Files
mercury/compiler/ml_optimize.m
Peter Ross a6d5d61cb5 Refactor the top level of mlds_to_il so that we only do one pass over
Estimated hours taken: 40
Branches: main

Refactor the top level of mlds_to_il so that we only do one pass over
the MLDS to generate the ILDS.  As a side effect of this change nondet
code now works again.

compiler/mlds_to_il.m:
    Do a MLDS to MLDS transformation which places all the procedures and
    data into the mercury_code class.  Then modify all the qualifiers to
    take account of this change to the code.
    Rewrite the top level so that it only does one pass over the MLDS
    data structure.
    Examine the flags when deciding which attributes to place on a
    method, field or class.

compiler/mlds.m:
    Add a new field to mlds__class_defn which is the list of
    defns which are constructors for this class.
    Add the functions mlds__append_mercury_code and mlds__append_name
    which append either "mercury_code" or an arbitary string to the
    module qualifier of a name.

compiler/ml_elim_nested.m:
    Rather then hardcoding the generation of the constructor for the
    environment class, we generate it here as an MLDS method.
    On the IL backend the mercury code is placed in a seperate class to
    the environment data, so the env_type decls must be public so as to
    be accessible from the code.

compiler/ml_code_util.m:
    Wrapper functions should be static methods not instance methods.
    Fix ml_gen_label_func_decl_flags to make this true.

compiler/rtti_to_mlds.m:
    Rtti data structures should be one_copy (ie static) not per_instance.

compiler/ml_optimize.m:
compiler/ml_tailcall.m:
compiler/ml_type_gen.m:
compiler/mlds_to_c.m:
compiler/mlds_to_gcc.m:
compiler/mlds_to_java.m:
    Misc changes to handle the additon of a list of constructors to the
    mlds__class_defn.

compiler/mlds_to_csharp.m:
compiler/mlds_to_mcpp.m:
    Use the function class_name rather then mercury_module_name_to_mlds.
2001-07-09 15:55:07 +00:00

