mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-19 07:45:09 +00:00
Estimated hours taken: 30
Implement builtin tuple types, similar to those in Haskell.
Tuples are constructed and deconstructed using
the syntax X = {Arg1, Arg2, ...}.
Tuples have type `{Arg1, Arg2, ...}'.
Unary tuples (X = {Arg}) do work, unlike in Haskell. The rationale
for this is that it is useful to be able to construct unary tuples
to be passed to a polymorphic predicate which uses std_util__deconstruct
to deal with a tuple of any arity. Since this is probably the only
use for unary tuples, it's not really worth the effort of treating
them as no_tag types, so we don't.
The type-infos for tuples have the same structure as for higher-order
types. There is a single type_ctor_info for tuples, and the arity
is placed before the argument type_infos.
library/parser.m:
Change the way '{}/N' terms are parsed, so that the parsed
representation is consistent with the way other functors
are represented (previously the arguments were left as
unparsed ','/2 terms). This avoids special case code
in prog_io__parse_qualified_term, term__term_to_type
and term__type_to_term.
compiler/prog_io_dcg.m:
compiler/prog_io_util.m:
Handle the new structure of '{}/N' terms when parsing DCG escapes
by converting the argument list back into a single ','/2 term.
compiler/module_qual.m:
Treat tuples as a builtin type.
compiler/typecheck.m:
Typecheck tuple constructors.
compiler/mode_util.m:
Propagate types into tuple bound insts.
compiler/type_util.m:
Add type_is_tuple/2 and type_id_is_tuple/1 to identify tuple types.
Add tuples to the list of types which are not atomic types.
Handle tuple types in `type_constructors' and
`get_cons_id_arg_types' and `switch_type_num_functors'.
compiler/tabling.m:
Handle tabling of tuples.
compiler/term_util.m:
Handle tuples in the code to compute functor norms.
compiler/magic_util.m:
compiler/rl.m:
compiler/rl_key.m:
Handle tuple types in the Aditi back end.
compiler/mercury_to_mercury.m:
library/io.m:
library/term_io.m:
Handle output of '{}/N' terms.
compiler/higher_order.m:
compiler/simplify.m:
Don't specialize complicated unifications of tuple
types into calls to a specific unification procedure --
even if the procedure were implemented, it probably
wouldn't be that much more efficient.
compiler/unify_proc.m:
Generate unification procedures for complicated unifications
of tuples (other than in-in unifications). These are generated
lazily as required.
compiler/make_hlds.m:
Export add_special_pred for use by unify_proc.m.
compiler/polymorphism.m:
Export polymorphism__process_pred for use by unify_proc.m.
compiler/bytecode_gen.m:
compiler/code_util.m:
compiler/ml_code_util.m:
Handle unify procedure names and tags for tuple types.
compiler/mlds_to_c.m:
Output tuple types as MR_Tuple.
compiler/ml_unify_gen.m:
Compute the field types for tuples.
compiler/polymorphism.m:
compiler/pseudo_type_info.m:
Treat tuple type_infos in a similar way to higher-order type_infos.
compiler/hlds_data.m:
Document how cons_ids for tuple types are represented.
compiler/switch_gen.m:
compiler/table_gen.m:
Add tuple types to switches on type_util__builtin_type.
compiler/llds_out.m:
util/mdemangle.c:
profiler/demangle.m:
Transform items named "{}" to "f_tuple" when mangling symbols.
library/builtin.m:
Define the type_ctor_info used for tuples.
library/private_builtin.m:
Add `builtin_unify_tuple/2' and `builtin_compare_tuple/3',
both of which abort. All comparisons and in-in unifications
of tuples are performed by the generic unification functions
in runtime/mercury_ho_call.c and runtime/mercury.c.
library/std_util.m:
Implement the various RTTI functions for tuples.
Encode tuple `TypeCtorDesc's in a similar way to that
used for higher-order types. This has the consequence that the limit
on the arity of higher-order types is now MAX_VIRTUAL_REG,
rather than 2*MAX_VIRTUAL_REG.
Avoid calling MR_GC_free for the type-info vector returned
from ML_expand() for tuples because unlike the vectors
for du types, it is not copied.
runtime/mercury_type_info.h:
Add macros for extracting fields from tuple type-infos.
