Files
mercury/compiler/stack_layout.m
Fergus Henderson c743626923 Various bug fixes for accurate GC in LLDS grades:
Estimated hours taken: 4
Branches: main

Various bug fixes for accurate GC in LLDS grades:

runtime/mercury_wrapper.c:
	Fix two bugs in my last change:
	- use MR_NATIVE_GC rather than the non-existent MR_ACCURATE_GC
	- use %lf rather than %f when calling scanf() for a double

runtime/mercury_accurate_gc.c:
	- Fix some bugs with traversing the nondet stack.
	- Make sure that we round the active heap size up to a multiple
	  of the page size, otherwise mprotect() won't work.
	- Avoid some casts by using type `MR_Code **' rather than
	  `MR_Word *' for the saved_success_location variable.
	- Comment out some unused code.

runtime/mercury_stacks.h:
	Add MR_curfr_slot_addr(), which is like MR_curfr_slot() except that
	it returns the slot's address, for use by mercury_accurate_gc.c.
	(Using "&MR_curfr_slot(...)" results in an "invalid lvalue" error
	from GCC, despite the use of MR_LVALUE_CAST in its definition.)

runtime/mercury_stack_trace.h:
	Add some comments.

runtime/mercury_stack_trace.c:
	Fix some incorrect indentation.

compiler/stack_layout.m:
	Fix a cut-and-paste error.
2003-10-22 08:50:15 +00:00

1706 lines
63 KiB
Mathematica

%---------------------------------------------------------------------------%
% Copyright (C) 1997-2003 University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: stack_layout.m.
% Main authors: trd, zs.
%
% This module generates label, procedure, module and closure layout structures
% for code in the current module for the LLDS backend. Layout structures are
% used by the parts of the runtime system that need to look at the stacks
% (and sometimes the registers) and make sense of their contents. The parts
% of the runtime system that need to do this include exception handling,
% the debugger, and (eventually) the accurate garbage collector.
%
% The tables we generate are mostly of (Mercury) types defined in layout.m,
% which are turned into C code (global variable declarations and
% initializations) by layout_out.m.
%
% The C types of the structures we generate are defined and documented in
% runtime/mercury_stack_layout.h.
%
%---------------------------------------------------------------------------%
:- module ll_backend__stack_layout.
:- interface.
:- import_module backend_libs__proc_label.
:- import_module hlds__hlds_module.
:- import_module ll_backend__continuation_info.
:- import_module ll_backend__global_data.
:- import_module ll_backend__llds.
:- import_module parse_tree__prog_data.
:- import_module list, assoc_list, map.
:- pred stack_layout__generate_llds(module_info::in,
global_data::in, global_data::out,
list(comp_gen_c_data)::out, map(label, data_addr)::out) is det.
:- pred stack_layout__construct_closure_layout(proc_label::in, int::in,
closure_layout_info::in, proc_label::in, module_name::in,
string::in, int::in, string::in,
static_cell_info::in, static_cell_info::out,
assoc_list(rval, llds_type)::out, comp_gen_c_data::out) is det.
% Construct a representation of a variable location as a 32-bit
% integer.
:- pred stack_layout__represent_locn_as_int(layout_locn::in, int::out) is det.
:- implementation.
:- import_module backend_libs__rtti.
:- import_module hlds__hlds_data.
:- import_module hlds__hlds_goal.
:- import_module hlds__hlds_pred.
:- import_module hlds__instmap.
:- import_module libs__globals.
:- import_module libs__options.
:- import_module libs__trace_params.
:- import_module ll_backend__code_util.
:- import_module ll_backend__layout.
:- import_module ll_backend__layout_out.
:- import_module ll_backend__ll_pseudo_type_info.
:- import_module ll_backend__llds_out.
:- import_module ll_backend__prog_rep.
:- import_module ll_backend__static_term.
:- import_module ll_backend__trace.
:- import_module parse_tree__inst.
:- import_module parse_tree__prog_out.
:- import_module parse_tree__prog_util.
