mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-21 00:39:37 +00:00
Estimated hours taken: 65
Cleanup of the type_ctor_infos and their components, to achieve two goals.
First, the new data structure is defined in strongly typed C, with only
two unions, whereas the old data structure was defined by a bunch of macros
that used casts all over the place. The new design should therefore make it
significantly easier to debug code that uses RTTI, and to get it right in
the first place. Second, the new data structures are logically organized,
whereas the old ones had several bad features (such as fixed fields coming
after variable-length arrays in "structures") required by backward
compatibility.
For the time being, the runtime system will be able to handle type_ctor_infos
using both the old and the new data structures, which are distinguished by
the type_ctor_info's version number.
To minimize the disruption caused by such bootstrapping, this change also
incorporates an improvement in the RTTI: for most pseudo_type_infos included
in the RTTI, it records information that allows the runtime system to tell
whether the pseudo_type_info is ground or not; if it is, then the runtime
need not scan the pseudo_type_info looking for type parameters to expand.
Based on statistics I have gathered, this will eliminate between half and two
thirds of all such scans when we do unification and comparison by RTTI.
This change does not impact the structures of typeinfos, base_typeclass_infos
or typeclass_infos.
runtime/mercury_type_info.h:
Define the C types for the new type_ctor_info components.
Update the C type for type_ctor_infos themselves, and the macros
that act on it.
Centralize the list of files that depend on type info representation
here.
Make the names of the two macros that give the number of (all kinds of)
type info vars and the number of existential type info vars consistent.
runtime/mercury_std.h:
Change a comment to refer to one of these renamed macros by its new
name.
compiler/rtti.m:
compiler/rtti_out.m:
New files: rtti.m defines new types that allow us to construct
Mercury representations of the C structures we want to emit,
and rtti_out.m converts those representations to C definitions.
These files are intended to be independent of whether the backend
is LLDS or MLDS. At the moment, there are several vestiges that
tie them to LLDS, mostly due to (a) the lack of a shared common
infrastructure between llds_out.m and mlds_to_c.m, and (b)
the continued use of the old representation of (pseudo-) typeinfos
as rvals. These concerns will be addressed in a future change.
compiler/llds.m:
Update the definition of the comp_gen_c_data and data_addr types
to account for the new RTTI structures.
compiler/llds_out.m:
Update the code to output comp_gen_c_data and data_addr values
to account for the new RTTI structures.
Make some parts of the code more modular, so that rtti_out.m
can use what used to be selected parts of predicates.
Export several predicates for use by rtti_out.m. Some of these
should later be moved to a file for infrastructure shared by
llds_out.m and mlds_to_*.m. Others should be made internal again
when the representation of typeinfos is made independent of the LLDS.
Rename some predicates to better reflect their purpose.
compiler/base_type_layout.m:
compiler/base_type_info.m:
These files are obsoleted by this change. They remain in CVS, but
are no longer used. All of base_type_info.m has been moved into
type_ctor_info.m, and so have the parts of base_type_layout.m
that create the functors and layout structures inside type_ctor_infos;
the remaining part of base_type_layout.m is now in pseudo_type_info.m.
compiler/pseudo_type_info.m:
New file containing the code to create pseudo_type_infos from
base_type_layout.m, slightly updated for the new compiler structure.
compiler/type_ctor_info.m:
New module: almost total rewrite of the base_type_info.m and the
relevant part of base_type_layout.m for the new data structure.
Do not invoke base_typeclass_info.m, since the structures it creates
are not parts of the type_ctor_infos.
compiler/ml_base_type_info.m:
Comment out obsolete unfinished code. It should be replaced by
calls to type_ctor_info, once type_ctor_info's dependence on LLDS
has been eliminated.
compiler/hlds_module.m:
Rename the data structure from which type_ctor_infos are generated.
Delete the data structure from which type_ctor_layouts were generated,
since it is redundant.
Switch to using field names.
compiler/make_tags.m:
compiler/hlds_data.m:
make_tags.m had code that duplicated much of the the functionality
of an existing predicate in hlds_data.m. This change moves that
predicate to hlds_data where it belongs, and gives it an appropriate
name.
compiler/mercury_compile.m:
Do not invoke the predicates that used to be in base_type_layouts
directly; let type_ctor_info do it for the types for which it is
appropriate.
Do invoke base_typeclass_info directly.
compiler/dead_proc_elim.m:
compiler/llds_common.m:
compiler/opt_debug.m:
compiler/stack_layout.m:
compiler/unify_gen.m:
Trivial changes to conform to the changes in the representation of
compiler-generated C data.
compiler/notes/compiler_design.html:
Updates to reflect the new files.
runtime/mercury_deep_copy_body.h:
runtime/mercury_tabling.c:
runtime/mercury_type_info.c:
Provide alternate implementations of functionality that used the
old functors and layout structures, to use the new ones instead
if the relevant type_ctor_info's version number calls for it.
In many cases, doing this cleanly required reducing the scopes of
variables.
runtime/mercury_tabling.[ch]:
Note where additional work on tabling of typeclass infos is needed,
but do not do the work yet, since it would conflict with DJ's coming
change.
library/std_util.m:
Provide alternate implementations of functionality that used the
old functors and layout structures, to use the new ones instead
if the relevant type_ctor_info's version number calls for it.
In many cases, doing this cleanly required reducing the scopes of
variables.
The predicates get_functor and construct take an integer argument
that identifies a functor of a du type. The integer used to be
the functor's ordinal number in the type definition, but this
was not documented. It is now the functor's position in the list
of the type's functors sorted first on name and then on arity.
This functionality is potentially more useful, since io__read
could do binary instead of linear search when looking for a given
functor. This is an incompatibility, but a very minor one.
Add a new predicate, get_functor_ordinal, to provide a way
to convert lexicographic position into ordinal position.
This is not used yet.
Rename the two different kinds of variables named "info" so that
one can tell them apart.
tests/hard_coded/construct.exp:
Update the expected output of this test based on the new definition
of the meaning of functor numbers in the get_functor and construct
predicates in std_util.
tests/hard_coded/deep_copy.{m,exp}:
Add some code to test the "type contains var" bit vector in du
functor descriptions.
tests/hard_coded/existential_rtti.{m,exp}:
Make the test case print out results as it goes along, to make it
easier which subtask a core dump is coming from. Update the expected
output accordingly.
1797 lines
70 KiB
Mathematica
1797 lines
70 KiB
Mathematica
%---------------------------------------------------------------------------%
|
|
% Copyright (C) 1997-2000 University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%---------------------------------------------------------------------------%
|
|
%
|
|
% This module generates the LLDS code that defines global constants to
|
|
% hold the `stack_layout' structures of the stack frames defined by the
|
|
% current module.
|
|
%
|
|
% The tables generated have a number of `create' rvals within them.
|
|
% llds_common.m converts these into static data structures.
|
|
%
|
|
% We can create several types of stack layouts. Which kind we generate
|
|
% depends on the values of several options.
|
|
%
|
|
% Main authors: trd, zs.
|
|
%
|
|
% NOTE: If you make changes in this file, you may also need to modify
|
|
% runtime/mercury_stack_layout.h.
|
|
%
|
|
%---------------------------------------------------------------------------%
|
|
%
|
|
% Data Stucture: stack_layouts
|
|
%
|
|
% If the option basic_stack_layout is set, we generate a MR_Stack_Layout_Entry
|
|
% for each procedure. This will be stored in the global variable whose name is
|
|
% mercury_data__layout__mercury__<proc_label>.
|
|
% This structure will always contain stack tracing information:
|
|
%
|
|
% code address (Code *) - address of entry
|
|
% succip stack location (uint_least32_t) actually, type MR_Long_Lval
|
|
% (the location will be set to -1
|
|
% if there is no succip available).
|
|
% number of stack slots (uint_least16_t)
|
|
% determinism (uint_least16_t) actually, type MR_Determinism
|
|
%
|
|
% If the option procid_stack_layout is set, i.e. if we are doing stack
|
|
% tracing, execution tracing or profiling, the structure will also include
|
|
% information on the identity of the procedure. This information will take
|
|
% one of two forms. Almost all procedures use the first form:
|
|
%
|
|
% predicate/function (Integer) actually, MR_pred_func
|
|
% declaring module name (String)
|
|
% defining module name (String)
|
|
% predicate name (String)
|
|
% predicate arity (int_least16_t)
|
|
% procedure number (int_least16_t)
|
|
%
|
|
% Automatically generated unification, index and comparison predicates
|
|
% use the second form:
|
|
%
|
|
% type name (String)
|
|
% type module's name (String)
|
|
% defining module name (String)
|
|
% predicate name (String)
|
|
% predicate arity (int_least16_t)
|
|
% procedure number (int_least16_t)
|
|
%
|
|
% The runtime system can figure out which form is present by testing
|
|
% the value of the first slot. A value of 0 or 1 indicates the first form;
|
|
% any higher value indicates the second form. The distinguished value -1
|
|
% indicates that procid_stack_layout is not set, and that the later fields
|
|
% are not present.
|
|
%
|
|
% The meanings of the fields in both forms are the same as in procedure labels.
|
|
%
|
|
% If the option trace_stack_layout is set, i.e. if we are doing execution
|
|
% tracing, the structure will also include some extra fields:
|
|
%
|
|
% call trace info (MR_Stack_Layout_Label *) - points to the
|
|
% layout structure of the call event
|
|
% module layout (MR_Module_Layout *) - points to the layout
|
|
% struct of the containing module.
|
|
% max reg at trace event (int_least16_t) - the number of the highest
|
|
% numbered rN register live at a trace event
|
|
% inside the procedure
|
|
% maybe from full (int_least8_t) - number of the stack slot of
|
|
% the from_full flag, if the procedure is
|
|
% shallow traced
|
|
% maybe trail (int_least8_t) - number of the first of two
|
|
% stack slots used for recording the state of
|
|
% the trail, if trailing is enabled
|
|
% maybe decl debug (int_least8_t) - number of the first of two
|
|
% stack slots used by the declarative debugger,
|
|
% if --trace-decl is set
|
|
%
|
|
% The first will point to the per-label layout info for the label associated
|
|
% with the call event at the entry to the procedure. The purpose of this
|
|
% information is to allow the runtime debugger to find out which variables
|
|
% are where on entry, so it can reexecute the procedure if asked to do so
|
|
% and if the values of the required variables are still available.
|
|
% (If trace_stack_layout is not set, this field will be present,
|
|
% but it will be set to NULL.)
|
|
%
|
|
% If the procedure is compiled with deep tracing, the fourth field will contain
|
|
% a negative number. If it is compiled with shallow tracing, it will contain
|
|
% the number of the stack slot that holds the flag that says whether this
|
|
% incarnation of the procedure was called from deeply traced code or not.
|
|
% (The determinism of the procedure decides whether the stack slot refers
|
|
% to a stackvar or a framevar.)
|
|
%
|
|
% If --trace-decl is not set, the sixth field will contain a negative number.
|
|
% If it is set, it will contain the number of the first of two stack slots
|
|
% used by the declarative debugger; the other slot is the next higher numbered
|
|
% one. (The determinism of the procedure decides whether the stack slot refers
|
|
% to a stackvar or a framevar.)
|
|
%
|
|
% If the option basic_stack_layout is set, we generate stack layout tables
|
|
% for some labels internal to the procedure. This table will be stored in the
|
|
% global variable whose name is
|
|
% mercury_data__layout__mercury__<proc_label>_i<label_number>.