These just call the macros for extracting fields from higher-order
type-infos.
Add a macro MR_type_ctor_rep_is_variable_arity(), which
returns TRUE for tuples and higher-order types.
The distinction between higher-order and first-order types
is now misnamed -- the distinction is really between fixed arity
types and builtin variable arity types. I'm not sure whether
it's worth renaming everything.
runtime/mercury.h:
runtime/mercury.c:
Define unification and comparison of tuples in
high-level code grades.
runtime/mercury_deep_copy_body.h:
runtime/mercury_make_type_info_body.h:
runtime/mercury_tabling.c:
runtime/mercury_unify_compare_body.h:
Handle tuple types in code which traverses data using RTTI.
tests/hard_coded/construct.{m,exp}:
tests/hard_coded/expand.{m,exp}:
Test RTTI functions from std_util.m applied to tuples.
tests/hard_coded/tuple_test.{m,exp}:
Test unification, comparison, term_to_type etc. applied to tuples.
tests/hard_coded/deep_copy.{m,exp}:
Test deep copy of tuples.
tests/hard_coded/typeclasses/tuple_instance.{m,exp}:
Test instance declarations for tuples.
tests/tabling/expand_tuple.{m,exp}:
Test tabling of tuples.
tests/hard_coded/write.m:
Add some module qualifications for code which uses
`{}/1' constructors which are not tuples.
tests/invalid/errors2.{m,err_exp,err_exp2}:
Test handling of tuples in type errors messages.
NEWS:
doc/reference_manual.texi:
w3/news/newsdb.inc:
Document tuples.
doc/transition_guide.texi:
Document the change to the parsing of '{}/N' terms.
468 lines
16 KiB
Mathematica
468 lines
16 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1996-2000 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% File: prog_io_dcg.m.
|
|
% Main authors: fjh, zs.
|
|
%
|
|
% This module handles the parsing of clauses in Definite Clause Grammar
|
|
% notation.
|
|
|
|
:- module prog_io_dcg.
|
|
|
|
:- interface.
|
|
|
|
:- import_module prog_data, prog_io_util.
|
|
:- import_module varset, term.
|
|
|
|
:- pred parse_dcg_clause(module_name, varset, term, term,
|
|
prog_context, maybe_item_and_context).
|
|
:- mode parse_dcg_clause(in, in, in, in, in, out) is det.
|
|
|
|
% parse_dcg_pred_goal(GoalTerm, VarSet0, Goal,
|
|
% DCGVarInitial, DCGVarFinal, Varset)
|
|
% parses `GoalTerm' and expands it as a DCG goal,
|
|
% `VarSet0' is the initial varset, and `VarSet' is
|
|
% the final varset. `DCGVarInitial' is the first DCG variable,
|
|
% and `DCGVarFinal' is the final DCG variable.
|
|
:- pred parse_dcg_pred_goal(term, prog_varset, goal, prog_var,
|
|
prog_var, prog_varset).
|
|
:- mode parse_dcg_pred_goal(in, in, out, out, out, out) is det.
|
|
|
|
:- implementation.
|
|
|
|
:- import_module prog_io, prog_io_goal, prog_util, purity.
|
|
:- import_module int, map, string, std_util, list.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
parse_dcg_clause(ModuleName, VarSet0, DCG_Head, DCG_Body, DCG_Context,
|
|
Result) :-
|
|
varset__coerce(VarSet0, ProgVarSet0),
|
|
new_dcg_var(ProgVarSet0, 0, ProgVarSet1, N0, DCG_0_Var),
|
|
parse_dcg_goal(DCG_Body, ProgVarSet1, N0, DCG_0_Var,
|
|
Body, ProgVarSet, _N, DCG_Var),
|
|
parse_implicitly_qualified_term(ModuleName,
|
|
DCG_Head, DCG_Body, "DCG clause head", HeadResult),
|
|
process_dcg_clause(HeadResult, ProgVarSet, DCG_0_Var, DCG_Var,
|
|
Body, R),
|
|
add_context(R, DCG_Context, Result).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
parse_dcg_pred_goal(GoalTerm, VarSet0, Goal, DCGVar0, DCGVar, VarSet) :-
|
|
new_dcg_var(VarSet0, 0, VarSet1, N0, DCGVar0),
|
|
parse_dcg_goal(GoalTerm, VarSet1, N0, DCGVar0,
|
|
Goal, VarSet, _N, DCGVar).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Used to allocate fresh variables needed for the DCG expansion.
