looks wrong.

	To avoid name collisions when a function and a predicate with the same
	name and arity have LCMC applied to them, include the predicate vs
	function status of the original procedure included in the name of the
	new procedure.

	Update the sym_name of calls to LCMC variants, not just the pred_id,
	because without that, the HLDS dump looks misleading.

compiler/pred_table.m:
	Don't have optimizations like LCMC insert new predicates at the front
	of the list of predicates. Maintain the list of predicates in the
	module as a two part list, to allow efficient addition of new pred_ids
	at the (logical) end without using O(N^2) algorithms. Having predicates
	in chronological order makes it easier to look at HLDS dumps and
	.c files.

compiler/hlds_module.m:
	Make module_info_predids return a module_info that is physically
	updated though logically unchanged.

compiler/options.m:
	Add --optimize-constructor-last-call-null.

	Make the options --dump-hlds-pred-id, --debug-opt-pred-id and
	--debug-opt-pred-name into accumulating options, to allow the user
	to specify more than one predicate to be dumped (e.g. insert_2 and
	its LCMC variant).

	Delete --prev-code.

doc/user_guide.texi:
	Document the changes in options.m.

compiler/code_info.m:
	Record the value of --optimize-constructor-last-call-null in the
	code_info, to avoid lookup at every cell construction.

compiler/unify_gen.m:
compiler/var_locn.m:
	When deciding whether a cell can be static or not, make sure that
	we never make static a cell that has some fields initialized with
	dummy zeros, to be filled in for real later.

compiler/hlds_out.m:
	For goals that are semipure or impure, note this fact. This info was
	lost when I changed the representation of impurity from markers to a
	field.

mdbcomp/prim_data.m:
	Rename some ambiguous function symbols.

compiler/intermod.m:
compiler/trans_opt.m:
	Rename the main predicates (and some function symbols) of these modules
	to avoid ambiguity and to make them more expressive.

compiler/llds.m:
	Don't print line numbers for foreign_code fragments if the user has
	specified --no-line-numbers.

compiler/make.dependencies.m:
compiler/mercury_to_mercury.m:
compiler/recompilation.usage.m:
	Don't use io.write to write out information to files we may need to
	parse again, because this is vulnerable to changes to the names of
	function symbols (e.g. the one to mdbcomp/prim_data.m).

	The compiler still contains some uses of io.write, but they are
	for debugging. I added an item to the todo list of the one exception,
	ilasm.m.

compiler/recompilation.m:
	Rename a misleading function symbol name.

compiler/parse_tree.m:
	Don't import recompilation.m here. It is not needed (all the components
	of parse_tree that need recompilation.m already import it themselves),
	and deleting the import avoids recompiling almost everything when
	recompilation.m changes.

compiler/*.m:
	Conform to the changes above.

compiler/*.m:
browser/*.m:
slice/*.m:
	Conform to the change to mdbcomp.

library/sparse_bitset.m:
	Use some better variable names.
2007-01-19 07:05:06 +00:00

