Files
mercury/compiler/inlining.m
Zoltan Somogyi b56885be93 Fix a bug that caused bootchecks with --optimize-constructor-last-call to fail.
Estimated hours taken: 12
Branches: main

Fix a bug that caused bootchecks with --optimize-constructor-last-call to fail.

The problem was not in lco.m, but in follow_code.m. In some cases,
(specifically, the LCMC version of insert_2 in sparse_bitset.m),
follow_code.m moved an impure goal (store_at_ref) into the arms of an
if-then-else without marking those arms, or the if-then-else, as impure.
The next pass, simplify, then deleted the entire if-then-else, since it
had no outputs. (The store_at_ref that originally appeared after the
if-then-else was the only consumer of its only output.)

The fix is to get follow_code.m to make branched control structures such as
if-then-elses, as well as their arms, semipure or impure if a goal being moved
into them is semipure or impure, or if they came from an semipure or impure
conjunction.

Improve the optimization of the LCMC version of sparse_bitset.insert_2, which
had a foreign_proc invocation of bits_per_int in it: replace such invocations
with a unification of the bits_per_int constant if not cross compiling.

Add a new option, --optimize-constructor-last-call-null. When set, LCMC will
assign NULLs to the fields not yet filled in, to avoid any junk happens to be
there from being followed by the garbage collector's mark phase.

This diff also makes several other changes that helped me to track down
the bug above.

compiler/follow_code.m:
	Make the fix described above.

	Delete all the provisions for --prev-code; it won't be implemented.

	Don't export a predicate that is not now used anywhere else.

compiler/simplify.m:
	Make the optimization described above.

compiler/lco.m:
	Make sure that the LCMC specialized procedure is a predicate, not a
	function: having a function with the mode LCMC_insert_2(in, in) = in
	looks wrong.

	To avoid name collisions when a function and a predicate with the same
	name and arity have LCMC applied to them, include the predicate vs
	function status of the original procedure included in the name of the
	new procedure.

	Update the sym_name of calls to LCMC variants, not just the pred_id,
	because without that, the HLDS dump looks misleading.

compiler/pred_table.m:
	Don't have optimizations like LCMC insert new predicates at the front
	of the list of predicates. Maintain the list of predicates in the
	module as a two part list, to allow efficient addition of new pred_ids
	at the (logical) end without using O(N^2) algorithms. Having predicates
	in chronological order makes it easier to look at HLDS dumps and
	.c files.

compiler/hlds_module.m:
	Make module_info_predids return a module_info that is physically
	updated though logically unchanged.

compiler/options.m:
	Add --optimize-constructor-last-call-null.

	Make the options --dump-hlds-pred-id, --debug-opt-pred-id and
	--debug-opt-pred-name into accumulating options, to allow the user
	to specify more than one predicate to be dumped (e.g. insert_2 and
	its LCMC variant).

	Delete --prev-code.

doc/user_guide.texi:
	Document the changes in options.m.

compiler/code_info.m:
	Record the value of --optimize-constructor-last-call-null in the
	code_info, to avoid lookup at every cell construction.

compiler/unify_gen.m:
compiler/var_locn.m:
	When deciding whether a cell can be static or not, make sure that
	we never make static a cell that has some fields initialized with
	dummy zeros, to be filled in for real later.

compiler/hlds_out.m:
	For goals that are semipure or impure, note this fact. This info was
	lost when I changed the representation of impurity from markers to a
	field.

mdbcomp/prim_data.m:
	Rename some ambiguous function symbols.

compiler/intermod.m:
compiler/trans_opt.m:
	Rename the main predicates (and some function symbols) of these modules
	to avoid ambiguity and to make them more expressive.

compiler/llds.m:
	Don't print line numbers for foreign_code fragments if the user has
	specified --no-line-numbers.

compiler/make.dependencies.m:
compiler/mercury_to_mercury.m:
compiler/recompilation.usage.m:
	Don't use io.write to write out information to files we may need to
	parse again, because this is vulnerable to changes to the names of
	function symbols (e.g. the one to mdbcomp/prim_data.m).

	The compiler still contains some uses of io.write, but they are
	for debugging. I added an item to the todo list of the one exception,
	ilasm.m.

compiler/recompilation.m:
	Rename a misleading function symbol name.

compiler/parse_tree.m:
	Don't import recompilation.m here. It is not needed (all the components
	of parse_tree that need recompilation.m already import it themselves),
	and deleting the import avoids recompiling almost everything when
	recompilation.m changes.

compiler/*.m:
	Conform to the changes above.

compiler/*.m:
browser/*.m:
slice/*.m:
	Conform to the change to mdbcomp.

library/sparse_bitset.m:
	Use some better variable names.
2007-01-19 07:05:06 +00:00

