Files
mercury/compiler/add_heap_ops.m
Zoltan Somogyi b56885be93 Fix a bug that caused bootchecks with --optimize-constructor-last-call to fail.
Estimated hours taken: 12
Branches: main

Fix a bug that caused bootchecks with --optimize-constructor-last-call to fail.

The problem was not in lco.m, but in follow_code.m. In some cases,
(specifically, the LCMC version of insert_2 in sparse_bitset.m),
follow_code.m moved an impure goal (store_at_ref) into the arms of an
if-then-else without marking those arms, or the if-then-else, as impure.
The next pass, simplify, then deleted the entire if-then-else, since it
had no outputs. (The store_at_ref that originally appeared after the
if-then-else was the only consumer of its only output.)

The fix is to get follow_code.m to make branched control structures such as
if-then-elses, as well as their arms, semipure or impure if a goal being moved
into them is semipure or impure, or if they came from an semipure or impure
conjunction.

Improve the optimization of the LCMC version of sparse_bitset.insert_2, which
had a foreign_proc invocation of bits_per_int in it: replace such invocations
with a unification of the bits_per_int constant if not cross compiling.

Add a new option, --optimize-constructor-last-call-null. When set, LCMC will
assign NULLs to the fields not yet filled in, to avoid any junk happens to be
there from being followed by the garbage collector's mark phase.

This diff also makes several other changes that helped me to track down
the bug above.

compiler/follow_code.m:
	Make the fix described above.

	Delete all the provisions for --prev-code; it won't be implemented.

	Don't export a predicate that is not now used anywhere else.

compiler/simplify.m:
	Make the optimization described above.

compiler/lco.m:
	Make sure that the LCMC specialized procedure is a predicate, not a
	function: having a function with the mode LCMC_insert_2(in, in) = in
	looks wrong.

	To avoid name collisions when a function and a predicate with the same
	name and arity have LCMC applied to them, include the predicate vs
	function status of the original procedure included in the name of the
	new procedure.

	Update the sym_name of calls to LCMC variants, not just the pred_id,
	because without that, the HLDS dump looks misleading.

compiler/pred_table.m:
	Don't have optimizations like LCMC insert new predicates at the front
	of the list of predicates. Maintain the list of predicates in the
	module as a two part list, to allow efficient addition of new pred_ids
	at the (logical) end without using O(N^2) algorithms. Having predicates
	in chronological order makes it easier to look at HLDS dumps and
	.c files.

compiler/hlds_module.m:
	Make module_info_predids return a module_info that is physically
	updated though logically unchanged.

compiler/options.m:
	Add --optimize-constructor-last-call-null.

	Make the options --dump-hlds-pred-id, --debug-opt-pred-id and
	--debug-opt-pred-name into accumulating options, to allow the user
	to specify more than one predicate to be dumped (e.g. insert_2 and
	its LCMC variant).

	Delete --prev-code.

doc/user_guide.texi:
	Document the changes in options.m.

compiler/code_info.m:
	Record the value of --optimize-constructor-last-call-null in the
	code_info, to avoid lookup at every cell construction.

compiler/unify_gen.m:
compiler/var_locn.m:
	When deciding whether a cell can be static or not, make sure that
	we never make static a cell that has some fields initialized with
	dummy zeros, to be filled in for real later.

compiler/hlds_out.m:
	For goals that are semipure or impure, note this fact. This info was
	lost when I changed the representation of impurity from markers to a
	field.

mdbcomp/prim_data.m:
	Rename some ambiguous function symbols.

compiler/intermod.m:
compiler/trans_opt.m:
	Rename the main predicates (and some function symbols) of these modules
	to avoid ambiguity and to make them more expressive.

compiler/llds.m:
	Don't print line numbers for foreign_code fragments if the user has
	specified --no-line-numbers.

compiler/make.dependencies.m:
compiler/mercury_to_mercury.m:
compiler/recompilation.usage.m:
	Don't use io.write to write out information to files we may need to
	parse again, because this is vulnerable to changes to the names of
	function symbols (e.g. the one to mdbcomp/prim_data.m).