:- import_module std_util, bool, char, string, int, require.
:- import_module map, term, set, varset.
%---------------------------------------------------------------------------%
% Process all the continuation information stored in the HLDS,
% converting it into LLDS data structures.
stack_layout__generate_llds(ModuleInfo0, !GlobalData, Layouts, LayoutLabels) :-
global_data_get_all_proc_layouts(!.GlobalData, ProcLayoutList0),
list__filter(stack_layout__valid_proc_layout, ProcLayoutList0,
ProcLayoutList),
module_info_globals(ModuleInfo0, Globals),
globals__lookup_bool_option(Globals, agc_stack_layout, AgcLayout),
globals__lookup_bool_option(Globals, trace_stack_layout, TraceLayout),
globals__lookup_bool_option(Globals, procid_stack_layout,
ProcIdLayout),
globals__get_trace_level(Globals, TraceLevel),
globals__get_trace_suppress(Globals, TraceSuppress),
globals__have_static_code_addresses(Globals, StaticCodeAddr),
map__init(LayoutLabels0),
map__init(StringMap0),
map__init(LabelTables0),
StringTable0 = string_table(StringMap0, [], 0),
global_data_get_static_cell_info(!.GlobalData, StaticCellInfo0),
LayoutInfo0 = stack_layout_info(ModuleInfo0,
AgcLayout, TraceLayout, ProcIdLayout,
StaticCodeAddr, [], [], [], LayoutLabels0, [],
StringTable0, LabelTables0, map__init, StaticCellInfo0),
stack_layout__lookup_string_in_table("", _, LayoutInfo0, LayoutInfo1),
stack_layout__lookup_string_in_table("<too many variables>", _,
LayoutInfo1, LayoutInfo2),
list__foldl(stack_layout__construct_layouts, ProcLayoutList,
LayoutInfo2, LayoutInfo),
TableIoDecls = LayoutInfo ^ table_infos,
ProcLayouts = LayoutInfo ^ proc_layouts,
InternalLayouts = LayoutInfo ^ internal_layouts,
LayoutLabels = LayoutInfo ^ label_set,
ProcLayoutNames = LayoutInfo ^ proc_layout_name_list,
StringTable = LayoutInfo ^ string_table,
LabelTables = LayoutInfo ^ label_tables,
global_data_set_static_cell_info(LayoutInfo ^ static_cell_info,
!GlobalData),
StringTable = string_table(_, RevStringList, StringOffset),
list__reverse(RevStringList, StringList),
stack_layout__concat_string_list(StringList, StringOffset,
ConcatStrings),
list__condense([TableIoDecls, ProcLayouts, InternalLayouts],
Layouts0),
( TraceLayout = yes ->
module_info_name(ModuleInfo0, ModuleName),
globals__lookup_bool_option(Globals, rtti_line_numbers,
LineNumbers),
(
LineNumbers = yes,
EffLabelTables = LabelTables
;
LineNumbers = no,
map__init(EffLabelTables)
),
stack_layout__format_label_tables(EffLabelTables,
SourceFileLayouts),
SuppressedEvents = encode_suppressed_events(TraceSuppress),
ModuleLayout = layout_data(module_layout_data(ModuleName,
StringOffset, ConcatStrings, ProcLayoutNames,
SourceFileLayouts, TraceLevel, SuppressedEvents)),
Layouts = [ModuleLayout | Layouts0]
;
Layouts = Layouts0
).
:- pred stack_layout__valid_proc_layout(proc_layout_info::in) is semidet.
stack_layout__valid_proc_layout(ProcLayoutInfo) :-
EntryLabel = ProcLayoutInfo ^ entry_label,
code_util__extract_proc_label_from_label(EntryLabel, ProcLabel),
(
ProcLabel = proc(_, _, DeclModule, Name, Arity, _),
\+ no_type_info_builtin(DeclModule, Name, Arity)
;
ProcLabel = special_proc(_, _, _, _, _, _)
).
%---------------------------------------------------------------------------%
% concat_string_list appends a list of strings together,
% appending a null character after each string.
