Files
mercury/compiler/prog_io_util.m
Julien Fischer 459847a064 Move the univ, maybe, pair and unit types from std_util into their own
Estimated hours taken: 18
Branches: main

Move the univ, maybe, pair and unit types from std_util into their own
modules.  std_util still contains the general purpose higher-order programming
constructs.

library/std_util.m:
	Move univ, maybe, pair and unit (plus any other related types
	and procedures) into their own modules.

library/maybe.m:
	New module.  This contains the maybe and maybe_error types and
	the associated procedures.

library/pair.m:
	New module.  This contains the pair type and associated procedures.

library/unit.m:
	New module. This contains the types unit/0 and unit/1.

library/univ.m:
	New module. This contains the univ type and associated procedures.

library/library.m:
	Add the new modules.

library/private_builtin.m:
	Update the declaration of the type_ctor_info struct for univ.

runtime/mercury.h:
	Update the declaration for the type_ctor_info struct for univ.

runtime/mercury_mcpp.h:
runtime/mercury_hlc_types.h:
	Update the definition of MR_Univ.

runtime/mercury_init.h:
	Fix a comment: ML_type_name is now exported from type_desc.m.

compiler/mlds_to_il.m:
	Update the the name of the module that defines univs (which are
	handled specially by the il code generator.)

library/*.m:
compiler/*.m:
browser/*.m:
mdbcomp/*.m:
profiler/*.m:
deep_profiler/*.m:
	Conform to the above changes.  Import the new modules where they
	are needed; don't import std_util where it isn't needed.

	Fix formatting in lots of modules.  Delete duplicate module
	imports.

tests/*:
	Update the test suite to confrom to the above changes.
2006-03-29 08:09:58 +00:00