506 lines
15 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 2000-2001 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: ml_optimize.m
% Main author: trd, fjh
% This module runs various optimizations on the MLDS.
%
% Currently the optimizations we do here are
% - turning tailcalls into loops;
% - converting assignments to local variables into variable initializers.
%
% Note that tailcall detection is done in ml_tailcall.m.
% It might be nice to move the detection here, and do both the
% loop transformation (in the case of self-tailcalls) and marking
% tailcalls at the same time.
%
% Ultimately this module should just consist of a skeleton to traverse
% the MLDS, and should call various optimization modules along the way.
%
% It would probably be a good idea to make each transformation optional.
% Previously the tailcall transformation depended on emit_c_loops, but
% this is a bit misleading given the documentation of emit_c_loops.
%-----------------------------------------------------------------------------%
:- module ml_optimize.
:- interface.
:- import_module mlds, io.
:- pred optimize(mlds, mlds, io__state, io__state).
:- mode optimize(in, out, di, uo) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module ml_util, ml_code_util.
:- import_module builtin_ops, globals, options, error_util.
:- import_module bool, list, require, std_util, string.
:- type opt_info --->
opt_info(
globals :: globals,
module_name :: mlds_module_name,
entity_name :: mlds__entity_name,
func_params :: mlds__func_params,
context :: mlds__context
).
% The label name we use for the top of the loop introduced by
% tailcall optimization.
:- func tailcall_loop_label_name = string.
tailcall_loop_label_name = "loop_top".
optimize(MLDS0, MLDS) -->
globals__io_get_globals(Globals),
{ MLDS0 = mlds(ModuleName, ForeignCode, Imports, Defns0) },
{ Defns = optimize_in_defns(Defns0, Globals,
mercury_module_name_to_mlds(ModuleName)) },
{ MLDS = mlds(ModuleName, ForeignCode, Imports, Defns) }.
:- func optimize_in_defns(mlds__defns, globals, mlds_module_name)
= mlds__defns.
optimize_in_defns(Defns, Globals, ModuleName) =
list__map(optimize_in_defn(ModuleName, Globals), Defns).
:- func optimize_in_defn(mlds_module_name, globals, mlds__defn) = mlds__defn.
optimize_in_defn(ModuleName, Globals, Defn0) = Defn :-
Defn0 = mlds__defn(Name, Context, Flags, DefnBody0),
(
DefnBody0 = mlds__function(PredProcId, Params, FuncBody0),
OptInfo = opt_info(Globals, ModuleName, Name, Params, Context),
FuncBody1 = optimize_func(OptInfo, FuncBody0),
FuncBody = optimize_in_maybe_statement(OptInfo, FuncBody1),
DefnBody = mlds__function(PredProcId, Params, FuncBody),
Defn = mlds__defn(Name, Context, Flags, DefnBody)
;
DefnBody0 = mlds__data(_, _),
Defn = Defn0
;
DefnBody0 = mlds__class(ClassDefn0),
ClassDefn0 = class_defn(Kind, Imports, BaseClasses, Implements,
CtorDefns0, MemberDefns0),
MemberDefns = optimize_in_defns(MemberDefns0, Globals,
ModuleName),
CtorDefns = optimize_in_defns(CtorDefns0, Globals,
ModuleName),
ClassDefn = class_defn(Kind, Imports, BaseClasses, Implements,
CtorDefns, MemberDefns),
DefnBody = mlds__class(ClassDefn),
Defn = mlds__defn(Name, Context, Flags, DefnBody)
).
:- func optimize_in_maybe_statement(opt_info,
maybe(mlds__statement)) = maybe(mlds__statement).
optimize_in_maybe_statement(_, no) = no.
optimize_in_maybe_statement(OptInfo, yes(Statement0)) = yes(Statement) :-
Statement = optimize_in_statement(OptInfo, Statement0).
:- func optimize_in_statements(opt_info, list(mlds__statement)) =
list(mlds__statement).
optimize_in_statements(OptInfo, Statements) =
list__map(optimize_in_statement(OptInfo), Statements).
:- func optimize_in_statement(opt_info, mlds__statement) =
mlds__statement.
optimize_in_statement(OptInfo, statement(Stmt, Context)) =
statement(optimize_in_stmt(OptInfo ^ context := Context, Stmt),
Context).
:- func optimize_in_stmt(opt_info, mlds__stmt) = mlds__stmt.
optimize_in_stmt(OptInfo, Stmt0) = Stmt :-
(
Stmt0 = call(_, _, _, _, _, _),
Stmt = optimize_in_call_stmt(OptInfo, Stmt0)
;
Stmt0 = block(Defns0, Statements0),
convert_assignments_into_initializers(Defns0, Statements0,
OptInfo, Defns, Statements1),
Statements = optimize_in_statements(OptInfo, Statements1),
Stmt = block(Defns, Statements)
;
Stmt0 = while(Rval, Statement0, Once),
Stmt = while(Rval, optimize_in_statement(OptInfo,
Statement0), Once)
;
Stmt0 = if_then_else(Rval, Then, MaybeElse),
Stmt = if_then_else(Rval,
optimize_in_statement(OptInfo, Then),
maybe_apply(optimize_in_statement(OptInfo), MaybeElse))
;
Stmt0 = switch(Type, Rval, Range, Cases0, Default0),
Stmt = switch(Type, Rval, Range,
list__map(optimize_in_case(OptInfo), Cases0),
optimize_in_default(OptInfo, Default0))
;
Stmt0 = do_commit(_),
Stmt = Stmt0
;
Stmt0 = return(_),
Stmt = Stmt0
;
Stmt0 = try_commit(Ref, TryGoal, HandlerGoal),
