Files
mercury/compiler/prog_util.m
Julien Fischer 459847a064 Move the univ, maybe, pair and unit types from std_util into their own
Estimated hours taken: 18
Branches: main

Move the univ, maybe, pair and unit types from std_util into their own
modules.  std_util still contains the general purpose higher-order programming
constructs.

library/std_util.m:
	Move univ, maybe, pair and unit (plus any other related types
	and procedures) into their own modules.

library/maybe.m:
	New module.  This contains the maybe and maybe_error types and
	the associated procedures.

library/pair.m:
	New module.  This contains the pair type and associated procedures.

library/unit.m:
	New module. This contains the types unit/0 and unit/1.

library/univ.m:
	New module. This contains the univ type and associated procedures.

library/library.m:
	Add the new modules.

library/private_builtin.m:
	Update the declaration of the type_ctor_info struct for univ.

runtime/mercury.h:
	Update the declaration for the type_ctor_info struct for univ.

runtime/mercury_mcpp.h:
runtime/mercury_hlc_types.h:
	Update the definition of MR_Univ.

runtime/mercury_init.h:
	Fix a comment: ML_type_name is now exported from type_desc.m.

compiler/mlds_to_il.m:
	Update the the name of the module that defines univs (which are
	handled specially by the il code generator.)

library/*.m:
compiler/*.m:
browser/*.m:
mdbcomp/*.m:
profiler/*.m:
deep_profiler/*.m:
	Conform to the above changes.  Import the new modules where they
	are needed; don't import std_util where it isn't needed.

	Fix formatting in lots of modules.  Delete duplicate module
	imports.

tests/*:
	Update the test suite to confrom to the above changes.
2006-03-29 08:09:58 +00:00