|
|
|
|
:- pred new_dcg_var(prog_varset, int, prog_varset, int, prog_var).
|
|
:- mode new_dcg_var(in, in, out, out, out) is det.
|
|
|
|
new_dcg_var(VarSet0, N0, VarSet, N, DCG_0_Var) :-
|
|
string__int_to_string(N0, StringN),
|
|
string__append("DCG_", StringN, VarName),
|
|
varset__new_var(VarSet0, DCG_0_Var, VarSet1),
|
|
varset__name_var(VarSet1, DCG_0_Var, VarName, VarSet),
|
|
N is N0 + 1.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Expand a DCG goal.
|
|
|
|
:- pred parse_dcg_goal(term, prog_varset, int, prog_var, goal,
|
|
prog_varset, int, prog_var).
|
|
:- mode parse_dcg_goal(in, in, in, in, out, out, out, out) is det.
|
|
|
|
parse_dcg_goal(Term, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
|
|
% first, figure out the context for the goal
|
|
(
|
|
Term = term__functor(_, _, Context)
|
|
;
|
|
Term = term__variable(_),
|
|
term__context_init(Context)
|
|
),
|
|
% next, parse it
|
|
(
|
|
term__coerce(Term, ProgTerm),
|
|
sym_name_and_args(ProgTerm, SymName, Args0)
|
|
->
|
|
% First check for the special cases:
|
|
(
|
|
SymName = unqualified(Functor),
|
|
list__map(term__coerce, Args0, Args1),
|
|
parse_dcg_goal_2(Functor, Args1, Context,
|
|
VarSet0, N0, Var0, Goal1, VarSet1, N1, Var1)
|
|
->
|
|
Goal = Goal1,
|
|
VarSet = VarSet1,
|
|
N = N1,
|
|
Var = Var1
|
|
;
|
|
% It's the ordinary case of non-terminal.
|
|
% Create a fresh var as the DCG output var from this
|
|
% goal, and append the DCG argument pair to the
|
|
% non-terminal's argument list.
|
|
new_dcg_var(VarSet0, N0, VarSet, N, Var),
|
|
list__append(Args0,
|
|
[term__variable(Var0),
|
|
term__variable(Var)], Args),
|
|
Goal = call(SymName, Args, pure) - Context
|
|
)
|
|
;
|
|
% A call to a free variable, or to a number or string.
|
|
% Just translate it into a call to call/3 - the typechecker
|
|
% will catch calls to numbers and strings.
|
|
new_dcg_var(VarSet0, N0, VarSet, N, Var),
|
|
term__coerce(Term, ProgTerm),
|
|
Goal = call(unqualified("call"), [ProgTerm,
|
|
term__variable(Var0), term__variable(Var)],
|
|
pure) - Context
|
|
).
|
|
|
|
% parse_dcg_goal_2(Functor, Args, Context, VarSet0, N0, Var0,
|
|
% Goal, VarSet, N, Var):
|
|
% VarSet0/VarSet are an accumulator pair which we use to
|
|
% allocate fresh DCG variables; N0 and N are an accumulator pair
|
|
% we use to keep track of the number to give to the next DCG
|
|
% variable (so that we can give it a semi-meaningful name "DCG_<N>"
|
|
% for use in error messages, debugging, etc.).
|
|
% Var0 and Var are an accumulator pair we use to keep track of
|
|
% the current DCG variable.
|
|
|
|
:- pred parse_dcg_goal_2(string, list(term), prog_context, prog_varset,
|
|
int, prog_var, goal, prog_varset, int, prog_var).
|
|
:- mode parse_dcg_goal_2(in, in, in, in, in, in, out, out, out, out)
|
|
is semidet.
|
|
|
|
% Ordinary goal inside { curly braces }.
|
|
parse_dcg_goal_2("{}", [G0 | Gs], Context, VarSet0, N, Var,
|
|
Goal, VarSet, N, Var) :-
|
|
% The parser treats '{}/N' terms as tuples, so we need
|
|
% to undo the parsing of the argument conjunction here.