780 lines
28 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2006 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io_util.m.
% Main author: fjh.
%
% This module defines the types used by prog_io and its subcontractors
% to return the results of parsing, and some utility predicates needed
% by several of prog_io's submodules.
%
% Most parsing predicates must check for errors. They return either the
% item(s) they were looking for, or an error indication.
%
% Most of the parsing predicates return a `maybe1(T)' or a `maybe2(T1, T2)',
% which will either be the `ok(ParseTree)' (or `ok(ParseTree1, ParseTree2)'),
% if the parse is successful, or `error(Message, Term)' if it is not.
% The `Term' there should be the term which is syntactically incorrect.
:- module parse_tree.prog_io_util.
:- interface.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_item.
:- import_module list.
:- import_module map.
:- import_module maybe.
:- import_module pair.
:- import_module term.
%-----------------------------------------------------------------------------%
:- type maybe2(T1, T2)
---> error(string, term)
; ok(T1, T2).
:- type maybe3(T1, T2, T3)
---> error(string, term)
; ok(T1, T2, T3).
:- type maybe1(T) == maybe1(T, generic).
:- type maybe1(T, U)
---> error(string, term(U))
; ok(T).
:- type maybe_functor == maybe_functor(generic).
:- type maybe_functor(T) == maybe2(sym_name, list(term(T))).
% ok(SymName, Args - MaybeFuncRetArg) ; error(Msg, Term).
:- type maybe_pred_or_func(T) == maybe2(sym_name, pair(list(T), maybe(T))).
:- type maybe_item_and_context == maybe2(item, prog_context).
:- type var2tvar == map(var, tvar).
:- type var2pvar == map(var, prog_var).
:- type parser(T) == pred(term, maybe1(T)).
:- mode parser == (pred(in, out) is det).
:- pred add_context(maybe1(item)::in, prog_context::in,
maybe_item_and_context::out) is det.
% Various predicates to parse small bits of syntax.
% These predicates simply fail if they encounter a syntax error.
:- pred parse_list_of_vars(term(T)::in, list(var(T))::out) is semidet.
% Parse a list of quantified variables, splitting it into
% state variables and ordinary logic variables, respectively.
%
:- pred parse_quantifier_vars(term(T)::in, list(var(T))::out,
list(var(T))::out) is semidet.
% Parse a list of quantified variables.
%
:- pred parse_vars(term(T)::in, list(var(T))::out) is semidet.
% parse_vars_and_state_vars(Term, OrdinaryVars, DotStateVars,
% ColonStateVars):
%
% Similar to parse_vars, but also allow state variables to appear
% in the list. The outputs separate the parsed variables into ordinary
% variables, state variables listed as !.X, and state variables
% listed as !:X.
%
:- pred parse_vars_and_state_vars(term(T)::in, list(var(T))::out,
list(var(T))::out, list(var(T))::out) is semidet.
:- pred parse_name_and_arity(module_name::in, term(_T)::in,
sym_name::out, arity::out) is semidet.
:- pred parse_name_and_arity(term(_T)::in, sym_name::out, arity::out)
is semidet.
:- pred parse_pred_or_func_name_and_arity(module_name::in,
term(_T)::in, pred_or_func::out, sym_name::out, arity::out) is semidet.
:- pred parse_pred_or_func_name_and_arity(term(_T)::in, pred_or_func::out,
sym_name::out, arity::out) is semidet.
:- pred parse_pred_or_func_and_args(maybe(module_name)::in, term(_T)::in,
term(_T)::in, string::in, maybe_pred_or_func(term(_T))::out) is det.
:- pred parse_pred_or_func_and_args(term(_T)::in, pred_or_func::out,
sym_name::out, list(term(_T))::out) is semidet.
:- pred parse_type(term::in, maybe1(mer_type)::out) is det.