774 lines
30 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2001, 2003-2006 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: prog_util.
% Main author: fjh.
% Various utility predicates acting on the parse tree data structure defined
% in prog_data.m and prog_item.m
%-----------------------------------------------------------------------------%
:- module parse_tree.prog_util.
:- interface.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_item.
:- import_module list.
:- import_module maybe.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
% Given a symbol name, return its unqualified name.
%
:- pred unqualify_name(sym_name::in, string::out) is det.
% sym_name_get_module_name(SymName, ModName):
%
% Given a symbol name, return the module qualifiers(s).
% Fails if the symbol is unqualified.
%
:- pred sym_name_get_module_name(sym_name::in, module_name::out) is semidet.
% sym_name_get_module_name(SymName, DefaultModName, ModName):
%
% Given a symbol name, return the module qualifier(s).
% If the symbol is unqualified, then return the specified default
% module name.
%
:- pred sym_name_get_module_name(sym_name::in, module_name::in,
module_name::out) is det.
% match_sym_name(PartialSymName, CompleteSymName):
%
% Succeeds iff there is some sequence of module qualifiers
% which when prefixed to PartialSymName gives CompleteSymName.
%
:- pred match_sym_name(sym_name::in, sym_name::in) is semidet.
% remove_sym_name_prefix(SymName0, Prefix, SymName)
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName0 has the given prefix
% and the unqualified part of SymName is the unqualified
% part of SymName0 with the prefix removed.
%
:- pred remove_sym_name_prefix(sym_name, string, sym_name).
:- mode remove_sym_name_prefix(in, in, out) is semidet.
:- mode remove_sym_name_prefix(out, in, in) is det.
% remove_sym_name_suffix(SymName0, Suffix, SymName)
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName0 has the given suffix
% and the unqualified part of SymName is the unqualified
% part of SymName0 with the suffix removed.
%
:- pred remove_sym_name_suffix(sym_name::in, string::in, sym_name::out)
is semidet.
% add_sym_name_suffix(SymName0, Suffix, SymName)
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName is the unqualified
% part of SymName0 with the suffix added.
%
:- pred add_sym_name_suffix(sym_name::in, string::in, sym_name::out) is det.
% transform_sym_base_name(TransformFunc, SymName0) = SymName
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName is the result of applying
% TransformFunc to the unqualified part of SymName0.
%
:- func transform_sym_base_name(func(string) = string, sym_name) = sym_name.
% Given a possible module qualified sym_name and a list of
% argument types and a context, construct a term. This is
% used to construct types.
%
:- pred construct_qualified_term(sym_name::in, list(term(T))::in,
term(T)::out) is det.
:- pred construct_qualified_term(sym_name::in, list(term(T))::in,
prog_context::in, term(T)::out) is det.
% Given a sym_name return the top level qualifier of that name.
%
:- func outermost_qualifier(sym_name) = string.
%-----------------------------------------------------------------------------%
% adjust_func_arity(PredOrFunc, FuncArity, PredArity).
%
% We internally store the arity as the length of the argument
% list including the return value, which is one more than the
% arity of the function reported in error messages.
%
:- pred adjust_func_arity(pred_or_func, int, int).
:- mode adjust_func_arity(in, in, out) is det.
:- mode adjust_func_arity(in, out, in) is det.
%-----------------------------------------------------------------------------%
% make_pred_name_with_context(ModuleName, Prefix, PredOrFunc, PredName,
% Line, Counter, SymName).
%
% Create a predicate name with context, e.g. for introduced
% lambda or deforestation predicates.
%
:- pred make_pred_name(module_name::in, string::in, maybe(pred_or_func)::in,
string::in, new_pred_id::in, sym_name::out) is det.
% make_pred_name_with_context(ModuleName, Prefix, PredOrFunc, PredName,
% Line, Counter, SymName).
%
% Create a predicate name with context, e.g. for introduced
% lambda or deforestation predicates.
%
:- pred make_pred_name_with_context(module_name::in, string::in,
pred_or_func::in, string::in, int::in, int::in, sym_name::out) is det.