1027 lines
40 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2007 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: lco.m.
% Author: zs.
%
% Transform predicates with calls that are tail recursive modulo construction
% where (1) all recursive calls have the same args participating in the "modulo
% construction" part and (2) all the other output args are returned in the same
% registers in all recursive calls as expected by the head.
%
% p(In1, ... InN, Out1, ... OutM) :-
% Out1 = ground
% p(In1, ... InN, Out1, ... OutM) :-
% ...
% p(In1, ... InN, Mid1, Out2... OutM)
% Out1 = f1(...Mid1...)
%
% The definition of append fits this pattern:
%
% app(list(T)::in, list(T)::in, list(T)::out)
% app(A, B, C) :-
% (
% A == [],
% C := B
% ;
% A => [H | T],
% app(T, B, NT),
% C <= [H | NT]
% )
%
% Concrete example of what the original predicate and its return-via-memory
% variant should look like for append:
%
% app(list(T)::in, list(T)::in, list(T)::out)
% app(A, B, C) :-
% (
% A == [],
% C := B
% ;
% A => [H | T],
% C <= [H | _NT] capture &HT in AddrHT
% app'(T, B, AddrHT)
% )
%
% app'(list(T)::in, list(T)::in, store_by_ref_type(T)::in)
% app'(A, B, AddrC) :-
% (
% A == [],
% C := B,
% store_at_ref(AddrC, C)
% ;
% A => [H | T],
% C <= [H | _NT] capture &HT in AddrHT
% store_at_ref(AddrC, C)
% app'(T, B, AddrHT)
% )
%
% The transformation done on the original predicate is to take recursive calls
% followed by construction unifications that use outputs of the recursive calls
% (each being used just once) and
%
% 1 move the constructions from after the recursive call to before, and attach
% a feature to them that tells the code generator to not define a given list
% of fields, but to capture their addresses in the related variable instead,
%
% 2 make the call go to the variant, and pass the address variables (e.g.
% AddrHT) as inputs instead of the original variables (e.g. HT) as outputs.
%
% The variant predicate is based on the transformed version of the original
% predicate, but it has a further transformation performed on it. This further
% transformation
%
% 3 replaces the output arguments with input arguments of type
% store_by_ref_type(T), where T is type of the field pointed to, and
%
% 4 follows each primitive goal that binds one of the output arguments
% with a store to the memory location indicated by the corresponding pointer.
%
% p(In1, ... InN, Out1, ... OutM) :-
% Out1 = ground
% p(In1, ... InN, Out1, ... OutM) :-
% ...
% Out1 = f1(...Mid1...)
% capture addr of Mid1 in Addr1
% p'(In1, ... InN, Addr1, Out2... OutM)
%
% p'(In1, ... InN, Ref1, ... OutM) :-
% Out1 = ground,
% store_at_ref(Ref1, Out1)
% p'(In1, ... InN, Ref1, Out2... OutM) :-
% ...
% Out1 = f1(...Mid1...)
% capture addr of Mid1 in Addr1
% store_at_ref(Ref1, Out1)
% p'(In1, ... InN, Addr1, Out2... OutM)
%
%-----------------------------------------------------------------------------%
:- module transform_hlds.lco.
:- interface.
:- import_module hlds.hlds_module.
:- pred lco_modulo_constructors(module_info::in, module_info::out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds.inst_match.
:- import_module check_hlds.mode_util.
:- import_module hlds.arg_info.
:- import_module hlds.goal_util.
:- import_module hlds.hlds_code_util.
:- import_module hlds.hlds_data.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_pred.
:- import_module hlds.instmap.
:- import_module hlds.pred_table.
:- import_module hlds.quantification.
:- import_module libs.compiler_util.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_mode.
:- import_module transform_hlds.dependency_graph.
:- import_module assoc_list.
:- import_module bag.
:- import_module bool.
:- import_module int.
:- import_module list.
:- import_module map.
:- import_module maybe.
:- import_module pair.
:- import_module set.
:- import_module string.
:- import_module svbag.
:- import_module svmap.
:- import_module svvarset.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
:- type variant_id
---> variant_id(
list(int), % Positions of output arguments returned in
% memory.
pred_proc_id, % The id of the variant.
string % The name of the variant predicate.
).
:- type variant_map == map(pred_proc_id, variant_id).
:- type permitted
---> permitted
; not_permitted.
:- type changed
---> changed
; not_changed.
:- type lco_info
---> lco_info(
module_info :: module_info,
cur_scc_variants :: variant_map,
var_set :: prog_varset,
var_types :: vartypes,
permitted :: permitted,
changed :: changed
).
:- type lco_const_info
---> lco_const_info(
lower_scc_variants :: variant_map,
cur_scc :: set(pred_proc_id),
cur_proc_id :: pred_proc_id,
cur_proc_pred :: pred_info,
cur_proc_proc :: proc_info,
cur_proc_outputs :: list(prog_var),
cur_proc_detism :: determinism
).
%-----------------------------------------------------------------------------%
lco_modulo_constructors(!ModuleInfo) :-