:- pred parse_types(list(term)::in, maybe1(list(mer_type))::out) is det.
:- pred unparse_type(mer_type::in, term::out) is det.
:- pred parse_purity_annotation(term(T)::in, purity::out, term(T)::out) is det.
:- type allow_constrained_inst_var
---> allow_constrained_inst_var
; no_allow_constrained_inst_var.
:- pred convert_mode_list(allow_constrained_inst_var::in, list(term)::in,
list(mer_mode)::out) is semidet.
:- pred convert_mode(allow_constrained_inst_var::in, term::in, mer_mode::out)
is semidet.
:- pred convert_inst_list(allow_constrained_inst_var::in, list(term)::in,
list(mer_inst)::out) is semidet.
:- pred convert_inst(allow_constrained_inst_var::in, term::in, mer_inst::out)
is semidet.
:- pred standard_det(string::in, determinism::out) is semidet.
% Convert a "disjunction" (bunch of terms separated by ';'s) to a list.
%
:- pred disjunction_to_list(term(T)::in, list(term(T))::out) is det.
% Convert a "conjunction" (bunch of terms separated by ','s) to a list.
%
:- pred conjunction_to_list(term(T)::in, list(term(T))::out) is det.
% list_to_conjunction(Context, First, Rest, Term):
% Convert a list to a "conjunction" (bunch of terms separated by ','s).
%
:- pred list_to_conjunction(prog_context::in, term(T)::in, list(term(T))::in,
term(T)::out) is det.
% Convert a "sum" (bunch of terms separated by '+' operators) to a list.
%
:- pred sum_to_list(term(T)::in, list(term(T))::out) is det.
% Parse a comma-separated list (misleading described as a "conjunction")
% of things.
%
:- pred parse_list(parser(T)::parser, term::in, maybe1(list(T))::out) is det.
:- pred map_parser(parser(T)::parser, list(term)::in, maybe1(list(T))::out)
is det.
:- pred list_term_to_term_list(term::in, list(term)::out) is semidet.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module libs.compiler_util.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module parse_tree.prog_io.
:- import_module parse_tree.prog_io_goal.
:- import_module parse_tree.prog_out.
:- import_module parse_tree.prog_util.
:- import_module bool.
:- import_module set.
:- import_module string.
:- import_module term.
add_context(error(M, T), _, error(M, T)).
add_context(ok(Item), Context, ok(Item, Context)).
parse_name_and_arity(ModuleName, PredAndArityTerm, SymName, Arity) :-
PredAndArityTerm = term.functor(term.atom("/"),
[PredNameTerm, ArityTerm], _),
parse_implicitly_qualified_term(ModuleName,
PredNameTerm, PredNameTerm, "", ok(SymName, [])),
ArityTerm = term.functor(term.integer(Arity), [], _).
parse_name_and_arity(PredAndArityTerm, SymName, Arity) :-
parse_name_and_arity(unqualified(""),
PredAndArityTerm, SymName, Arity).
parse_pred_or_func_name_and_arity(ModuleName, PorFPredAndArityTerm,
PredOrFunc, SymName, Arity) :-
PorFPredAndArityTerm = term.functor(term.atom(PredOrFuncStr), Args, _),
( PredOrFuncStr = "pred", PredOrFunc = predicate
; PredOrFuncStr = "func", PredOrFunc = function
),
Args = [Arg],
parse_name_and_arity(ModuleName, Arg, SymName, Arity).
parse_pred_or_func_name_and_arity(PorFPredAndArityTerm,
PredOrFunc, SymName, Arity) :-
parse_pred_or_func_name_and_arity(unqualified(""),
PorFPredAndArityTerm, PredOrFunc, SymName, Arity).
parse_pred_or_func_and_args(Term, PredOrFunc, SymName, ArgTerms) :-
parse_pred_or_func_and_args(no, Term, Term, "",
ok(SymName, ArgTerms0 - MaybeRetTerm)),
(
MaybeRetTerm = yes(RetTerm),
PredOrFunc = function,
list.append(ArgTerms0, [RetTerm], ArgTerms)
;
MaybeRetTerm = no,
PredOrFunc = predicate,
ArgTerms = ArgTerms0
).
parse_pred_or_func_and_args(MaybeModuleName, PredAndArgsTerm, ErrorTerm,
Msg, PredAndArgsResult) :-