:- type new_pred_id
---> counter(int, int) % Line number, Counter
; type_subst(tvarset, type_subst)
; unused_args(list(int)).
%-----------------------------------------------------------------------------%
% A pred declaration may contains just types, as in
% :- pred list.append(list(T), list(T), list(T)).
% or it may contain both types and modes, as in
% :- pred list.append(list(T)::in, list(T)::in, list(T)::output).
%
% This predicate takes the argument list of a pred declaration, splits it
% into two separate lists for the types and (if present) the modes.
:- type maybe_modes == maybe(list(mer_mode)).
:- pred split_types_and_modes(list(type_and_mode)::in, list(mer_type)::out,
maybe_modes::out) is det.
:- pred split_type_and_mode(type_and_mode::in, mer_type::out,
maybe(mer_mode)::out) is det.
%-----------------------------------------------------------------------------%
% Perform a substitution on a goal.
%
:- pred rename_in_goal(prog_var::in, prog_var::in,
goal::in, goal::out) is det.
%-----------------------------------------------------------------------------%
% Various predicates for accessing the cons_id type.
% Given a cons_id and a list of argument terms, convert it into a
% term. Fails if the cons_id is a pred_const, or type_ctor_info_const.
%
:- pred cons_id_and_args_to_term(cons_id::in, list(term(T))::in, term(T)::out)
is semidet.
% Get the arity of a cons_id, aborting on pred_const and
% type_ctor_info_const.
%
:- func cons_id_arity(cons_id) = arity.
% Get the arity of a cons_id. Return a `no' on those cons_ids
% where cons_id_arity/2 would normally abort.
%
:- func cons_id_maybe_arity(cons_id) = maybe(arity).
% The reverse conversion - make a cons_id for a functor.
% Given a const and an arity for the functor, create a cons_id.
%
:- func make_functor_cons_id(const, arity) = cons_id.
% Another way of making a cons_id from a functor.
% Given the name, argument types, and type_ctor of a functor,
% create a cons_id for that functor.
%
:- func make_cons_id(sym_name, list(constructor_arg), type_ctor) = cons_id.
% Another way of making a cons_id from a functor.
% Given the name, argument types, and type_ctor of a functor,
% create a cons_id for that functor.
%
% Differs from make_cons_id in that (a) it requires the sym_name
% to be already module qualified, which means that it does not
% need the module qualification of the type, (b) it can compute the
% arity from any list of the right length.
%
:- func make_cons_id_from_qualified_sym_name(sym_name, list(_)) = cons_id.
%-----------------------------------------------------------------------------%
% make_n_fresh_vars(Name, N, VarSet0, Vars, VarSet):
% `Vars' is a list of `N' fresh variables allocated from
% `VarSet0'. The variables will be named "<Name>1", "<Name>2",
% "<Name>3", and so on, where <Name> is the value of `Name'.
% `VarSet' is the resulting varset.
%
:- pred make_n_fresh_vars(string::in, int::in, list(var(T))::out,
varset(T)::in, varset(T)::out) is det.
% Given the list of predicate arguments for a predicate that
% is really a function, split that list into the function arguments
% and the function return type.
%
:- pred pred_args_to_func_args(list(T)::in, list(T)::out, T::out) is det.
% Get the last two arguments from the list, failing if there
% aren't at least two arguments.
%
:- pred get_state_args(list(T)::in, list(T)::out, T::out, T::out) is semidet.
% Get the last two arguments from the list, aborting if there
% aren't at least two arguments.
%
:- pred get_state_args_det(list(T)::in, list(T)::out, T::out, T::out) is det.
% Parse a term of the form `Head :- Body', treating a term not in that form
% as `Head :- true'.
%
:- pred parse_rule_term(term.context::in, term(T)::in, term(T)::out,
term(T)::out) is det.
%-----------------------------------------------------------------------------%
% Add new type variables for those introduced by a type qualification.
%
:- pred get_new_tvars(list(tvar)::in, tvarset::in, tvarset::in, tvarset::out,
tvar_name_map::in, tvar_name_map::out,
tvar_renaming::in, tvar_renaming::out) is det.
% substitute_vars(Vars0, Subst, Vars):
%
% Apply substitution `Subst' (which must only rename vars) to `Vars0',
% and return the result in `Vars'.
%
:- pred substitute_vars(list(var(T))::in, substitution(T)::in,
list(var(T))::out) is det.