module_info_rebuild_dependency_info(!ModuleInfo, DepInfo),
hlds_dependency_info_get_dependency_ordering(DepInfo, SCCs),
list.foldl2(lco_scc, SCCs, map.init, _, !ModuleInfo).
:- pred lco_scc(list(pred_proc_id)::in, variant_map::in, variant_map::out,
module_info::in, module_info::out) is det.
lco_scc(SCC, !VariantMap, !ModuleInfo) :-
ModuleInfo0 = !.ModuleInfo,
list.foldl4(lco_proc(!.VariantMap, SCC), SCC, !ModuleInfo,
map.init, CurSCCVariantMap, map.init, CurSCCUpdateMap,
permitted, Permitted),
map.to_assoc_list(CurSCCVariantMap, CurSCCVariants),
map.to_assoc_list(CurSCCUpdateMap, CurSCCUpdates),
(
Permitted = permitted,
CurSCCUpdates = [_ | _]
->
list.foldl(process_proc_update, CurSCCUpdates, !ModuleInfo),
list.foldl(process_proc_variant, CurSCCVariants, !ModuleInfo)
;
!:ModuleInfo = ModuleInfo0
).
%-----------------------------------------------------------------------------%
:- pred process_proc_update(pair(pred_proc_id, proc_info)::in,
module_info::in, module_info::out) is det.
process_proc_update(PredProcId - NewProcInfo, !ModuleInfo) :-
PredProcId = proc(PredId, ProcId),
module_info_preds(!.ModuleInfo, PredTable0),
map.lookup(PredTable0, PredId, PredInfo0),
pred_info_get_procedures(PredInfo0, Procs0),
map.det_update(Procs0, ProcId, NewProcInfo, Procs),
pred_info_set_procedures(Procs, PredInfo0, PredInfo),
map.det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(PredTable, !ModuleInfo).
:- pred process_proc_variant(pair(pred_proc_id, variant_id)::in,
module_info::in, module_info::out) is det.
process_proc_variant(PredProcId - VariantId, !ModuleInfo) :-
VariantId = variant_id(AddrOutArgPosns, VariantPredProcId, VariantName),
VariantPredProcId = proc(VariantPredId, VariantProcId),
PredProcId = proc(PredId, ProcId),
module_info_pred_proc_info(!.ModuleInfo, PredId, ProcId,
_PredInfo, ProcInfo),
transform_variant_proc(!.ModuleInfo, AddrOutArgPosns,
ProcInfo, VariantProcInfo),
some [!VariantPredInfo, !PredTable] (
module_info_preds(!.ModuleInfo, !:PredTable),
map.lookup(!.PredTable, VariantPredId, !:VariantPredInfo),
pred_info_set_name(VariantName, !VariantPredInfo),
pred_info_set_is_pred_or_func(pf_predicate, !VariantPredInfo),
pred_info_get_origin(!.VariantPredInfo, Origin0),
Transform = transform_return_via_ptr(ProcId, AddrOutArgPosns),
Origin = origin_transformed(Transform, Origin0, PredId),
pred_info_set_origin(Origin, !VariantPredInfo),
% We throw away any other procs in the variant predicate, because
% we create a separate predicate for each variant.
map.det_insert(map.init, VariantProcId, VariantProcInfo, VariantProcs),
pred_info_set_procedures(VariantProcs, !VariantPredInfo),
svmap.det_update(VariantPredId, !.VariantPredInfo, !PredTable),
module_info_set_preds(!.PredTable, !ModuleInfo)
).
%-----------------------------------------------------------------------------%
:- pred lco_proc(variant_map::in, list(pred_proc_id)::in,
pred_proc_id::in, module_info::in, module_info::out,
variant_map::in, variant_map::out,
map(pred_proc_id, proc_info)::in, map(pred_proc_id, proc_info)::out,
permitted::in, permitted::out) is det.
lco_proc(LowerSCCVariants, SCC, CurProc, !ModuleInfo, !CurSCCVariants,
!CurSCCUpdates, !Permitted) :-
(
!.Permitted = not_permitted
;
!.Permitted = permitted,
CurProc = proc(PredId, ProcId),
module_info_pred_proc_info(!.ModuleInfo, PredId, ProcId,
PredInfo, ProcInfo0),
pred_info_get_import_status(PredInfo, Status),
DefInThisModule = status_defined_in_this_module(Status),
proc_info_get_inferred_determinism(ProcInfo0, Detism),
(
( DefInThisModule = no
; not acceptable_detism_for_lco(Detism)
)
->
!:Permitted = not_permitted
;
proc_info_get_varset(ProcInfo0, VarSet0),
proc_info_get_vartypes(ProcInfo0, VarTypes0),
proc_info_get_headvars(ProcInfo0, HeadVars),
proc_info_get_argmodes(ProcInfo0, ArgModes),
list.map(map.lookup(VarTypes0), HeadVars, ArgTypes),
arg_info.compute_in_and_out_vars(!.ModuleInfo, HeadVars,
ArgModes, ArgTypes, _InputHeadVars, OutputHeadVars),
proc_info_get_inferred_determinism(ProcInfo0, CurProcDetism),
ConstInfo = lco_const_info(LowerSCCVariants, list_to_set(SCC),
CurProc, PredInfo, ProcInfo0, OutputHeadVars, CurProcDetism),
Info0 = lco_info(!.ModuleInfo, !.CurSCCVariants,
VarSet0, VarTypes0, permitted, not_changed),
proc_info_get_goal(ProcInfo0, Goal0),
lco_in_goal(Goal0, Goal, Info0, Info, ConstInfo),
Info = lco_info(!:ModuleInfo, !:CurSCCVariants, VarSet, VarTypes,
!:Permitted, Changed),
(
!.Permitted = permitted,
Changed = changed
->
some [!ProcInfo] (
!:ProcInfo = ProcInfo0,
proc_info_set_varset(VarSet, !ProcInfo),
proc_info_set_vartypes(VarTypes, !ProcInfo),
proc_info_set_goal(Goal, !ProcInfo),
requantify_proc(!ProcInfo),
svmap.det_insert(CurProc, !.ProcInfo, !CurSCCUpdates)
)
;
true
)
)
).
% Procedures which can succeed more than once can't do proper tail calls,
% and procedures that cannot succeed at all should not be optimized
% for time.
%