(
PredAndArgsTerm = term.functor(term.atom("="),
[FuncAndArgsTerm, FuncResultTerm], _)
->
FunctorTerm = FuncAndArgsTerm,
MaybeFuncResult = yes(FuncResultTerm)
;
FunctorTerm = PredAndArgsTerm,
MaybeFuncResult = no
),
(
MaybeModuleName = yes(ModuleName),
parse_implicitly_qualified_term(ModuleName, FunctorTerm,
ErrorTerm, Msg, Result)
;
MaybeModuleName = no,
parse_qualified_term(FunctorTerm, ErrorTerm, Msg, Result)
),
(
Result = ok(SymName, Args),
PredAndArgsResult = ok(SymName, Args - MaybeFuncResult)
;
Result = error(ErrorMsg, Term),
PredAndArgsResult = error(ErrorMsg, Term)
).
parse_list_of_vars(term.functor(term.atom("[]"), [], _), []).
parse_list_of_vars(term.functor(term.atom("[|]"), [Head, Tail], _),
[V | Vs]) :-
Head = term.variable(V),
parse_list_of_vars(Tail, Vs).
% XXX kind inference: We currently give all types kind `star'.
% This will be different when we have a kind system.
%
parse_type(Term, Result) :-
(
Term = term.variable(Var0)
->
term.coerce_var(Var0, Var),
Result = ok(variable(Var, star))
;
parse_builtin_type(Term, BuiltinType)
->
Result = ok(builtin(BuiltinType))
;
parse_higher_order_type(Term, HOArgs, MaybeRet, Purity, EvalMethod)
->
Result = ok(higher_order(HOArgs, MaybeRet, Purity, EvalMethod))
;
Term = term.functor(term.atom("{}"), Args, _)
->
parse_types(Args, ArgsResult),
(
ArgsResult = ok(ArgTypes),
Result = ok(tuple(ArgTypes, star))
;
ArgsResult = error(Msg, ErrorTerm),
Result = error(Msg, ErrorTerm)
)
;
% We don't support apply/N types yet, so we just detect them
% and report an error message.
Term = term.functor(term.atom(""), _, _)
->
Result = error("ill-formed type", Term)
;
% We don't support kind annotations yet, and we don't report
% an error either. Perhaps we should?
parse_qualified_term(Term, Term, "type", NameResult),
(
NameResult = ok(SymName, ArgTerms),
parse_types(ArgTerms, ArgsResult),
(
ArgsResult = ok(ArgTypes),
Result = ok(defined(SymName, ArgTypes, star))
;
ArgsResult = error(Msg, ErrorTerm),
Result = error(Msg, ErrorTerm)
)
;
NameResult = error(Msg, ErrorTerm),
Result = error(Msg, ErrorTerm)
)
).
parse_types(Terms, Result) :-
parse_types_2(Terms, [], Result).
:- pred parse_types_2(list(term)::in, list(mer_type)::in,
maybe1(list(mer_type))::out) is det.
parse_types_2([], RevTypes, ok(Types)) :-
list.reverse(RevTypes, Types).
parse_types_2([Term | Terms], RevTypes, Result) :-
parse_type(Term, Result0),
(
Result0 = ok(Type),
parse_types_2(Terms, [Type | RevTypes], Result)
;
Result0 = error(Msg, ErrorTerm),
Result = error(Msg, ErrorTerm)
).
:- pred parse_builtin_type(term::in, builtin_type::out) is semidet.
parse_builtin_type(Term, BuiltinType) :-
Term = term.functor(term.atom(Name), [], _),
builtin_type_to_string(BuiltinType, Name).
% If there are any ill-formed types in the argument then we just fail.
% The predicate parse_type will then try to parse the term as an ordinary
% defined type and will produce the required error message.
%
:- pred parse_higher_order_type(term::in, list(mer_type)::out,
maybe(mer_type)::out, purity::out, lambda_eval_method::out) is semidet.
parse_higher_order_type(Term0, ArgTypes, MaybeRet, Purity, lambda_normal) :-
parse_purity_annotation(Term0, Purity, Term1),
( Term1 = term.functor(term.atom("="), [FuncAndArgs, Ret], _) ->
FuncAndArgs = term.functor(term.atom("func"), Args, _),
parse_type(Ret, ok(RetType)),
MaybeRet = yes(RetType)
;
Term1 = term.functor(term.atom("pred"), Args, _),
MaybeRet = no
),
parse_types(Args, ok(ArgTypes)).
parse_purity_annotation(Term0, Purity, Term) :-
(