%-----------------------------------------------------------------------------%
% We need to "unparse" the sym_name to construct the properly
% module qualified term.
%
:- func sym_name_and_args_to_term(sym_name, list(term(T)), prog_context) =
term(T).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module libs.compiler_util.
:- import_module parse_tree.mercury_to_mercury.
:- import_module parse_tree.prog_io.
:- import_module parse_tree.prog_out.
:- import_module bool.
:- import_module int.
:- import_module map.
:- import_module pair.
:- import_module string.
:- import_module svmap.
:- import_module varset.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
unqualify_name(unqualified(PredName), PredName).
unqualify_name(qualified(_ModuleName, PredName), PredName).
sym_name_get_module_name(unqualified(_), _) :- fail.
sym_name_get_module_name(qualified(ModuleName, _), ModuleName).
sym_name_get_module_name(unqualified(_), ModuleName, ModuleName).
sym_name_get_module_name(qualified(ModuleName, _PredName), _, ModuleName).
construct_qualified_term(qualified(Module, Name), Args, Context, Term) :-
construct_qualified_term(Module, [], Context, ModuleTerm),
UnqualifiedTerm = term.functor(term.atom(Name), Args, Context),
Term = term.functor(term.atom("."),
[ModuleTerm, UnqualifiedTerm], Context).
construct_qualified_term(unqualified(Name), Args, Context, Term) :-
Term = term.functor(term.atom(Name), Args, Context).
construct_qualified_term(SymName, Args, Term) :-
term.context_init(Context),
construct_qualified_term(SymName, Args, Context, Term).
outermost_qualifier(unqualified(Name)) = Name.
outermost_qualifier(qualified(Module, _Name)) = outermost_qualifier(Module).
%-----------------------------------------------------------------------------%
adjust_func_arity(predicate, Arity, Arity).
adjust_func_arity(function, Arity - 1, Arity).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
split_types_and_modes(TypesAndModes, Types, MaybeModes) :-
split_types_and_modes_2(TypesAndModes, yes, Types, Modes, Result),
( Result = yes ->
MaybeModes = yes(Modes)
;
MaybeModes = no
).
:- pred split_types_and_modes_2(list(type_and_mode)::in, bool::in,
list(mer_type)::out, list(mer_mode)::out, bool::out) is det.
% T = type, M = mode, TM = combined type and mode
split_types_and_modes_2([], Result, [], [], Result).
split_types_and_modes_2([TM|TMs], Result0, [T|Ts], [M|Ms], Result) :-
split_type_and_mode(TM, Result0, T, M, Result1),
split_types_and_modes_2(TMs, Result1, Ts, Ms, Result).
% If a pred declaration specifies modes for some but not all of the
% arguments, then the modes are ignored - should this be an error instead?
% trd: this should never happen because prog_io.m will detect these cases.
%
:- pred split_type_and_mode(type_and_mode::in, bool::in,
mer_type::out, mer_mode::out, bool::out) is det.
split_type_and_mode(type_only(T), _, T, (free -> free), no).
split_type_and_mode(type_and_mode(T,M), R, T, M, R).
split_type_and_mode(type_only(T), T, no).
split_type_and_mode(type_and_mode(T,M), T, yes(M)).
%-----------------------------------------------------------------------------%
rename_in_goal(OldVar, NewVar, Goal0 - Context, Goal - Context) :-
rename_in_goal_expr(OldVar, NewVar, Goal0, Goal).
:- pred rename_in_goal_expr(prog_var::in, prog_var::in,
goal_expr::in, goal_expr::out) is det.
rename_in_goal_expr(OldVar, NewVar, conj_expr(GoalA0, GoalB0),
conj_expr(GoalA, GoalB)) :-
rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
rename_in_goal_expr(OldVar, NewVar, par_conj_expr(GoalA0, GoalB0),
par_conj_expr(GoalA, GoalB)) :-
rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
rename_in_goal_expr(_OldVar, _NewVar, true_expr, true_expr).
rename_in_goal_expr(OldVar, NewVar, disj_expr(GoalA0, GoalB0),
disj_expr(GoalA, GoalB)) :-
rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
rename_in_goal_expr(_Var, _NewVar, fail_expr, fail_expr).
rename_in_goal_expr(OldVar, NewVar, not_expr(Goal0), not_expr(Goal)) :-
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar, some_expr(Vars0, Goal0),
some_expr(Vars, Goal)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar, some_state_vars_expr(Vars0, Goal0),
some_state_vars_expr(Vars, Goal)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar, all_expr(Vars0, Goal0),
all_expr(Vars, Goal)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar, all_state_vars_expr(Vars0, Goal0),