% The resulting string will contain embedded null characters,
:- pred stack_layout__concat_string_list(list(string)::in, int::in,
string_with_0s::out) is det.
concat_string_list(Strings, Len, string_with_0s(Result)) :-
concat_string_list_2(Strings, Len, Result).
:- pred stack_layout__concat_string_list_2(list(string)::in, int::in,
string::out) is det.
:- pragma c_header_code("
#include ""mercury_tags.h"" /* for MR_list_*() */
#include ""mercury_heap.h"" /* for MR_offset_incr_hp_atomic*() */
#include ""mercury_misc.h"" /* for MR_fatal_error() */
").
:- pragma foreign_proc("C",
stack_layout__concat_string_list_2(StringList::in, ArenaSize::in,
Arena::out),
[will_not_call_mercury, promise_pure, thread_safe],
"{
MR_Word cur_node;
MR_Integer cur_offset;
MR_Word tmp;
MR_offset_incr_hp_atomic(tmp, 0,
(ArenaSize + sizeof(MR_Word)) / sizeof(MR_Word));
Arena = (char *) tmp;
cur_offset = 0;
cur_node = StringList;
while (! MR_list_is_empty(cur_node)) {
(void) strcpy(&Arena[cur_offset],
(char *) MR_list_head(cur_node));
cur_offset += strlen((char *) MR_list_head(cur_node)) + 1;
cur_node = MR_list_tail(cur_node);
}
if (cur_offset != ArenaSize) {
char msg[256];
sprintf(msg, ""internal error in creating string table;\\n""
""cur_offset = %ld, ArenaSize = %ld\\n"",
(long) cur_offset, (long) ArenaSize);
MR_fatal_error(msg);
}
}").
% This version is only used if there is no matching foreign_proc version.
% Note that this version only works if the Mercury implementation's
% string representation allows strings to contain embedded null
% characters. So we check that.
concat_string_list_2(StringsList, _Len, StringWithNulls) :-
(
char__to_int(NullChar, 0),
NullCharString = string__char_to_string(NullChar),
string__length(NullCharString, 1)
->
StringsWithNullsList = list__map(func(S) = S ++ NullCharString,
StringsList),
StringWithNulls = string__append_list(StringsWithNullsList)
;
% the Mercury implementation's string representation
% doesn't support strings containing null characters
private_builtin.sorry("stack_layout.concat_string_list")
).
%---------------------------------------------------------------------------%
:- pred stack_layout__format_label_tables(map(string, label_table)::in,
list(file_layout_data)::out) is det.
stack_layout__format_label_tables(LabelTableMap, SourceFileLayouts) :-
map__to_assoc_list(LabelTableMap, LabelTableList),
list__map(stack_layout__format_label_table, LabelTableList,
SourceFileLayouts).
:- pred stack_layout__format_label_table(pair(string, label_table)::in,
file_layout_data::out) is det.
stack_layout__format_label_table(FileName - LineNoMap,
file_layout_data(FileName, FilteredList)) :-
% This step should produce a list ordered on line numbers.
map__to_assoc_list(LineNoMap, LineNoList),
% And this step should preserve that order.
stack_layout__flatten_label_table(LineNoList, [], FlatLineNoList),
Filter = (pred(LineNoInfo::in, FilteredLineNoInfo::out) is det :-
LineNoInfo = LineNo - (Label - _IsReturn),
FilteredLineNoInfo = LineNo - Label
),
list__map(Filter, FlatLineNoList, FilteredList).
:- pred stack_layout__flatten_label_table(
assoc_list(int, list(line_no_info))::in,
assoc_list(int, line_no_info)::in,
assoc_list(int, line_no_info)::out) is det.
stack_layout__flatten_label_table([], RevList, List) :-
list__reverse(RevList, List).
stack_layout__flatten_label_table([LineNo - LinesInfos | Lines],
RevList0, List) :-
list__foldl(stack_layout__add_line_no(LineNo), LinesInfos,
RevList0, RevList1),
stack_layout__flatten_label_table(Lines, RevList1, List).