Term0 = term.functor(term.atom(PurityName), [Term1], _),
purity_name(Purity0, PurityName)
->
Purity = Purity0,
Term = Term1
;
Purity = purity_pure,
Term = Term0
).
unparse_type(variable(TVar, _), term.variable(Var)) :-
Var = term.coerce_var(TVar).
unparse_type(defined(SymName, Args, _), Term) :-
unparse_type_list(Args, ArgTerms),
unparse_qualified_term(SymName, ArgTerms, Term).
unparse_type(builtin(BuiltinType), Term) :-
Context = term.context_init,
builtin_type_to_string(BuiltinType, Name),
Term = term.functor(term.atom(Name), [], Context).
unparse_type(higher_order(Args, MaybeRet, Purity, EvalMethod), Term) :-
Context = term.context_init,
unparse_type_list(Args, ArgTerms),
(
MaybeRet = yes(Ret),
Term0 = term.functor(term.atom("func"), ArgTerms, Context),
maybe_add_lambda_eval_method(EvalMethod, Term0, Term1),
unparse_type(Ret, RetTerm),
Term2 = term.functor(term.atom("="), [Term1, RetTerm], Context)
;
MaybeRet = no,
Term0 = term.functor(term.atom("pred"), ArgTerms, Context),
maybe_add_lambda_eval_method(EvalMethod, Term0, Term2)
),
maybe_add_purity_annotation(Purity, Term2, Term).
unparse_type(tuple(Args, _), Term) :-
Context = term.context_init,
unparse_type_list(Args, ArgTerms),
Term = term.functor(term.atom("{}"), ArgTerms, Context).
unparse_type(apply_n(TVar, Args, _), Term) :-
Context = term.context_init,
Var = term.coerce_var(TVar),
unparse_type_list(Args, ArgTerms),
Term = term.functor(term.atom(""), [term.variable(Var) | ArgTerms],
Context).
unparse_type(kinded(_, _), _) :-
unexpected(this_file, "prog_io_util: kind annotation").
:- pred unparse_type_list(list(mer_type)::in, list(term)::out) is det.
unparse_type_list(Types, Terms) :-
list.map(unparse_type, Types, Terms).
:- pred unparse_qualified_term(sym_name::in, list(term)::in, term::out) is det.
unparse_qualified_term(unqualified(Name), Args, Term) :-
Context = term.context_init,
Term = term.functor(term.atom(Name), Args, Context).
unparse_qualified_term(qualified(Qualifier, Name), Args, Term) :-
Context = term.context_init,
unparse_qualified_term(Qualifier, [], QualTerm),
Term0 = term.functor(term.atom(Name), Args, Context),
Term = term.functor(term.atom("."), [QualTerm, Term0], Context).
:- pred maybe_add_lambda_eval_method(lambda_eval_method::in, term::in,
term::out) is det.
maybe_add_lambda_eval_method(lambda_normal, Term, Term).
:- pred maybe_add_purity_annotation(purity::in, term::in, term::out) is det.
maybe_add_purity_annotation(purity_pure, Term, Term).
maybe_add_purity_annotation(purity_semipure, Term0, Term) :-
Context = term.context_init,
Term = term.functor(term.atom("semipure"), [Term0], Context).
maybe_add_purity_annotation(purity_impure, Term0, Term) :-
Context = term.context_init,
Term = term.functor(term.atom("impure"), [Term0], Context).
convert_mode_list(_, [], []).
convert_mode_list(AllowConstrainedInstVar, [H0 | T0], [H | T]) :-
convert_mode(AllowConstrainedInstVar, H0, H),
convert_mode_list(AllowConstrainedInstVar, T0, T).
convert_mode(AllowConstrainedInstVar, Term, Mode) :-
(
Term = term.functor(term.atom(">>"), [InstA, InstB], _)
->
convert_inst(AllowConstrainedInstVar, InstA, ConvertedInstA),
convert_inst(AllowConstrainedInstVar, InstB, ConvertedInstB),
Mode = (ConvertedInstA -> ConvertedInstB)
;
% Handle higher-order predicate modes:
% a mode of the form
% pred(<Mode1>, <Mode2>, ...) is <Det>
% is an abbreviation for the inst mapping
% ( pred(<Mode1>, <Mode2>, ...) is <Det>
% -> pred(<Mode1>, <Mode2>, ...) is <Det>
% )
Term = term.functor(term.atom("is"), [PredTerm, DetTerm], _),
PredTerm = term.functor(term.atom("pred"), ArgModesTerms, _)