all_state_vars_expr(Vars, Goal)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar,
promise_purity_expr(Implicit, Purity, Goal0),
promise_purity_expr(Implicit, Purity, Goal)) :-
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar,
promise_equivalent_solutions_expr(Vars0, DotSVars0, ColonSVars0,
Goal0),
promise_equivalent_solutions_expr(Vars, DotSVars, ColonSVars,
Goal)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_vars(OldVar, NewVar, DotSVars0, DotSVars),
rename_in_vars(OldVar, NewVar, ColonSVars0, ColonSVars),
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar,
promise_equivalent_solution_sets_expr(Vars0, DotSVars0, ColonSVars0,
Goal0),
promise_equivalent_solution_sets_expr(Vars, DotSVars, ColonSVars,
Goal)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_vars(OldVar, NewVar, DotSVars0, DotSVars),
rename_in_vars(OldVar, NewVar, ColonSVars0, ColonSVars),
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar,
promise_equivalent_solution_arbitrary_expr(Vars0,
DotSVars0, ColonSVars0, Goal0),
promise_equivalent_solution_arbitrary_expr(Vars,
DotSVars, ColonSVars, Goal)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_vars(OldVar, NewVar, DotSVars0, DotSVars),
rename_in_vars(OldVar, NewVar, ColonSVars0, ColonSVars),
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar, implies_expr(GoalA0, GoalB0),
implies_expr(GoalA, GoalB)) :-
rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
rename_in_goal_expr(OldVar, NewVar, equivalent_expr(GoalA0, GoalB0),
equivalent_expr(GoalA, GoalB)) :-
rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
rename_in_goal_expr(OldVar, NewVar,
if_then_else_expr(Vars0, StateVars0, Cond0, Then0, Else0),
if_then_else_expr(Vars, StateVars, Cond, Then, Else)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_vars(OldVar, NewVar, StateVars0, StateVars),
rename_in_goal(OldVar, NewVar, Cond0, Cond),
rename_in_goal(OldVar, NewVar, Then0, Then),
rename_in_goal(OldVar, NewVar, Else0, Else).
rename_in_goal_expr(OldVar, NewVar, call_expr(SymName, Terms0, Purity),
call_expr(SymName, Terms, Purity)) :-
term.substitute_list(Terms0, OldVar, term.variable(NewVar), Terms).
rename_in_goal_expr(OldVar, NewVar, unify_expr(TermA0, TermB0, Purity),
unify_expr(TermA, TermB, Purity)) :-
term.substitute(TermA0, OldVar, term.variable(NewVar), TermA),
term.substitute(TermB0, OldVar, term.variable(NewVar), TermB).
:- pred rename_in_vars(prog_var::in, prog_var::in,
list(prog_var)::in, list(prog_var)::out) is det.
rename_in_vars(_, _, [], []).
rename_in_vars(OldVar, NewVar, [Var0 | Vars0], [Var | Vars]) :-
( Var0 = OldVar ->
Var = NewVar
;
Var = Var0
),
rename_in_vars(OldVar, NewVar, Vars0, Vars).
%-----------------------------------------------------------------------------%
% match_sym_name(PartialSymName, CompleteSymName):
%
% Succeeds iff there is some sequence of module qualifiers
% which when prefixed to PartialSymName gives CompleteSymName.
%
match_sym_name(qualified(Module1, Name), qualified(Module2, Name)) :-
match_sym_name(Module1, Module2).
match_sym_name(unqualified(Name), unqualified(Name)).
match_sym_name(unqualified(Name), qualified(_, Name)).
%-----------------------------------------------------------------------------%
remove_sym_name_prefix(qualified(Module, Name0), Prefix,
qualified(Module, Name)) :-
string.append(Prefix, Name, Name0).
remove_sym_name_prefix(unqualified(Name0), Prefix, unqualified(Name)) :-
string.append(Prefix, Name, Name0).
remove_sym_name_suffix(qualified(Module, Name0), Suffix,
qualified(Module, Name)) :-
string.remove_suffix(Name0, Suffix, Name).
remove_sym_name_suffix(unqualified(Name0), Suffix, unqualified(Name)) :-
string.remove_suffix(Name0, Suffix, Name).
add_sym_name_suffix(qualified(Module, Name0), Suffix,
qualified(Module, Name)) :-
string.append(Name0, Suffix, Name).
add_sym_name_suffix(unqualified(Name0), Suffix, unqualified(Name)) :-
string.append(Name0, Suffix, Name).
transform_sym_base_name(TransformFunc, qualified(Module, Name0)) =
qualified(Module, TransformFunc(Name0)).
transform_sym_base_name(TransformFunc, unqualified(Name0)) =
unqualified(TransformFunc(Name0)).
%-----------------------------------------------------------------------------%
make_pred_name_with_context(ModuleName, Prefix,
PredOrFunc, PredName, Line, Counter, SymName) :-