1038 lines
40 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2007 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: inlining.m.
% Main author: conway.
%
% This module inlines
%
% * (--inline-simple and --inline-simple-threshold N)
% procedures whose size is below the given threshold,
% PLUS
% procedures that are flat (i.e. contain no branched structures)
% and are composed of inline builtins (eg arithmetic),
% and whose size is less than three times the given threshold
% (XXX shouldn't hard-code 3)
%
% * (--inline-compound-threshold N)
% procedures where the product of the number of calls to them
% and their size is below a given threshold.
%
% * (--inline-single-use)
% procedures which are called only once
%
% * procedures which have a `:- pragma inline(name/arity).'
%
% It will not inline procedures which have a `:- pragma no_inline(name/arity).'
%
% If inlining a procedure takes the total number of variables over a given
% threshold (from a command-line option), then the procedure is not inlined
% - note that this means that some calls to a procedure may inlined while
% others are not.
%
% It builds the call-graph (if necessary) works from the bottom of the
% call-graph towards the top, first performing inlining on a procedure,
% then deciding if calls to it (higher in the call-graph) should be inlined.
% SCCs get flattened and processed in the order returned by
% hlds_dependency_info_get_dependency_ordering.
%
% There are a couple of classes of procedure that we clearly want to inline
% because doing so *reduces* the size of the generated code:
%
% - access predicates that get or set one or more fields of a structure
% (Inlining these is almost always a win because the infrastructure for the
% call to the procedure is almost always larger than the code to do the
% access. In the case of `get' accessors, the call usually becomes a single
% `field' expression to get the relevant field of the structure. In the case
% of `set' accessors, it is a bit more complicated since the code to copy
% the fields can be quite big if there are lots of fields, however in the
% case where several `set' accessors get called one after the other,
% inlining them enables the code generator to avoid creating the intermediate
% structures which is often a win).
%
% - arithmetic predicates where as above, the cost of the call will often
% outweigh the cost of the arithmetic.
%
% - det or semi pragma C code, where often the C operation is very small,
% inlining avoids a call and allows the C compiler to do a better job of
% optimizing it.
%
% The threshold on the size of simple goals (which covers both of the first
% two cases above), is to prevent the inlining of large goals such as those
% that construct big terms where the duplication is usually inappropriate
% (for example in nrev).
%
% The threshold on the number of variables in a procedure is to prevent the
% problem of inlining lots of calls and having a resulting procedure with so
% many variables that the back end of the compiler gets bogged down (for
% example in the pseudoknot benchmark).
%
% Due to the way in which we generate code for model_non pragma_foreign_code,
% procedures whose body is such a pragma_foreign_code must NOT be inlined.
%
%-----------------------------------------------------------------------------%
:- module transform_hlds.inlining.
:- interface.
:- import_module hlds.hlds_clauses.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module hlds.hlds_rtti.
:- import_module parse_tree.prog_data.
:- import_module bool.
:- import_module list.
:- import_module map.
%-----------------------------------------------------------------------------%
:- pred inlining(module_info::in, module_info::out) is det.
% This heuristic is used for both local and intermodule inlining.
%
:- pred is_simple_clause_list(list(clause)::in, int::in) is semidet.
:- pred is_simple_goal(hlds_goal::in, int::in) is semidet.
% do_inline_call(UnivQVars, Args, CalledPredInfo, CalledProcInfo,
% !VarSet, !VarTypes, !TVarSet, !RttiVarMaps):
%
% Given the universally quantified type variables in the caller's type,
% the arguments to the call, the pred_info and proc_info for the called
% goal and various information about the variables and types in the
% procedure currently being analysed, rename the goal for the called
% procedure so that it can be inlined.
%
:- pred do_inline_call(list(tvar)::in, list(prog_var)::in,
pred_info::in, proc_info::in, prog_varset::in, prog_varset::out,
vartypes::in, vartypes::out, tvarset::in, tvarset::out,
rtti_varmaps::in, rtti_varmaps::out, hlds_goal::out) is det.
% get_type_substitution(CalleeArgTypes, CallerArgTypes,
% HeadTypeParams, CalleeExistQTVars, TypeSubn):
%
% Work out a type substitution to map the callee's argument types
% into the caller's.
%
:- pred get_type_substitution(list(mer_type)::in, list(mer_type)::in,