|
|
% This table has the following format:
|
|
%
|
|
% proc layout (Word *) - pointer to the layout structure of
|
|
% the procedure containing this label
|
|
% trace port (int_least16) - a representation of the trace
|
|
% port associated with the label, or -1
|
|
% goal path (int_least16) - an index into the module's
|
|
% string table giving the goal path associated
|
|
% with the trace port of the label, or -1
|
|
% # of live data items (Integer) - an encoded representation of
|
|
% the number of live data items at the label
|
|
% live data types locns (void *) - pointer to an area of memory
|
|
% containing information about where the live
|
|
% data items are and what their types are
|
|
% live data names (MR_Var_Name *) - pointer to vector of
|
|
% MR_Var_Name structs giving the HLDS var numbers
|
|
% as well as the names of live data items
|
|
% type parameters (MR_Long_Lval *) - pointer to vector of
|
|
% MR_Long_Lval giving the locations of the
|
|
% typeinfos for the type parameters that may
|
|
% be referred to by the types of the live data
|
|
% items; the first word of the vector is an
|
|
% integer giving the number of entries in the
|
|
% vector; a NULL pointer means no type parameters
|
|
%
|
|
% The layout of the memory area containing information about the locations
|
|
% and types of live data items is somewhat complicated, due to our desire
|
|
% to make this information compact. We can represent a location in one of
|
|
% two ways, as an 8-bit MR_Short_Lval or as a 32-bit MR_Long_Lval.
|
|
% We prefer representing a location as an MR_Short_Lval, but of course
|
|
% not all locations can be represented in this way, so those other locations
|
|
% are represented as MR_Long_Lvals.
|
|
%
|
|
% The field containing the number of live data items is encoded by the
|
|
% formula (#Long << short_count_bits + #Short), where #Short is the number
|
|
% data items whose descriptions fit into an MR_Short_Lval and #Long is the
|
|
% number of data items whose descriptions do not. (The field is not an integer
|
|
% so that people who attempt to use it without going through the decoding
|
|
% macros in runtime/mercury_stack_layout.h get an error from the C compiler.
|
|
% The number of distinct values that fit into a uint_least_t also fits into
|
|
% 8 bits, but since some locations hold the value of more than one variable
|
|
% at a time, not all the values need to be distinct; this is why
|
|
% short_count_bits is more than 8.)
|
|
%
|
|
% The memory area contains three vectors back to back. The first vector
|
|
% has #Long + #Short word-sized elements, each of which is a pointer to a
|
|
% MR_PseudoTypeInfo giving the type of a live data item, with a small
|
|
% integer instead of a pointer representing a special kind of live data item
|
|
% (e.g. a saved succip or hp). The second vector is an array of #Long
|
|
% MR_Long_Lvals, and the third is an array of #Short MR_Short_Lvals,
|
|
% each of which describes a location. The pseudotypeinfo pointed to by
|
|
% the slot at subscript i in the first vector describes the type of
|
|
% the data stored in slot i in the second vector if i < #Long, and
|
|
% the type of the data stored in slot i - #Long in the third vector
|
|
% otherwise.
|
|
%
|
|
% The live data pair vector will have an entry for each live variable.
|
|
% The entry will give the location of the variable and its type.
|
|
%
|
|
% The live data name vector pointer may be NULL. If it is not, the vector
|
|
% will have an entry consisting of two 16-bit numbers for each live data item.
|
|
% The first is the live data item's HLDS variable number, or one of two
|
|
% special values. Zero means that the live data item is not a variable
|
|
% (e.g. it is a saved copy of succip). The largest possible 16-bit number
|
|
% on the other hand means "the number of this variable does not fit into
|
|
% 16 bits". With the exception of these special values, the value in this
|
|
% slot uniquely identifies the variable. The second 16-bit number is an offset
|
|
% into the module-wide string table; the string at that offset is the
|
|
% variable's name. If the variable or data item has no name, the offset
|
|
% will be zero (at which offset one will find an empty string). The string
|
|
% table is restricted to be small enough to be addressed with 16 bits;
|
|
% a string is reserved near the start for a string that says "too many
|
|
% variables". Stack_layout.m will generate a reference to this string
|
|
% instead of generating an offset that does not fit into 16 bits.
|
|
% Therefore using the stored offset to index into the string table
|
|
% is always safe.
|
|
%
|
|
% If the number of type parameters is not zero, we store the number,
|
|
% so that the code that needs the type parameters can materialize
|
|
% all the type parameters from their location descriptions in one go.
|
|
% This is an optimization, since the type parameter vector could simply
|
|
% be indexed on demand by the type variable's variable number stored within
|
|
% pseudo-typeinfos inside the elements of the live data pairs vectors.
|
|
%
|
|
% Since we allocate type variable numbers sequentially, the type parameter
|
|
% vector will usually be dense. However, after all variables whose types
|
|
% include e.g. type variable 2 have gone out of scope, variables whose
|
|
% types include type variable 3 may still be around. In cases like this,
|
|
% the entry for type variable 2 will be zero; this signals to the code
|
|
% in the internal debugger that materializes typeinfo structures that
|
|
% this typeinfo structure need not be materialized.
|
|
%
|
|
% We need detailed information about the variables that are live at an
|
|
% internal label in two kinds of circumstances. Stack layout information
|
|
% will be present only for labels that fall into one or both of these
|
|
% circumstances.
|
|
%
|
|
% - The option trace_stack_layout is set, and the label represents
|
|
% a traced event at which variable info is needed (call, exit,
|
|
% or entrance to one branch of a branched control structure;
|
|
% fail events have no variable information).
|
|
%
|
|
% - The option agc_stack_layout is set or the trace level specifies
|
|
% a capability for uplevel printing, and the label represents
|
|
% a point where execution can resume after a procedure call or
|
|
% after backtracking.
|
|
%
|
|
% For labels that do not fall into one of these two categories, the
|
|
% "# of live vars" field will be negative to indicate the absence of
|
|
% information about the variables live at this label, and the last
|
|
% four fields will not be present.
|
|
%
|
|
% For labels that do fall into one of these two categories, the
|
|
% "# of live vars" field will hold the number of live variables, which
|
|
% will not be negative. If it is zero, the last four fields will not be
|
|
% present. Even if it is not zero, however, the pointer to the live data
|
|
% names vector will be NULL unless the label is used in execution tracing.
|
|
%
|
|
% XXX: Presently, inst information is ignored. We also do not yet enable
|
|
% procid stack layouts for profiling, since profiling does not yet use
|
|
% stack layouts.
|
|
%
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- module stack_layout.
|
|
|
|
:- interface.
|
|
|
|
:- import_module continuation_info, hlds_module, llds.
|
|
:- import_module std_util, list, set_bbbtree.
|
|
|
|
:- pred stack_layout__generate_llds(module_info::in, module_info::out,
|
|
global_data::in,
|
|
list(comp_gen_c_data)::out, list(comp_gen_c_data)::out,
|
|
set_bbbtree(label)::out) is det.
|
|
|
|
:- pred stack_layout__construct_closure_layout(proc_label::in,
|
|
closure_layout_info::in, list(maybe(rval))::out,
|
|
create_arg_types::out, int::in, int::out) is det.
|
|
|
|
:- implementation.
|
|
|
|
:- import_module globals, options, llds_out, trace.
|
|
:- import_module hlds_data, hlds_pred, pseudo_type_info, prog_data, prog_out.
|
|
:- import_module rtti, (inst), code_util.
|
|
:- import_module assoc_list, bool, string, int, require.
|
|
:- import_module map, term, set.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Process all the continuation information stored in the HLDS,
|
|
% converting it into LLDS data structures.
|
|
|
|
stack_layout__generate_llds(ModuleInfo0, ModuleInfo, GlobalData,
|
|
PossiblyDynamicLayouts, StaticLayouts, LayoutLabels) :-
|
|
global_data_get_all_proc_layouts(GlobalData, ProcLayoutList),
|
|
|
|
module_info_name(ModuleInfo0, ModuleName),
|
|
module_info_get_cell_count(ModuleInfo0, CellCount),
|
|
module_info_globals(ModuleInfo0, Globals),
|
|
globals__lookup_bool_option(Globals, agc_stack_layout, AgcLayout),
|
|
globals__lookup_bool_option(Globals, trace_stack_layout, TraceLayout),
|
|
globals__lookup_bool_option(Globals, procid_stack_layout,
|
|
ProcIdLayout),
|
|
globals__have_static_code_addresses(Globals, StaticCodeAddr),
|
|
set_bbbtree__init(LayoutLabels0),
|
|
|
|
map__init(StringMap0),
|
|
map__init(LabelTables0),
|
|
StringTable0 = string_table(StringMap0, [], 0),
|
|
LayoutInfo0 = stack_layout_info(ModuleName, CellCount,
|
|
AgcLayout, TraceLayout, ProcIdLayout, StaticCodeAddr,
|
|
[], [], LayoutLabels0, [], StringTable0, LabelTables0),
|
|
stack_layout__lookup_string_in_table("", _, LayoutInfo0, LayoutInfo1),
|
|
stack_layout__lookup_string_in_table("<too many variables>", _,
|
|
LayoutInfo1, LayoutInfo2),
|
|
list__foldl(stack_layout__construct_layouts, ProcLayoutList,
|
|
LayoutInfo2, LayoutInfo3),
|
|
% This version of the layout info structure is final in all
|
|
% respects except the cell count.
|
|
LayoutInfo3 = stack_layout_info(_, _, _, _, _, _, ProcLayouts,
|
|
InternalLayouts, LayoutLabels, ProcLayoutArgs,
|
|
StringTable, LabelTables),
|
|
StringTable = string_table(_, RevStringList, StringOffset),
|
|
list__reverse(RevStringList, StringList),
|
|
stack_layout__concat_string_list(StringList, StringOffset,
|
|
ConcatStrings),
|
|
|
|
( TraceLayout = yes ->
|
|
Exported = no, % ignored; see linkage/2 in llds_out.m
|
|
list__length(ProcLayoutList, NumProcLayouts),
|
|
llds_out__sym_name_mangle(ModuleName, ModuleNameStr),
|
|
stack_layout__get_next_cell_number(ProcVectorCellNum,
|
|
LayoutInfo3, LayoutInfo4),
|
|
Reuse = no,
|
|
ProcLayoutVector = create(0, ProcLayoutArgs,
|
|
uniform(yes(data_ptr)), must_be_static,
|
|
ProcVectorCellNum, "proc_layout_vector", Reuse),
|
|
globals__lookup_bool_option(Globals, rtti_line_numbers,
|
|
LineNumbers),
|
|
( LineNumbers = yes ->
|
|
EffLabelTables = LabelTables
|
|
;
|
|
map__init(EffLabelTables)
|
|
),
|
|
stack_layout__format_label_tables(EffLabelTables,
|
|
NumSourceFiles, SourceFileVectors,
|
|
LayoutInfo4, LayoutInfo),
|
|
Rvals = [yes(const(string_const(ModuleNameStr))),
|
|
yes(const(int_const(StringOffset))),
|
|
yes(const(multi_string_const(StringOffset,
|
|
ConcatStrings))),
|
|
yes(const(int_const(NumProcLayouts))),
|
|
yes(ProcLayoutVector),
|
|
yes(const(int_const(NumSourceFiles))),
|
|
yes(SourceFileVectors)],
|
|
ModuleLayouts = comp_gen_c_data(ModuleName, module_layout,
|
|
Exported, Rvals, uniform(no), []),
|
|
StaticLayouts = [ModuleLayouts | InternalLayouts]
|
|
;
|
|
StaticLayouts = InternalLayouts,
|
|
LayoutInfo = LayoutInfo3
|
|
),
|
|
PossiblyDynamicLayouts = ProcLayouts,
|
|
stack_layout__get_cell_number(FinalCellCount, LayoutInfo, _),
|
|
module_info_set_cell_count(ModuleInfo0, FinalCellCount, ModuleInfo).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- pred stack_layout__concat_string_list(list(string)::in, int::in,
|
|
string::out) is det.
|
|
|
|
:- pragma c_code(stack_layout__concat_string_list(StringList::in,
|
|
ArenaSize::in, Arena::out),
|
|
[will_not_call_mercury, thread_safe], "{
|
|
Word cur_node;
|
|
Integer cur_offset;
|
|
Word tmp;
|
|
|
|
incr_hp_atomic(tmp, (ArenaSize + sizeof(Word)) / sizeof(Word));
|
|
Arena = (char *) tmp;
|
|
|
|
cur_offset = 0;
|
|
cur_node = StringList;
|
|
|
|
while (! MR_list_is_empty(cur_node)) {
|
|
(void) strcpy(&Arena[cur_offset],
|
|
(char *) MR_list_head(cur_node));
|
|
cur_offset += strlen((char *) MR_list_head(cur_node)) + 1;
|
|
cur_node = MR_list_tail(cur_node);
|
|
}
|
|
|
|
if (cur_offset != ArenaSize) {
|
|
char msg[256];
|
|
|
|
sprintf(msg, ""internal error in creating string table;\\n""
|
|
""cur_offset = %ld, ArenaSize = %ld\\n"",
|
|
(long) cur_offset, (long) ArenaSize);
|
|
fatal_error(msg);
|
|
}
|
|
}").