->
DetTerm = term.functor(term.atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerms, ArgModes),
PredInstInfo = pred_inst_info(predicate, ArgModes, Detism),
Inst = ground(shared, higher_order(PredInstInfo)),
Mode = (Inst -> Inst)
;
% Handle higher-order function modes:
% a mode of the form
% func(<Mode1>, <Mode2>, ...) = <RetMode> is <Det>
% is an abbreviation for the inst mapping
% ( func(<Mode1>, <Mode2>, ...) = <RetMode> is <Det>
% -> func(<Mode1>, <Mode2>, ...) = <RetMode> is <Det>
% )
Term = term.functor(term.atom("is"), [EqTerm, DetTerm], _),
EqTerm = term.functor(term.atom("="), [FuncTerm, RetModeTerm], _),
FuncTerm = term.functor(term.atom("func"), ArgModesTerms, _)
->
DetTerm = term.functor(term.atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerms, ArgModes0),
convert_mode(AllowConstrainedInstVar, RetModeTerm, RetMode),
list.append(ArgModes0, [RetMode], ArgModes),
FuncInstInfo = pred_inst_info(function, ArgModes, Detism),
Inst = ground(shared, higher_order(FuncInstInfo)),
Mode = (Inst -> Inst)
;
parse_qualified_term(Term, Term, "mode definition", R),
R = ok(Name, Args), % should improve error reporting
convert_inst_list(AllowConstrainedInstVar, Args, ConvertedArgs),
Mode = user_defined_mode(Name, ConvertedArgs)
).
convert_inst_list(_, [], []).
convert_inst_list(AllowConstrainedInstVar, [H0 | T0], [H | T]) :-
convert_inst(AllowConstrainedInstVar, H0, H),
convert_inst_list(AllowConstrainedInstVar, T0, T).
convert_inst(_, term.variable(V0), inst_var(V)) :-
term.coerce_var(V0, V).
convert_inst(AllowConstrainedInstVar, Term, Result) :-
Term = term.functor(term.atom(Name), Args0, _Context),
(
convert_simple_builtin_inst(Name, Args0, Result0)
->
Result = Result0
;
% The syntax for a higher-order pred inst is
%
% pred(<Mode1>, <Mode2>, ...) is <Detism>
%
% where <Mode1>, <Mode2>, ... are a list of modes,
% and <Detism> is a determinism.
Name = "is", Args0 = [PredTerm, DetTerm],
PredTerm = term.functor(term.atom("pred"), ArgModesTerm, _)
->
DetTerm = term.functor(term.atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerm, ArgModes),
PredInst = pred_inst_info(predicate, ArgModes, Detism),
Result = ground(shared, higher_order(PredInst))
;
% The syntax for a higher-order func inst is
%
% func(<Mode1>, <Mode2>, ...) = <RetMode> is <Detism>
%
% where <Mode1>, <Mode2>, ... are a list of modes,
% <RetMode> is a mode, and <Detism> is a determinism.
Name = "is", Args0 = [EqTerm, DetTerm],
EqTerm = term.functor(term.atom("="), [FuncTerm, RetModeTerm], _),
FuncTerm = term.functor(term.atom("func"), ArgModesTerm, _)
->
DetTerm = term.functor(term.atom(DetString), [], _),
standard_det(DetString, Detism),
convert_mode_list(AllowConstrainedInstVar, ArgModesTerm, ArgModes0),
convert_mode(AllowConstrainedInstVar, RetModeTerm, RetMode),
list.append(ArgModes0, [RetMode], ArgModes),
FuncInst = pred_inst_info(function, ArgModes, Detism),
Result = ground(shared, higher_order(FuncInst))
; Name = "bound", Args0 = [Disj] ->
% `bound' insts
parse_bound_inst_list(AllowConstrainedInstVar, Disj, shared, Result)
; Name = "bound_unique", Args0 = [Disj] ->
% `bound_unique' is for backwards compatibility - use `unique' instead.
parse_bound_inst_list(AllowConstrainedInstVar, Disj, unique, Result)
; Name = "unique", Args0 = [Disj] ->
parse_bound_inst_list(AllowConstrainedInstVar, Disj, unique, Result)
; Name = "mostly_unique", Args0 = [Disj] ->
parse_bound_inst_list(AllowConstrainedInstVar, Disj, mostly_unique,
Result)
; Name = "=<", Args0 = [VarTerm, InstTerm] ->