make_pred_name(ModuleName, Prefix, yes(PredOrFunc), PredName,
counter(Line, Counter), SymName).
make_pred_name(ModuleName, Prefix, MaybePredOrFunc, PredName,
NewPredId, SymName) :-
(
MaybePredOrFunc = yes(PredOrFunc),
(
PredOrFunc = predicate,
PFS = "pred"
;
PredOrFunc = function,
PFS = "func"
)
;
MaybePredOrFunc = no,
PFS = "pred_or_func"
),
(
NewPredId = counter(Line, Counter),
string.format("%d__%d", [i(Line), i(Counter)], PredIdStr)
;
NewPredId = type_subst(VarSet, TypeSubst),
SubstToString = (pred(SubstElem::in, SubstStr::out) is det :-
SubstElem = Var - Type,
varset.lookup_name(VarSet, Var, VarName),
TypeString = mercury_type_to_string(VarSet, no, Type),
string.append_list([VarName, " = ", TypeString], SubstStr)
),
list_to_string(SubstToString, TypeSubst, PredIdStr)
;
NewPredId = unused_args(Args),
list_to_string(int_to_string, Args, PredIdStr)
),
string.format("%s__%s__%s__%s",
[s(Prefix), s(PFS), s(PredName), s(PredIdStr)], Name),
SymName = qualified(ModuleName, Name).
:- pred list_to_string(pred(T, string)::in(pred(in, out) is det),
list(T)::in, string::out) is det.
list_to_string(Pred, List, String) :-
list_to_string_2(Pred, List, Strings, ["]"]),
string.append_list(["[" | Strings], String).
:- pred list_to_string_2(pred(T, string)::in(pred(in, out) is det),
list(T)::in, list(string)::out, list(string)::in) is det.
list_to_string_2(_, []) --> [].
list_to_string_2(Pred, [T | Ts]) -->
{ call(Pred, T, String) },
[String],
( { Ts = [] } ->
[]
;
[", "],
list_to_string_2(Pred, Ts)
).
%-----------------------------------------------------------------------------%
cons_id_and_args_to_term(int_const(Int), [], Term) :-
term.context_init(Context),
Term = term.functor(term.integer(Int), [], Context).
cons_id_and_args_to_term(float_const(Float), [], Term) :-
term.context_init(Context),
Term = term.functor(term.float(Float), [], Context).
cons_id_and_args_to_term(string_const(String), [], Term) :-
term.context_init(Context),
Term = term.functor(term.string(String), [], Context).
cons_id_and_args_to_term(cons(SymName, _Arity), Args, Term) :-
construct_qualified_term(SymName, Args, Term).
cons_id_arity(cons(_, Arity)) = Arity.
cons_id_arity(int_const(_)) = 0.
cons_id_arity(string_const(_)) = 0.
cons_id_arity(float_const(_)) = 0.
cons_id_arity(pred_const(_, _)) =
unexpected(this_file, "cons_id_arity: can't get arity of pred_const").
cons_id_arity(type_ctor_info_const(_, _, _)) =
unexpected(this_file,
"cons_id_arity: can't get arity of type_ctor_info_const").
cons_id_arity(base_typeclass_info_const(_, _, _, _)) =
unexpected(this_file, "cons_id_arity: " ++
"can't get arity of base_typeclass_info_const").
cons_id_arity(type_info_cell_constructor(_)) =
unexpected(this_file, "cons_id_arity: " ++
"can't get arity of type_info_cell_constructor").
cons_id_arity(typeclass_info_cell_constructor) =
unexpected(this_file, "cons_id_arity: " ++
"can't get arity of typeclass_info_cell_constructor").
cons_id_arity(tabling_pointer_const(_)) =
unexpected(this_file,
"cons_id_arity: can't get arity of tabling_pointer_const").
cons_id_arity(deep_profiling_proc_layout(_)) =
unexpected(this_file, "cons_id_arity: " ++
"can't get arity of deep_profiling_proc_layout").
cons_id_arity(table_io_decl(_)) =
unexpected(this_file, "cons_id_arity: can't get arity of table_io_decl").
cons_id_maybe_arity(cons(_, Arity)) = yes(Arity).
cons_id_maybe_arity(int_const(_)) = yes(0).
cons_id_maybe_arity(string_const(_)) = yes(0).
cons_id_maybe_arity(float_const(_)) = yes(0).
cons_id_maybe_arity(pred_const(_, _)) = no.
cons_id_maybe_arity(type_ctor_info_const(_, _, _)) = no.
cons_id_maybe_arity(base_typeclass_info_const(_, _, _, _)) = no.
cons_id_maybe_arity(type_info_cell_constructor(_)) = no.
cons_id_maybe_arity(typeclass_info_cell_constructor) = no.
cons_id_maybe_arity(tabling_pointer_const(_)) = no.
cons_id_maybe_arity(deep_profiling_proc_layout(_)) = no.
cons_id_maybe_arity(table_io_decl(_)) = no.
make_functor_cons_id(term.atom(Name), Arity) = cons(unqualified(Name), Arity).
make_functor_cons_id(term.integer(Int), _) = int_const(Int).
make_functor_cons_id(term.string(String), _) = string_const(String).
make_functor_cons_id(term.float(Float), _) = float_const(Float).
make_cons_id(SymName0, Args, TypeCtor) = cons(SymName, Arity) :-
% Use the module qualifier on the SymName, if there is one,