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- pred stack_layout__format_label_tables(map(string, label_table)::in,
|
|
int::out, rval::out, stack_layout_info::in, stack_layout_info::out)
|
|
is det.
|
|
|
|
stack_layout__format_label_tables(LabelTableMap, NumSourceFiles,
|
|
SourceFilesVector, LayoutInfo0, LayoutInfo) :-
|
|
map__to_assoc_list(LabelTableMap, LabelTableList),
|
|
list__length(LabelTableList, NumSourceFiles),
|
|
list__map_foldl(stack_layout__format_label_table, LabelTableList,
|
|
SourceFileRvals, LayoutInfo0, LayoutInfo1),
|
|
stack_layout__get_next_cell_number(SourceFileVectorCellNum,
|
|
LayoutInfo1, LayoutInfo),
|
|
Reuse = no,
|
|
SourceFilesVector = create(0, SourceFileRvals,
|
|
uniform(yes(data_ptr)), must_be_static,
|
|
SourceFileVectorCellNum, "source_files_vector", Reuse).
|
|
|
|
:- pred stack_layout__format_label_table(pair(string, label_table)::in,
|
|
maybe(rval)::out, stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__format_label_table(FileName - LineNoMap, yes(SourceFileVector),
|
|
LayoutInfo0, LayoutInfo) :-
|
|
% This step should produce a list ordered on line numbers.
|
|
map__to_assoc_list(LineNoMap, LineNoList),
|
|
% And this step should preserve that order.
|
|
stack_layout__flatten_label_table(LineNoList, [], FlatLineNoList),
|
|
list__length(FlatLineNoList, VectorLength),
|
|
stack_layout__get_module_name(CurrentModule, LayoutInfo0, LayoutInfo1),
|
|
|
|
ProjectLineNos = lambda([LabelInfo::in, LineNoRval::out] is det, (
|
|
LabelInfo = LineNo - (_Label - _IsReturn),
|
|
LineNoRval = yes(const(int_const(LineNo)))
|
|
)),
|
|
ProjectLabels = lambda([LabelInfo::in, LabelRval::out] is det, (
|
|
LabelInfo = _LineNo - (Label - _IsReturn),
|
|
DataAddr = data_addr(CurrentModule, internal_layout(Label)),
|
|
LabelRval = yes(const(data_addr_const(DataAddr)))
|
|
)),
|
|
% See the comment below.
|
|
% ProjectCallees = lambda([LabelInfo::in, CalleeRval::out] is det, (
|
|
% LabelInfo = _LineNo - (_Label - IsReturn),
|
|
% (
|
|
% IsReturn = not_a_return,
|
|
% CalleeRval = yes(const(int_const(0)))
|
|
% ;
|
|
% IsReturn = unknown_callee,
|
|
% CalleeRval = yes(const(int_const(1)))
|
|
% ;
|
|
% IsReturn = known_callee(Label),
|
|
% code_util__extract_proc_label_from_label(Label,
|
|
% ProcLabel),
|
|
% (
|
|
% ProcLabel = proc(ModuleName, _, _, _, _, _)
|
|
% ;
|
|
% ProcLabel = special_proc(ModuleName, _, _,
|
|
% _, _, _)
|
|
% ),
|
|
% DataAddr = data_addr(ModuleName, proc_layout(Label)),
|
|
% CalleeRval = yes(const(data_addr_const(DataAddr)))
|
|
% )
|
|
% )),
|
|
|
|
list__map(ProjectLineNos, FlatLineNoList, LineNoRvals),
|
|
stack_layout__get_next_cell_number(LineNoVectorCellNum,
|
|
LayoutInfo1, LayoutInfo2),
|
|
Reuse = no,
|
|
LineNoVector = create(0, LineNoRvals,
|
|
uniform(yes(int_least16)), must_be_static,
|
|
LineNoVectorCellNum, "line_number_vector", Reuse),
|
|
|
|
list__map(ProjectLabels, FlatLineNoList, LabelRvals),
|
|
stack_layout__get_next_cell_number(LabelsVectorCellNum,
|
|
LayoutInfo2, LayoutInfo3),
|
|
LabelsVector = create(0, LabelRvals,
|
|
uniform(yes(data_ptr)), must_be_static,
|
|
LabelsVectorCellNum, "label_vector", Reuse),
|
|
|
|
% We do not include the callees vector in the table because it makes references
|
|
% to the proc layouts of procedures from other modules without knowing whether
|
|
% those modules were compiled with debugging. This works only if all procedures
|
|
% always have a proc layout structure, which we don't want to require yet.
|
|
%
|
|
% Callees vectors would allow us to use faster code to check at every event
|
|
% whether a breakpoint applies to that event, in the usual case that no context
|
|
% breakpoint is on a line contains a higher order call. Instead of always
|
|
% searching a separate data structure, as we now do, to check for the
|
|
% applicability of context breakpoints, the code could search this data
|
|
% structure only if the proc layout matched the proc layout of the caller
|
|
% Since we already search a table of proc layouts in order to check for plain,
|
|
% non-context breakpoints on procedures, this would incur no extra cost
|
|
% in most cases.
|
|
%
|
|
% list__map(ProjectCallees, FlatLineNoList, CalleeRvals),
|
|
% stack_layout__get_next_cell_number(CalleesVectorCellNum,
|
|
% LayoutInfo3, LayoutInfo4),
|
|
% CalleesVector = create(0, CalleeRvals,
|
|
% uniform(no), must_be_static,
|
|
% CalleesVectorCellNum, "callee_vector", Reuse),
|
|
|
|
SourceFileRvals = [
|
|
yes(const(string_const(FileName))),
|
|
yes(const(int_const(VectorLength))),
|
|
yes(LineNoVector),
|
|
yes(LabelsVector)
|
|
% yes(CalleesVector)
|
|
],
|
|
stack_layout__get_next_cell_number(SourceFileVectorCellNum,
|
|
LayoutInfo3, LayoutInfo),
|
|
SourceFileVector = create(0, SourceFileRvals,
|
|
initial([1 - yes(string), 1 - yes(integer),
|
|
2 - yes(data_ptr)], none),
|
|
must_be_static,
|
|
SourceFileVectorCellNum, "source_file_vector", Reuse).
|
|
|
|
:- pred stack_layout__flatten_label_table(
|
|
assoc_list(int, list(line_no_info))::in,
|
|
assoc_list(int, line_no_info)::in,
|
|
assoc_list(int, line_no_info)::out) is det.
|
|
|
|
stack_layout__flatten_label_table([], RevList, List) :-
|
|
list__reverse(RevList, List).
|
|
stack_layout__flatten_label_table([LineNo - LinesInfos | Lines],
|
|
RevList0, List) :-
|
|
list__foldl(stack_layout__add_line_no(LineNo), LinesInfos,
|
|
RevList0, RevList1),
|
|
stack_layout__flatten_label_table(Lines, RevList1, List).
|
|
|
|
:- pred stack_layout__add_line_no(int::in, line_no_info::in,
|
|
assoc_list(int, line_no_info)::in,
|
|
assoc_list(int, line_no_info)::out) is det.
|
|
|
|
stack_layout__add_line_no(LineNo, LineInfo, RevList0, RevList) :-
|
|
RevList = [LineNo - LineInfo | RevList0].
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Construct the layouts that concern a single procedure:
|
|
% the procedure-specific layout and the layouts of the labels
|
|
% inside that procedure. Also update the module-wide label table
|
|
% with the labels defined in this procedure.
|
|
|
|
:- pred stack_layout__construct_layouts(proc_layout_info::in,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__construct_layouts(ProcLayoutInfo) -->
|
|
{ ProcLayoutInfo = proc_layout_info(EntryLabel, Detism,
|
|
StackSlots, SuccipLoc, MaybeCallLabel, MaxTraceReg,
|
|
TraceSlotInfo, ForceProcIdLayout, InternalMap) },
|
|
stack_layout__construct_proc_layout(EntryLabel, Detism,
|
|
StackSlots, SuccipLoc, MaybeCallLabel, MaxTraceReg,
|
|
TraceSlotInfo, ForceProcIdLayout),
|
|
{ map__to_assoc_list(InternalMap, Internals) },
|
|
list__foldl(stack_layout__construct_internal_layout(EntryLabel),
|
|
Internals),
|
|
list__foldl(stack_layout__update_label_table, Internals).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Add the given label to the module-wide label tables.
|
|
|
|
:- pred stack_layout__update_label_table(pair(label, internal_layout_info)::in,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__update_label_table(Label - InternalInfo) -->
|
|
{ InternalInfo = internal_layout_info(Port, _, Return) },
|
|
(
|
|
{ Return = yes(return_layout_info(TargetsContexts, _)) },
|
|
{ stack_layout__find_valid_return_context(TargetsContexts,
|
|
Target, Context) }
|
|
->
|
|
{ Target = label(TargetLabel) ->
|
|
IsReturn = known_callee(TargetLabel)
|
|
;
|
|
IsReturn = unknown_callee
|
|
},
|
|
stack_layout__update_label_table_2(Label, Context, IsReturn)
|
|
;
|
|
{ Port = yes(trace_port_layout_info(Context, _, _, _)) },
|
|
{ stack_layout__context_is_valid(Context) }
|
|
->
|
|
stack_layout__update_label_table_2(Label, Context,
|
|
not_a_return)
|
|
;
|
|
[]
|
|
).
|
|
|
|
:- pred stack_layout__update_label_table_2(label::in, context::in,
|
|
is_label_return::in, stack_layout_info::in, stack_layout_info::out)
|
|
is det.
|
|
|
|
stack_layout__update_label_table_2(Label, Context, IsReturn) -->
|
|
{ term__context_file(Context, File) },
|
|
{ term__context_line(Context, Line) },
|
|
stack_layout__get_label_tables(LabelTables0),
|
|
{ map__search(LabelTables0, File, LabelTable0) ->
|
|
( map__search(LabelTable0, Line, LineInfo0) ->
|
|
LineInfo = [Label - IsReturn | LineInfo0],
|
|
map__det_update(LabelTable0, Line, LineInfo,
|
|
LabelTable),
|
|
map__det_update(LabelTables0, File, LabelTable,
|
|
LabelTables)
|
|
;
|
|
LineInfo = [Label - IsReturn],
|
|
map__det_insert(LabelTable0, Line, LineInfo,
|
|
LabelTable),
|
|
map__det_update(LabelTables0, File, LabelTable,
|
|
LabelTables)
|
|
)
|
|
; stack_layout__context_is_valid(Context) ->
|
|
map__init(LabelTable0),
|
|
LineInfo = [Label - IsReturn],
|
|
map__det_insert(LabelTable0, Line, LineInfo, LabelTable),
|
|
map__det_insert(LabelTables0, File, LabelTable, LabelTables)
|
|
;
|
|
% We don't have a valid context for this label,
|
|
% so we don't enter it into any tables.
|
|
LabelTables = LabelTables0
|
|
},
|
|
stack_layout__set_label_tables(LabelTables).