:- pred stack_layout__add_line_no(int::in, line_no_info::in,
assoc_list(int, line_no_info)::in,
assoc_list(int, line_no_info)::out) is det.
stack_layout__add_line_no(LineNo, LineInfo, RevList0, RevList) :-
RevList = [LineNo - LineInfo | RevList0].
%---------------------------------------------------------------------------%
% Construct the layouts that concern a single procedure:
% the procedure-specific layout and the layouts of the labels
% inside that procedure. Also update the module-wide label table
% with the labels defined in this procedure.
:- pred stack_layout__construct_layouts(proc_layout_info::in,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_layouts(ProcLayoutInfo) -->
{ ProcLayoutInfo = proc_layout_info(RttiProcLabel, EntryLabel, Detism,
StackSlots, SuccipLoc, EvalMethod, MaybeCallLabel, MaxTraceReg,
HeadVars, MaybeGoal, InstMap, TraceSlotInfo, ForceProcIdLayout,
VarSet, VarTypes, InternalMap, MaybeTableIoDecl, IsBeingTraced,
NeedsAllNames) },
{ map__to_assoc_list(InternalMap, Internals) },
stack_layout__set_cur_proc_named_vars(map__init),
{ code_util__extract_proc_label_from_label(EntryLabel, ProcLabel) },
stack_layout__get_procid_stack_layout(ProcIdLayout0),
{ bool__or(ProcIdLayout0, ForceProcIdLayout, ProcIdLayout) },
(
{ ProcIdLayout = yes
; MaybeTableIoDecl = yes(_)
}
->
{ UserOrCompiler = proc_label_user_or_compiler(ProcLabel) },
stack_layout__get_trace_stack_layout(TraceLayout),
{
TraceLayout = yes,
(
IsBeingTraced = no,
Kind = proc_layout_proc_id(UserOrCompiler)
;
IsBeingTraced = yes,
Kind = proc_layout_exec_trace(UserOrCompiler)
)
;
TraceLayout = no,
Kind = proc_layout_proc_id(UserOrCompiler)
}
;
{ Kind = proc_layout_traversal }
),
{ ProcLayoutName = proc_layout(ProcLabel, Kind) },
list__foldl2(stack_layout__construct_internal_layout(ProcLayoutName),
Internals, [], InternalLayouts),
stack_layout__get_cur_proc_named_vars(NamedVars),
stack_layout__get_label_tables(LabelTables0),
{ list__foldl(stack_layout__update_label_table, InternalLayouts,
LabelTables0, LabelTables) },
stack_layout__set_label_tables(LabelTables),
stack_layout__construct_proc_layout(RttiProcLabel, EntryLabel,
ProcLabel, Detism, StackSlots, SuccipLoc, EvalMethod,
MaybeCallLabel, MaxTraceReg, HeadVars, MaybeGoal, InstMap,
TraceSlotInfo, VarSet, VarTypes, NamedVars, MaybeTableIoDecl,
Kind, NeedsAllNames).
%---------------------------------------------------------------------------%
% Add the given label layout to the module-wide label tables.
:- pred stack_layout__update_label_table(
pair(pair(label, label_vars), internal_layout_info)::in,
map(string, label_table)::in, map(string, label_table)::out) is det.
stack_layout__update_label_table((Label - LabelVars) - InternalInfo,
LabelTables0, LabelTables) :-
InternalInfo = internal_layout_info(Port, _, Return),
(
Return = yes(return_layout_info(TargetsContexts, _)),
stack_layout__find_valid_return_context(TargetsContexts,
Target, Context, _GoalPath)
->
( Target = label(TargetLabel) ->
IsReturn = known_callee(TargetLabel)
;
IsReturn = unknown_callee
),
stack_layout__update_label_table_2(Label, LabelVars,
Context, IsReturn, LabelTables0, LabelTables)
;
Port = yes(trace_port_layout_info(Context, _, _, _, _)),
stack_layout__context_is_valid(Context)
->
stack_layout__update_label_table_2(Label, LabelVars,
Context, not_a_return, LabelTables0, LabelTables)
;
LabelTables = LabelTables0
).