AllowConstrainedInstVar = allow_constrained_inst_var,
VarTerm = term.variable(Var),
% Do not allow nested constrained_inst_vars.
convert_inst(no_allow_constrained_inst_var, InstTerm, Inst),
Result = constrained_inst_vars(set.make_singleton_set(
term.coerce_var(Var)), Inst)
;
% Anything else must be a user-defined inst.
parse_qualified_term(Term, Term, "inst", ok(QualifiedName, Args1)),
(
mercury_public_builtin_module(BuiltinModule),
sym_name_get_module_name(QualifiedName, unqualified(""),
BuiltinModule),
% If the term is qualified with the `builtin' module
% then it may be one of the simple builtin insts.
% We call convert_inst recursively to check for this.
unqualify_name(QualifiedName, UnqualifiedName),
convert_simple_builtin_inst(UnqualifiedName, Args1, Result0),
% However, if the inst is a user_inst defined inside
% the `builtin' module then we need to make sure it is
% properly module-qualified.
Result0 \= defined_inst(user_inst(_, _))
->
Result = Result0
;
convert_inst_list(AllowConstrainedInstVar, Args1, Args),
Result = defined_inst(user_inst(QualifiedName, Args))
)
).
% A "simple" builtin inst is one that has no arguments and no special
% syntax.
%
:- pred convert_simple_builtin_inst(string::in, list(term)::in, mer_inst::out)
is semidet.
convert_simple_builtin_inst(Name, [], Inst) :-
convert_simple_builtin_inst_2(Name, Inst).
:- pred convert_simple_builtin_inst_2(string::in, mer_inst::out) is semidet.
% `free' insts
convert_simple_builtin_inst_2("free", free).
% `any' insts
convert_simple_builtin_inst_2("any", any(shared)).
convert_simple_builtin_inst_2("unique_any", any(unique)).
convert_simple_builtin_inst_2("mostly_unique_any", any(mostly_unique)).
convert_simple_builtin_inst_2("clobbered_any", any(clobbered)).
convert_simple_builtin_inst_2("mostly_clobbered_any", any(mostly_clobbered)).
% `ground' insts
convert_simple_builtin_inst_2("ground", ground(shared, none)).
convert_simple_builtin_inst_2("unique", ground(unique, none)).
convert_simple_builtin_inst_2("mostly_unique", ground(mostly_unique, none)).
convert_simple_builtin_inst_2("clobbered", ground(clobbered, none)).
convert_simple_builtin_inst_2("mostly_clobbered",
ground(mostly_clobbered, none)).
% `not_reached' inst
convert_simple_builtin_inst_2("not_reached", not_reached).
standard_det("det", det).
standard_det("cc_nondet", cc_nondet).
standard_det("cc_multi", cc_multidet).
standard_det("nondet", nondet).
standard_det("multi", multidet).
standard_det("multidet", multidet).
standard_det("semidet", semidet).
standard_det("erroneous", erroneous).
standard_det("failure", failure).
:- pred parse_bound_inst_list(allow_constrained_inst_var::in, term::in,
uniqueness::in, mer_inst::out) is semidet.
parse_bound_inst_list(AllowConstrainedInstVar, Disj, Uniqueness,
bound(Uniqueness, Functors)) :-
disjunction_to_list(Disj, List),
convert_bound_inst_list(AllowConstrainedInstVar, List, Functors0),
list.sort(Functors0, Functors),
% Check that the list doesn't specify the same functor twice.
\+ (
list.append(_, SubList, Functors),
SubList = [F1, F2 | _],
F1 = functor(ConsId, _),
F2 = functor(ConsId, _)
).
:- pred convert_bound_inst_list(allow_constrained_inst_var::in, list(term)::in,
list(bound_inst)::out) is semidet.
convert_bound_inst_list(_, [], []).
convert_bound_inst_list(AllowConstrainedInstVar, [H0 | T0], [H | T]) :-
convert_bound_inst(AllowConstrainedInstVar, H0, H),
convert_bound_inst_list(AllowConstrainedInstVar, T0, T).
:- pred convert_bound_inst(allow_constrained_inst_var::in, term::in,
bound_inst::out) is semidet.