% otherwise use the module qualifier on the Type, if there is one,
% otherwise leave it unqualified.
% XXX is that the right thing to do?
(
SymName0 = qualified(_, _),
SymName = SymName0
;
SymName0 = unqualified(ConsName),
(
TypeCtor = unqualified(_) - _,
SymName = SymName0
;
TypeCtor = qualified(TypeModule, _) - _,
SymName = qualified(TypeModule, ConsName)
)
),
list.length(Args, Arity).
make_cons_id_from_qualified_sym_name(SymName, Args) = cons(SymName, Arity) :-
list.length(Args, Arity).
%-----------------------------------------------------------------------------%
make_n_fresh_vars(BaseName, N, Vars, VarSet0, VarSet) :-
make_n_fresh_vars_2(BaseName, 0, N, Vars, VarSet0, VarSet).
:- pred make_n_fresh_vars_2(string::in, int::in, int::in, list(var(T))::out,
varset(T)::in, varset(T)::out) is det.
make_n_fresh_vars_2(BaseName, N, Max, Vars, !VarSet) :-
( N = Max ->
Vars = []
;
N1 = N + 1,
varset.new_var(!.VarSet, Var, !:VarSet),
string.int_to_string(N1, Num),
string.append(BaseName, Num, VarName),
varset.name_var(!.VarSet, Var, VarName, !:VarSet),
Vars = [Var | Vars1],
make_n_fresh_vars_2(BaseName, N1, Max, Vars1, !VarSet)
).
pred_args_to_func_args(PredArgs, FuncArgs, FuncReturn) :-
list.length(PredArgs, NumPredArgs),
NumFuncArgs = NumPredArgs - 1,
( list.split_list(NumFuncArgs, PredArgs, FuncArgs0, [FuncReturn0]) ->
FuncArgs = FuncArgs0,
FuncReturn = FuncReturn0
;
unexpected(this_file,
"pred_args_to_func_args: function missing return value?")
).
get_state_args(Args0, Args, State0, State) :-
list.reverse(Args0, RevArgs0),
RevArgs0 = [State, State0 | RevArgs],
list.reverse(RevArgs, Args).
get_state_args_det(Args0, Args, State0, State) :-
( get_state_args(Args0, Args1, State0A, StateA) ->
Args = Args1,
State0 = State0A,
State = StateA
;
unexpected(this_file, "get_state_args_det")
).
%-----------------------------------------------------------------------------%
parse_rule_term(Context, RuleTerm, HeadTerm, GoalTerm) :-
( RuleTerm = term.functor(term.atom(":-"), [HeadTerm0, GoalTerm0], _) ->
HeadTerm = HeadTerm0,
GoalTerm = GoalTerm0
;
HeadTerm = RuleTerm,
GoalTerm = term.functor(term.atom("true"), [], Context)
).
get_new_tvars([], _, !TVarSet, !TVarNameMap, !TVarRenaming).
get_new_tvars([TVar | TVars], VarSet, !TVarSet, !TVarNameMap, !TVarRenaming) :-
( map.contains(!.TVarRenaming, TVar) ->
true
;
( varset.search_name(VarSet, TVar, TVarName) ->
( map.search(!.TVarNameMap, TVarName, TVarSetVar) ->
svmap.det_insert(TVar, TVarSetVar, !TVarRenaming)
;
varset.new_var(!.TVarSet, NewTVar, !:TVarSet),
varset.name_var(!.TVarSet, NewTVar, TVarName, !:TVarSet),
svmap.det_insert(TVarName, NewTVar, !TVarNameMap),
svmap.det_insert(TVar, NewTVar, !TVarRenaming)
)
;
varset.new_var(!.TVarSet, NewTVar, !:TVarSet),
svmap.det_insert(TVar, NewTVar, !TVarRenaming)
)
),
get_new_tvars(TVars, VarSet, !TVarSet, !TVarNameMap, !TVarRenaming).
%-----------------------------------------------------------------------------%
substitute_vars(Vars0, Subst, Vars) :-
Vars = list.map(substitute_var(Subst), Vars0).
:- func substitute_var(substitution(T), var(T)) = var(T).
substitute_var(Subst, Var0) = Var :-
term.apply_substitution(term.variable(Var0), Subst, Term),
( Term = term.variable(Var1) ->
Var = Var1
;
unexpected(this_file, "substitute_var: invalid substitution")
).
%-----------------------------------------------------------------------------%
sym_name_and_args_to_term(unqualified(Name), Xs, Context) =
term.functor(term.atom(Name), Xs, Context).
sym_name_and_args_to_term(qualified(ModuleNames, Name), Xs, Context) =
sym_name_and_term_to_term(ModuleNames,
term.functor(term.atom(Name), Xs, Context), Context).
:- func sym_name_and_term_to_term(module_specifier, term(T), prog_context) =
term(T).
sym_name_and_term_to_term(unqualified(ModuleName), Term, Context) =
term.functor(
term.atom("."),
[term.functor(term.atom(ModuleName), [], Context), Term],
Context
).
sym_name_and_term_to_term(qualified(ModuleNames, ModuleName), Term, Context) =
term.functor(
term.atom("."),
[sym_name_and_term_to_term(
ModuleNames,
term.functor(term.atom(ModuleName), [], Context),
Context),
Term],
Context
).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "prog_util.m".
%-----------------------------------------------------------------------------%
:- end_module prog_util.
%-----------------------------------------------------------------------------%