head_type_params::in, list(tvar)::in, map(tvar, mer_type)::out) is det.
% rename_goal(CalledProcHeadVars, CallArgs,
% CallerVarSet0, CalleeVarSet, CallerVarSet,
% CallerVarTypes0, CalleeVarTypes, CallerVarTypes,
% VarRenaming, CalledGoal, RenamedGoal).
%
:- pred rename_goal(list(prog_var)::in, list(prog_var)::in,
prog_varset::in, prog_varset::in, prog_varset::out,
vartypes::in, vartypes::in, vartypes::out,
map(prog_var, prog_var)::out, hlds_goal::in, hlds_goal::out) is det.
% can_inline_proc(PredId, ProcId, BuiltinState,
% InlinePromisedPure, CallingPredMarkers, ModuleInfo):
%
% Determine whether a predicate can be inlined.
%
:- pred can_inline_proc(pred_id::in, proc_id::in, builtin_state::in,
bool::in, pred_markers::in, module_info::in) is semidet.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds.det_analysis.
:- import_module check_hlds.mode_util.
:- import_module check_hlds.purity.
:- import_module hlds.goal_util.
:- import_module hlds.passes_aux.
:- import_module hlds.quantification.
:- import_module libs.compiler_util.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module libs.trace_params.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_type.
:- import_module parse_tree.prog_type_subst.
:- import_module transform_hlds.complexity.
:- import_module transform_hlds.dead_proc_elim.
:- import_module transform_hlds.dependency_graph.
:- import_module bool.
:- import_module int.
:- import_module list.
:- import_module maybe.
:- import_module pair.
:- import_module set.
:- import_module svset.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
% This structure holds option values, extracted from the globals.
%
:- type inline_params
---> params(
simple :: bool,
single_use :: bool,
call_cost :: int,
compound_size_threshold :: int,
simple_goal_threshold :: int,
var_threshold :: int,
highlevel_code :: bool,
any_tracing :: bool
% Is any procedure being traced
% in the module?
).
inlining(!ModuleInfo) :-
% Package up all the inlining options
% - whether to inline simple conj's of builtins
% - whether to inline predicates that are only called once
% - the threshold for determining whether to inline more complicated goals
% - the threshold for determining whether to inline the simple conj's
% - the upper limit on the number of variables we want in procedures;
% if inlining a procedure would cause the number of variables to exceed
% this threshold then we don't inline it.
% - whether we're in an MLDS grade
module_info_get_globals(!.ModuleInfo, Globals),
globals.lookup_bool_option(Globals, inline_simple, Simple),
globals.lookup_bool_option(Globals, inline_single_use, SingleUse),
globals.lookup_int_option(Globals, inline_call_cost, CallCost),
globals.lookup_int_option(Globals, inline_compound_threshold,
CompoundThreshold),
globals.lookup_int_option(Globals, inline_simple_threshold,
SimpleThreshold),
globals.lookup_int_option(Globals, inline_vars_threshold, VarThreshold),
globals.lookup_bool_option(Globals, highlevel_code, HighLevelCode),
globals.get_trace_level(Globals, TraceLevel),
AnyTracing = bool.not(given_trace_level_is_none(TraceLevel)),
Params = params(Simple, SingleUse, CallCost, CompoundThreshold,
SimpleThreshold, VarThreshold, HighLevelCode, AnyTracing),
%
% Get the usage counts for predicates
% (but only if needed, i.e. only if --inline-single-use
% or --inline-compound-threshold has been specified)
%
(
( SingleUse = yes
; CompoundThreshold > 0
)
->
dead_proc_analyze(!ModuleInfo, NeededMap)
;
map.init(NeededMap)
),
%
% Build the call graph and extract the topological sort.
% NOTE: the topological sort returns a list of SCCs. Clearly, we want to
% process the SCCs bottom to top (which is the order that they are
% returned), but it is not easy to guess the best way to flatten each SCC
% to achieve the best result. The current implementation just uses the
% ordering of the list returned by the topological sort. A more
% sophisticated approach would be to break the cycle so that
% the procedure(s) that are called by higher SCCs are processed last,
% but we do not implement that yet.
%
module_info_ensure_dependency_info(!ModuleInfo),
module_info_dependency_info(!.ModuleInfo, DepInfo),
hlds_dependency_info_get_dependency_ordering(DepInfo, SCCs),
list.condense(SCCs, PredProcs),
set.init(InlinedProcs0),
do_inlining(PredProcs, NeededMap, Params, InlinedProcs0, !ModuleInfo),
% The dependency graph is now out of date and needs to be rebuilt.
module_info_clobber_dependency_info(!ModuleInfo).
:- pred do_inlining(list(pred_proc_id)::in, needed_map::in,
inline_params::in, set(pred_proc_id)::in,
module_info::in, module_info::out) is det.
do_inlining([], _Needed, _Params, _Inlined, !Module).
do_inlining([PPId | PPIds], Needed, Params, !.Inlined, !Module) :-
in_predproc(PPId, !.Inlined, Params, !Module),
mark_predproc(PPId, Needed, Params, !.Module, !Inlined),