Stmt = try_commit(Ref,
optimize_in_statement(OptInfo, TryGoal),
optimize_in_statement(OptInfo, HandlerGoal))
;
Stmt0 = label(_Label),
Stmt = Stmt0
;
Stmt0 = goto(_Label),
Stmt = Stmt0
;
Stmt0 = computed_goto(_Rval, _Label),
Stmt = Stmt0
;
Stmt0 = atomic(_Atomic),
Stmt = Stmt0
).
:- func optimize_in_case(opt_info, mlds__switch_case) = mlds__switch_case.
optimize_in_case(OptInfo, Conds - Statement0) = Conds - Statement :-
Statement = optimize_in_statement(OptInfo, Statement0).
:- func optimize_in_default(opt_info, mlds__switch_default) =
mlds__switch_default.
optimize_in_default(_OptInfo, default_is_unreachable) = default_is_unreachable.
optimize_in_default(_OptInfo, default_do_nothing) = default_do_nothing.
optimize_in_default(OptInfo, default_case(Statement0)) =
default_case(Statement) :-
Statement = optimize_in_statement(OptInfo, Statement0).
%-----------------------------------------------------------------------------%
:- func optimize_in_call_stmt(opt_info, mlds__stmt) = mlds__stmt.
optimize_in_call_stmt(OptInfo, Stmt0) = Stmt :-
% If we have a self-tailcall, assign to the arguments and
% then goto the top of the tailcall loop.
(
Stmt0 = call(_Signature, _FuncRval, _MaybeObject, CallArgs,
_Results, _IsTailCall),
can_optimize_tailcall(qual(OptInfo ^ module_name,
OptInfo ^ entity_name), Stmt0)
->
CommentStatement = statement(
atomic(comment("direct tailcall eliminated")),
OptInfo ^ context),
GotoStatement = statement(goto(tailcall_loop_label_name),
OptInfo ^ context),
OptInfo ^ func_params = mlds__func_params(FuncArgs, _RetTypes),
generate_assign_args(OptInfo, FuncArgs, CallArgs,
AssignStatements, AssignDefns),
AssignVarsStatement = statement(block(AssignDefns,
AssignStatements), OptInfo ^ context),
CallReplaceStatements = [
CommentStatement,
AssignVarsStatement,
GotoStatement
],
Stmt = block([], CallReplaceStatements)
;
Stmt = Stmt0
).
%----------------------------------------------------------------------------
% Assign the specified list of rvals to the arguments.
% This is used as part of tail recursion optimization (see above).
:- pred generate_assign_args(opt_info, mlds__arguments, list(mlds__rval),
list(mlds__statement), list(mlds__defn)).
:- mode generate_assign_args(in, in, in, out, out) is det.
generate_assign_args(_, [_|_], [], [], []) :-
error("generate_assign_args: length mismatch").
generate_assign_args(_, [], [_|_], [], []) :-
error("generate_assign_args: length mismatch").
generate_assign_args(_, [], [], [], []).
generate_assign_args(OptInfo,
[Name - Type | Rest], [Arg | Args], Statements, TempDefns) :-
(
%
% extract the variable name
%
Name = data(var(VarName))
->
QualVarName = qual(OptInfo ^ module_name, VarName),
(
%
% don't bother assigning a variable to itself
%
Arg = lval(var(QualVarName, _VarType))
->
generate_assign_args(OptInfo, Rest, Args,
Statements, TempDefns)
;
% Declare a temporary variable, initialized it
% to the arg, recursively process the remaining
% args, and then assign the temporary to the
% parameter:
%
% SomeType argN__tmp_copy = new_argN_value;
% ...
% new_argN_value = argN_tmp_copy;
%
% The temporaries are needed for the case where
% we are e.g. assigning v1, v2 to v2, v1;
% they ensure that we don't try to reference the old
% value of a parameter after it has already been
% clobbered by the new value.
VarName = mlds__var_name(VarNameStr, MaybeNum),
TempName = mlds__var_name(VarNameStr ++ "__tmp_copy",
MaybeNum),
QualTempName = qual(OptInfo ^ module_name,
TempName),
Initializer = init_obj(Arg),
TempDefn = ml_gen_mlds_var_decl(var(TempName),
Type, Initializer, OptInfo ^ context),
Statement = statement(
atomic(assign(
var(QualVarName, Type),
lval(var(QualTempName, Type)))),
OptInfo ^ context),
generate_assign_args(OptInfo, Rest, Args, Statements0,
TempDefns0),
Statements = [Statement | Statements0],
TempDefns = [TempDefn | TempDefns0]
)
;
error("generate_assign_args: function param is not a var")
).
%----------------------------------------------------------------------------
:- func optimize_func(opt_info, maybe(mlds__statement))
= maybe(mlds__statement).
optimize_func(OptInfo, MaybeStatement) =
maybe_apply(optimize_func_stmt(OptInfo), MaybeStatement).
:- func optimize_func_stmt(opt_info,
mlds__statement) = (mlds__statement).
optimize_func_stmt(OptInfo, mlds__statement(Stmt0, Context)) =
mlds__statement(Stmt, Context) :-
% Tailcall optimization -- if we do a self tailcall, we
% can turn it into a loop.
(
stmt_contains_statement(Stmt0, Call),
Call = mlds__statement(CallStmt, _),
can_optimize_tailcall(
qual(OptInfo ^ module_name, OptInfo ^ entity_name),
CallStmt)
->
Comment = atomic(comment("tailcall optimized into a loop")),
Label = label(tailcall_loop_label_name),
Stmt = block([], [statement(Comment, Context),
statement(Label, Context),
statement(Stmt0, Context)])
;
Stmt = Stmt0
).