|
|
list_to_conjunction(Context, G0, Gs, G),
|
|
parse_goal(G, VarSet0, Goal, VarSet).
|
|
parse_dcg_goal_2("impure", [G], _, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
|
|
parse_dcg_goal_with_purity(G, VarSet0, N0, Var0, (impure),
|
|
Goal, VarSet, N, Var).
|
|
parse_dcg_goal_2("semipure", [G], _, VarSet0, N0, Var0, Goal, VarSet, N,
|
|
Var) :-
|
|
parse_dcg_goal_with_purity(G, VarSet0, N0, Var0, (semipure),
|
|
Goal, VarSet, N, Var).
|
|
|
|
% Empty list - just unify the input and output DCG args.
|
|
parse_dcg_goal_2("[]", [], Context, VarSet0, N0, Var0,
|
|
Goal, VarSet, N, Var) :-
|
|
new_dcg_var(VarSet0, N0, VarSet, N, Var),
|
|
Goal = unify(term__variable(Var0), term__variable(Var), pure) - Context.
|
|
|
|
% Non-empty list of terminals. Append the DCG output arg
|
|
% as the new tail of the list, and unify the result with
|
|
% the DCG input arg.
|
|
parse_dcg_goal_2(".", [X, Xs], Context, VarSet0, N0, Var0,
|
|
Goal, VarSet, N, Var) :-
|
|
new_dcg_var(VarSet0, N0, VarSet, N, Var),
|
|
ConsTerm0 = term__functor(term__atom("."), [X, Xs], Context),
|
|
term__coerce(ConsTerm0, ConsTerm),
|
|
term_list_append_term(ConsTerm, term__variable(Var), Term),
|
|
Goal = unify(term__variable(Var0), Term, pure) - Context.
|
|
|
|
% Call to '='/1 - unify argument with DCG input arg.
|
|
parse_dcg_goal_2("=", [A0], Context, VarSet, N, Var, Goal, VarSet, N, Var) :-
|
|
term__coerce(A0, A),
|
|
Goal = unify(A, term__variable(Var), pure) - Context.
|
|
|
|
% Call to ':='/1 - unify argument with DCG output arg.
|
|
parse_dcg_goal_2(":=", [A0], Context, VarSet0, N0, _Var0,
|
|
Goal, VarSet, N, Var) :-
|
|
new_dcg_var(VarSet0, N0, VarSet, N, Var),
|
|
term__coerce(A0, A),
|
|
Goal = unify(A, term__variable(Var), pure) - Context.
|
|
|
|
% If-then (Prolog syntax).
|
|
% We need to add an else part to unify the DCG args.
|
|
|
|
/******
|
|
Since (A -> B) has different semantics in standard Prolog
|
|
(A -> B ; fail) than it does in NU-Prolog or Mercury (A -> B ; true),
|
|
for the moment we'll just disallow it.
|
|
parse_dcg_goal_2("->", [Cond0, Then0], Context, VarSet0, N0, Var0,
|
|
Goal, VarSet, N, Var) :-
|
|
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
|
|
SomeVars, Cond, Then, VarSet, N, Var),
|
|
( Var = Var0 ->
|
|
Goal = if_then(SomeVars, Cond, Then) - Context
|
|
;
|
|
Unify = unify(term__variable(Var), term__variable(Var0)),
|
|
Goal = if_then_else(SomeVars, Cond, Then, Unify - Context)
|
|
- Context
|
|
).
|
|
******/
|
|
|
|
% If-then (NU-Prolog syntax).
|
|
parse_dcg_goal_2("if", [
|
|
term__functor(term__atom("then"), [Cond0, Then0], _)
|
|
], Context, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
|
|
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
|
|
SomeVars, Cond, Then, VarSet, N, Var),
|
|
( Var = Var0 ->
|
|
Goal = if_then(SomeVars, Cond, Then) - Context
|
|
;
|
|
Unify = unify(term__variable(Var), term__variable(Var0), pure),
|
|
Goal = if_then_else(SomeVars, Cond, Then, Unify - Context)
|
|
- Context
|
|
).
|
|
|
|
% Conjunction.
