Files
mercury/compiler/store_alloc.m
Tyson Dowd 477ecb18f6 Implement pragma foreign_code for Managed C++.
Estimated hours taken: 60

Implement pragma foreign_code for Managed C++.

Currently you can only write MC++ code if your backend is capable of
generating use MC++ as its "native" foreign language.  The IL backend is
the only backend that does this at the moment (the other backends have C
as their "native" foreign language).

Most of the machinery is in place to call from C to (normal) C++
but there is little work done on actually spitting out the C++ code into
a separate file.  The IL backend does this step already with managed C++.
The intention is to turn foreign_code for C++ into a pragma import
(which imports the C++ function from a separate file) and
foreign_code for C (which calls the imported function).  The C++ code
will be inserted into a separate file that is compiled using C linkage.

The important improvement this change gives is that you can write a
module with a C and a MC++ implementations side-by-side.  The target
backend will select the most appropriate foreign language to use.
You can override its choice using --use-foreign-language.  Later on
we will probably want more flexibility than just a single language
selection option).

This change also implements :- pragma foreign_decl, which allows header
file style declarations to be written in languages other than C.

compiler/code_gen.m:
	Reject code that is not C when generating LLDS.

compiler/export.m:
	Start renaming C as foreign.
	Reject code that is not C when generating exports.

compiler/foreign.m:
	A new module to handle foreign language interfacing.
	The bulk of the code for pragma import has been moved here from
	make_hlds.

compiler/globals.m:
	Convert foreign language names to foreign_language.
	This code has been moved closer to the similar conversion we do
	for target language names.
	Add globals__io_lookup_foreign_language_option to make it easier
	to deterministically lookup the options relating to foreign
	languages.


compiler/hlds_module.m:
	Move module_add_foreign_decl and module_add_foreign_body_code
	from make_hlds.m (where they were called module_add_c_header and
	module_add_c_code).

compiler/hlds_out.m:
	Write the foreign language out in HLDS dumps.

compiler/llds.m:
	Change foreign_header_info to foreign_decl_info.
	Change definitions of foreign_decl_code and foreign_body_code to
	include the language.

compiler/llds_out.m:
	Reject code that is not C when writing out LLDS.

compiler/make_hlds.m:
	Add foreign language information to the bodys and decls when
	creating them.
	Update error messages to refer to foreign code instead of C
	code.
	Use foreign.m to generate interfaces from the backend language
	to the foreign language.
	Hardcode C as the language for fact tables.

compiler/mercury_compile.m:
	Collect the appropriate foreign language code together for
	output to the backend.

compiler/intermod.m:
compiler/mercury_to_mercury.m:
	Output the foreign language string.
	Change a few names to foreign_code instead of c_code.

compiler/ml_code_gen.m:
	Filter the foreign language bodys and decls so that we only get
	the ones we are in (given by the use-foreign-language option).

compiler/mlds_to_c.m:
	Abort if we are given non C foreign language code to output
	(we might handle it here in future, or we might handle it
	elsewhere).

compiler/mlds_to_ilasm.m:
	Abort if we are given non MC++ foreign language code to output
	(we might handle it here in future, or we might handle it
	elsewhere).

compiler/options.m:
compiler/handle_options.m:
	Add --use-foreign-language as a user option to control the
	preferred foreign language to use as the implementation of this
	module.
	Add backend_foreign_language as an internal option which stores
	the foreign language that the compiler will use as a default
	(e.g. the natural foreign language for the backend to use).
	Set the preferred backend foreign language depending on the
	target.

compiler/prog_data.m:
	Add managedcplusplus as a new alternative for the
	foreign_language type.
	Make c_header_code into foreign_decl.
	Give the foreign language for foreign_code as an attribute of
	the code.
	Write code to turn attributes into a list of strings (suitable
	for writing out by mercury_to_mercury).  This fixes what appears
	to be a bug in tabled_for_io -- the tabled_for_io attribute was not
	being written out.  Structure the code so this bug is
	difficult to repeat in future.

compiler/prog_io_pragma.m:
	Parse foreign_decl.
	Turn c_header_code into a special case of foreign_decl.

compiler/*.m:
	Remove the language field from pragma_foreign_code, it is now an
	attribute of the code.
	Various type and variable renamings.

tests/invalid/pragma_c_code_and_clauses1.err_exp:
tests/invalid/pragma_c_code_dup_var.err_exp:
tests/warnings/singleton_test.exp:
	Update the tests to reflect the new error messages talking
	about :- pragma foreign_code rather than :- pragma c_code.
2000-11-17 17:48:52 +00:00