:- pred acceptable_detism_for_lco(determinism::in) is semidet.
acceptable_detism_for_lco(detism_det).
acceptable_detism_for_lco(detism_semi).
acceptable_detism_for_lco(detism_cc_multi).
acceptable_detism_for_lco(detism_cc_non).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- pred lco_in_goal(hlds_goal::in, hlds_goal::out, lco_info::in, lco_info::out,
lco_const_info::in) is det.
lco_in_goal(hlds_goal(GoalExpr0, GoalInfo), hlds_goal(GoalExpr, GoalInfo),
!Info, ConstInfo) :-
(
GoalExpr0 = conj(ConjType, Goals0),
(
ConjType = plain_conj,
lco_in_conj(list.reverse(Goals0), [], bag.init, MaybeGoals,
!Info, ConstInfo),
(
MaybeGoals = yes(Goals),
GoalExpr = conj(plain_conj, Goals)
;
MaybeGoals = no,
% If the top-level conjunction doesn't end with some
% unifications we can move before a recursive call,
% maybe it ends with a switch or if-then-else, some of whose
% arms fit that pattern.
( list.split_last(Goals0, AllButLast, Last0) ->
lco_in_goal(Last0, Last, !Info, ConstInfo),
GoalExpr = conj(plain_conj, AllButLast ++ [Last])
;
GoalExpr = GoalExpr0
)
)
;
ConjType = parallel_conj,
GoalExpr = GoalExpr0,
!:Info = !.Info ^ permitted := not_permitted
)
;
GoalExpr0 = disj(Goals0),
% There is no point in looking for tail calls in the non-last
% disjuncts.
( list.split_last(Goals0, AllButLast, Last0) ->
lco_in_goal(Last0, Last, !Info, ConstInfo),
GoalExpr = disj(AllButLast ++ [Last])
;
GoalExpr = GoalExpr0
)
;
GoalExpr0 = switch(Var, CanFail, Cases0),
lco_in_cases(Cases0, Cases, !Info, ConstInfo),
GoalExpr = switch(Var, CanFail, Cases)
;
GoalExpr0 = if_then_else(Vars, Cond, Then0, Else0),
lco_in_goal(Then0, Then, !Info, ConstInfo),
lco_in_goal(Else0, Else, !Info, ConstInfo),
GoalExpr = if_then_else(Vars, Cond, Then, Else)
;
GoalExpr0 = scope(Reason, SubGoal0),
lco_in_goal(SubGoal0, SubGoal, !Info, ConstInfo),
GoalExpr = scope(Reason, SubGoal)
;
( GoalExpr0 = negation(_)
; GoalExpr0 = generic_call(_, _, _, _)
; GoalExpr0 = plain_call(_, _, _, _, _, _)
; GoalExpr0 = unify(_, _, _, _, _)
; GoalExpr0 = call_foreign_proc(_, _, _, _, _, _, _)
),
GoalExpr = GoalExpr0
;
GoalExpr0 = shorthand(_),
unexpected(this_file, "lco_in_goal: shorthand")
).
%-----------------------------------------------------------------------------%
:- pred lco_in_disj(list(hlds_goal)::in, list(hlds_goal)::out,
lco_info::in, lco_info::out, lco_const_info::in) is det.
lco_in_disj([], [], !Info, _ConstInfo).
lco_in_disj([Goal0 | Goals0], [Goal | Goals], !Info, ConstInfo) :-
lco_in_goal(Goal0, Goal, !Info, ConstInfo),
lco_in_disj(Goals0, Goals, !Info, ConstInfo).
:- pred lco_in_cases(list(case)::in, list(case)::out,
lco_info::in, lco_info::out, lco_const_info::in) is det.
lco_in_cases([], [], !Info, _ConstInfo).
lco_in_cases([case(Cons, Goal0) | Cases0], [case(Cons, Goal) | Cases],
!Info, ConstInfo) :-
lco_in_goal(Goal0, Goal, !Info, ConstInfo),
lco_in_cases(Cases0, Cases, !Info, ConstInfo).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% lco_in_conj(RevGoals, Unifies, ModuleInfo, Goals)
%
% Given a conjunction whose structure is:
%
% zero or more arbitrary goals
% recursive call that could be a last call modulo constructors
% one or more construction unifications
%
% move the construction unifications before the call.
%
% We traverse the conjunction backwards (the caller has reversed the list).
% RevGoals is the list of remaining goals in the reversed conjunction list.
% RevUnifies is the list of assignments and constructions delayed by any
% previous recursive invocations of lco_in_conj.
%
% invariant: append(reverse(RevGoals), Unifies) = original conjunction
%
:- pred lco_in_conj(list(hlds_goal)::in, list(hlds_goal)::in,
bag(prog_var)::in, maybe(list(hlds_goal))::out,
lco_info::in, lco_info::out, lco_const_info::in) is det.
lco_in_conj([], _Unifies, _UnifyInputVars, no, !Info, _ConstInfo).
lco_in_conj([RevGoal | RevGoals], !.Unifies, !.UnifyInputVars, MaybeGoals,
!Info, ConstInfo) :-
RevGoal = hlds_goal(RevGoalExpr, RevGoalInfo),
ModuleInfo = !.Info ^ module_info,
ProcInfo = ConstInfo ^ cur_proc_proc,
proc_info_get_vartypes(ProcInfo, VarTypes),
(
RevGoalExpr = unify(_, _, _, Unification, _),
Unification = construct(ConstructedVar, ConsId, ConstructArgs,
ArgUniModes, _, _, SubInfo),
(
SubInfo = no_construct_sub_info
;
SubInfo = construct_sub_info(no, _)
),
all_true(acceptable_construct_mode(ModuleInfo), ArgUniModes),
map.lookup(VarTypes, ConstructedVar, ConstructedType),
ConsTag = cons_id_to_tag(ConsId, ConstructedType, ModuleInfo),
% The code generator can't handle the other tags. For example, it
% doesn't make sense to take the address of the field of a function
% symbol of a `notag' type.
(
ConsTag = unshared_tag(_)
;
ConsTag = shared_remote_tag(_, _)
)
->
svbag.delete(ConstructedVar, !UnifyInputVars),
svbag.insert_list(ConstructArgs, !UnifyInputVars),
!:Unifies = [RevGoal | !.Unifies],
lco_in_conj(RevGoals, !.Unifies, !.UnifyInputVars, MaybeGoals,