do_inlining(PPIds, Needed, Params, !.Inlined, !Module).
% This predicate effectively adds implicit `pragma inline' directives
% for procedures that match its heuristic.
%
:- pred mark_predproc(pred_proc_id::in, needed_map::in,
inline_params::in, module_info::in,
set(pred_proc_id)::in, set(pred_proc_id)::out) is det.
mark_predproc(PredProcId, NeededMap, Params, ModuleInfo, !InlinedProcs) :-
(
Simple = Params ^ simple,
SingleUse = Params ^ single_use,
CallCost = Params ^ call_cost,
CompoundThreshold = Params ^ compound_size_threshold,
SimpleThreshold = Params ^ simple_goal_threshold,
PredProcId = proc(PredId, ProcId),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_get_procedures(PredInfo, Procs),
map.lookup(Procs, ProcId, ProcInfo),
proc_info_get_goal(ProcInfo, CalledGoal),
Entity = proc(PredId, ProcId),
% The heuristic represented by the following code could be improved.
(
Simple = yes,
is_simple_goal(CalledGoal, SimpleThreshold)
;
CompoundThreshold > 0,
map.search(NeededMap, Entity, Needed),
Needed = yes(NumUses),
goal_size(CalledGoal, Size),
% The size increase due to inlining at a call site is not Size,
% but the difference between Size and the size of the call.
% CallCost is the user-provided approximation of the size of the
% call.
(Size - CallCost) * NumUses =< CompoundThreshold
;
SingleUse = yes,
map.search(NeededMap, Entity, Needed),
Needed = yes(NumUses),
NumUses = 1
),
% Don't inline recursive predicates (unless explicitly requested).
\+ goal_calls(CalledGoal, PredProcId)
->
mark_proc_as_inlined(PredProcId, ModuleInfo, !InlinedProcs)
;
true
).
is_simple_clause_list(Clauses, SimpleThreshold) :-
clause_list_size(Clauses, Size),
(
Size < SimpleThreshold
;
Clauses = [clause(_, Goal, _, _)],
Size < SimpleThreshold * 3,
%
% For flat goals, we are more likely to be able to optimize stuff away,
% so we use a higher threshold.
% XXX This should be a separate option, we shouldn't hardcode
% the number `3' (which is just a guess).
%
is_flat_simple_goal(Goal)
).
is_simple_goal(CalledGoal, SimpleThreshold) :-
goal_size(CalledGoal, Size),
(
Size < SimpleThreshold
;
%
% For flat goals, we are more likely to be able to optimize stuff away,
% so we use a higher threshold.
% XXX this should be a separate option, we shouldn't hardcode
% the number `3' (which is just a guess).
%
Size < SimpleThreshold * 3,
is_flat_simple_goal(CalledGoal)
).
:- pred is_flat_simple_goal(hlds_goal::in) is semidet.
is_flat_simple_goal(hlds_goal(GoalExpr, _)) :-
(
GoalExpr = conj(plain_conj, Goals),
is_flat_simple_goal_list(Goals)
;
GoalExpr = negation(Goal),
is_flat_simple_goal(Goal)
;
GoalExpr = scope(_, Goal),
is_flat_simple_goal(Goal)
;
GoalExpr = plain_call(_, _, _, inline_builtin, _, _)
;
GoalExpr = unify(_, _, _, _, _)
).
:- pred is_flat_simple_goal_list(hlds_goals::in) is semidet.
is_flat_simple_goal_list([]).
is_flat_simple_goal_list([Goal | Goals]) :-
is_flat_simple_goal(Goal),
is_flat_simple_goal_list(Goals).
:- pred mark_proc_as_inlined(pred_proc_id::in, module_info::in,
set(pred_proc_id)::in, set(pred_proc_id)::out) is det.
mark_proc_as_inlined(proc(PredId, ProcId), ModuleInfo, !InlinedProcs) :-
svset.insert(proc(PredId, ProcId), !InlinedProcs),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
( pred_info_requested_inlining(PredInfo) ->
true
;
trace [io(!IO)] (
write_proc_progress_message("% Inlining ", PredId, ProcId,
ModuleInfo, !IO)
)
).
%-----------------------------------------------------------------------------%
% inline_info contains the information that is changed as a result
% of inlining. It is threaded through the inlining process, and when
% finished, contains the updated information associated with the new
% goal.
%
% It also stores some necessary information that is not updated.
%
:- type inline_info
---> inline_info(
i_var_threshold :: int,
% variable threshold for inlining
i_highlevel_code :: bool,
% highlevel_code option
i_exec_trace :: bool,
% is executing tracing enabled
i_inlined_procs :: set(pred_proc_id),
i_module_info :: module_info,
i_univ_caller_tvars :: list(tvar),
% Universally quantified type vars
% occurring in the argument types
% for this predicate (the caller,
% not the callee). These are the
% ones that must not be bound.
i_pred_markers :: pred_markers,
% markers for the current predicate
% All the following fields are updated as a result of inlining.
i_prog_varset :: prog_varset,
i_vartypes :: vartypes,
i_tvarset :: tvarset,
i_rtti_varmaps :: rtti_varmaps,
% information about locations of
% type_infos and typeclass_infos
i_done_any_inlining :: bool,
% Did we do any inlining in the proc?
i_inlined_parallel :: bool,
% Did we inline any procs for which
% proc_info_get_has_parallel_conj returns
% `yes'?
i_need_requant :: bool,
% Does the goal need to be requantified?
i_changed_detism :: bool,
% Did we change the determinism
% of any subgoal?
i_changed_purity :: bool