%-----------------------------------------------------------------------------%
%
% This code implements the --optimize-initializations option.
% It converts MLDS code using assignments, e.g.
%
% {
% int v1; // or any other type -- it doesn't have to be int
% int v2;
% int v3;
% int v4;
% int v5;
%
% v1 = 1;
% v2 = 2;
% v3 = 3;
% foo();
% v4 = 4;
% ...
% }
%
% into code that instead uses initializers, e.g.
%
% {
% int v1 = 1;
% int v2 = 2;
% int v3 = 3;
% int v4;
%
% foo();
% v4 = 4;
% ...
% }
%
% Note that if there are multiple initializations of the same
% variable, then we'll apply the optimization successively,
% replacing the existing initializers as we go, and keeping
% only the last, e.g.
%
% int v = 1;
% v = 2;
% v = 3;
% ...
%
% will get replaced with
%
% int v = 3;
% ...
%
% We need to watch out for some tricky cases that can't be safely optimized.
% If the RHS of the assignment refers to a variable which was declared after
% the variable whose initialization we're optimizing, e.g.
%
% int v1 = 1;
% int v2 = 0;
% v1 = v2 + 1; // RHS refers to variable declared after v1
%
% then we can't do the optimization because it would cause a forward reference
%
% int v1 = v2 + 1; // error -- v2 not declared yet!
% int v2 = 0;
%
% Likewise if the RHS refers to the variable itself
%
% int v1 = 1;
% v1 = v1 + 1;
%
% then we can't optimize it, because that would be bogus:
%
% int v1 = v1 + 1; // error -- v1 not initialized yet!
%
% Similarly, if the initializers of the variables that follow
% the one we're trying to optimize refer to it, e.g.
%
% int v1 = 1;
% int v2 = v1 + 1; // here v2 == 2
% v1 = 0;
% ...
%
% then we can't eliminate the assignment, because that would produce
% different results:
%
% int v1 = 0;
% int v2 = v1 + 1; // wrong -- v2 == 1
% ...
:- pred convert_assignments_into_initializers(mlds__defns, mlds__statements,
opt_info, mlds__defns, mlds__statements).
:- mode convert_assignments_into_initializers(in, in, in, out, out) is det.
convert_assignments_into_initializers(Defns0, Statements0, OptInfo,
Defns, Statements) :-
(
% Check if --optimize-initializations is enabled
globals__lookup_bool_option(OptInfo ^ globals,
optimize_initializations, yes),
% Check if the first statement in the block is
% an assignment to one of the variables declared in
% the block.
Statements0 = [AssignStatement | Statements1],
AssignStatement = statement(atomic(assign(LHS, RHS)), _),
LHS = var(ThisVar, _ThisType),
ThisVar = qual(Qualifier, VarName),
Qualifier = OptInfo ^ module_name,
list__takewhile(isnt(var_defn(VarName)), Defns0,
_PrecedingDefns, [_VarDefn | FollowingDefns]),
% We must check that the value being assigned
% doesn't refer to the variable itself, or to any
% of the variables which are declared after this one.
% We must also check that the initializers (if any)
% of the variables that follow this one don't
% refer to this variable.
\+ rval_contains_var(RHS, ThisVar),
\+ (
list__member(OtherDefn, FollowingDefns),
OtherDefn = mlds__defn(data(var(OtherVarName)),
_, _, data(_Type, OtherInitializer)),
( rval_contains_var(RHS, qual(Qualifier, OtherVarName))
; initializer_contains_var(OtherInitializer, ThisVar)
)
)
->
% Replace the assignment statement with an initializer
% on the variable declaration.
set_initializer(Defns0, VarName, RHS, Defns1),
% Now try to apply the same optimization again
convert_assignments_into_initializers(Defns1, Statements1,
OptInfo, Defns, Statements)
;
% No optimization possible -- leave the block unchanged.
Defns = Defns0,
Statements = Statements0
).
:- pred var_defn(var_name::in, mlds__defn::in) is semidet.
var_defn(VarName, Defn) :-
Defn = mlds__defn(data(var(VarName)), _, _, _).
% set_initializer(Defns0, VarName, Rval, Defns):
% Finds the first definition of the specified variable
% in Defns0, and replaces the initializer of that
% definition with init_obj(Rval).
%
:- pred set_initializer(mlds__defns, mlds__var_name, mlds__rval, mlds__defns).
:- mode set_initializer(in, in, in, out) is det.
set_initializer([], _, _, _) :-
unexpected(this_file, "set_initializer: var not found!").
set_initializer([Defn0 | Defns0], VarName, Rval, [Defn | Defns]) :-
Defn0 = mlds__defn(Name, Context, Flags, DefnBody0),
(
Name = data(var(VarName)),
DefnBody0 = mlds__data(Type, _OldInitializer)
->
DefnBody = mlds__data(Type, init_obj(Rval)),
Defn = mlds__defn(Name, Context, Flags, DefnBody),
Defns = Defns0
;
Defn = Defn0,
set_initializer(Defns0, VarName, Rval, Defns)
).
%-----------------------------------------------------------------------------%
% Maps T into V, inside a maybe .
:- func maybe_apply(func(T) = V, maybe(T)) = maybe(V).
maybe_apply(_, no) = no.
maybe_apply(F, yes(T)) = yes(F(T)).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "ml_optimize.m".
:- end_module ml_optimize.
%-----------------------------------------------------------------------------%