	The compiler still contains some uses of io.write, but they are
	for debugging. I added an item to the todo list of the one exception,
	ilasm.m.

compiler/recompilation.m:
	Rename a misleading function symbol name.

compiler/parse_tree.m:
	Don't import recompilation.m here. It is not needed (all the components
	of parse_tree that need recompilation.m already import it themselves),
	and deleting the import avoids recompiling almost everything when
	recompilation.m changes.

compiler/*.m:
	Conform to the changes above.

compiler/*.m:
browser/*.m:
slice/*.m:
	Conform to the change to mdbcomp.

library/sparse_bitset.m:
	Use some better variable names.
2007-01-19 07:05:06 +00:00

362 lines
14 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 2000-2007 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: add_heap_ops.m.
% Author: fjh.
%
% This module is an HLDS-to-HLDS transformation that inserts code to
% handle heap reclamation on backtracking, by saving and restoring
% the values of the heap pointer.
% The transformation involves adding calls to impure
% predicates defined in library/private_builtin.m, which in turn call
% the MR_mark_hp() and MR_restore_hp() macros defined in
% runtime/mercury_heap.h.
%
% This pass is currently only used for the MLDS back-end.
% For some reason (perhaps efficiency?? or more likely just historical?),
% the LLDS back-end inserts the heap operations as it is generating
% LLDS code, rather than via an HLDS to HLDS transformation.
%
% This module is very similar to add_trail_ops.m.
%
%-----------------------------------------------------------------------------%
%
% XXX check goal_infos for correctness
%
%-----------------------------------------------------------------------------%
:- module ml_backend.add_heap_ops.
:- interface.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- pred add_heap_ops(module_info::in, proc_info::in, proc_info::out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module hlds.code_model.
:- import_module hlds.goal_form.
:- import_module hlds.goal_util.
:- import_module hlds.hlds_goal.
:- import_module hlds.pred_table.
:- import_module hlds.quantification.
:- import_module libs.compiler_util.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_type.
:- import_module assoc_list.
:- import_module bool.
:- import_module list.
:- import_module map.
:- import_module maybe.
:- import_module pair.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
% As we traverse the goal, we add new variables to hold the saved values
% of the heap pointer. So we need to thread a varset and a vartypes mapping
% through, to record the names and types of the new variables.
%
% We also keep the module_info around, so that we can use the predicate
% table that it contains to lookup the pred_ids for the builtin procedures
% that we insert calls to. We do not update the module_info as we're
% traversing the goal.
%
:- type heap_ops_info
---> heap_ops_info(
varset :: prog_varset,
var_types :: vartypes,
module_info :: module_info
).
add_heap_ops(ModuleInfo0, !Proc) :-
proc_info_get_goal(!.Proc, Goal0),
proc_info_get_varset(!.Proc, VarSet0),
proc_info_get_vartypes(!.Proc, VarTypes0),
TrailOpsInfo0 = heap_ops_info(VarSet0, VarTypes0, ModuleInfo0),
goal_add_heap_ops(Goal0, Goal, TrailOpsInfo0, TrailOpsInfo),
TrailOpsInfo = heap_ops_info(VarSet, VarTypes, _),