|
|
parse_dcg_goal_2(",", [A0, B0], Context, VarSet0, N0, Var0,
|
|
(A, B) - Context, VarSet, N, Var) :-
|
|
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet1, N1, Var1),
|
|
parse_dcg_goal(B0, VarSet1, N1, Var1, B, VarSet, N, Var).
|
|
|
|
parse_dcg_goal_2("&", [A0, B0], Context, VarSet0, N0, Var0,
|
|
(A & B) - Context, VarSet, N, Var) :-
|
|
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet1, N1, Var1),
|
|
parse_dcg_goal(B0, VarSet1, N1, Var1, B, VarSet, N, Var).
|
|
|
|
% Disjunction or if-then-else (Prolog syntax).
|
|
parse_dcg_goal_2(";", [A0, B0], Context, VarSet0, N0, Var0,
|
|
Goal, VarSet, N, Var) :-
|
|
(
|
|
A0 = term__functor(term__atom("->"), [Cond0, Then0], _Context)
|
|
->
|
|
parse_dcg_if_then_else(Cond0, Then0, B0, Context,
|
|
VarSet0, N0, Var0, Goal, VarSet, N, Var)
|
|
;
|
|
parse_dcg_goal(A0, VarSet0, N0, Var0,
|
|
A1, VarSet1, N1, VarA),
|
|
parse_dcg_goal(B0, VarSet1, N1, Var0,
|
|
B1, VarSet, N, VarB),
|
|
( VarA = Var0, VarB = Var0 ->
|
|
Var = Var0,
|
|
Goal = (A1 ; B1) - Context
|
|
; VarA = Var0 ->
|
|
Var = VarB,
|
|
Unify = unify(term__variable(Var),
|
|
term__variable(VarA), pure),
|
|
append_to_disjunct(A1, Unify, Context, A2),
|
|
Goal = (A2 ; B1) - Context
|
|
; VarB = Var0 ->
|
|
Var = VarA,
|
|
Unify = unify(term__variable(Var),
|
|
term__variable(VarB), pure),
|
|
append_to_disjunct(B1, Unify, Context, B2),
|
|
Goal = (A1 ; B2) - Context
|
|
;
|
|
Var = VarB,
|
|
prog_util__rename_in_goal(A1, VarA, VarB, A2),
|
|
Goal = (A2 ; B1) - Context
|
|
)
|
|
).
|
|
|
|
% If-then-else (NU-Prolog syntax).
|
|
parse_dcg_goal_2( "else", [
|
|
term__functor(term__atom("if"), [
|
|
term__functor(term__atom("then"), [Cond0, Then0], _)
|
|
], Context),
|
|
Else0
|
|
], _, VarSet0, N0, Var0, Goal, VarSet, N, Var) :-
|
|
parse_dcg_if_then_else(Cond0, Then0, Else0, Context,
|
|
VarSet0, N0, Var0, Goal, VarSet, N, Var).
|
|
|
|
% Negation (NU-Prolog syntax).
|
|
parse_dcg_goal_2( "not", [A0], Context, VarSet0, N0, Var0,
|
|
not(A) - Context, VarSet, N, Var ) :-
|
|
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, _),
|
|
Var = Var0.
|
|
|
|
% Negation (Prolog syntax).
|
|
parse_dcg_goal_2( "\\+", [A0], Context, VarSet0, N0, Var0,
|
|
not(A) - Context, VarSet, N, Var ) :-
|
|
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, _),
|
|
Var = Var0.
|
|
|
|
% Universal quantification.
|
|
parse_dcg_goal_2("all", [Vars0, A0], Context,
|
|
VarSet0, N0, Var0, all(Vars, A) - Context,
|
|
VarSet, N, Var) :-
|
|
term__coerce(Vars0, Vars1),
|
|
term__vars(Vars1, Vars),
|
|
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, Var).
|
|
|
|
% Existential quantification.
|
|
parse_dcg_goal_2("some", [Vars0, A0], Context,
|
|
VarSet0, N0, Var0, some(Vars, A) - Context,
|
|
VarSet, N, Var) :-
|
|
term__coerce(Vars0, Vars1),
|
|
term__vars(Vars1, Vars),
|
|
parse_dcg_goal(A0, VarSet0, N0, Var0, A, VarSet, N, Var).