|
|
|
|
:- pred stack_layout__find_valid_return_context(
|
|
assoc_list(code_addr, prog_context)::in,
|
|
code_addr::out, prog_context::out) is semidet.
|
|
|
|
stack_layout__find_valid_return_context([Target - Context | TargetContexts],
|
|
ValidTarget, ValidContext) :-
|
|
( stack_layout__context_is_valid(Context) ->
|
|
ValidTarget = Target,
|
|
ValidContext = Context
|
|
;
|
|
stack_layout__find_valid_return_context(TargetContexts,
|
|
ValidTarget, ValidContext)
|
|
).
|
|
|
|
:- pred stack_layout__context_is_valid(prog_context::in) is semidet.
|
|
|
|
stack_layout__context_is_valid(Context) :-
|
|
term__context_file(Context, File),
|
|
term__context_line(Context, Line),
|
|
File \= "",
|
|
Line > 0.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Construct a procedure-specific layout.
|
|
|
|
:- pred stack_layout__construct_proc_layout(label::in, determinism::in,
|
|
int::in, maybe(int)::in, maybe(label)::in, int::in,
|
|
trace_slot_info::in, bool::in,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__construct_proc_layout(EntryLabel, Detism, StackSlots,
|
|
MaybeSuccipLoc, MaybeCallLabel, MaxTraceReg, TraceSlotInfo,
|
|
ForceProcIdLayout) -->
|
|
{
|
|
MaybeSuccipLoc = yes(Location0)
|
|
->
|
|
Location = Location0
|
|
;
|
|
% Use a dummy location of -1 if there is
|
|
% no succip on the stack.
|
|
%
|
|
% This case can arise in two circumstances.
|
|
% First, procedures that use the nondet stack
|
|
% have a special slot for the succip, so the
|
|
% succip is not stored in a general purpose
|
|
% slot. Second, procedures that use the det stack
|
|
% but which do not call other procedures
|
|
% do not save the succip on the stack.
|
|
%
|
|
% The tracing system does not care about the
|
|
% location of the saved succip. The accurate
|
|
% garbage collector does. It should know from
|
|
% the determinism that the procedure uses the
|
|
% nondet stack, which takes care of the first
|
|
% possibility above. Procedures that do not call
|
|
% other procedures do not establish resumption
|
|
% points and thus agc is not interested in them.
|
|
% As far as stack dumps go, calling error counts
|
|
% as a call, so any procedure that may call error
|
|
% (directly or indirectly) will have its saved succip
|
|
% location recorded, so the stack dump will work.
|
|
%
|
|
% Future uses of stack layouts will have to have
|
|
% similar constraints.
|
|
Location = -1
|
|
},
|
|
stack_layout__get_static_code_addresses(StaticCodeAddr),
|
|
{ StaticCodeAddr = yes ->
|
|
CodeAddrRval = const(code_addr_const(label(EntryLabel)))
|
|
;
|
|
% This is a lie; the slot will be filled in for real
|
|
% at initialization time.
|
|
CodeAddrRval = const(int_const(0))
|
|
},
|
|
{ determinism_components(Detism, _, at_most_many) ->
|
|
SuccipLval = framevar(Location)
|
|
;
|
|
SuccipLval = stackvar(Location)
|
|
},
|
|
{ stack_layout__represent_locn_as_int(direct(SuccipLval), SuccipRval) },
|
|
{ StackSlotsRval = const(int_const(StackSlots)) },
|
|
{ stack_layout__represent_determinism(Detism, DetismRval) },
|
|
{ TraversalRvals = [yes(CodeAddrRval), yes(SuccipRval),
|
|
yes(StackSlotsRval), yes(DetismRval)] },
|
|
{ TraversalArgTypes = [1 - yes(code_ptr), 1 - yes(uint_least32),
|
|
2 - yes(uint_least16)] },
|
|
|
|
stack_layout__get_procid_stack_layout(ProcIdLayout0),
|
|
{ bool__or(ProcIdLayout0, ForceProcIdLayout, ProcIdLayout) },
|
|
(
|
|
{ ProcIdLayout = yes }
|
|
->
|
|
{ code_util__extract_proc_label_from_label(EntryLabel,
|
|
ProcLabel) },
|
|
{ stack_layout__construct_procid_rvals(ProcLabel, IdRvals,
|
|
IdArgTypes) },
|
|
stack_layout__construct_trace_layout(MaybeCallLabel,
|
|
MaxTraceReg, TraceSlotInfo, TraceRvals, TraceArgTypes),
|
|
{ list__append(IdRvals, TraceRvals, IdTraceRvals) },
|
|
{ IdTraceArgTypes = initial(IdArgTypes, TraceArgTypes) }
|
|
;
|
|
% Indicate the absence of the proc id and exec trace fields.
|
|
{ IdTraceRvals = [yes(const(int_const(-1)))] },
|
|
{ IdTraceArgTypes = initial([1 - yes(integer)], none) }
|
|
),
|
|
|
|
{ Exported = no }, % XXX With the new profiler, we will need to
|
|
% set this to `yes' if the profiling option
|
|
% is given and if the procedure is exported.
|
|
% Beware however that linkage/2 in llds_out.m
|
|
% assumes that this is `no'.
|
|
{ list__append(TraversalRvals, IdTraceRvals, Rvals) },
|
|
{ ArgTypes = initial(TraversalArgTypes, IdTraceArgTypes) },
|
|
stack_layout__get_module_name(ModuleName),
|
|
{ CDataName = proc_layout(EntryLabel) },
|
|
{ CData = comp_gen_c_data(ModuleName, CDataName, Exported,
|
|
Rvals, ArgTypes, []) },
|
|
stack_layout__add_proc_layout_data(CData, CDataName, EntryLabel).
|
|
|
|
:- pred stack_layout__construct_trace_layout(maybe(label)::in, int::in,
|
|
trace_slot_info::in, list(maybe(rval))::out, create_arg_types::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__construct_trace_layout(MaybeCallLabel, MaxTraceReg,
|
|
TraceSlotInfo, Rvals, ArgTypes) -->
|
|
stack_layout__get_module_name(ModuleName),
|
|
stack_layout__get_trace_stack_layout(TraceLayout),
|
|
{
|
|
TraceLayout = yes
|
|
->
|
|
( MaybeCallLabel = yes(CallLabel) ->
|
|
CallRval = yes(const(data_addr_const(
|
|
data_addr(ModuleName,
|
|
internal_layout(CallLabel)))))
|
|
;
|
|
error("stack_layout__construct_trace_layout: call label not present")
|
|
),
|
|
ModuleRval = yes(const(data_addr_const(
|
|
data_addr(ModuleName, module_layout)))),
|
|
MaxTraceRegRval = yes(const(int_const(MaxTraceReg))),
|
|
TraceSlotInfo = trace_slot_info(MaybeFromFullSlot,
|
|
MaybeDeclSlots, MaybeTrailSlot),
|
|
( MaybeFromFullSlot = yes(FromFullSlot) ->
|
|
FromFullRval = yes(const(int_const(FromFullSlot)))
|
|
;
|
|
FromFullRval = yes(const(int_const(-1)))
|
|
),
|
|
( MaybeDeclSlots = yes(DeclSlot) ->
|
|
DeclRval = yes(const(int_const(DeclSlot)))
|
|
;
|
|
DeclRval = yes(const(int_const(-1)))
|
|
),
|
|
( MaybeTrailSlot = yes(TrailSlot) ->
|
|
TrailRval = yes(const(int_const(TrailSlot)))
|
|
;
|
|
TrailRval = yes(const(int_const(-1)))
|
|
),
|
|
Rvals = [CallRval, ModuleRval,
|
|
MaxTraceRegRval, FromFullRval, TrailRval, DeclRval],
|
|
ArgTypes = initial([
|
|
2 - yes(data_ptr),
|
|
1 - yes(int_least16),
|
|
3 - yes(int_least8)],
|
|
none)
|
|
;
|
|
% Indicate the absence of the trace layout fields.
|
|
Rvals = [yes(const(int_const(0)))],
|
|
ArgTypes = initial([1 - yes(integer)], none)
|
|
}.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- pred stack_layout__construct_procid_rvals(proc_label::in,
|
|
list(maybe(rval))::out, initial_arg_types::out) is det.
|
|
|
|
stack_layout__construct_procid_rvals(ProcLabel, Rvals, ArgTypes) :-
|
|
(
|
|
ProcLabel = proc(DefModule, PredFunc, DeclModule,
|
|
PredName, Arity, ProcId),
|
|
stack_layout__represent_pred_or_func(PredFunc, PredFuncCode),
|
|
prog_out__sym_name_to_string(DefModule, DefModuleString),
|
|
prog_out__sym_name_to_string(DeclModule, DeclModuleString),
|
|
proc_id_to_int(ProcId, Mode),
|
|
Rvals = [
|
|
yes(const(int_const(PredFuncCode))),
|
|
yes(const(string_const(DeclModuleString))),
|
|
yes(const(string_const(DefModuleString))),
|
|
yes(const(string_const(PredName))),
|
|
yes(const(int_const(Arity))),
|
|
yes(const(int_const(Mode)))
|
|
],
|
|
ArgTypes = [4 - no, 2 - yes(int_least16)]
|
|
;
|
|
ProcLabel = special_proc(DefModule, PredName, TypeModule,
|
|
TypeName, Arity, ProcId),
|
|
prog_out__sym_name_to_string(TypeModule, TypeModuleString),
|
|
prog_out__sym_name_to_string(DefModule, DefModuleString),
|
|
proc_id_to_int(ProcId, Mode),
|
|
Rvals = [
|
|
yes(const(string_const(TypeName))),
|
|
yes(const(string_const(TypeModuleString))),
|
|
yes(const(string_const(DefModuleString))),
|
|
yes(const(string_const(PredName))),
|
|
yes(const(int_const(Arity))),
|
|
yes(const(int_const(Mode)))
|
|
],
|
|
ArgTypes = [4 - no, 2 - yes(int_least16)]
|
|
).
|
|
|
|
:- pred stack_layout__represent_pred_or_func(pred_or_func::in, int::out) is det.
|
|
|
|
stack_layout__represent_pred_or_func(predicate, 0).
|
|
stack_layout__represent_pred_or_func(function, 1).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Construct the layout describing a single internal label.
|
|
|
|
:- pred stack_layout__construct_internal_layout(label::in,
|
|
pair(label, internal_layout_info)::in,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__construct_internal_layout(EntryLabel, Label - Internal) -->
|
|
% generate the required rvals
|
|
stack_layout__get_module_name(ModuleName),
|
|
{ EntryAddrRval = const(data_addr_const(data_addr(ModuleName,
|
|
proc_layout(EntryLabel)))) },
|
|
stack_layout__construct_internal_rvals(Internal, VarInfoRvals,
|
|
VarInfoRvalTypes),
|
|
{ LayoutRvals = [yes(EntryAddrRval) | VarInfoRvals] },
|
|
{ ArgTypes = initial([1 - no], VarInfoRvalTypes) },
|
|
{ CData = comp_gen_c_data(ModuleName, internal_layout(Label),
|
|
no, LayoutRvals, ArgTypes, []) },
|
|
stack_layout__add_internal_layout_data(CData, Label).
|
|
|
|
% Construct the rvals required for accurate GC or for tracing.