!Info, ConstInfo)
;
RevGoalExpr = plain_call(PredId, ProcId, Args, Builtin, UnifyContext,
SymName),
set.member(proc(PredId, ProcId), ConstInfo ^ cur_scc),
goal_info_get_determinism(RevGoalInfo, RevGoalDetism),
RevGoalDetism = ConstInfo ^ cur_proc_detism,
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
_CalleePredInfo, CalleeProcInfo),
proc_info_get_argmodes(CalleeProcInfo, CalleeArgModes),
classify_proc_call_args(ModuleInfo, VarTypes, Args, CalleeArgModes,
_InArgs, OutArgs, UnusedArgs),
UnusedArgs = [],
list.length(OutArgs, NumOutArgs),
CurrProcOutArgs = ConstInfo ^ cur_proc_outputs,
list.length(CurrProcOutArgs, NumCurrProcOutArgs),
NumOutArgs = NumCurrProcOutArgs,
assoc_list.from_corresponding_lists(OutArgs, CurrProcOutArgs,
CallHeadPairs),
find_args_to_pass_by_addr(CallHeadPairs, 1, Mismatches,
UpdatedCallOutArgs, map.init, Subst, !Info),
% If there are no mismatches, we would create an identical "variant".
% Such cases should be optimized using other means.
Mismatches = [_ | _],
assoc_list.values(Mismatches, MismatchedCallArgs),
% The variants we create return each output in only one place in
% memory.
all_true(occurs_once(!.UnifyInputVars), MismatchedCallArgs),
ensure_variant_exists(PredId, ProcId, assoc_list.keys(Mismatches),
VariantPredProcId, SymName, VariantSymName, !Info)
->
list.map(update_construct(Subst), !.Unifies, UpdatedUnifies),
proc_info_get_argmodes(CalleeProcInfo, CalleeModes),
update_call_args(ModuleInfo, VarTypes, CalleeModes, Args,
UpdatedCallOutArgs, UpdatedArgs),
VariantPredProcId = proc(VariantPredId, VariantProcId),
UpdatedGoalExpr = plain_call(VariantPredId, VariantProcId, UpdatedArgs,
Builtin, UnifyContext, VariantSymName),
UpdatedGoalInfo = RevGoalInfo,
UpdatedGoal = hlds_goal(UpdatedGoalExpr, UpdatedGoalInfo),
Goals = list.reverse(RevGoals) ++ UpdatedUnifies ++ [UpdatedGoal],
MaybeGoals = yes(Goals),
!:Info = !.Info ^ changed := changed
;
% The reversed conjunction does not follow the pattern we are looking
% for, so we cannot optimize it.
MaybeGoals = no
).
:- pred update_call_args(module_info::in, vartypes::in, list(mer_mode)::in,
list(prog_var)::in, list(prog_var)::in, list(prog_var)::out) is det.
update_call_args(_ModuleInfo, _VarTypes, [], [], UpdatedCallOutArgs, []) :-
expect(unify(UpdatedCallOutArgs, []), this_file,
"update_call_args: updating nonexistent arg").
update_call_args(_ModuleInfo, _VarTypes, [], [_ | _], _, _) :-
unexpected(this_file, "update_call_args: mismatches lists").
update_call_args(_ModuleInfo, _VarTypes, [_ | _], [], _, _) :-
unexpected(this_file, "update_call_args: mismatches lists").
update_call_args(ModuleInfo, VarTypes, [CalleeMode | CalleeModes],
[Arg | Args], !.UpdatedCallOutArgs, !:UpdatedArgs) :-
map.lookup(VarTypes, Arg, CalleeType),
mode_to_arg_mode(ModuleInfo, CalleeMode, CalleeType, ArgMode),
(
ArgMode = top_in,
update_call_args(ModuleInfo, VarTypes, CalleeModes, Args,
!.UpdatedCallOutArgs, !:UpdatedArgs),
!:UpdatedArgs = [Arg | !.UpdatedArgs]
;
ArgMode = top_out,
(
!.UpdatedCallOutArgs = [UpdatedArg | !:UpdatedCallOutArgs]
;
!.UpdatedCallOutArgs = [],
unexpected(this_file, "update_call_args: no UpdatedCallOutArgs")
),
update_call_args(ModuleInfo, VarTypes, CalleeModes, Args,
!.UpdatedCallOutArgs, !:UpdatedArgs),
!:UpdatedArgs = [UpdatedArg | !.UpdatedArgs]
;
ArgMode = top_unused,
unexpected(this_file, "update_call_args: top_unused")
).
%-----------------------------------------------------------------------------%
:- pred classify_proc_call_args(module_info::in, vartypes::in,
list(prog_var)::in, list(mer_mode)::in,
list(prog_var)::out, list(prog_var)::out, list(prog_var)::out) is det.
classify_proc_call_args(_ModuleInfo, _VarTypes, [], [], [], [], []).
classify_proc_call_args(_ModuleInfo, _VarTypes, [], [_ | _], _, _, _) :-
unexpected(this_file, "classify_proc_call_args: mismatches lists").
classify_proc_call_args(_ModuleInfo, _VarTypes, [_ | _], [], _, _, _) :-
unexpected(this_file, "classify_proc_call_args: mismatches lists").
classify_proc_call_args(ModuleInfo, VarTypes, [Arg | Args],
[CalleeMode | CalleeModes], !:InArgs, !:OutArgs, !:UnusedArgs) :-
classify_proc_call_args(ModuleInfo, VarTypes, Args, CalleeModes,
!:InArgs, !:OutArgs, !:UnusedArgs),
map.lookup(VarTypes, Arg, CalleeType),
mode_to_arg_mode(ModuleInfo, CalleeMode, CalleeType, ArgMode),
(
ArgMode = top_in,
!:InArgs = [Arg | !.InArgs]
;
ArgMode = top_out,
!:OutArgs = [Arg | !.OutArgs]
;
ArgMode = top_unused,
!:UnusedArgs = [Arg | !.UnusedArgs]
).
%-----------------------------------------------------------------------------%
:- pred find_args_to_pass_by_addr(assoc_list(prog_var, prog_var)::in, int::in,
assoc_list(int, prog_var)::out, list(prog_var)::out,
map(prog_var, prog_var)::in, map(prog_var, prog_var)::out,
lco_info::in, lco_info::out) is det.
find_args_to_pass_by_addr([], _, [], [], !Subst, !Info).