|
|
|
|
:- pred parse_dcg_goal_with_purity(term, prog_varset, int, prog_var,
|
|
purity, goal, prog_varset, int, prog_var).
|
|
:- mode parse_dcg_goal_with_purity(in, in, in, in, in, out, out, out, out)
|
|
is det.
|
|
|
|
parse_dcg_goal_with_purity(G, VarSet0, N0, Var0, Purity, Goal, VarSet,
|
|
N, Var) :-
|
|
parse_dcg_goal(G, VarSet0, N0, Var0, Goal1, VarSet, N, Var),
|
|
( Goal1 = call(Pred, Args, pure) - Context ->
|
|
Goal = call(Pred, Args, Purity) - Context
|
|
; Goal1 = unify(ProgTerm1, ProgTerm2, pure) - Context ->
|
|
Goal = unify(ProgTerm1, ProgTerm2, Purity) - Context
|
|
;
|
|
% Inappropriate placement of an impurity marker, so we treat
|
|
% it like a predicate call. typecheck.m prints out something
|
|
% descriptive for these errors.
|
|
Goal1 = _ - Context,
|
|
purity_name(Purity, PurityString),
|
|
term__coerce(G, G1),
|
|
Goal = call(unqualified(PurityString), [G1], pure) - Context
|
|
).
|
|
|
|
:- pred append_to_disjunct(goal, goal_expr, prog_context, goal).
|
|
:- mode append_to_disjunct(in, in, in, out) is det.
|
|
|
|
append_to_disjunct(Disjunct0, Goal, Context, Disjunct) :-
|
|
( Disjunct0 = (A0 ; B0) - Context2 ->
|
|
append_to_disjunct(A0, Goal, Context, A),
|
|
append_to_disjunct(B0, Goal, Context, B),
|
|
Disjunct = (A ; B) - Context2
|
|
;
|
|
Disjunct = (Disjunct0, Goal - Context) - Context
|
|
).
|
|
|
|
:- pred parse_some_vars_dcg_goal(term, list(prog_var), prog_varset,
|
|
int, prog_var, goal, prog_varset, int, prog_var).
|
|
:- mode parse_some_vars_dcg_goal(in, out, in, in, in, out, out, out, out)
|
|
is det.
|
|
parse_some_vars_dcg_goal(A0, SomeVars, VarSet0, N0, Var0,
|
|
A, VarSet, N, Var) :-
|
|
( A0 = term__functor(term__atom("some"), [SomeVars0, A1], _Context) ->
|
|
term__coerce(SomeVars0, SomeVars1),
|
|
term__vars(SomeVars1, SomeVars),
|
|
A2 = A1
|
|
;
|
|
SomeVars = [],
|
|
A2 = A0
|
|
),
|
|
parse_dcg_goal(A2, VarSet0, N0, Var0, A, VarSet, N, Var).
|
|
|
|
% Parse the "if" and the "then" part of an if-then or an
|
|
% if-then-else.
|
|
% If the condition is a DCG goal, but then "then" part
|
|
% is not, then we need to translate
|
|
% ( a -> { b } ; c )
|
|
% as
|
|
% ( a(DCG_1, DCG_2) ->
|
|
% b,
|
|
% DCG_3 = DCG_2
|
|
% ;
|
|
% c(DCG_1, DCG_3)
|
|
% )
|
|
% rather than
|
|
% ( a(DCG_1, DCG_2) ->
|
|
% b
|
|
% ;
|
|
% c(DCG_1, DCG_2)
|
|
% )
|
|
% so that the implicit quantification of DCG_2 is correct.
|
|
|
|
:- pred parse_dcg_if_then(term, term, prog_context, prog_varset, int,
|
|
prog_var, list(prog_var), goal, goal, prog_varset, int,
|
|
prog_var).
|
|
:- mode parse_dcg_if_then(in, in, in, in, in, in, out, out, out, out, out,
|
|
out) is det.