|
|
|
|
:- pred stack_layout__construct_internal_rvals(internal_layout_info::in,
|
|
list(maybe(rval))::out, create_arg_types::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__construct_internal_rvals(Internal, RvalList, ArgTypes) -->
|
|
{ Internal = internal_layout_info(Trace, Resume, Return) },
|
|
(
|
|
{ Trace = no },
|
|
{ set__init(TraceLiveVarSet) },
|
|
{ map__init(TraceTypeVarMap) }
|
|
;
|
|
{ Trace = yes(trace_port_layout_info(_, _, _, TraceLayout)) },
|
|
{ TraceLayout = layout_label_info(TraceLiveVarSet,
|
|
TraceTypeVarMap) }
|
|
),
|
|
{ TraceArgTypes = [2 - yes(int_least16)] },
|
|
{
|
|
Resume = no,
|
|
set__init(ResumeLiveVarSet),
|
|
map__init(ResumeTypeVarMap)
|
|
;
|
|
Resume = yes(ResumeLayout),
|
|
ResumeLayout = layout_label_info(ResumeLiveVarSet,
|
|
ResumeTypeVarMap)
|
|
},
|
|
(
|
|
{ Trace = yes(trace_port_layout_info(_, Port, Path, _)) },
|
|
{ Return = no },
|
|
{ llds_out__trace_port_to_num(Port, PortNum) },
|
|
{ trace__path_to_string(Path, PathStr) },
|
|
stack_layout__lookup_string_in_table(PathStr, PathNum)
|
|
;
|
|
{ Trace = no },
|
|
{ Return = yes(_) },
|
|
% We only ever use the port and path fields of these
|
|
% layout structures when we process exception events.
|
|
{ llds_out__trace_port_to_num(exception, PortNum) },
|
|
{ PathNum = 0 }
|
|
;
|
|
{ Trace = no },
|
|
{ Return = no },
|
|
{ PortNum = -1 },
|
|
{ PathNum = -1 }
|
|
;
|
|
{ Trace = yes(_) },
|
|
{ Return = yes(_) },
|
|
{ error("label has both trace and return layout info") }
|
|
),
|
|
{ TraceRvals = [yes(const(int_const(PortNum))),
|
|
yes(const(int_const(PathNum)))] },
|
|
stack_layout__get_agc_stack_layout(AgcStackLayout),
|
|
{
|
|
Return = no,
|
|
set__init(ReturnLiveVarSet),
|
|
map__init(ReturnTypeVarMap)
|
|
;
|
|
Return = yes(return_layout_info(_, ReturnLayout)),
|
|
ReturnLayout = layout_label_info(ReturnLiveVarSet0,
|
|
ReturnTypeVarMap0),
|
|
( AgcStackLayout = yes ->
|
|
ReturnLiveVarSet = ReturnLiveVarSet0,
|
|
ReturnTypeVarMap = ReturnTypeVarMap0
|
|
;
|
|
% This set of variables must be for uplevel printing
|
|
% in execution tracing, so we are interested only
|
|
% in (a) variables, not temporaries, (b) only named
|
|
% variables, and (c) only those on the stack, not
|
|
% the return values.
|
|
set__to_sorted_list(ReturnLiveVarSet0,
|
|
ReturnLiveVarList0),
|
|
stack_layout__select_trace_return(
|
|
ReturnLiveVarList0, ReturnTypeVarMap0,
|
|
ReturnLiveVarList, ReturnTypeVarMap),
|
|
set__list_to_set(ReturnLiveVarList, ReturnLiveVarSet)
|
|
)
|
|
},
|
|
(
|
|
{ Trace = no },
|
|
{ Resume = no },
|
|
{ Return = no }
|
|
->
|
|
% The -1 says that there is no info available
|
|
% about variables at this label. (Zero would say
|
|
% that there are no variables live at this label,
|
|
% which may not be true.)
|
|
{ RvalList = [yes(const(int_const(-1)))] },
|
|
{ ArgTypes = initial([1 - yes(integer)], none) }
|
|
;
|
|
% XXX ignore differences in insts inside var_infos
|
|
{ set__union(TraceLiveVarSet, ResumeLiveVarSet, LiveVarSet0) },
|
|
{ set__union(LiveVarSet0, ReturnLiveVarSet, LiveVarSet) },
|
|
{ map__union(set__intersect, TraceTypeVarMap, ResumeTypeVarMap,
|
|
TypeVarMap0) },
|
|
{ map__union(set__intersect, TypeVarMap0, ReturnTypeVarMap,
|
|
TypeVarMap) },
|
|
stack_layout__construct_livelval_rvals(LiveVarSet,
|
|
TypeVarMap, LivelvalRvalList, LivelvalArgTypes),
|
|
{ append(TraceRvals, LivelvalRvalList, RvalList) },
|
|
{ ArgTypes = initial(TraceArgTypes, LivelvalArgTypes) }
|
|
).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- pred stack_layout__construct_livelval_rvals(set(var_info)::in,
|
|
map(tvar, set(layout_locn))::in, list(maybe(rval))::out,
|
|
create_arg_types::out, stack_layout_info::in, stack_layout_info::out)
|
|
is det.
|
|
|
|
stack_layout__construct_livelval_rvals(LiveLvalSet, TVarLocnMap,
|
|
RvalList, ArgTypes) -->
|
|
{ set__to_sorted_list(LiveLvalSet, LiveLvals) },
|
|
{ list__length(LiveLvals, Length) },
|
|
( { Length > 0 } ->
|
|
{ stack_layout__sort_livevals(LiveLvals, SortedLiveLvals) },
|
|
stack_layout__construct_liveval_arrays(SortedLiveLvals,
|
|
VarLengthRval, LiveValRval, NamesRval),
|
|
stack_layout__get_cell_number(CNum0),
|
|
{ stack_layout__construct_tvar_vector(TVarLocnMap,
|
|
TypeParamRval, CNum0, CNum) },
|
|
stack_layout__set_cell_number(CNum),
|
|
{ RvalList = [yes(VarLengthRval), yes(LiveValRval),
|
|
yes(NamesRval), yes(TypeParamRval)] },
|
|
{ ArgTypes = initial([1 - yes(integer), 3 - yes(data_ptr)],
|
|
none) }
|
|
;
|
|
{ RvalList = [yes(const(int_const(0)))] },
|
|
{ ArgTypes = initial([1 - yes(integer)], none) }
|
|
).
|
|
|
|
:- pred stack_layout__construct_tvar_vector(map(tvar, set(layout_locn))::in,
|
|
rval::out, int::in, int::out) is det.
|
|
|
|
stack_layout__construct_tvar_vector(TVarLocnMap, TypeParamRval, CNum0, CNum) :-
|
|
( map__is_empty(TVarLocnMap) ->
|
|
TypeParamRval = const(int_const(0)),
|
|
CNum = CNum0
|
|
;
|
|
stack_layout__construct_tvar_rvals(TVarLocnMap,
|
|
Vector, VectorTypes),
|
|
CNum is CNum0 + 1,
|
|
Reuse = no,
|
|
TypeParamRval = create(0, Vector, VectorTypes,
|
|
must_be_static, CNum,
|
|
"stack_layout_type_param_locn_vector", Reuse)
|
|
).
|
|
|
|
:- pred stack_layout__construct_tvar_rvals(map(tvar, set(layout_locn))::in,
|
|
list(maybe(rval))::out, create_arg_types::out) is det.
|
|
|
|
stack_layout__construct_tvar_rvals(TVarLocnMap, Vector, VectorTypes) :-
|
|
map__to_assoc_list(TVarLocnMap, TVarLocns),
|
|
stack_layout__construct_type_param_locn_vector(TVarLocns, 1,
|
|
TypeParamLocs),
|
|
list__length(TypeParamLocs, TypeParamsLength),
|
|
LengthRval = const(int_const(TypeParamsLength)),
|
|
Vector = [yes(LengthRval) | TypeParamLocs],
|
|
VectorTypes = uniform(yes(uint_least32)).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Given a list of var_infos and the type variables that occur in them,
|
|
% select only the var_infos that may be required by up-level printing
|
|
% in the trace-based debugger. At the moment the typeinfo list we
|
|
% return may be bigger than necessary, but this does not compromise
|
|
% correctness; we do this to avoid having to scan the types of all
|
|
% the selected var_infos.
|
|
|
|
:- pred stack_layout__select_trace_return(
|
|
list(var_info)::in, map(tvar, set(layout_locn))::in,
|
|
list(var_info)::out, map(tvar, set(layout_locn))::out) is det.
|
|
|
|
stack_layout__select_trace_return(Infos, TVars, TraceReturnInfos, TVars) :-
|
|
IsNamedReturnVar = lambda([LocnInfo::in] is semidet, (
|
|
LocnInfo = var_info(Locn, LvalType),
|
|
LvalType = var(_, Name, _, _),
|
|
Name \= "",
|
|
( Locn = direct(Lval) ; Locn = indirect(Lval, _)),
|
|
( Lval = stackvar(_) ; Lval = framevar(_) )
|
|
)),
|
|
list__filter(IsNamedReturnVar, Infos, TraceReturnInfos).
|
|
|
|
% Given a list of var_infos, put the ones that tracing can be
|
|
% interested in (whether at an internal port or for uplevel printing)
|
|
% in a block at the start, and both this block and the remaining
|
|
% block. The division into two blocks can make the job of the
|
|
% debugger somewhat easier, the sorting of the named var block makes
|
|
% the output of the debugger look nicer, and the sorting of the both
|
|
% blocks makes it more likely that different labels' layout structures
|
|
% will have common parts (e.g. name vectors) that can be optimized
|
|
% by llds_common.m.
|
|
|
|
:- pred stack_layout__sort_livevals(list(var_info)::in, list(var_info)::out)
|
|
is det.
|
|
|
|
stack_layout__sort_livevals(OrigInfos, FinalInfos) :-
|
|
IsNamedVar = lambda([LvalInfo::in] is semidet, (
|
|
LvalInfo = var_info(_Lval, LvalType),
|
|
LvalType = var(_, Name, _, _),
|
|
Name \= ""
|
|
)),
|
|
list__filter(IsNamedVar, OrigInfos, NamedVarInfos0, OtherInfos0),
|
|
CompareVarInfos = lambda([Var1::in, Var2::in, Result::out] is det, (
|
|
Var1 = var_info(Lval1, LiveType1),
|
|
Var2 = var_info(Lval2, LiveType2),
|
|
stack_layout__get_name_from_live_value_type(LiveType1, Name1),
|
|
stack_layout__get_name_from_live_value_type(LiveType2, Name2),
|
|
compare(NameResult, Name1, Name2),
|
|
( NameResult = (=) ->
|
|
compare(Result, Lval1, Lval2)
|
|
;
|
|
Result = NameResult
|
|
)
|
|
)),
|
|
list__sort(CompareVarInfos, NamedVarInfos0, NamedVarInfos),
|
|
list__sort(CompareVarInfos, OtherInfos0, OtherInfos),
|
|
list__append(NamedVarInfos, OtherInfos, FinalInfos).
|
|
|
|
:- pred stack_layout__get_name_from_live_value_type(live_value_type::in,
|
|
string::out) is det.
|
|
|
|
stack_layout__get_name_from_live_value_type(LiveType, Name) :-
|
|
( LiveType = var(_, NamePrime, _, _) ->
|
|
Name = NamePrime
|
|
;
|
|
Name = ""
|
|
).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Given a association list of type variables and their locations
|
|
% sorted on the type variables, represent them in an array of
|
|
% location descriptions indexed by the type variable. The next
|
|
% slot to fill is given by the second argument.
|
|
|
|
:- pred stack_layout__construct_type_param_locn_vector(
|
|
assoc_list(tvar, set(layout_locn))::in,
|
|
int::in, list(maybe(rval))::out) is det.
|
|
|
|
stack_layout__construct_type_param_locn_vector([], _, []).
|
|
stack_layout__construct_type_param_locn_vector([TVar - Locns | TVarLocns],
|
|
CurSlot, Vector) :-
|
|
term__var_to_int(TVar, TVarNum),
|
|
NextSlot is CurSlot + 1,
|
|
( TVarNum = CurSlot ->
|
|
( set__remove_least(Locns, LeastLocn, _) ->
|
|
Locn = LeastLocn
|
|
;
|
|
error("tvar has empty set of locations")
|
|
),
|
|
stack_layout__represent_locn_as_int(Locn, Rval),
|
|
stack_layout__construct_type_param_locn_vector(TVarLocns,
|
|
NextSlot, VectorTail),
|
|
Vector = [yes(Rval) | VectorTail]
|
|
; TVarNum > CurSlot ->
|
|
stack_layout__construct_type_param_locn_vector(TVarLocns,
|
|
NextSlot, VectorTail),
|
|
% This slot will never be referred to.