:- pred stack_layout__update_label_table_2(label::in, label_vars::in,
context::in, is_label_return::in,
map(string, label_table)::in, map(string, label_table)::out) is det.
stack_layout__update_label_table_2(Label, LabelVars, Context, IsReturn,
LabelTables0, LabelTables) :-
term__context_file(Context, File),
term__context_line(Context, Line),
( map__search(LabelTables0, File, LabelTable0) ->
LabelLayout = label_layout(Label, LabelVars),
( map__search(LabelTable0, Line, LineInfo0) ->
LineInfo = [LabelLayout - IsReturn | LineInfo0],
map__det_update(LabelTable0, Line, LineInfo,
LabelTable),
map__det_update(LabelTables0, File, LabelTable,
LabelTables)
;
LineInfo = [LabelLayout - IsReturn],
map__det_insert(LabelTable0, Line, LineInfo,
LabelTable),
map__det_update(LabelTables0, File, LabelTable,
LabelTables)
)
; stack_layout__context_is_valid(Context) ->
map__init(LabelTable0),
LabelLayout = label_layout(Label, LabelVars),
LineInfo = [LabelLayout - IsReturn],
map__det_insert(LabelTable0, Line, LineInfo, LabelTable),
map__det_insert(LabelTables0, File, LabelTable, LabelTables)
;
% We don't have a valid context for this label,
% so we don't enter it into any tables.
LabelTables = LabelTables0
).
:- pred stack_layout__find_valid_return_context(
assoc_list(code_addr, pair(prog_context, goal_path))::in,
code_addr::out, prog_context::out, goal_path::out) is semidet.
stack_layout__find_valid_return_context([Target - (Context - GoalPath)
| TargetContexts], ValidTarget, ValidContext, ValidGoalPath) :-
( stack_layout__context_is_valid(Context) ->
ValidTarget = Target,
ValidContext = Context,
ValidGoalPath = GoalPath
;
stack_layout__find_valid_return_context(TargetContexts,
ValidTarget, ValidContext, ValidGoalPath)
).
:- pred stack_layout__context_is_valid(prog_context::in) is semidet.
stack_layout__context_is_valid(Context) :-
term__context_file(Context, File),
term__context_line(Context, Line),
File \= "",
Line > 0.
%---------------------------------------------------------------------------%
% Construct a procedure-specific layout.
:- pred stack_layout__construct_proc_layout(rtti_proc_label::in, label::in,
proc_label::in, determinism::in, int::in, maybe(int)::in,
eval_method::in, maybe(label)::in, int::in, list(prog_var)::in,
maybe(hlds_goal)::in, instmap::in, trace_slot_info::in, prog_varset::in,
vartypes::in, map(int, string)::in, maybe(proc_table_info)::in,
proc_layout_kind::in, bool::in, stack_layout_info::in,
stack_layout_info::out) is det.
stack_layout__construct_proc_layout(RttiProcLabel, EntryLabel, ProcLabel,
Detism, StackSlots, MaybeSuccipLoc, EvalMethod, MaybeCallLabel,
MaxTraceReg, HeadVars, MaybeGoal, InstMap, TraceSlotInfo,
VarSet, VarTypes, UsedVarNames, MaybeTableInfo, Kind,
NeedsAllNames) -->
{
MaybeSuccipLoc = yes(Location)
->
( determinism_components(Detism, _, at_most_many) ->
SuccipLval = framevar(Location)
;
SuccipLval = stackvar(Location)
),
stack_layout__represent_locn_as_int(direct(SuccipLval),
SuccipInt),
MaybeSuccipInt = yes(SuccipInt)
;
% Use a dummy location 1 if there is no succip slot
% on the stack.
%
% This case can arise in two circumstances.
% First, procedures that use the nondet stack
% have a special slot for the succip, so the
% succip is not stored in a general purpose
% slot. Second, procedures that use the det stack
% but which do not call other procedures
% do not save the succip on the stack.