find_args_to_pass_by_addr([CallArg - HeadArg | CallHeadArgs], ArgNum,
Mismatches, [UpdatedCallArg | UpdatedCallArgs], !Subst, !Info) :-
find_args_to_pass_by_addr(CallHeadArgs, ArgNum + 1, MismatchesTail,
UpdatedCallArgs, !Subst, !Info),
( CallArg = HeadArg ->
UpdatedCallArg = CallArg,
Mismatches = MismatchesTail
;
make_address_var(CallArg, UpdatedCallArg, !Info),
Mismatches = [ArgNum - CallArg | MismatchesTail],
svmap.det_insert(CallArg, UpdatedCallArg, !Subst)
).
:- pred make_address_var(prog_var::in, prog_var::out,
lco_info::in, lco_info::out) is det.
make_address_var(Var, AddrVar, !Info) :-
VarSet0 = !.Info ^ var_set,
VarTypes0 = !.Info ^ var_types,
varset.lookup_name(VarSet0, Var, "SCCcallarg", Name),
AddrName = "Addr" ++ Name,
varset.new_named_var(VarSet0, AddrName, AddrVar, VarSet),
map.lookup(VarTypes0, Var, FieldType),
map.det_insert(VarTypes0, AddrVar, make_ref_type(FieldType), VarTypes),
!:Info = !.Info ^ var_set := VarSet,
!:Info = !.Info ^ var_types := VarTypes.
:- func make_ref_type(mer_type) = mer_type.
make_ref_type(FieldType) = PtrType :-
RefTypeName = qualified(mercury_private_builtin_module,
"store_by_ref_type"),
PtrType = defined_type(RefTypeName, [FieldType], kind_star).
%-----------------------------------------------------------------------------%
:- pred ensure_variant_exists(pred_id::in, proc_id::in, list(int)::in,
pred_proc_id::out, sym_name::in, sym_name::out,
lco_info::in, lco_info::out) is semidet.
ensure_variant_exists(PredId, ProcId, AddrArgNums, VariantPredProcId,
SymName, VariantSymName, !Info) :-
CurSCCVariants0 = !.Info ^ cur_scc_variants,
( map.search(CurSCCVariants0, proc(PredId, ProcId), ExistingVariant) ->
ExistingVariant = variant_id(ExistingAddrArgNums, VariantPredProcId,
VariantName),
(
SymName = unqualified(_Name),
VariantSymName = unqualified(VariantName)
;
SymName = qualified(ModuleName, _Name),
VariantSymName = qualified(ModuleName, VariantName)
),
AddrArgNums = ExistingAddrArgNums
;
ModuleInfo0 = !.Info ^ module_info,
clone_pred_proc(PredId, ClonePredId, PredOrFunc,
ModuleInfo0, ModuleInfo),
VariantPredProcId = proc(ClonePredId, ProcId),
!:Info = !.Info ^ module_info := ModuleInfo,
(
SymName = unqualified(Name),
create_variant_name(PredOrFunc, AddrArgNums, Name, VariantName),
VariantSymName = unqualified(VariantName)
;
SymName = qualified(ModuleName, Name),
create_variant_name(PredOrFunc, AddrArgNums, Name, VariantName),
VariantSymName = qualified(ModuleName, VariantName)
),
NewVariant = variant_id(AddrArgNums, VariantPredProcId,
VariantName),
map.det_insert(CurSCCVariants0, proc(PredId, ProcId), NewVariant,
CurSCCVariants),
!:Info = !.Info ^ cur_scc_variants := CurSCCVariants
).
:- pred clone_pred_proc(pred_id::in, pred_id::out, pred_or_func::out,
module_info::in, module_info::out) is det.
clone_pred_proc(PredId, ClonePredId, PredOrFunc, !ModuleInfo) :-
module_info_pred_info(!.ModuleInfo, PredId, PredInfo),
PredOrFunc = pred_info_is_pred_or_func(PredInfo),
module_info_get_predicate_table(!.ModuleInfo, PredTable0),
predicate_table_insert(PredInfo, ClonePredId, PredTable0, PredTable),
module_info_set_predicate_table(PredTable, !ModuleInfo).
:- pred create_variant_name(pred_or_func::in, list(int)::in, string::in,
string::out) is det.
create_variant_name(PredOrFunc, ArgPoss, OrigName, VariantName) :-
list.map(int_to_string, ArgPoss, ArgPosStrs),
ArgPosDesc = string.join_list("_", ArgPosStrs),
(
PredOrFunc = pf_function,
VariantName = "LCMCfn_" ++ OrigName ++ "_" ++ ArgPosDesc
;
PredOrFunc = pf_predicate,
VariantName = "LCMCpr_" ++ OrigName ++ "_" ++ ArgPosDesc
).
%-----------------------------------------------------------------------------%
:- pred update_construct(map(prog_var, prog_var)::in,
hlds_goal::in, hlds_goal::out) is det.
update_construct(Subst, Goal0, Goal) :-
Goal0 = hlds_goal(GoalExpr0, GoalInfo0),
(
GoalExpr0 = unify(LHS, RHS0, Mode, Unification0, UnifyContext),
Unification0 = construct(Var, ConsId, ArgVars, UniModes,
How, IsUnique, SubInfo0),
(
SubInfo0 = no_construct_sub_info,
TermSizeSlot = no
;
SubInfo0 = construct_sub_info(no, TermSizeSlot)
)
->
goal_info_get_instmap_delta(GoalInfo0, InstMapDelta0),
update_construct_args(Subst, 1, ArgVars, UpdatedArgVars, AddrFields,
InstMapDelta0, InstMapDelta),
(
AddrFields = [],
Goal = Goal0
;
AddrFields = [_ | _],
SubInfo = construct_sub_info(yes(AddrFields), TermSizeSlot),
Unification = construct(Var, ConsId, UpdatedArgVars, UniModes,
How, IsUnique, SubInfo),
% We must update RHS because quantification gets the set of
% variables in the unification from there, not from Unification.
(
RHS0 = rhs_var(_),
unexpected(this_file, "update_construct: var RHS")
;
RHS0 = rhs_functor(RHSConsId, IsExistConstr, RHSVars0),
expect(unify(ConsId, RHSConsId), this_file,
"update_construct: cons_id mismatch"),
rename_var_list(no, Subst, RHSVars0, RHSVars),
RHS = rhs_functor(RHSConsId, IsExistConstr, RHSVars)
;