|
|
Vector = [yes(const(int_const(0))) | VectorTail]
|
|
;
|
|
|
|
error("unsorted tvars in construct_type_param_locn_vector")
|
|
).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
:- type liveval_array_info
|
|
---> live_array_info(
|
|
rval, % Rval describing the location of a live value.
|
|
% Always of llds type uint_least8 if the cell
|
|
% is in the byte array, and uint_least32 if it
|
|
% is in the int array.
|
|
rval, % Rval describing the type of a live value.
|
|
llds_type, % The llds type of the rval describing the
|
|
% type.
|
|
rval, % Rval describing the variable number of a
|
|
% live value. Always of llds uint_least16.
|
|
% Contains zero if the live value is not
|
|
% a variable. Contains the hightest possible
|
|
% uint_least16 value if the variable number
|
|
% does not fit in 16 bits.
|
|
rval % Rval describing the variable name of a
|
|
% live value. Always of llds uint_least16.
|
|
% Contains zero if the live value is not
|
|
% a variable, or if it is a variable with
|
|
% no name.
|
|
).
|
|
|
|
% Construct a vector of (locn, live_value_type) pairs,
|
|
% and a corresponding vector of variable names.
|
|
|
|
:- pred stack_layout__construct_liveval_arrays(list(var_info)::in,
|
|
rval::out, rval::out, rval::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__construct_liveval_arrays(VarInfos, LengthRval,
|
|
TypeLocnVector, NameVector) -->
|
|
{ int__pow(2, stack_layout__short_count_bits, BytesLimit) },
|
|
stack_layout__construct_liveval_array_infos(VarInfos,
|
|
0, BytesLimit, IntArrayInfo, ByteArrayInfo),
|
|
|
|
{ list__length(IntArrayInfo, IntArrayLength) },
|
|
{ list__length(ByteArrayInfo, ByteArrayLength) },
|
|
{ list__append(IntArrayInfo, ByteArrayInfo, AllArrayInfo) },
|
|
|
|
{ EncodedLength is IntArrayLength << stack_layout__short_count_bits
|
|
+ ByteArrayLength },
|
|
{ LengthRval = const(int_const(EncodedLength)) },
|
|
|
|
{ SelectLocns = lambda([ArrayInfo::in, MaybeLocnRval::out] is det, (
|
|
ArrayInfo = live_array_info(LocnRval, _, _, _, _),
|
|
MaybeLocnRval = yes(LocnRval)
|
|
)) },
|
|
{ SelectTypes = lambda([ArrayInfo::in, MaybeTypeRval::out] is det, (
|
|
ArrayInfo = live_array_info(_, TypeRval, _, _, _),
|
|
MaybeTypeRval = yes(TypeRval)
|
|
)) },
|
|
{ SelectTypeTypes = lambda([ArrayInfo::in, CountTypeType::out] is det,(
|
|
ArrayInfo = live_array_info(_, _, TypeType, _, _),
|
|
CountTypeType = 1 - yes(TypeType)
|
|
)) },
|
|
{ AddRevNumsNames = lambda([ArrayInfo::in, NumNameRvals0::in,
|
|
NumNameRvals::out] is det, (
|
|
ArrayInfo = live_array_info(_, _, _, NumRval, NameRval),
|
|
NumNameRvals = [yes(NameRval), yes(NumRval) | NumNameRvals0]
|
|
)) },
|
|
|
|
{ list__map(SelectTypes, AllArrayInfo, AllTypes) },
|
|
{ list__map(SelectTypeTypes, AllArrayInfo, AllTypeTypes) },
|
|
{ list__map(SelectLocns, IntArrayInfo, IntLocns) },
|
|
{ list__map(SelectLocns, ByteArrayInfo, ByteLocns) },
|
|
{ list__append(IntLocns, ByteLocns, AllLocns) },
|
|
{ list__append(AllTypes, AllLocns, TypeLocnVectorRvals) },
|
|
{ LocnArgTypes = [IntArrayLength - yes(uint_least32),
|
|
ByteArrayLength - yes(uint_least8)] },
|
|
{ list__append(AllTypeTypes, LocnArgTypes, ArgTypes) },
|
|
stack_layout__get_next_cell_number(CNum1),
|
|
{ Reuse = no },
|
|
{ TypeLocnVector = create(0, TypeLocnVectorRvals,
|
|
initial(ArgTypes, none), must_be_static, CNum1,
|
|
"stack_layout_locn_vector", Reuse) },
|
|
|
|
stack_layout__get_trace_stack_layout(TraceStackLayout),
|
|
( { TraceStackLayout = yes } ->
|
|
{ list__foldl(AddRevNumsNames, AllArrayInfo,
|
|
[], RevVarNumNameRvals) },
|
|
{ list__reverse(RevVarNumNameRvals, VarNumNameRvals) },
|
|
stack_layout__get_next_cell_number(CNum2),
|
|
{ NameVector = create(0, VarNumNameRvals,
|
|
uniform(yes(uint_least16)), must_be_static,
|
|
CNum2, "stack_layout_num_name_vector", Reuse) }
|
|
;
|
|
{ NameVector = const(int_const(0)) }
|
|
).
|
|
|
|
:- pred stack_layout__construct_liveval_array_infos(list(var_info)::in,
|
|
int::in, int::in,
|
|
list(liveval_array_info)::out, list(liveval_array_info)::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__construct_liveval_array_infos([], _, _, [], []) --> [].
|
|
stack_layout__construct_liveval_array_infos([VarInfo | VarInfos],
|
|
BytesSoFar, BytesLimit, IntVars, ByteVars) -->
|
|
{ VarInfo = var_info(Locn, LiveValueType) },
|
|
stack_layout__represent_live_value_type(LiveValueType, TypeRval,
|
|
TypeRvalType),
|
|
stack_layout__construct_liveval_name_rvals(VarInfo,
|
|
VarNumRval, VarNameRval),
|
|
(
|
|
{ BytesSoFar < BytesLimit },
|
|
{ stack_layout__represent_locn_as_byte(Locn, LocnByteRval) }
|
|
->
|
|
{ Var = live_array_info(LocnByteRval, TypeRval, TypeRvalType,
|
|
VarNumRval, VarNameRval) },
|
|
stack_layout__construct_liveval_array_infos(VarInfos,
|
|
BytesSoFar + 1, BytesLimit, IntVars, ByteVars0),
|
|
{ ByteVars = [Var | ByteVars0] }
|
|
;
|
|
{ stack_layout__represent_locn_as_int(Locn, LocnRval) },
|
|
{ Var = live_array_info(LocnRval, TypeRval, TypeRvalType,
|
|
VarNumRval, VarNameRval) },
|
|
stack_layout__construct_liveval_array_infos(VarInfos,
|
|
BytesSoFar, BytesLimit, IntVars0, ByteVars),
|
|
{ IntVars = [Var | IntVars0] }
|
|
).
|
|
|
|
:- pred stack_layout__construct_liveval_name_rvals(var_info::in, rval::out,
|
|
rval::out, stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__construct_liveval_name_rvals(var_info(_, LiveValueType),
|
|
VarNumRval, VarNameRval, SLI0, SLI) :-
|
|
( LiveValueType = var(Var, Name, _, _) ->
|
|
term__var_to_int(Var, VarNum0),
|
|
% The variable number has to fit into two bytes.
|
|
% We reserve the largest such number (Limit)
|
|
% to mean that the variable number is too large
|
|
% to be represented. This ought not to happen,
|
|
% since compilation would be glacial at best
|
|
% for procedures with that many variables.
|
|
Limit = (1 << (2 * stack_layout__byte_bits)) - 1,
|
|
int__min(VarNum0, Limit, VarNum),
|
|
VarNumRval = const(int_const(VarNum)),
|
|
stack_layout__lookup_string_in_table(Name, Offset, SLI0, SLI),
|
|
VarNameRval = const(int_const(Offset))
|
|
;
|
|
VarNumRval = const(int_const(0)),
|
|
VarNameRval = const(int_const(0)),
|
|
SLI = SLI0
|
|
).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% The representation we build here should be kept in sync
|
|
% with runtime/mercury_ho_call.h, which contains macros to access
|
|
% the data structures we build here.
|
|
|
|
stack_layout__construct_closure_layout(ProcLabel, ClosureLayoutInfo,
|
|
Rvals, ArgTypes, CNum0, CNum) :-
|
|
stack_layout__construct_procid_rvals(ProcLabel, ProcIdRvals,
|
|
ProcIdTypes),
|
|
ClosureLayoutInfo = closure_layout_info(ClosureArgs,
|
|
TVarLocnMap),
|
|
stack_layout__construct_closure_arg_rvals(ClosureArgs,
|
|
ClosureArgRvals, ClosureArgTypes, CNum0, CNum1),
|
|
stack_layout__construct_tvar_vector(TVarLocnMap, TVarVectorRval,
|
|
CNum1, CNum),
|
|
TVarVectorRvals = [yes(TVarVectorRval)],
|
|
TVarVectorTypes = [1 - yes(data_ptr)],
|
|
list__append(TVarVectorRvals, ClosureArgRvals, LayoutRvals),
|
|
list__append(ProcIdRvals, LayoutRvals, Rvals),
|
|
ArgTypes = initial(ProcIdTypes, initial(TVarVectorTypes,
|
|
initial(ClosureArgTypes, none))).
|
|
|
|
:- pred stack_layout__construct_closure_arg_rvals(list(closure_arg_info)::in,
|
|
list(maybe(rval))::out, initial_arg_types::out, int::in, int::out)
|
|
is det.
|
|
|
|
stack_layout__construct_closure_arg_rvals(ClosureArgs, ClosureArgRvals,
|
|
ClosureArgTypes, CNum0, CNum) :-
|
|
list__map_foldl(stack_layout__construct_closure_arg_rval,
|
|
ClosureArgs, MaybeArgRvalsTypes, CNum0, CNum),
|
|
assoc_list__keys(MaybeArgRvalsTypes, MaybeArgRvals),
|
|
AddOne = lambda([Pair::in, CountLldsType::out] is det, (
|
|
Pair = _ - LldsType,
|
|
CountLldsType = 1 - yes(LldsType)
|
|
)),
|
|
list__map(AddOne, MaybeArgRvalsTypes, ArgRvalTypes),
|
|
list__length(MaybeArgRvals, Length),
|
|
ClosureArgRvals = [yes(const(int_const(Length))) | MaybeArgRvals],
|
|
ClosureArgTypes = [1 - yes(integer) | ArgRvalTypes].
|
|
|
|
:- pred stack_layout__construct_closure_arg_rval(closure_arg_info::in,
|
|
pair(maybe(rval), llds_type)::out, int::in, int::out) is det.
|
|
|
|
stack_layout__construct_closure_arg_rval(ClosureArg,
|
|
yes(ArgRval) - ArgRvalType, CNum0, CNum) :-
|
|
ClosureArg = closure_arg_info(Type, _Inst),
|
|
|
|
% For a stack layout, we can treat all type variables as
|
|
% universally quantified. This is not the argument of a
|
|
% constructor, so we do not need to distinguish between type
|
|
% variables that are and aren't in scope; we can take the
|
|
% variable number directly from the procedure's tvar set.
|
|
ExistQTvars = [],
|
|
NumUnivQTvars = -1,
|
|
|
|
pseudo_type_info__construct_typed_pseudo_type_info(Type,
|
|
NumUnivQTvars, ExistQTvars, ArgRval, ArgRvalType, CNum0, CNum).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Construct a representation of the type of a value.
|
|
%
|
|
% For values representing variables, this will be a pseudo_type_info
|
|
% describing the type of the variable.