proc_info_set_goal(Goal, !Proc),
proc_info_set_varset(VarSet, !Proc),
proc_info_set_vartypes(VarTypes, !Proc),
% The code below does not maintain the non-local variables,
% so we need to requantify.
% XXX it would be more efficient to maintain them rather than recomputing
% them every time.
requantify_proc(!Proc).
:- pred goal_add_heap_ops(hlds_goal::in, hlds_goal::out,
heap_ops_info::in, heap_ops_info::out) is det.
goal_add_heap_ops(hlds_goal(GoalExpr0, GoalInfo), Goal, !Info) :-
goal_expr_add_heap_ops(GoalExpr0, GoalInfo, Goal, !Info).
:- pred goal_expr_add_heap_ops(hlds_goal_expr::in, hlds_goal_info::in,
hlds_goal::out, heap_ops_info::in, heap_ops_info::out) is det.
goal_expr_add_heap_ops(conj(ConjType, Goals0), GI,
hlds_goal(conj(ConjType, Goals), GI), !Info) :-
conj_add_heap_ops(Goals0, Goals, !Info).
goal_expr_add_heap_ops(disj([]), GI, hlds_goal(disj([]), GI), !Info).
goal_expr_add_heap_ops(disj(Goals0), GoalInfo, hlds_goal(GoalExpr, GoalInfo),
!Info) :-
Goals0 = [FirstDisjunct | _],
goal_info_get_context(GoalInfo, Context),
goal_info_get_code_model(GoalInfo, CodeModel),
% If necessary, save the heap pointer so that we can restore it
% on back-tracking. We don't need to do this here if it is a model_det
% or model_semi disjunction and the first disjunct won't allocate any heap
% -- in that case, we delay saving the heap pointer until just before
% the first disjunct that might allocate heap.
(
( CodeModel = model_non
; goal_may_allocate_heap(FirstDisjunct)
)
->
new_saved_hp_var(SavedHeapPointerVar, !Info),
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal, !Info),
disj_add_heap_ops(Goals0, yes, yes(SavedHeapPointerVar), GoalInfo,
Goals, !Info),
GoalExpr = conj(plain_conj,
[MarkHeapPointerGoal, hlds_goal(disj(Goals), GoalInfo)])
;
disj_add_heap_ops(Goals0, yes, no, GoalInfo, Goals, !Info),
GoalExpr = disj(Goals)
).
goal_expr_add_heap_ops(switch(Var, CanFail, Cases0), GI,
hlds_goal(switch(Var, CanFail, Cases), GI), !Info) :-
cases_add_heap_ops(Cases0, Cases, !Info).
goal_expr_add_heap_ops(negation(InnerGoal), OuterGoalInfo, Goal, !Info) :-
%
% We handle negations by converting them into if-then-elses:
% not(G) ===> (if G then fail else true)
%
goal_info_get_context(OuterGoalInfo, Context),
InnerGoal = hlds_goal(_, InnerGoalInfo),
goal_info_get_determinism(InnerGoalInfo, Determinism),
determinism_components(Determinism, _CanFail, NumSolns),
True = true_goal_with_context(Context),
Fail = fail_goal_with_context(Context),
ModuleInfo = !.Info ^ module_info,
( NumSolns = at_most_zero ->
% The "then" part of the if-then-else will be unreachable, but to
% preserve the invariants that the MLDS back-end relies on, we need to
% make sure that it can't fail. So we use a call to
% `private_builtin.unused' (which will call error/1) rather than
% `fail' for the "then" part.
generate_call("unused", detism_det, purity_pure, [], [],
ModuleInfo, Context, ThenGoal)
;
ThenGoal = Fail
),
NewOuterGoal = if_then_else([], InnerGoal, ThenGoal, True),
goal_expr_add_heap_ops(NewOuterGoal, OuterGoalInfo, Goal, !Info).
goal_expr_add_heap_ops(scope(Reason, Goal0), GoalInfo,
hlds_goal(scope(Reason, Goal), GoalInfo), !Info) :-
goal_add_heap_ops(Goal0, Goal, !Info).
goal_expr_add_heap_ops(if_then_else(A, Cond0, Then0, Else0), GoalInfo,
hlds_goal(GoalExpr, GoalInfo), !Info) :-