447 lines
16 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% Original author: conway.
% Extensive modification by zs.
% Allocates the storage location for each live variable at the end of
% each branched structure, so that the code generator will generate code
% which puts the variable in the same place in each branch.
% This module requires arg_infos and livenesses to have already been computed,
% and stack slots allocated.
% If the appropriate option is set, the code calls the follow_vars module
% to help guide its decisions.
% See compiler/notes/allocation.html for a description of the framework that
% this pass operates within.
%-----------------------------------------------------------------------------%
:- module store_alloc.
:- interface.
:- import_module hlds_module, hlds_pred.
:- pred store_alloc_in_proc(proc_info, pred_id, module_info, proc_info).
:- mode store_alloc_in_proc(in, in, in, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module follow_vars, liveness, hlds_goal, llds, prog_data.
:- import_module options, globals, trace_params, trace.
:- import_module goal_util, mode_util, instmap.
:- import_module list, map, set, std_util, assoc_list.
:- import_module bool, int, require.
:- type stack_slot_info
---> stack_slot_info(
bool, % was follow_vars run?
int, % the number of real r regs
stack_slots % maps each var to its stack slot
% (if it has one)
).
%-----------------------------------------------------------------------------%
store_alloc_in_proc(ProcInfo0, PredId, ModuleInfo, ProcInfo) :-
module_info_globals(ModuleInfo, Globals),
globals__lookup_bool_option(Globals, follow_vars, ApplyFollowVars),
( ApplyFollowVars = yes ->
proc_info_goal(ProcInfo0, Goal0),
find_final_follow_vars(ProcInfo0,
FollowVarsMap0, NextNonReserved0),
proc_info_vartypes(ProcInfo0, VarTypes),
find_follow_vars_in_goal(Goal0, VarTypes, ModuleInfo,
FollowVarsMap0, NextNonReserved0,
Goal1, FollowVarsMap, NextNonReserved),
Goal1 = GoalExpr1 - GoalInfo1,
FollowVars = follow_vars(FollowVarsMap, NextNonReserved),
goal_info_set_follow_vars(GoalInfo1, yes(FollowVars),
GoalInfo2),
Goal2 = GoalExpr1 - GoalInfo2
;
proc_info_goal(ProcInfo0, Goal2)
),
initial_liveness(ProcInfo0, PredId, ModuleInfo, Liveness0),
globals__get_trace_level(Globals, TraceLevel),
( trace_level_is_none(TraceLevel) = no ->
trace__fail_vars(ModuleInfo, ProcInfo0, ResumeVars0)
;
set__init(ResumeVars0)
),
globals__lookup_int_option(Globals, num_real_r_regs, NumRealRRegs),
proc_info_stack_slots(ProcInfo0, StackSlots),
StackSlotsInfo = stack_slot_info(ApplyFollowVars, NumRealRRegs,
StackSlots),
store_alloc_in_goal(Goal2, Liveness0, ResumeVars0, ModuleInfo,
StackSlotsInfo, Goal, _),
proc_info_set_goal(ProcInfo0, Goal, ProcInfo).
%-----------------------------------------------------------------------------%
:- pred store_alloc_in_goal(hlds_goal, liveness_info, set(prog_var),
module_info, stack_slot_info, hlds_goal, liveness_info).
:- mode store_alloc_in_goal(in, in, in, in, in, out, out) is det.
store_alloc_in_goal(Goal0 - GoalInfo0, Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, Goal - GoalInfo0, Liveness) :-
% note: we must be careful to apply deaths before births
goal_info_get_pre_deaths(GoalInfo0, PreDeaths),
goal_info_get_pre_births(GoalInfo0, PreBirths),
goal_info_get_post_deaths(GoalInfo0, PostDeaths),
goal_info_get_post_births(GoalInfo0, PostBirths),
set__difference(Liveness0, PreDeaths, Liveness1),
set__union(Liveness1, PreBirths, Liveness2),
store_alloc_in_goal_2(Goal0, Liveness2, ResumeVars0, ModuleInfo,
StackSlotInfo, Goal1, Liveness3),
set__difference(Liveness3, PostDeaths, Liveness4),
% If any variables magically become live in the PostBirths,
% then they have to mundanely become live in a parallel goal,
% so we don't need to allocate anything for them here.
%
% Any variables that become magically live at the end of the goal