% Did we change the purity of
% any subgoal.
).
:- pred in_predproc(pred_proc_id::in, set(pred_proc_id)::in, inline_params::in,
module_info::in, module_info::out) is det.
in_predproc(PredProcId, InlinedProcs, Params, !ModuleInfo) :-
VarThresh = Params ^ var_threshold,
HighLevelCode = Params ^ highlevel_code,
AnyTracing = Params ^ any_tracing,
PredProcId = proc(PredId, ProcId),
some [!PredInfo, !ProcInfo] (
module_info_preds(!.ModuleInfo, PredTable0),
map.lookup(PredTable0, PredId, !:PredInfo),
pred_info_get_procedures(!.PredInfo, ProcTable0),
map.lookup(ProcTable0, ProcId, !:ProcInfo),
pred_info_get_univ_quant_tvars(!.PredInfo, UnivQTVars),
pred_info_get_typevarset(!.PredInfo, TypeVarSet0),
pred_info_get_markers(!.PredInfo, Markers0),
proc_info_get_goal(!.ProcInfo, Goal0),
proc_info_get_varset(!.ProcInfo, VarSet0),
proc_info_get_vartypes(!.ProcInfo, VarTypes0),
proc_info_get_rtti_varmaps(!.ProcInfo, RttiVarMaps0),
DidInlining0 = no,
InlinedParallel0 = no,
Requantify0 = no,
DetChanged0 = no,
PurityChanged0 = no,
InlineInfo0 = inline_info(VarThresh, HighLevelCode, AnyTracing,
InlinedProcs, !.ModuleInfo, UnivQTVars, Markers0,
VarSet0, VarTypes0, TypeVarSet0, RttiVarMaps0,
DidInlining0, InlinedParallel0, Requantify0, DetChanged0,
PurityChanged0),
inlining_in_goal(Goal0, Goal, InlineInfo0, InlineInfo),
InlineInfo = inline_info(_, _, _, _, _, _, Markers, VarSet, VarTypes,
TypeVarSet, RttiVarMaps, DidInlining, InlinedParallel, Requantify,
DetChanged, PurityChanged),
pred_info_set_markers(Markers, !PredInfo),
pred_info_set_typevarset(TypeVarSet, !PredInfo),
proc_info_set_varset(VarSet, !ProcInfo),
proc_info_set_vartypes(VarTypes, !ProcInfo),
proc_info_set_rtti_varmaps(RttiVarMaps, !ProcInfo),
proc_info_set_goal(Goal, !ProcInfo),
(
InlinedParallel = yes,
proc_info_set_has_parallel_conj(yes, !ProcInfo)
;
InlinedParallel = no
),
(
Requantify = yes,
requantify_proc(!ProcInfo)
;
Requantify = no
),
(
DidInlining = yes,
recompute_instmap_delta_proc(yes, !ProcInfo, !ModuleInfo)
;
DidInlining = no
),
map.det_update(ProcTable0, ProcId, !.ProcInfo, ProcTable),
pred_info_set_procedures(ProcTable, !PredInfo),
(
PurityChanged = yes,
repuritycheck_proc(!.ModuleInfo, PredProcId, !PredInfo)
;
PurityChanged = no
),
map.det_update(PredTable0, PredId, !.PredInfo, PredTable),
module_info_set_preds(PredTable, !ModuleInfo)
),
% If the determinism of some sub-goals has changed, then we re-run
% determinism analysis, because propagating the determinism information
% through the procedure may lead to more efficient code.
(
DetChanged = yes,
det_infer_proc(PredId, ProcId, !ModuleInfo, _, _, _)
;
DetChanged = no
).
%-----------------------------------------------------------------------------%
:- pred inlining_in_goal(hlds_goal::in, hlds_goal::out,
inline_info::in, inline_info::out) is det.
inlining_in_goal(hlds_goal(GoalExpr0, GoalInfo0),
hlds_goal(GoalExpr, GoalInfo), !Info) :-
(
GoalExpr0 = conj(ConjType, Goals0),
(
ConjType = plain_conj,
inlining_in_conj(Goals0, Goals, !Info)
;
ConjType = parallel_conj,
inlining_in_par_conj(Goals0, Goals, !Info)
),
GoalExpr = conj(ConjType, Goals),
GoalInfo = GoalInfo0
;
GoalExpr0 = disj(Goals0),
inlining_in_goals(Goals0, Goals, !Info),
GoalExpr = disj(Goals),
GoalInfo = GoalInfo0
;
GoalExpr0 = switch(Var, Det, Cases0),
inlining_in_cases(Cases0, Cases, !Info),
GoalExpr = switch(Var, Det, Cases),
GoalInfo = GoalInfo0
;
GoalExpr0 = if_then_else(Vars, Cond0, Then0, Else0),
inlining_in_goal(Cond0, Cond, !Info),
inlining_in_goal(Then0, Then, !Info),
inlining_in_goal(Else0, Else, !Info),
GoalExpr = if_then_else(Vars, Cond, Then, Else),
GoalInfo = GoalInfo0
;
GoalExpr0 = negation(SubGoal0),
inlining_in_goal(SubGoal0, SubGoal, !Info),
GoalExpr = negation(SubGoal),
GoalInfo = GoalInfo0
;
GoalExpr0 = scope(Reason, SubGoal0),
inlining_in_goal(SubGoal0, SubGoal, !Info),
GoalExpr = scope(Reason, SubGoal),
GoalInfo = GoalInfo0
;
( GoalExpr0 = generic_call(_, _, _, _)
; GoalExpr0 = unify(_, _, _, _, _)
; GoalExpr0 = call_foreign_proc(_, _, _, _, _, _, _)
),
GoalExpr = GoalExpr0,
GoalInfo = GoalInfo0
;
GoalExpr0 = shorthand(_),
% These should have been expanded out by now.
unexpected(this_file, "inlining_in_goal: unexpected shorthand")
;
GoalExpr0 = plain_call(PredId, ProcId, ArgVars, Builtin, Context, Sym),
inlining_in_call(PredId, ProcId, ArgVars, Builtin,
Context, Sym, GoalExpr, GoalInfo0, GoalInfo, !Info)
).
:- pred inlining_in_call(pred_id::in, proc_id::in,
list(prog_var)::in, builtin_state::in, maybe(call_unify_context)::in,
sym_name::in, hlds_goal_expr::out,
hlds_goal_info::in, hlds_goal_info::out,
inline_info::in, inline_info::out) is det.
inlining_in_call(PredId, ProcId, ArgVars, Builtin,
Context, Sym, GoalExpr, GoalInfo0, GoalInfo, !Info) :-
!.Info = inline_info(VarThresh, HighLevelCode, AnyTracing,
InlinedProcs, ModuleInfo, HeadTypeParams, Markers,
VarSet0, VarTypes0, TypeVarSet0, RttiVarMaps0, _DidInlining0,