|
|
|
|
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
|
|
SomeVars, Cond, Then, VarSet, N, Var) :-
|
|
parse_some_vars_dcg_goal(Cond0, SomeVars, VarSet0, N0, Var0,
|
|
Cond, VarSet1, N1, Var1),
|
|
parse_dcg_goal(Then0, VarSet1, N1, Var1, Then1, VarSet2, N2,
|
|
Var2),
|
|
( Var0 \= Var1, Var1 = Var2 ->
|
|
new_dcg_var(VarSet2, N2, VarSet, N, Var),
|
|
Unify = unify(term__variable(Var), term__variable(Var2), pure),
|
|
Then = (Then1, Unify - Context) - Context
|
|
;
|
|
Then = Then1,
|
|
N = N2,
|
|
Var = Var2,
|
|
VarSet = VarSet2
|
|
).
|
|
|
|
:- pred parse_dcg_if_then_else(term, term, term, prog_context,
|
|
prog_varset, int, prog_var, goal, prog_varset, int, prog_var).
|
|
:- mode parse_dcg_if_then_else(in, in, in, in, in, in, in,
|
|
out, out, out, out) is det.
|
|
|
|
parse_dcg_if_then_else(Cond0, Then0, Else0, Context, VarSet0, N0, Var0,
|
|
Goal, VarSet, N, Var) :-
|
|
parse_dcg_if_then(Cond0, Then0, Context, VarSet0, N0, Var0,
|
|
SomeVars, Cond, Then1, VarSet1, N1, VarThen),
|
|
parse_dcg_goal(Else0, VarSet1, N1, Var0, Else1, VarSet, N,
|
|
VarElse),
|
|
( VarThen = Var0, VarElse = Var0 ->
|
|
Var = Var0,
|
|
Then = Then1,
|
|
Else = Else1
|
|
; VarThen = Var0 ->
|
|
Var = VarElse,
|
|
Unify = unify(term__variable(Var), term__variable(VarThen),
|
|
pure),
|
|
Then = (Then1, Unify - Context) - Context,
|
|
Else = Else1
|
|
; VarElse = Var0 ->
|
|
Var = VarThen,
|
|
Then = Then1,
|
|
Unify = unify(term__variable(Var), term__variable(VarElse),
|
|
pure),
|
|
Else = (Else1, Unify - Context) - Context
|
|
;
|
|
% We prefer to substitute the then part since it is likely
|
|
% to be smaller than the else part, since the else part may
|
|
% have a deeply nested chain of if-then-elses.
|
|
|
|
% parse_dcg_if_then guarantees that if VarThen \= Var0,
|
|
% then the then part introduces a new DCG variable (i.e.
|
|
% VarThen does not appear in the condition). We therefore
|
|
% don't need to do the substitution in the condition.
|
|
|
|
Var = VarElse,
|
|
prog_util__rename_in_goal(Then1, VarThen, VarElse, Then),
|
|
Else = Else1
|
|
),
|
|
Goal = if_then_else(SomeVars, Cond, Then, Else) - Context.
|
|
|
|
% term_list_append_term(ListTerm, Term, Result):
|
|
% if ListTerm is a term representing a proper list,
|
|
% this predicate will append the term Term
|
|
% onto the end of the list
|
|
|
|
:- pred term_list_append_term(term(T), term(T), term(T)).
|
|
:- mode term_list_append_term(in, in, out) is semidet.
|
|
|
|
term_list_append_term(List0, Term, List) :-
|
|
( List0 = term__functor(term__atom("[]"), [], _Context) ->
|
|
List = Term
|
|
;
|
|
List0 = term__functor(term__atom("."), [Head, Tail0], Context2),
|
|
List = term__functor(term__atom("."), [Head, Tail], Context2),
|
|
term_list_append_term(Tail0, Term, Tail)
|
|
).
|
|
|
|
:- pred process_dcg_clause(maybe_functor, prog_varset, prog_var,
|
|
prog_var, goal, maybe1(item)).
|
|
:- mode process_dcg_clause(in, in, in, in, in, out) is det.
|
|
|
|
process_dcg_clause(ok(Name, Args0), VarSet, Var0, Var, Body,
|
|
ok(pred_clause(VarSet, Name, Args, Body))) :-
|
|
list__map(term__coerce, Args0, Args1),
|
|
list__append(Args1, [term__variable(Var0),
|
|
term__variable(Var)], Args).
|
|
process_dcg_clause(error(Message, Term), _, _, _, _, error(Message, Term)).
|