% should not be included in the store map.
set__union(Liveness4, PostBirths, Liveness),
(
Goal1 = switch(Var, CanFail, Cases, AdvisoryStoreMap)
->
set__union(Liveness4, ResumeVars0, MappedSet),
set__to_sorted_list(MappedSet, MappedVars),
store_alloc_allocate_storage(MappedVars, AdvisoryStoreMap,
StackSlotInfo, StoreMap),
Goal = switch(Var, CanFail, Cases, StoreMap)
;
Goal1 = if_then_else(Vars, Cond, Then, Else, AdvisoryStoreMap)
->
set__union(Liveness4, ResumeVars0, MappedSet),
set__to_sorted_list(MappedSet, MappedVars),
store_alloc_allocate_storage(MappedVars, AdvisoryStoreMap,
StackSlotInfo, StoreMap),
Goal = if_then_else(Vars, Cond, Then, Else, StoreMap)
;
Goal1 = disj(Disjuncts, AdvisoryStoreMap)
->
set__union(Liveness4, ResumeVars0, MappedSet),
set__to_sorted_list(MappedSet, MappedVars),
store_alloc_allocate_storage(MappedVars, AdvisoryStoreMap,
StackSlotInfo, StoreMap),
Goal = disj(Disjuncts, StoreMap)
;
Goal = Goal1
).
%-----------------------------------------------------------------------------%
% Here we process each of the different sorts of goals.
:- pred store_alloc_in_goal_2(hlds_goal_expr, liveness_info,
set(prog_var), module_info, stack_slot_info, hlds_goal_expr,
liveness_info).
:- mode store_alloc_in_goal_2(in, in, in, in, in, out, out) is det.
store_alloc_in_goal_2(conj(Goals0), Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, conj(Goals), Liveness) :-
store_alloc_in_conj(Goals0, Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, Goals, Liveness).
store_alloc_in_goal_2(par_conj(Goals0, SM), Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, par_conj(Goals, SM), Liveness) :-
store_alloc_in_par_conj(Goals0, Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, Goals, Liveness).
store_alloc_in_goal_2(disj(Goals0, FV), Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, disj(Goals, FV), Liveness) :-
store_alloc_in_disj(Goals0, Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, Goals, Liveness).
store_alloc_in_goal_2(not(Goal0), Liveness0, _ResumeVars0, ModuleInfo,
StackSlotInfo, not(Goal), Liveness) :-
Goal0 = _ - GoalInfo0,
goal_info_get_resume_point(GoalInfo0, ResumeNot),
goal_info_resume_vars_and_loc(ResumeNot, ResumeNotVars, _),
store_alloc_in_goal(Goal0, Liveness0, ResumeNotVars, ModuleInfo,
StackSlotInfo, Goal, Liveness).
store_alloc_in_goal_2(switch(Var, Det, Cases0, FV), Liveness0, ResumeVars0,
ModuleInfo, StackSlotInfo,
switch(Var, Det, Cases, FV), Liveness) :-
store_alloc_in_cases(Cases0, Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, Cases, Liveness).
store_alloc_in_goal_2(if_then_else(Vars, Cond0, Then0, Else0, FV),
Liveness0, ResumeVars0, ModuleInfo, StackSlotInfo,
if_then_else(Vars, Cond, Then, Else, FV), Liveness) :-
Cond0 = _ - CondGoalInfo0,
goal_info_get_resume_point(CondGoalInfo0, ResumeCond),
goal_info_resume_vars_and_loc(ResumeCond, ResumeCondVars, _),
store_alloc_in_goal(Cond0, Liveness0, ResumeCondVars, ModuleInfo,
StackSlotInfo, Cond, Liveness1),
store_alloc_in_goal(Then0, Liveness1, ResumeVars0, ModuleInfo,
StackSlotInfo, Then, Liveness),
store_alloc_in_goal(Else0, Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, Else, _Liveness2).
store_alloc_in_goal_2(some(Vars, CanRemove, Goal0), Liveness0, ResumeVars0,
ModuleInfo,
StackSlotInfo, some(Vars, CanRemove, Goal), Liveness) :-
store_alloc_in_goal(Goal0, Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, Goal, Liveness).
store_alloc_in_goal_2(generic_call(A, B, C, D), Liveness, _, _,
_, generic_call(A, B, C, D), Liveness).
store_alloc_in_goal_2(call(A, B, C, D, E, F), Liveness, _, _,
_, call(A, B, C, D, E, F), Liveness).
store_alloc_in_goal_2(unify(A,B,C,D,E), Liveness, _, _,
_, unify(A,B,C,D,E), Liveness).
store_alloc_in_goal_2(pragma_foreign_code(A, B, C, D, E, F, G), Liveness,
_, _, _, pragma_foreign_code(A, B, C, D, E, F, G), Liveness).
store_alloc_in_goal_2(bi_implication(_, _), _, _, _, _, _, _) :-