|
|
%
|
|
% For the kinds of values used internally by the compiler,
|
|
% this will be a pointer to a specific type_ctor_info (acting as a
|
|
% type_info) defined by hand in builtin.m to stand for values of
|
|
% each such kind; one for succips, one for hps, etc.
|
|
|
|
:- pred stack_layout__represent_live_value_type(live_value_type, rval,
|
|
llds_type, stack_layout_info, stack_layout_info).
|
|
:- mode stack_layout__represent_live_value_type(in, out, out, in, out) is det.
|
|
|
|
stack_layout__represent_live_value_type(succip, Rval, data_ptr) -->
|
|
{ RttiTypeId = rtti_type_id(unqualified(""), "succip", 0) },
|
|
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
|
|
{ Rval = const(data_addr_const(DataAddr)) }.
|
|
stack_layout__represent_live_value_type(hp, Rval, data_ptr) -->
|
|
{ RttiTypeId = rtti_type_id(unqualified(""), "hp", 0) },
|
|
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
|
|
{ Rval = const(data_addr_const(DataAddr)) }.
|
|
stack_layout__represent_live_value_type(curfr, Rval, data_ptr) -->
|
|
{ RttiTypeId = rtti_type_id(unqualified(""), "curfr", 0) },
|
|
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
|
|
{ Rval = const(data_addr_const(DataAddr)) }.
|
|
stack_layout__represent_live_value_type(maxfr, Rval, data_ptr) -->
|
|
{ RttiTypeId = rtti_type_id(unqualified(""), "maxfr", 0) },
|
|
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
|
|
{ Rval = const(data_addr_const(DataAddr)) }.
|
|
stack_layout__represent_live_value_type(redofr, Rval, data_ptr) -->
|
|
{ RttiTypeId = rtti_type_id(unqualified(""), "redofr", 0) },
|
|
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
|
|
{ Rval = const(data_addr_const(DataAddr)) }.
|
|
stack_layout__represent_live_value_type(redoip, Rval, data_ptr) -->
|
|
{ RttiTypeId = rtti_type_id(unqualified(""), "redoip", 0) },
|
|
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
|
|
{ Rval = const(data_addr_const(DataAddr)) }.
|
|
stack_layout__represent_live_value_type(trail_ptr, Rval, data_ptr) -->
|
|
{ RttiTypeId = rtti_type_id(unqualified(""), "trail_ptr", 0) },
|
|
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
|
|
{ Rval = const(data_addr_const(DataAddr)) }.
|
|
stack_layout__represent_live_value_type(ticket, Rval, data_ptr) -->
|
|
{ RttiTypeId = rtti_type_id(unqualified(""), "ticket", 0) },
|
|
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
|
|
{ Rval = const(data_addr_const(DataAddr)) }.
|
|
stack_layout__represent_live_value_type(unwanted, Rval, data_ptr) -->
|
|
{ RttiTypeId = rtti_type_id(unqualified(""), "unwanted", 0) },
|
|
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
|
|
{ Rval = const(data_addr_const(DataAddr)) }.
|
|
stack_layout__represent_live_value_type(var(_, _, Type, _), Rval, LldsType)
|
|
-->
|
|
stack_layout__get_cell_number(CNum0),
|
|
|
|
% For a stack layout, we can treat all type variables as
|
|
% universally quantified. This is not the argument of a
|
|
% constructor, so we do not need to distinguish between type
|
|
% variables that are and aren't in scope; we can take the
|
|
% variable number directly from the procedure's tvar set.
|
|
{ ExistQTvars = [] },
|
|
{ NumUnivQTvars = -1 },
|
|
{ pseudo_type_info__construct_typed_pseudo_type_info(Type,
|
|
NumUnivQTvars, ExistQTvars,
|
|
Rval, LldsType, CNum0, CNum) },
|
|
stack_layout__set_cell_number(CNum).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Construct a representation of a variable location as a 32-bit
|
|
% integer.
|
|
%
|
|
% Most of the time, a layout specifies a location as an lval.
|
|
% However, a type_info variable may be hidden inside a typeclass_info,
|
|
% In this case, accessing the type_info requires indirection.
|
|
% The address of the typeclass_info is given as an lval, and
|
|
% the location of the typeinfo within the typeclass_info as an index;
|
|
% private_builtin:type_info_from_typeclass_info interprets the index.
|
|
%
|
|
% This one level of indirection is sufficient, since type_infos
|
|
% cannot be nested inside typeclass_infos any deeper than this.
|
|
% A more general representation that would allow more indirection
|
|
% would be much harder to fit into one machine word.
|
|
|
|
:- pred stack_layout__represent_locn_as_int(layout_locn, rval).
|
|
:- mode stack_layout__represent_locn_as_int(in, out) is det.
|
|
|
|
stack_layout__represent_locn_as_int(direct(Lval), Rval) :-
|
|
stack_layout__represent_lval(Lval, Word),
|
|
Rval = const(int_const(Word)).
|
|
stack_layout__represent_locn_as_int(indirect(Lval, Offset), Rval) :-
|
|
stack_layout__represent_lval(Lval, BaseWord),
|
|
require((1 << stack_layout__long_lval_offset_bits) > Offset,
|
|
"stack_layout__represent_locn: offset too large to be represented"),
|
|
BaseAndOffset is (BaseWord << stack_layout__long_lval_offset_bits)
|
|
+ Offset,
|
|
stack_layout__make_tagged_word(lval_indirect, BaseAndOffset, Word),
|
|
Rval = const(int_const(Word)).
|
|
|
|
% Construct a four byte representation of an lval.
|
|
|
|
:- pred stack_layout__represent_lval(lval, int).
|
|
:- mode stack_layout__represent_lval(in, out) is det.
|
|
|
|
stack_layout__represent_lval(reg(r, Num), Word) :-
|
|
stack_layout__make_tagged_word(lval_r_reg, Num, Word).
|
|
stack_layout__represent_lval(reg(f, Num), Word) :-
|
|
stack_layout__make_tagged_word(lval_f_reg, Num, Word).
|
|
|
|
stack_layout__represent_lval(stackvar(Num), Word) :-
|
|
stack_layout__make_tagged_word(lval_stackvar, Num, Word).
|
|
stack_layout__represent_lval(framevar(Num), Word) :-
|
|
stack_layout__make_tagged_word(lval_framevar, Num, Word).
|
|
|
|
stack_layout__represent_lval(succip, Word) :-
|
|
stack_layout__make_tagged_word(lval_succip, 0, Word).
|
|
stack_layout__represent_lval(maxfr, Word) :-
|
|
stack_layout__make_tagged_word(lval_maxfr, 0, Word).
|
|
stack_layout__represent_lval(curfr, Word) :-
|
|
stack_layout__make_tagged_word(lval_curfr, 0, Word).
|
|
stack_layout__represent_lval(hp, Word) :-
|
|
stack_layout__make_tagged_word(lval_hp, 0, Word).
|
|
stack_layout__represent_lval(sp, Word) :-
|
|
stack_layout__make_tagged_word(lval_sp, 0, Word).
|
|
|
|
stack_layout__represent_lval(temp(_, _), _) :-
|
|
error("stack_layout: continuation live value stored in temp register").
|
|
|
|
stack_layout__represent_lval(succip(_), _) :-
|
|
error("stack_layout: continuation live value stored in fixed slot").
|
|
stack_layout__represent_lval(redoip(_), _) :-
|
|
error("stack_layout: continuation live value stored in fixed slot").
|
|
stack_layout__represent_lval(redofr(_), _) :-
|
|
error("stack_layout: continuation live value stored in fixed slot").
|
|
stack_layout__represent_lval(succfr(_), _) :-
|
|
error("stack_layout: continuation live value stored in fixed slot").
|
|
stack_layout__represent_lval(prevfr(_), _) :-
|
|
error("stack_layout: continuation live value stored in fixed slot").
|
|
|
|
stack_layout__represent_lval(field(_, _, _), _) :-
|
|
error("stack_layout: continuation live value stored in field").
|
|
stack_layout__represent_lval(mem_ref(_), _) :-
|
|
error("stack_layout: continuation live value stored in mem_ref").
|
|
stack_layout__represent_lval(lvar(_), _) :-
|
|
error("stack_layout: continuation live value stored in lvar").
|
|
|
|
% Some things in this module are encoded using a low tag.
|
|
% This is not done using the normal compiler mkword, but by
|
|
% doing the bit shifting here.
|
|
%
|
|
% This allows us to use more than the usual 2 or 3 bits, but
|
|
% we have to use low tags and cannot tag pointers this way.
|
|
|
|
:- pred stack_layout__make_tagged_word(locn_type::in, int::in, int::out) is det.
|
|
|
|
stack_layout__make_tagged_word(Locn, Value, TaggedValue) :-
|
|
stack_layout__locn_type_code(Locn, Tag),
|
|
TaggedValue is (Value << stack_layout__long_lval_tag_bits) + Tag.
|
|
|
|
:- type locn_type
|
|
---> lval_r_reg
|
|
; lval_f_reg
|
|
; lval_stackvar
|
|
; lval_framevar
|
|
; lval_succip
|
|
; lval_maxfr
|
|
; lval_curfr
|
|
; lval_hp
|
|
; lval_sp
|
|
; lval_indirect.
|
|
|
|
:- pred stack_layout__locn_type_code(locn_type::in, int::out) is det.
|
|
|
|
stack_layout__locn_type_code(lval_r_reg, 0).
|
|
stack_layout__locn_type_code(lval_f_reg, 1).
|
|
stack_layout__locn_type_code(lval_stackvar, 2).
|
|
stack_layout__locn_type_code(lval_framevar, 3).
|
|
stack_layout__locn_type_code(lval_succip, 4).
|
|
stack_layout__locn_type_code(lval_maxfr, 5).
|
|
stack_layout__locn_type_code(lval_curfr, 6).
|
|
stack_layout__locn_type_code(lval_hp, 7).
|
|
stack_layout__locn_type_code(lval_sp, 8).
|
|
stack_layout__locn_type_code(lval_indirect, 9).
|
|
|
|
:- func stack_layout__long_lval_tag_bits = int.
|
|
|
|
% This number of tag bits must be able to encode all values of
|
|
% stack_layout__locn_type_code.
|
|
|
|
stack_layout__long_lval_tag_bits = 4.
|
|
|
|
% This number of tag bits must be able to encode the largest offset
|
|
% of a type_info within a typeclass_info.
|
|
|
|
:- func stack_layout__long_lval_offset_bits = int.
|
|
|
|
stack_layout__long_lval_offset_bits = 6.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Construct a representation of a variable location as a byte,
|
|
% if this is possible.
|
|
|
|
:- pred stack_layout__represent_locn_as_byte(layout_locn::in, rval::out)
|
|
is semidet.
|
|
|
|
stack_layout__represent_locn_as_byte(LayoutLocn, Rval) :-
|
|
LayoutLocn = direct(Lval),
|
|
stack_layout__represent_lval_as_byte(Lval, Byte),
|
|
Rval = const(int_const(Byte)).
|
|
|
|
% Construct a representation of an lval in a byte, if possible.
|
|
|
|
:- pred stack_layout__represent_lval_as_byte(lval::in, int::out) is semidet.
|
|
|
|
stack_layout__represent_lval_as_byte(reg(r, Num), Byte) :-
|
|
stack_layout__make_tagged_byte(0, Num, Byte).
|
|
|
|
stack_layout__represent_lval_as_byte(stackvar(Num), Byte) :-
|
|
stack_layout__make_tagged_byte(1, Num, Byte).
|
|
stack_layout__represent_lval_as_byte(framevar(Num), Byte) :-
|
|
stack_layout__make_tagged_byte(2, Num, Byte).
|
|
|
|
stack_layout__represent_lval_as_byte(succip, Byte) :-
|
|
stack_layout__locn_type_code(lval_succip, Val),
|
|
stack_layout__make_tagged_byte(3, Val, Byte).
|
|
stack_layout__represent_lval_as_byte(maxfr, Byte) :-
|
|
stack_layout__locn_type_code(lval_maxfr, Val),
|
|
stack_layout__make_tagged_byte(3, Val, Byte).
|
|
stack_layout__represent_lval_as_byte(curfr, Byte) :-
|
|
stack_layout__locn_type_code(lval_curfr, Val),
|
|
stack_layout__make_tagged_byte(3, Val, Byte).
|
|
stack_layout__represent_lval_as_byte(hp, Byte) :-
|
|
stack_layout__locn_type_code(lval_hp, Val),
|
|
stack_layout__make_tagged_byte(3, Val, Byte).
|
|
stack_layout__represent_lval_as_byte(sp, Byte) :-
|
|
stack_layout__locn_type_code(lval_succip, Val),
|
|
stack_layout__make_tagged_byte(3, Val, Byte).
|
|
|
|
:- pred stack_layout__make_tagged_byte(int::in, int::in, int::out) is semidet.
|
|
|
|
stack_layout__make_tagged_byte(Tag, Value, TaggedValue) :-
|
|
Limit = 1 << (stack_layout__byte_bits -
|
|
stack_layout__short_lval_tag_bits),
|
|
Value < Limit,
|
|
TaggedValue is unchecked_left_shift(Value,
|
|
stack_layout__short_lval_tag_bits) + Tag.
|
|
|
|
:- func stack_layout__short_lval_tag_bits = int.
|
|
|
|
stack_layout__short_lval_tag_bits = 2.
|
|
|
|
:- func stack_layout__short_count_bits = int.
|
|
|
|
stack_layout__short_count_bits = 10.
|
|
|
|
:- func stack_layout__byte_bits = int.
|
|
|
|
stack_layout__byte_bits = 8.