goal_add_heap_ops(Cond0, Cond, !Info),
goal_add_heap_ops(Then0, Then, !Info),
goal_add_heap_ops(Else0, Else1, !Info),
% If the condition can allocate heap space, save the heap pointer
% so that we can restore it if the condition fails.
( goal_may_allocate_heap(Cond0) ->
new_saved_hp_var(SavedHeapPointerVar, !Info),
goal_info_get_context(GoalInfo, Context),
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal, !Info),
% Generate code to restore the heap pointer, and insert that code
% at the start of the Else branch.
gen_restore_hp(SavedHeapPointerVar, Context, RestoreHeapPointerGoal,
!Info),
Else1 = hlds_goal(_, Else1GoalInfo),
Else = hlds_goal(
conj(plain_conj, [RestoreHeapPointerGoal, Else1]),
Else1GoalInfo),
IfThenElse = hlds_goal(if_then_else(A, Cond, Then, Else), GoalInfo),
GoalExpr = conj(plain_conj, [MarkHeapPointerGoal, IfThenElse])
;
GoalExpr = if_then_else(A, Cond, Then, Else1)
).
goal_expr_add_heap_ops(GoalExpr @ plain_call(_, _, _, _, _, _), GI,
hlds_goal(GoalExpr, GI), !Info).
goal_expr_add_heap_ops(GoalExpr @ generic_call(_, _, _, _), GI,
hlds_goal(GoalExpr, GI), !Info).
goal_expr_add_heap_ops(GoalExpr @ unify(_, _, _, _, _), GI,
hlds_goal(GoalExpr, GI), !Info).
goal_expr_add_heap_ops(PragmaForeign, GoalInfo, Goal, !Info) :-
PragmaForeign = call_foreign_proc(_, _, _, _, _, _, Impl),
( Impl = fc_impl_model_non(_, _, _, _, _, _, _, _, _) ->
% XXX Implementing heap reclamation for nondet pragma foreign_code
% via transformation is difficult, because there's nowhere in the HLDS
% pragma_foreign_code goal where we can insert the heap reclamation
% operations. For now, we don't support this. Instead, we just generate
% a call to a procedure which will at runtime call error/1 with an
% appropriate "Sorry, not implemented" error message.
ModuleInfo = !.Info ^ module_info,
goal_info_get_context(GoalInfo, Context),
generate_call("reclaim_heap_nondet_pragma_foreign_code",
detism_erroneous, purity_pure, [], [], ModuleInfo, Context,
SorryNotImplementedCode),
Goal = SorryNotImplementedCode
;
Goal = hlds_goal(PragmaForeign, GoalInfo)
).
goal_expr_add_heap_ops(shorthand(_), _, _, !Info) :-
% These should have been expanded out by now.
unexpected(this_file, "goal_expr_add_heap_ops: unexpected shorthand").
:- pred conj_add_heap_ops(hlds_goals::in, hlds_goals::out,
heap_ops_info::in, heap_ops_info::out) is det.
conj_add_heap_ops(Goals0, Goals, !Info) :-
list.map_foldl(goal_add_heap_ops, Goals0, Goals, !Info).
:- pred disj_add_heap_ops(hlds_goals::in, bool::in, maybe(prog_var)::in,
hlds_goal_info::in, hlds_goals::out,
heap_ops_info::in, heap_ops_info::out) is det.
disj_add_heap_ops([], _, _, _, [], !Info).
disj_add_heap_ops([Goal0 | Goals0], IsFirstBranch, MaybeSavedHeapPointerVar,
DisjGoalInfo, DisjGoals, !Info) :-
goal_add_heap_ops(Goal0, Goal1, !Info),
Goal1 = hlds_goal(_, GoalInfo),
goal_info_get_context(GoalInfo, Context),
% If needed, reset the heap pointer before executing the goal,
% to reclaim heap space allocated in earlier branches.
(
IsFirstBranch = no,
MaybeSavedHeapPointerVar = yes(SavedHeapPointerVar0)
->
gen_restore_hp(SavedHeapPointerVar0, Context, RestoreHeapPointerGoal,
!Info),
conj_list_to_goal([RestoreHeapPointerGoal, Goal1], GoalInfo, Goal)
;
Goal = Goal1
),
% Save the heap pointer, if we haven't already done so, and if this
% disjunct might allocate heap space.