RHS0 = rhs_lambda_goal(_, _, _, _, _, _, _, _),
unexpected(this_file, "update_construct: lambda RHS")
),
GoalExpr = unify(LHS, RHS, Mode, Unification, UnifyContext),
goal_info_set_instmap_delta(InstMapDelta, GoalInfo0, GoalInfo),
Goal = hlds_goal(GoalExpr, GoalInfo)
)
;
unexpected(this_file, "update_construct: not construct")
).
:- pred update_construct_args(map(prog_var, prog_var)::in, int::in,
list(prog_var)::in, list(prog_var)::out, list(int)::out,
instmap_delta::in, instmap_delta::out) is det.
update_construct_args(_, _, [], [], [], !InstMapDelta).
update_construct_args(Subst, ArgNum, [OrigVar | OrigVars],
[UpdatedVar | UpdatedVars], AddrArgs, !InstMapDelta) :-
update_construct_args(Subst, ArgNum + 1, OrigVars, UpdatedVars,
AddrArgsTail, !InstMapDelta),
( map.search(Subst, OrigVar, AddrVar) ->
UpdatedVar = AddrVar,
instmap_delta_set(AddrVar, ground(shared, none), !InstMapDelta),
AddrArgs = [ArgNum | AddrArgsTail]
;
UpdatedVar = OrigVar,
AddrArgs = AddrArgsTail
).
%-----------------------------------------------------------------------------%
:- pred acceptable_construct_mode(module_info::in, uni_mode::in) is semidet.
acceptable_construct_mode(ModuleInfo, UniMode) :-
UniMode = ((InitInstX - InitInstY) -> (FinalInstX - FinalInstY)),
inst_is_free(ModuleInfo, InitInstX),
inst_is_ground(ModuleInfo, InitInstY),
inst_is_ground(ModuleInfo, FinalInstX),
inst_is_ground(ModuleInfo, FinalInstY).
:- pred occurs_once(bag(prog_var)::in, prog_var::in) is semidet.
occurs_once(Bag, Var) :-
bag.count_value(Bag, Var, 1).
%-----------------------------------------------------------------------------%
:- pred transform_variant_proc(module_info::in, list(int)::in,
proc_info::in, proc_info::out) is det.
transform_variant_proc(ModuleInfo, AddrOutArgPosns, ProcInfo,
!:VariantProcInfo) :-
!:VariantProcInfo = ProcInfo,
proc_info_get_varset(ProcInfo, VarSet0),
proc_info_get_vartypes(ProcInfo, VarTypes0),
proc_info_get_headvars(ProcInfo, HeadVars0),
proc_info_get_argmodes(ProcInfo, ArgModes0),
make_addr_vars(HeadVars0, ArgModes0, HeadVars, ArgModes,
AddrOutArgPosns, 1, ModuleInfo, VarToAddr,
VarSet0, VarSet, VarTypes0, VarTypes),
proc_info_set_headvars(HeadVars, !VariantProcInfo),
proc_info_set_argmodes(ArgModes, !VariantProcInfo),
proc_info_set_varset(VarSet, !VariantProcInfo),
proc_info_set_vartypes(VarTypes, !VariantProcInfo),
proc_info_get_initial_instmap(ProcInfo, ModuleInfo, InstMap0),
proc_info_get_goal(ProcInfo, Goal0),
transform_variant_goal(ModuleInfo, VarToAddr, InstMap0, Goal0, Goal, _),
proc_info_set_goal(Goal, !VariantProcInfo),
% We changed the scopes of the headvars we now return via pointers.
requantify_proc(!VariantProcInfo).
:- pred make_addr_vars(list(prog_var)::in, list(mer_mode)::in,
list(prog_var)::out, list(mer_mode)::out, list(int)::in,
int::in, module_info::in, assoc_list(prog_var)::out,
prog_varset::in, prog_varset::out, vartypes::in, vartypes::out) is det.
make_addr_vars([], [], [], [], AddrOutArgPosns, _, _, [],
!VarSet, !VarTypes) :-
expect(unify(AddrOutArgPosns, []), this_file,
"make_addr_vars: AddrOutArgPosns != []").
make_addr_vars([], [_ | _], _, _, _, _, _, _, !VarSet, !VarTypes) :-
unexpected(this_file, "make_addr_vars: mismatched lists").
make_addr_vars([_ | _], [], _, _, _, _, _, _, !VarSet, !VarTypes) :-
unexpected(this_file, "make_addr_vars: mismatched lists").
make_addr_vars([HeadVar0 | HeadVars0], [Mode0 | Modes0],
[HeadVar | HeadVars], [Mode | Modes], !.AddrOutArgPosns,
NextOutArgNum, ModuleInfo, VarToAddr, !VarSet, !VarTypes) :-
map.lookup(!.VarTypes, HeadVar0, HeadVarType),
mode_to_arg_mode(ModuleInfo, Mode0, HeadVarType, ArgMode),
(
ArgMode = top_in,
HeadVar = HeadVar0,
Mode = Mode0,
make_addr_vars(HeadVars0, Modes0, HeadVars, Modes, !.AddrOutArgPosns,
NextOutArgNum, ModuleInfo, VarToAddr, !VarSet, !VarTypes)
;
ArgMode = top_out,
( !.AddrOutArgPosns = [NextOutArgNum | !:AddrOutArgPosns] ->
varset.lookup_name(!.VarSet, HeadVar0, Name),
AddrName = "AddrOf" ++ Name,
svvarset.new_named_var(AddrName, AddrVar, !VarSet),
map.lookup(!.VarTypes, HeadVar0, OldType),
svmap.det_insert(AddrVar, make_ref_type(OldType), !VarTypes),
HeadVar = AddrVar,
Mode = in_mode,
make_addr_vars(HeadVars0, Modes0, HeadVars, Modes,
!.AddrOutArgPosns, NextOutArgNum + 1, ModuleInfo,
VarToAddrTail, !VarSet, !VarTypes),
VarToAddr = [HeadVar0 - AddrVar | VarToAddrTail]
;
HeadVar = HeadVar0,
Mode = Mode0,
make_addr_vars(HeadVars0, Modes0, HeadVars, Modes,
!.AddrOutArgPosns, NextOutArgNum + 1, ModuleInfo,
VarToAddr, !VarSet, !VarTypes)
)
;
ArgMode = top_unused,
unexpected(this_file, "make_addr_vars: top_unused")
).
:- pred transform_variant_goal(module_info::in, assoc_list(prog_var)::in,
instmap::in, hlds_goal::in, hlds_goal::out, bool::out) is det.
transform_variant_goal(ModuleInfo, VarToAddr, InstMap0, Goal0, Goal,
Changed) :-
Goal0 = hlds_goal(GoalExpr0, GoalInfo0),
(
GoalExpr0 = conj(ConjType, Goals0),