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Construct a representation of the interface determinism of a
|
|
% procedure. The code we have chosen is not sequential; instead
|
|
% it encodes the various properties of each determinism.
|
|
%
|
|
% The 8 bit is set iff the context is first_solution.
|
|
% The 4 bit is set iff the min number of solutions is more than zero.
|
|
% The 2 bit is set iff the max number of solutions is more than zero.
|
|
% The 1 bit is set iff the max number of solutions is more than one.
|
|
|
|
:- pred stack_layout__represent_determinism(determinism::in, rval::out) is det.
|
|
|
|
stack_layout__represent_determinism(Detism, const(int_const(Code))) :-
|
|
(
|
|
Detism = det,
|
|
Code = 6 /* 0110 */
|
|
;
|
|
Detism = semidet, /* 0010 */
|
|
Code = 2
|
|
;
|
|
Detism = nondet,
|
|
Code = 3 /* 0011 */
|
|
;
|
|
Detism = multidet,
|
|
Code = 7 /* 0111 */
|
|
;
|
|
Detism = erroneous,
|
|
Code = 4 /* 0100 */
|
|
;
|
|
Detism = failure,
|
|
Code = 0 /* 0000 */
|
|
;
|
|
Detism = cc_nondet,
|
|
Code = 10 /* 1010 */
|
|
;
|
|
Detism = cc_multidet,
|
|
Code = 14 /* 1110 */
|
|
).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Access to the stack_layout data structure.
|
|
|
|
% The per-sourcefile label table maps line numbers to the list of
|
|
% labels that correspond to that line. Each label is accompanied
|
|
% by a flag that says whether the label is the return site of a call
|
|
% or not, and if it is, whether the called procedure is known.
|
|
|
|
:- type is_label_return
|
|
---> known_callee(label)
|
|
; unknown_callee
|
|
; not_a_return.
|
|
|
|
:- type line_no_info == pair(label, is_label_return).
|
|
|
|
:- type label_table == map(int, list(line_no_info)).
|
|
|
|
:- type stack_layout_info --->
|
|
stack_layout_info(
|
|
module_name, % module name
|
|
int, % next available cell number
|
|
bool, % generate agc layout info?
|
|
bool, % generate tracing layout info?
|
|
bool, % generate procedure id layout info?
|
|
bool, % have static code addresses?
|
|
list(comp_gen_c_data), % generated proc layouts
|
|
list(comp_gen_c_data), % generated internal layouts
|
|
set_bbbtree(label),
|
|
% the set of labels (both entry and internal)
|
|
% with layouts
|
|
list(maybe(rval)),
|
|
% the list of proc_layouts in the module,
|
|
% represented as create args
|
|
string_table,
|
|
map(string, label_table)
|
|
% maps each filename that contributes labels
|
|
% to this module to a table describing those
|
|
% labels.
|
|
).
|
|
|
|
:- pred stack_layout__get_module_name(module_name::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
:- pred stack_layout__get_cell_number(int::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
:- pred stack_layout__get_agc_stack_layout(bool::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
:- pred stack_layout__get_trace_stack_layout(bool::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
:- pred stack_layout__get_procid_stack_layout(bool::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
:- pred stack_layout__get_static_code_addresses(bool::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
:- pred stack_layout__get_proc_layout_data(list(comp_gen_c_data)::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
:- pred stack_layout__get_internal_layout_data(list(comp_gen_c_data)::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
:- pred stack_layout__get_label_set(set_bbbtree(label)::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
:- pred stack_layout__get_string_table(string_table::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
:- pred stack_layout__get_label_tables(map(string, label_table)::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__get_module_name(A, LayoutInfo, LayoutInfo) :-
|
|
LayoutInfo = stack_layout_info(A, _, _, _, _, _, _, _, _, _, _, _).
|
|
|
|
stack_layout__get_cell_number(B, LayoutInfo, LayoutInfo) :-
|
|
LayoutInfo = stack_layout_info(_, B, _, _, _, _, _, _, _, _, _, _).
|
|
|
|
stack_layout__get_agc_stack_layout(C, LayoutInfo, LayoutInfo) :-
|
|
LayoutInfo = stack_layout_info(_, _, C, _, _, _, _, _, _, _, _, _).
|
|
|
|
stack_layout__get_trace_stack_layout(D, LayoutInfo, LayoutInfo) :-
|
|
LayoutInfo = stack_layout_info(_, _, _, D, _, _, _, _, _, _, _, _).
|
|
|
|
stack_layout__get_procid_stack_layout(E, LayoutInfo, LayoutInfo) :-
|
|
LayoutInfo = stack_layout_info(_, _, _, _, E, _, _, _, _, _, _, _).
|
|
|
|
stack_layout__get_static_code_addresses(F, LayoutInfo, LayoutInfo) :-
|
|
LayoutInfo = stack_layout_info(_, _, _, _, _, F, _, _, _, _, _, _).
|
|
|
|
stack_layout__get_proc_layout_data(G, LayoutInfo, LayoutInfo) :-
|
|
LayoutInfo = stack_layout_info(_, _, _, _, _, _, G, _, _, _, _, _).
|
|
|
|
stack_layout__get_internal_layout_data(H, LayoutInfo, LayoutInfo) :-
|
|
LayoutInfo = stack_layout_info(_, _, _, _, _, _, _, H, _, _, _, _).
|
|
|
|
stack_layout__get_label_set(I, LayoutInfo, LayoutInfo) :-
|
|
LayoutInfo = stack_layout_info(_, _, _, _, _, _, _, _, I, _, _, _).
|
|
|
|
stack_layout__get_string_table(K, LayoutInfo, LayoutInfo) :-
|
|
LayoutInfo = stack_layout_info(_, _, _, _, _, _, _, _, _, _, K, _).
|
|
|
|
stack_layout__get_label_tables(L, LayoutInfo, LayoutInfo) :-
|
|
LayoutInfo = stack_layout_info(_, _, _, _, _, _, _, _, _, _, _, L).
|
|
|
|
:- pred stack_layout__add_proc_layout_data(comp_gen_c_data::in, data_name::in,
|
|
label::in, stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__add_proc_layout_data(NewG, NewJ, NewI, LayoutInfo0, LayoutInfo) :-
|
|
LayoutInfo0 = stack_layout_info(A, B, C, D, E, F, G0, H, I0, J0, K, L),
|
|
G = [NewG | G0],
|
|
set_bbbtree__insert(I0, NewI, I),
|
|
J = [yes(const(data_addr_const(data_addr(A, NewJ)))) | J0],
|
|
LayoutInfo = stack_layout_info(A, B, C, D, E, F, G , H, I , J , K, L).
|
|
|
|
:- pred stack_layout__add_internal_layout_data(comp_gen_c_data::in,
|
|
label::in, stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__add_internal_layout_data(NewH, NewI, LayoutInfo0, LayoutInfo) :-
|
|
LayoutInfo0 = stack_layout_info(A, B, C, D, E, F, G, H0, I0, J, K, L),
|
|
H = [NewH | H0],
|
|
set_bbbtree__insert(I0, NewI, I),
|
|
LayoutInfo = stack_layout_info(A, B, C, D, E, F, G, H , I , J, K, L).
|
|
|
|
:- pred stack_layout__get_next_cell_number(int::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__get_next_cell_number(B, LayoutInfo0, LayoutInfo) :-
|
|
LayoutInfo0 = stack_layout_info(A, B0, C, D, E, F, G, H, I, J, K, L),
|
|
B is B0 + 1,
|
|
LayoutInfo = stack_layout_info(A, B, C, D, E, F, G, H, I, J, K, L).
|
|
|
|
:- pred stack_layout__set_cell_number(int::in,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__set_cell_number(B, LayoutInfo0, LayoutInfo) :-
|
|
LayoutInfo0 = stack_layout_info(A, _, C, D, E, F, G, H, I, J, K, L),
|
|
LayoutInfo = stack_layout_info(A, B, C, D, E, F, G, H, I, J, K, L).
|
|
|
|
:- pred stack_layout__set_string_table(string_table::in,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__set_string_table(K, LayoutInfo0, LayoutInfo) :-
|
|
LayoutInfo0 = stack_layout_info(A, B, C, D, E, F, G, H, I, J, _, L),
|
|
LayoutInfo = stack_layout_info(A, B, C, D, E, F, G, H, I, J, K, L).
|
|
|
|
:- pred stack_layout__set_label_tables(map(string, label_table)::in,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__set_label_tables(L, LayoutInfo0, LayoutInfo) :-
|
|
LayoutInfo0 = stack_layout_info(A, B, C, D, E, F, G, H, I, J, K, _),
|
|
LayoutInfo = stack_layout_info(A, B, C, D, E, F, G, H, I, J, K, L).
|
|
|
|
%---------------------------------------------------------------------------%
|
|
|
|
% Access to the string_table data structure.
|
|
|
|
:- type string_table --->
|
|
string_table(
|
|
map(string, int), % Maps strings to their offsets.
|
|
list(string), % List of strings so far,
|
|
% in reverse order.
|
|
int % Next available offset
|
|
).
|
|
|
|
:- pred stack_layout__lookup_string_in_table(string::in, int::out,
|
|
stack_layout_info::in, stack_layout_info::out) is det.
|
|
|
|
stack_layout__lookup_string_in_table(String, Offset) -->
|
|
stack_layout__get_string_table(StringTable0),
|
|
{ StringTable0 = string_table(TableMap0, TableList0, TableOffset0) },
|
|
(
|
|
{ map__search(TableMap0, String, OldOffset) }
|
|
->
|
|
{ Offset = OldOffset }
|
|
;
|
|
{ string__length(String, Length) },
|
|
{ TableOffset is TableOffset0 + Length + 1 },
|
|
{ TableOffset < (1 << (2 * stack_layout__byte_bits)) }
|
|
->
|
|
{ Offset = TableOffset0 },
|
|
{ map__det_insert(TableMap0, String, TableOffset0,
|
|
TableMap) },
|
|
{ TableList = [String | TableList0] },
|
|
{ StringTable = string_table(TableMap, TableList,
|
|
TableOffset) },
|
|
stack_layout__set_string_table(StringTable)
|
|
;
|
|
% Says that the name of the variable is "TOO_MANY_VARIABLES".
|
|
{ Offset = 1 }
|
|
).
|