InlinedParallel0, Requantify0, DetChanged0, PurityChanged0),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, PredInfo, ProcInfo),
% Should we inline this call?
(
should_inline_proc(PredId, ProcId, Builtin, HighLevelCode,
AnyTracing, InlinedProcs, Markers, ModuleInfo, UserReq),
(
UserReq = yes
;
UserReq = no,
% Okay, but will we exceed the number-of-variables threshold?
varset.vars(VarSet0, ListOfVars),
list.length(ListOfVars, ThisMany),
% We need to find out how many variables the Callee has.
proc_info_get_varset(ProcInfo, CalleeVarSet),
varset.vars(CalleeVarSet, CalleeListOfVars),
list.length(CalleeListOfVars, CalleeThisMany),
TotalVars = ThisMany + CalleeThisMany,
TotalVars =< VarThresh
)
->
do_inline_call(HeadTypeParams, ArgVars, PredInfo, ProcInfo,
VarSet0, VarSet, VarTypes0, VarTypes, TypeVarSet0, TypeVarSet,
RttiVarMaps0, RttiVarMaps, hlds_goal(GoalExpr, GoalInfo)),
% If some of the output variables are not used in the calling
% procedure, requantify the procedure.
goal_info_get_nonlocals(GoalInfo0, NonLocals),
( set.list_to_set(ArgVars) = NonLocals ->
Requantify = Requantify0
;
Requantify = yes
),
(
goal_info_get_purity(GoalInfo0, Purity),
goal_info_get_purity(GoalInfo, Purity)
->
PurityChanged = PurityChanged0
;
PurityChanged = yes
),
% If the inferred determinism of the called goal differs from the
% declared determinism, flag that we should re-run determinism analysis
% on this proc.
goal_info_get_determinism(GoalInfo0, Determinism0),
goal_info_get_determinism(GoalInfo, Determinism),
DidInlining = yes,
( Determinism0 = Determinism ->
DetChanged = DetChanged0
;
DetChanged = yes
),
proc_info_get_has_parallel_conj(ProcInfo, HasParallelConj),
(
HasParallelConj = yes,
InlinedParallel = yes
;
HasParallelConj = no,
InlinedParallel = InlinedParallel0
),
!:Info = inline_info(VarThresh, HighLevelCode, AnyTracing,
InlinedProcs, ModuleInfo, HeadTypeParams, Markers,
VarSet, VarTypes, TypeVarSet, RttiVarMaps, DidInlining,
InlinedParallel, Requantify, DetChanged, PurityChanged)
;
GoalExpr = plain_call(PredId, ProcId, ArgVars, Builtin, Context, Sym),
GoalInfo = GoalInfo0
).
%-----------------------------------------------------------------------------%
do_inline_call(HeadTypeParams, ArgVars, PredInfo, ProcInfo,
VarSet0, VarSet, VarTypes0, VarTypes, TypeVarSet0, TypeVarSet,
RttiVarMaps0, RttiVarMaps, Goal) :-
proc_info_get_goal(ProcInfo, CalledGoal),
% Look up the rest of the info for the called procedure.
pred_info_get_typevarset(PredInfo, CalleeTypeVarSet),
proc_info_get_headvars(ProcInfo, HeadVars),
proc_info_get_vartypes(ProcInfo, CalleeVarTypes0),
proc_info_get_varset(ProcInfo, CalleeVarSet),
proc_info_get_rtti_varmaps(ProcInfo, CalleeRttiVarMaps0),
% Substitute the appropriate types into the type mapping of the called
% procedure. For example, if we call `:- pred foo(T)' with an argument
% of type `int', then we need to replace all occurrences of type `T'
% with type `int' when we inline it. Conversely, in the case of
% existentially typed preds, we may need to bind type variables in the
% caller. For example, if we call `:- pred some [T] foo(T)', and the
% definition of `foo' binds `T' to `int', then we need to replace all
% occurrences of type `T' with type `int' in the caller.
% First, rename apart the type variables in the callee. (We can almost
% throw away the new typevarset, since we are about to substitute away
% any new type variables, but any unbound type variables in the callee
% will not be substituted away)
tvarset_merge_renaming(TypeVarSet0, CalleeTypeVarSet, TypeVarSet,
TypeRenaming),
apply_variable_renaming_to_vartypes(TypeRenaming,
CalleeVarTypes0, CalleeVarTypes1),
% Next, compute the type substitution and then apply it.
% Note: there's no need to update the type_info locations maps,
% either for the caller or callee, since for any type vars in the
% callee which get bound to type vars in the caller, the type_info
% location will be given by the entry in the caller's
% type_info locations map (and vice versa). It doesn't matter if the
% final type_info locations map contains some entries
% for type variables which have been substituted away,
% because those entries simply won't be used.
map.apply_to_list(HeadVars, CalleeVarTypes1, HeadTypes),
map.apply_to_list(ArgVars, VarTypes0, ArgTypes),
pred_info_get_exist_quant_tvars(PredInfo, CalleeExistQVars),
get_type_substitution(HeadTypes, ArgTypes, HeadTypeParams,
CalleeExistQVars, TypeSubn),
% Handle the common case of non-existentially typed preds specially,
% since we can do things more efficiently in that case
(
CalleeExistQVars = [],
% Update types in callee only.
apply_rec_subst_to_vartypes(TypeSubn, CalleeVarTypes1, CalleeVarTypes),
VarTypes1 = VarTypes0
;
CalleeExistQVars = [_ | _],
% Update types in callee.
apply_rec_subst_to_vartypes(TypeSubn, CalleeVarTypes1, CalleeVarTypes),