( ConjType = parallel_conj ->
unexpected(this_file, "transform_variant_goal: parallel_conj")
;
transform_variant_conj(ModuleInfo, VarToAddr, InstMap0,
Goals0, Goals, Changed),
GoalExpr = conj(ConjType, Goals)
)
;
GoalExpr0 = disj(Goals0),
list.map2(transform_variant_goal(ModuleInfo, VarToAddr, InstMap0),
Goals0, Goals, DisjsChanged),
Changed = bool.or_list(DisjsChanged),
GoalExpr = disj(Goals)
;
GoalExpr0 = switch(Var, CanFail, Cases0),
list.map2(transform_variant_case(ModuleInfo, VarToAddr, InstMap0),
Cases0, Cases, CasesChanged),
Changed = bool.or_list(CasesChanged),
GoalExpr = switch(Var, CanFail, Cases)
;
GoalExpr0 = if_then_else(Vars, Cond, Then0, Else0),
update_instmap(Cond, InstMap0, InstMap1),
transform_variant_goal(ModuleInfo, VarToAddr, InstMap1, Then0, Then,
ThenChanged),
transform_variant_goal(ModuleInfo, VarToAddr, InstMap0, Else0, Else,
ElseChanged),
Changed = bool.or(ThenChanged, ElseChanged),
GoalExpr = if_then_else(Vars, Cond, Then, Else)
;
GoalExpr0 = scope(Reason, SubGoal0),
transform_variant_goal(ModuleInfo, VarToAddr, InstMap0,
SubGoal0, SubGoal, Changed),
GoalExpr = scope(Reason, SubGoal)
;
GoalExpr0 = negation(_),
GoalExpr = GoalExpr0,
Changed = no
;
GoalExpr0 = generic_call(_, _, _, _),
transform_variant_atomic_goal(ModuleInfo, VarToAddr, InstMap0,
GoalInfo0, GoalExpr0, GoalExpr, Changed)
;
GoalExpr0 = plain_call(_, _, _, _, _, _),
% XXX We could handle recursive calls better.
transform_variant_atomic_goal(ModuleInfo, VarToAddr, InstMap0,
GoalInfo0, GoalExpr0, GoalExpr, Changed)
;
GoalExpr0 = unify(_, _, _, _, _),
transform_variant_atomic_goal(ModuleInfo, VarToAddr, InstMap0,
GoalInfo0, GoalExpr0, GoalExpr, Changed)
;
GoalExpr0 = call_foreign_proc(_, _, _, _, _, _, _),
transform_variant_atomic_goal(ModuleInfo, VarToAddr, InstMap0,
GoalInfo0, GoalExpr0, GoalExpr, Changed)
;
GoalExpr0 = shorthand(_),
unexpected(this_file, "transform_variant_goal: shorthand")
),
(
Changed = yes,
goal_info_set_purity(purity_impure, GoalInfo0, GoalInfo),
Goal = hlds_goal(GoalExpr, GoalInfo)
;
Changed = no,
Goal = Goal0
).
:- pred transform_variant_conj(module_info::in, assoc_list(prog_var)::in,
instmap::in, list(hlds_goal)::in, list(hlds_goal)::out, bool::out) is det.
transform_variant_conj(_, _, _, [], [], no).
transform_variant_conj(ModuleInfo, VarToAddr, InstMap0, [Goal0 | Goals0],
Conj, Changed) :-
transform_variant_goal(ModuleInfo, VarToAddr, InstMap0, Goal0, Goal,
HeadChanged),
update_instmap(Goal0, InstMap0, InstMap1),
transform_variant_conj(ModuleInfo, VarToAddr, InstMap1, Goals0, Goals,
TailChanged),
Changed = bool.or(HeadChanged, TailChanged),
( Goal = hlds_goal(conj(plain_conj, SubConj), _) ->
Conj = SubConj ++ Goals
;
Conj = [Goal | Goals]
).
:- pred transform_variant_case(module_info::in, assoc_list(prog_var)::in,
instmap::in, case::in, case::out, bool::out) is det.
transform_variant_case(ModuleInfo, VarToAddr, InstMap0,
case(ConsId, Goal0), case(ConsId, Goal), Changed) :-
transform_variant_goal(ModuleInfo, VarToAddr, InstMap0, Goal0, Goal,
Changed).
:- pred transform_variant_atomic_goal(module_info::in,
assoc_list(prog_var)::in, instmap::in, hlds_goal_info::in,
hlds_goal_expr::in, hlds_goal_expr::out, bool::out) is det.
transform_variant_atomic_goal(ModuleInfo, VarToAddr, InstMap0, GoalInfo,
GoalExpr0, GoalExpr, Changed) :-
update_instmap(hlds_goal(GoalExpr0, GoalInfo), InstMap0, InstMap1),
list.filter(is_grounding(ModuleInfo, InstMap0, InstMap1), VarToAddr,
GroundingVarToAddr),
(
GroundingVarToAddr = [],
GoalExpr = GoalExpr0,
Changed = no
;
GroundingVarToAddr = [_ | _],
list.map(make_store_goal(ModuleInfo), GroundingVarToAddr, StoreGoals),
GoalExpr = conj(plain_conj,
[hlds_goal(GoalExpr0, GoalInfo) | StoreGoals]),
Changed = yes
).
:- pred is_grounding(module_info::in, instmap::in, instmap::in,
pair(prog_var)::in) is semidet.
is_grounding(ModuleInfo, InstMap0, InstMap, Var - _AddrVar) :-
instmap.lookup_var(InstMap0, Var, Inst0),
not inst_is_ground(ModuleInfo, Inst0),
instmap.lookup_var(InstMap, Var, Inst),
inst_is_ground(ModuleInfo, Inst).
:- pred make_store_goal(module_info::in, pair(prog_var)::in,
hlds_goal::out) is det.
make_store_goal(ModuleInfo, Var - AddrVar, Goal) :-
generate_simple_call(mercury_private_builtin_module, "store_at_ref",
pf_predicate, only_mode, detism_det, purity_pure, [AddrVar, Var],
[], [], ModuleInfo, term.context_init, Goal0),
%
% XXX the following hack is used to stop simplify from trying to
% optimise the introduced call away. store_at_ref/2 should
% really be declared to be impure.
%
Goal0 = hlds_goal(GoalExpr, GoalInfo0),
goal_info_set_purity(purity_impure, GoalInfo0, GoalInfo),
Goal = hlds_goal(GoalExpr, GoalInfo).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "lco.m".
%-----------------------------------------------------------------------------%
:- end_module lco.
%-----------------------------------------------------------------------------%