% these should have been expanded out by now
error("store_alloc_in_goal_2: unexpected bi_implication").
%-----------------------------------------------------------------------------%
:- pred store_alloc_in_conj(list(hlds_goal), liveness_info, set(prog_var),
module_info, stack_slot_info, list(hlds_goal), liveness_info).
:- mode store_alloc_in_conj(in, in, in, in, in, out, out) is det.
store_alloc_in_conj([], Liveness, _, _, _, [], Liveness).
store_alloc_in_conj([Goal0 | Goals0], Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, [Goal | Goals], Liveness) :-
(
% XXX should be threading the instmap
Goal0 = _ - GoalInfo,
goal_info_get_instmap_delta(GoalInfo, InstMapDelta),
instmap_delta_is_unreachable(InstMapDelta)
->
store_alloc_in_goal(Goal0, Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, Goal, Liveness),
Goals = Goals0
;
store_alloc_in_goal(Goal0, Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, Goal, Liveness1),
store_alloc_in_conj(Goals0, Liveness1, ResumeVars0, ModuleInfo,
StackSlotInfo, Goals, Liveness)
).
%-----------------------------------------------------------------------------%
:- pred store_alloc_in_par_conj(list(hlds_goal), liveness_info, set(prog_var),
module_info, stack_slot_info, list(hlds_goal), liveness_info).
:- mode store_alloc_in_par_conj(in, in, in, in, in, out, out) is det.
store_alloc_in_par_conj([], Liveness, _, _, _, [], Liveness).
store_alloc_in_par_conj([Goal0 | Goals0], Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, [Goal | Goals], Liveness) :-
store_alloc_in_goal(Goal0, Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, Goal, Liveness),
store_alloc_in_par_conj(Goals0, Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, Goals, _Liveness1).
%-----------------------------------------------------------------------------%
:- pred store_alloc_in_disj(list(hlds_goal), liveness_info, set(prog_var),
module_info, stack_slot_info, list(hlds_goal), liveness_info).
:- mode store_alloc_in_disj(in, in, in, in, in, out, out) is det.
store_alloc_in_disj([], Liveness, _, _, _, [], Liveness).
store_alloc_in_disj([Goal0 | Goals0], Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, [Goal | Goals], Liveness) :-
Goal0 = _ - GoalInfo0,
goal_info_get_resume_point(GoalInfo0, ResumeGoal),
(
ResumeGoal = no_resume_point,
ResumeGoalVars = ResumeVars0
;
ResumeGoal = resume_point(ResumeGoalVars, _)
),
store_alloc_in_goal(Goal0, Liveness0, ResumeGoalVars, ModuleInfo,
StackSlotInfo, Goal, Liveness),
store_alloc_in_disj(Goals0, Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, Goals, _Liveness1).
%-----------------------------------------------------------------------------%
:- pred store_alloc_in_cases(list(case), liveness_info, set(prog_var),
module_info, stack_slot_info, list(case), liveness_info).
:- mode store_alloc_in_cases(in, in, in, in, in, out, out) is det.
store_alloc_in_cases([], Liveness, _, _, _, [], Liveness).
store_alloc_in_cases([case(Cons, Goal0) | Goals0], Liveness0, ResumeVars0,
ModuleInfo, StackSlotInfo,
[case(Cons, Goal) | Goals], Liveness) :-
store_alloc_in_goal(Goal0, Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, Goal, Liveness),
store_alloc_in_cases(Goals0, Liveness0, ResumeVars0, ModuleInfo,
StackSlotInfo, Goals, _Liveness1).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Given a follow_map which
%
% 1 may contain entries for non-live variables,
%
% 2 may contain no entry for a live variable,
%
% 3 which may map two live variables to one lval, and/or
%
% 4 map an lval to the artificial location reg(r(-1)),
%
% generate a store map that maps every live variable to its own
% real location.
:- pred store_alloc_allocate_storage(list(prog_var), store_map,
stack_slot_info, store_map).
:- mode store_alloc_allocate_storage(in, in, in, out) is det.
store_alloc_allocate_storage(LiveVars, FollowVars, StackSlotInfo, StoreMap) :-
% This addresses point 1