% Update types in caller.
apply_rec_subst_to_vartypes(TypeSubn, VarTypes0, VarTypes1)
),
% Now rename apart the variables in the called goal.
rename_goal(HeadVars, ArgVars, VarSet0, CalleeVarSet, VarSet, VarTypes1,
CalleeVarTypes, VarTypes, Subn, CalledGoal, Goal),
apply_substitutions_to_rtti_varmaps(TypeRenaming, TypeSubn, Subn,
CalleeRttiVarMaps0, CalleeRttiVarMaps1),
% Prefer the type_info_locn from the caller.
% The type_infos or typeclass_infos passed to the callee may
% have been produced by extracting type_infos or typeclass_infos
% from typeclass_infos in the caller, so they won't necessarily
% be the same.
rtti_varmaps_overlay(CalleeRttiVarMaps1, RttiVarMaps0, RttiVarMaps).
get_type_substitution(HeadTypes, ArgTypes,
HeadTypeParams, CalleeExistQVars, TypeSubn) :-
(
CalleeExistQVars = [],
( type_list_subsumes(HeadTypes, ArgTypes, TypeSubn0) ->
TypeSubn = TypeSubn0
;
% The head types should always be unifiable with the actual
% argument types, otherwise it is a type error that should have
% been detected by typechecking. But polymorphism.m introduces
% type-incorrect code -- e.g. compare(Res, EnumA, EnumB) gets
% converted into builtin_compare_int(Res, EnumA, EnumB), which
% is a type error since it assumes that an enumeration is an int.
% In those cases, we don't need to worry about the type
% substitution. (Perhaps it would be better if polymorphism
% introduced calls to unsafe_type_cast/2 for such cases.)
map.init(TypeSubn)
)
;
CalleeExistQVars = [_ | _],
% For calls to existentially type preds, we may need to bind
% type variables in the caller, not just those in the callee.
(
map.init(TypeSubn0),
type_unify_list(HeadTypes, ArgTypes, HeadTypeParams,
TypeSubn0, TypeSubn1)
->
TypeSubn = TypeSubn1
;
unexpected(this_file,
"get_type_substitution: type unification failed")
)
).
rename_goal(HeadVars, ArgVars, VarSet0, CalleeVarSet, VarSet, VarTypes1,
CalleeVarTypes, VarTypes, Subn, CalledGoal, Goal) :-
map.from_corresponding_lists(HeadVars, ArgVars, Subn0),
varset.vars(CalleeVarSet, CalleeListOfVars),
goal_util.create_variables(CalleeListOfVars,
CalleeVarSet, CalleeVarTypes,
VarSet0, VarSet, VarTypes1, VarTypes, Subn0, Subn),
goal_util.must_rename_vars_in_goal(Subn, CalledGoal, Goal).
%-----------------------------------------------------------------------------%
% inlining_in_goals is used for both disjunctions and
% parallel conjunctions.
%
:- pred inlining_in_goals(list(hlds_goal)::in, list(hlds_goal)::out,
inline_info::in, inline_info::out) is det.
inlining_in_goals([], [], !Info).
inlining_in_goals([Goal0 | Goals0], [Goal | Goals], !Info) :-
inlining_in_goal(Goal0, Goal, !Info),
inlining_in_goals(Goals0, Goals, !Info).
%-----------------------------------------------------------------------------%
:- pred inlining_in_cases(list(case)::in, list(case)::out,
inline_info::in, inline_info::out) is det.
inlining_in_cases([], [], !Info).
inlining_in_cases([case(Cons, Goal0) | Goals0], [case(Cons, Goal) | Goals],
!Info) :-
inlining_in_goal(Goal0, Goal, !Info),
inlining_in_cases(Goals0, Goals, !Info).
%-----------------------------------------------------------------------------%
:- pred inlining_in_conj(list(hlds_goal)::in, list(hlds_goal)::out,
inline_info::in, inline_info::out) is det.
inlining_in_conj([], [], !Info).
inlining_in_conj([Goal0 | Goals0], Goals, !Info) :-
% Since a single goal may become a conjunction,
% we flatten the conjunction as we go.
inlining_in_goal(Goal0, Goal1, !Info),
goal_to_conj_list(Goal1, Goal1List),
inlining_in_conj(Goals0, Goals1, !Info),
list.append(Goal1List, Goals1, Goals).
:- pred inlining_in_par_conj(list(hlds_goal)::in, list(hlds_goal)::out,
inline_info::in, inline_info::out) is det.
inlining_in_par_conj([], [], !Info).
inlining_in_par_conj([Goal0 | Goals0], Goals, !Info) :-
% Since a single goal may become a parallel conjunction,
% we flatten the conjunction as we go.
inlining_in_goal(Goal0, Goal1, !Info),
goal_to_par_conj_list(Goal1, Goal1List),
inlining_in_par_conj(Goals0, Goals1, !Info),
list.append(Goal1List, Goals1, Goals).
%-----------------------------------------------------------------------------%
% Check to see if we should inline a call.
%
% Fails if the called predicate cannot be inlined, e.g. because it is
% a builtin, we don't have code for it, it uses nondet pragma c_code, etc.
%
% It succeeds if the called procedure is inlinable, and in addition
% either there was a `pragma inline' for this procedure, or the procedure
% was marked by mark_predproc as having met its heuristic.
%
:- pred should_inline_proc(pred_id::in, proc_id::in,
builtin_state::in, bool::in, bool::in, set(pred_proc_id)::in,
pred_markers::in, module_info::in, bool::out) is semidet.
should_inline_proc(PredId, ProcId, BuiltinState, HighLevelCode,
_Tracing, InlinedProcs, CallingPredMarkers, ModuleInfo, UserReq) :-
InlinePromisedPure = yes,
can_inline_proc_2(PredId, ProcId, BuiltinState,