convert_bound_inst(AllowConstrainedInstVar, InstTerm, functor(ConsId, Args)) :-
InstTerm = term.functor(Functor, Args0, _),
( Functor = term.atom(_) ->
parse_qualified_term(InstTerm, InstTerm, "inst", ok(SymName, Args1)),
list.length(Args1, Arity),
ConsId = cons(SymName, Arity)
;
Args1 = Args0,
list.length(Args1, Arity),
ConsId = make_functor_cons_id(Functor, Arity)
),
convert_inst_list(AllowConstrainedInstVar, Args1, Args).
disjunction_to_list(Term, List) :-
binop_term_to_list(";", Term, List).
conjunction_to_list(Term, List) :-
binop_term_to_list(",", Term, List).
list_to_conjunction(_, Term, [], Term).
list_to_conjunction(Context, First, [Second | Rest], Term) :-
list_to_conjunction(Context, Second, Rest, Tail),
Term = term.functor(term.atom(","), [First, Tail], Context).
sum_to_list(Term, List) :-
binop_term_to_list("+", Term, List).
% general predicate to convert terms separated by any specified
% operator into a list
:- pred binop_term_to_list(string::in, term(T)::in, list(term(T))::out) is det.
binop_term_to_list(Op, Term, List) :-
binop_term_to_list_2(Op, Term, [], List).
:- pred binop_term_to_list_2(string::in, term(T)::in, list(term(T))::in,
list(term(T))::out) is det.
binop_term_to_list_2(Op, Term, !List) :-
( Term = term.functor(term.atom(Op), [L, R], _Context) ->
binop_term_to_list_2(Op, R, !List),
binop_term_to_list_2(Op, L, !List)
;
!:List = [Term | !.List]
).
parse_list(Parser, Term, Result) :-
conjunction_to_list(Term, List),
map_parser(Parser, List, Result).
map_parser(_, [], ok([])).
map_parser(Parser, [X | Xs], Result) :-
call(Parser, X, X_Result),
map_parser(Parser, Xs, Xs_Result),
combine_list_results(X_Result, Xs_Result, Result).
% If a list of things contains multiple errors, then we only
% report the first one.
%
:- pred combine_list_results(maybe1(T)::in, maybe1(list(T))::in,
maybe1(list(T))::out) is det.
combine_list_results(error(Msg, Term), _, error(Msg, Term)).
combine_list_results(ok(_), error(Msg, Term), error(Msg, Term)).
combine_list_results(ok(X), ok(Xs), ok([X | Xs])).
%-----------------------------------------------------------------------------%
parse_quantifier_vars(functor(atom("[]"), [], _), [], []).
parse_quantifier_vars(functor(atom("[|]"), [H, T], _), !:SVs, !:Vs) :-
parse_quantifier_vars(T, !:SVs, !:Vs),
(
H = functor(atom("!"), [variable(SV)], _),
!:SVs = [SV | !.SVs]
;
H = variable(V),
!:Vs = [V | !.Vs]
).
parse_vars(functor(atom("[]"), [], _), []).
parse_vars(functor(atom("[|]"), [H, T], _), !:Vs) :-
parse_vars(T, !:Vs),
H = variable(V),
!:Vs = [V | !.Vs].
parse_vars_and_state_vars(functor(atom("[]"), [], _), [], [], []).
parse_vars_and_state_vars(functor(atom("[|]"), [H, T], _), !:Os, !:Ds, !:Cs) :-
parse_vars_and_state_vars(T, !:Os, !:Ds, !:Cs),
(
H = functor(atom("!"), [variable(V)], _),
!:Ds = [V | !.Ds],
!:Cs = [V | !.Cs]
;
H = functor(atom("!."), [variable(V)], _),
!:Ds = [V | !.Ds]
;
H = functor(atom("!:"), [variable(V)], _),
!:Cs = [V | !.Cs]
;
H = variable(V),
!:Os = [V | !.Os]
).
%-----------------------------------------------------------------------------%
list_term_to_term_list(Methods, MethodList) :-
(
Methods = term.functor(term.atom("[|]"), [Head, Tail0], _),
list_term_to_term_list(Tail0, Tail),
MethodList = [Head|Tail]
;
Methods = term.functor(term.atom("[]"), [], _),
MethodList = []
).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "prog_io_util.m".
%-----------------------------------------------------------------------------%
:- end_module parse_tree.prog_io_util.
%-----------------------------------------------------------------------------%