map__keys(FollowVars, FollowKeys),
store_alloc_remove_nonlive(FollowKeys, LiveVars, FollowVars, StoreMap0),
% This addresses points 3 and 4
map__keys(StoreMap0, StoreVars),
set__init(SeenLvals0),
store_alloc_handle_conflicts_and_nonreal(StoreVars, 1, N,
SeenLvals0, SeenLvals, StoreMap0, StoreMap1),
% This addresses point 2
store_alloc_allocate_extras(LiveVars, N, SeenLvals, StackSlotInfo,
StoreMap1, StoreMap).
:- pred store_alloc_remove_nonlive(list(prog_var), list(prog_var),
store_map, store_map).
:- mode store_alloc_remove_nonlive(in, in, in, out) is det.
store_alloc_remove_nonlive([], _LiveVars, StoreMap, StoreMap).
store_alloc_remove_nonlive([Var | Vars], LiveVars, StoreMap0, StoreMap) :-
( list__member(Var, LiveVars) ->
StoreMap1 = StoreMap0
;
map__delete(StoreMap0, Var, StoreMap1)
),
store_alloc_remove_nonlive(Vars, LiveVars, StoreMap1, StoreMap).
:- pred store_alloc_handle_conflicts_and_nonreal(list(prog_var),
int, int, set(lval), set(lval), store_map, store_map).
:- mode store_alloc_handle_conflicts_and_nonreal(in, in, out, in, out, in, out)
is det.
store_alloc_handle_conflicts_and_nonreal([], N, N, SeenLvals, SeenLvals,
StoreMap, StoreMap).
store_alloc_handle_conflicts_and_nonreal([Var | Vars], N0, N,
SeenLvals0, SeenLvals, StoreMap0, StoreMap) :-
map__lookup(StoreMap0, Var, Lval),
(
( artificial_lval(Lval)
; set__member(Lval, SeenLvals0)
)
->
next_free_reg(N0, SeenLvals0, N1),
FinalLval = reg(r, N1),
map__det_update(StoreMap0, Var, FinalLval, StoreMap1)
;
N1 = N0,
FinalLval = Lval,
StoreMap1 = StoreMap0
),
set__insert(SeenLvals0, FinalLval, SeenLvals1),
store_alloc_handle_conflicts_and_nonreal(Vars, N1, N,
SeenLvals1, SeenLvals, StoreMap1, StoreMap).
:- pred store_alloc_allocate_extras(list(prog_var), int, set(lval),
stack_slot_info, store_map, store_map).
:- mode store_alloc_allocate_extras(in, in, in, in, in, out) is det.
store_alloc_allocate_extras([], _, _, _, StoreMap, StoreMap).
store_alloc_allocate_extras([Var | Vars], N0, SeenLvals0, StackSlotInfo,
StoreMap0, StoreMap) :-
(
map__contains(StoreMap0, Var)
->
% We have already allocated a slot for this variable.
N1 = N0,
StoreMap1 = StoreMap0,
SeenLvals1 = SeenLvals0
;
% We have not yet allocated a slot for this variable,
% which means it is not in the follow vars (if any).
StackSlotInfo = stack_slot_info(FollowVars, NumRealRRegs,
StackSlots),
(
map__search(StackSlots, Var, StackSlot),
\+ set__member(StackSlot, SeenLvals0),
(
FollowVars = yes
% If follow_vars was run, then the only
% reason why a var would not be in the
% follow_vars set is if it was supposed to
% be in its stack slot.
;
FollowVars = no,
% If follow_vars was not run, then we
% prefer to put the variable in a register,
% provided it is a real register.
next_free_reg(N0, SeenLvals0, TentativeReg),
TentativeReg =< NumRealRRegs
)
->
Locn = StackSlot,
N1 = N0
;
next_free_reg(N0, SeenLvals0, N1),
Locn = reg(r, N1)
),
map__det_insert(StoreMap0, Var, Locn, StoreMap1),
set__insert(SeenLvals0, Locn, SeenLvals1)
),
store_alloc_allocate_extras(Vars, N1, SeenLvals1, StackSlotInfo,
StoreMap1, StoreMap).
%-----------------------------------------------------------------------------%
% The follow_vars pass maps some variables r(-1) as a hint to the
% code generator to put them in any free register. Since store maps
% require real locations, we can't use such hints directly.
% For robustness, we check for N < 1 instead of N = -1.
:- pred artificial_lval(lval).
:- mode artificial_lval(in) is semidet.
artificial_lval(reg(_Type, Num)) :-
Num < 1.
%-----------------------------------------------------------------------------%
:- pred next_free_reg(int, set(lval), int).
:- mode next_free_reg(in, in, out) is det.
next_free_reg(N0, Values, N) :-
( set__member(reg(r, N0), Values) ->
N1 is N0 + 1,
next_free_reg(N1, Values, N)
;
N = N0
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%