HighLevelCode, InlinePromisedPure, CallingPredMarkers, ModuleInfo),
% OK, we could inline it - but should we? Apply our heuristic.
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_get_markers(PredInfo, Markers),
( check_marker(Markers, marker_user_marked_inline) ->
UserReq = yes
;
( check_marker(Markers, marker_heuristic_inline)
; set.member(proc(PredId, ProcId), InlinedProcs)
)
->
UserReq = no
;
fail
).
can_inline_proc(PredId, ProcId, BuiltinState, InlinePromisedPure,
CallingPredMarkers, ModuleInfo) :-
module_info_get_globals(ModuleInfo, Globals),
globals.lookup_bool_option(Globals, highlevel_code, HighLevelCode),
can_inline_proc_2(PredId, ProcId, BuiltinState, HighLevelCode,
InlinePromisedPure, CallingPredMarkers, ModuleInfo).
:- pred can_inline_proc_2(pred_id::in, proc_id::in,
builtin_state::in, bool::in, bool::in, pred_markers::in, module_info::in)
is semidet.
can_inline_proc_2(PredId, ProcId, BuiltinState, HighLevelCode,
InlinePromisedPure, _CallingPredMarkers, ModuleInfo) :-
% Don't inline builtins, the code generator will handle them.
BuiltinState = not_builtin,
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, PredInfo, ProcInfo),
% Don't try to inline imported predicates, since we don't
% have the code for them.
\+ pred_info_is_imported(PredInfo),
% This next line catches the case of locally defined unification predicates
% for imported types.
\+ (
pred_info_is_pseudo_imported(PredInfo),
hlds_pred.in_in_unification_proc_id(ProcId)
),
% Only try to inline procedures which are evaluated using normal
% evaluation. Currently we can't inline procs evaluated using any of the
% other methods because the code generator for the methods can only handle
% whole procedures not code fragments.
proc_info_get_eval_method(ProcInfo, eval_normal),
% Don't inline anything we have been specifically requested not to inline.
\+ pred_info_requested_no_inlining(PredInfo),
% Don't inline any procedure whose complexity we are trying to determine,
% since the complexity transformation can't transform *part* of a
% procedure.
module_info_get_maybe_complexity_proc_map(ModuleInfo,
MaybeComplexityProcMap),
(
MaybeComplexityProcMap = no
;
MaybeComplexityProcMap = yes(_ - ComplexityProcMap),
IsInComplexityMap = is_in_complexity_proc_map(
ComplexityProcMap, ModuleInfo, PredId, ProcId),
IsInComplexityMap = no
),
% For the LLDS back-end, under no circumstances inline model_non
% foreign_procs. The resulting code would not work properly.
proc_info_get_goal(ProcInfo, CalledGoal),
\+ (
HighLevelCode = no,
CalledGoal = hlds_goal(call_foreign_proc(_, _, _, _, _, _, _), _),
proc_info_interface_determinism(ProcInfo, Detism),
( Detism = detism_non ; Detism = detism_multi )
),
module_info_get_globals(ModuleInfo, Globals),
globals.get_target(Globals, Target),
(
CalledGoal = hlds_goal(call_foreign_proc(ForeignAttributes,
_, _, _, _, _, _), _)
->
% Only inline foreign_code if it is appropriate for the target
% language.
(
ForeignLanguage = get_foreign_language(ForeignAttributes)
=>
ok_to_inline_language(ForeignLanguage, Target)
),
% Don't inline foreign_code if it is has been marked with the attribute
% that requests the code not be duplicated.
(
MaybeMayDuplicate = get_may_duplicate(ForeignAttributes)
=>
(
MaybeMayDuplicate = no
;
MaybeMayDuplicate = yes(proc_may_duplicate)
)
)
;
true
),
(
InlinePromisedPure = yes
;
% For some optimizations (such as deforestation) we don't want to
% inline predicates which are promised pure because the extra impurity
% propagated through the goal will defeat any attempts at optimization.
%
InlinePromisedPure = no,
pred_info_get_promised_purity(PredInfo, purity_impure)
).
% Succeed iff it is appropriate to inline `pragma foreign_code'
% in the specified language for the given compilation_target.
% Generally that will only be the case if the target directly
% supports inline code in that language.
%
:- pred ok_to_inline_language(foreign_language::in, compilation_target::in)
is semidet.
ok_to_inline_language(lang_c, target_c).
% ok_to_inline_language(il, il). %
% XXX we need to fix the handling of parameter marshalling for inlined code
% before we can enable this -- see the comments in
% ml_gen_ordinary_pragma_il_proc in ml_code_gen.m.
%
% ok_to_inline_language(java, java). % foreign_language = java not implemented
% ok_to_inline_language(asm, asm). % foreign_language = asm not implemented
% We could define a language "C/C++" (c_slash_cplusplus) which was the
% intersection of "C" and "C++", and then we'd have
% ok_to_inline_language(c_slash_cplusplus, c).
% ok_to_inline_language(c_slash_cplusplus, cplusplus).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "inlining.m".
%-----------------------------------------------------------------------------%
:- end_module inlining.
%-----------------------------------------------------------------------------%