(
MaybeSavedHeapPointerVar = no,
goal_may_allocate_heap(Goal)
->
% Generate code to save the heap pointer.
new_saved_hp_var(SavedHeapPointerVar, !Info),
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal, !Info),
% Recursively handle the remaining disjuncts.
disj_add_heap_ops(Goals0, no, yes(SavedHeapPointerVar), DisjGoalInfo,
Goals1, !Info),
% Put this disjunct and the remaining disjuncts in a nested
% disjunction, so that the heap pointer variable can scope over
% these disjuncts.
Disj = hlds_goal(disj([Goal | Goals1]), DisjGoalInfo),
DisjGoal = hlds_goal(
conj(plain_conj, [MarkHeapPointerGoal, Disj]),
DisjGoalInfo),
DisjGoals = [DisjGoal]
;
% Just recursively handle the remaining disjuncts.
disj_add_heap_ops(Goals0, no, MaybeSavedHeapPointerVar, DisjGoalInfo,
Goals, !Info),
DisjGoals = [Goal | Goals]
).
:- pred cases_add_heap_ops(list(case)::in, list(case)::out,
heap_ops_info::in, heap_ops_info::out) is det.
cases_add_heap_ops([], [], !Info).
cases_add_heap_ops([Case0 | Cases0], [Case | Cases], !Info) :-
Case0 = case(ConsId, Goal0),
Case = case(ConsId, Goal),
goal_add_heap_ops(Goal0, Goal, !Info),
cases_add_heap_ops(Cases0, Cases, !Info).
%-----------------------------------------------------------------------------%
:- pred gen_mark_hp(prog_var::in, prog_context::in, hlds_goal::out,
heap_ops_info::in, heap_ops_info::out) is det.
gen_mark_hp(SavedHeapPointerVar, Context, MarkHeapPointerGoal, !Info) :-
generate_call("mark_hp", detism_det, purity_impure, [SavedHeapPointerVar],
[SavedHeapPointerVar - ground_inst], !.Info ^ module_info, Context,
MarkHeapPointerGoal).
:- pred gen_restore_hp(prog_var::in, prog_context::in, hlds_goal::out,
heap_ops_info::in, heap_ops_info::out) is det.
gen_restore_hp(SavedHeapPointerVar, Context, RestoreHeapPointerGoal, !Info) :-
generate_call("restore_hp", detism_det, purity_impure,
[SavedHeapPointerVar], [], !.Info ^ module_info, Context,
RestoreHeapPointerGoal).
:- func ground_inst = mer_inst.
ground_inst = ground(unique, none).
%-----------------------------------------------------------------------------%
:- pred new_saved_hp_var(prog_var::out,
heap_ops_info::in, heap_ops_info::out) is det.
new_saved_hp_var(Var, !Info) :-
new_var("HeapPointer", heap_pointer_type, Var, !Info).
:- pred new_var(string::in, mer_type::in, prog_var::out,
heap_ops_info::in, heap_ops_info::out) is det.
new_var(Name, Type, Var, !Info) :-
VarSet0 = !.Info ^ varset,
VarTypes0 = !.Info ^ var_types,
varset.new_named_var(VarSet0, Name, Var, VarSet),
map.det_insert(VarTypes0, Var, Type, VarTypes),
!:Info = !.Info ^ varset := VarSet,
!:Info = !.Info ^ var_types := VarTypes.
%-----------------------------------------------------------------------------%
:- pred generate_call(string::in, determinism::in, purity::in,
list(prog_var)::in, assoc_list(prog_var, mer_inst)::in, module_info::in,
term.context::in, hlds_goal::out) is det.
generate_call(PredName, Detism, Purity, Args, InstMap, ModuleInfo, Context,
CallGoal) :-
BuiltinModule = mercury_private_builtin_module,
goal_util.generate_simple_call(BuiltinModule, PredName, pf_predicate,
only_mode, Detism, Purity, Args, [], InstMap, ModuleInfo,
Context, CallGoal).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "add_heap_ops.m".
%-----------------------------------------------------------------------------%