%
% The tracing system does not care about the
% location of the saved succip. The accurate
% garbage collector does. It should know from
% the determinism that the procedure uses the
% nondet stack, which takes care of the first
% possibility above. Procedures that do not call
% other procedures do not establish resumption
% points and thus agc is not interested in them.
% As far as stack dumps go, calling error counts
% as a call, so any procedure that may call error
% (directly or indirectly) will have its saved succip
% location recorded, so the stack dump will work.
%
% Future uses of stack layouts will have to have
% similar constraints.
MaybeSuccipInt = no
},
stack_layout__get_static_code_addresses(StaticCodeAddr),
{ StaticCodeAddr = yes ->
MaybeEntryLabel = yes(EntryLabel)
;
MaybeEntryLabel = no
},
{ TraversalGroup = proc_layout_stack_traversal(MaybeEntryLabel,
MaybeSuccipInt, StackSlots, Detism) },
(
{ Kind = proc_layout_traversal },
{ MaybeRest = no_proc_id }
;
{ Kind = proc_layout_proc_id(_) },
{ MaybeRest = proc_id_only }
;
{ Kind = proc_layout_exec_trace(_) },
stack_layout__construct_trace_layout(RttiProcLabel, EvalMethod,
MaybeCallLabel, MaxTraceReg, HeadVars, MaybeGoal,
InstMap, TraceSlotInfo, VarSet, VarTypes, UsedVarNames,
MaybeTableInfo, NeedsAllNames, ExecTrace),
{ MaybeRest = proc_id_and_exec_trace(ExecTrace) }
),
{ ProcLayout = proc_layout_data(ProcLabel, TraversalGroup, MaybeRest) },
{ Data = layout_data(ProcLayout) },
{ LayoutName = proc_layout(ProcLabel, Kind) },
stack_layout__add_proc_layout_data(Data, LayoutName, EntryLabel),
(
{ MaybeTableInfo = no }
;
{ MaybeTableInfo = yes(TableInfo) },
stack_layout__get_static_cell_info(StaticCellInfo0),
{ stack_layout__make_table_data(RttiProcLabel, Kind,
TableInfo, TableData,
StaticCellInfo0, StaticCellInfo) },
stack_layout__set_static_cell_info(StaticCellInfo),
stack_layout__add_table_data(TableData)
).
:- pred stack_layout__construct_trace_layout(rtti_proc_label::in,
eval_method::in, maybe(label)::in, int::in, list(prog_var)::in,
maybe(hlds_goal)::in, instmap::in, trace_slot_info::in, prog_varset::in,
vartypes::in, map(int, string)::in, maybe(proc_table_info)::in,
bool::in, proc_layout_exec_trace::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_trace_layout(RttiProcLabel, EvalMethod, MaybeCallLabel,
MaxTraceReg, HeadVars, MaybeGoal, InstMap, TraceSlotInfo,
VarSet, VarTypes, UsedVarNameMap, MaybeTableInfo,
NeedsAllNames, ExecTrace, !Info) :-
stack_layout__construct_var_name_vector(VarSet, UsedVarNameMap,
NeedsAllNames, MaxVarNum, VarNameVector, !Info),
list__map(term__var_to_int, HeadVars, HeadVarNumVector),
(
MaybeGoal = no,
MaybeProcRepRval = no
;
MaybeGoal = yes(Goal),
ModuleInfo = !.Info ^ module_info,
prog_rep__represent_proc(HeadVars, Goal, InstMap, VarTypes,
ModuleInfo, ProcRep),
type_to_univ(ProcRep, ProcRepUniv),
StaticCellInfo0 = !.Info ^ static_cell_info,
static_term__term_to_rval(ProcRepUniv, ProcRepRval,
StaticCellInfo0, StaticCellInfo),
MaybeProcRepRval = yes(ProcRepRval),
!:Info = !.Info ^ static_cell_info := StaticCellInfo
),
(
MaybeCallLabel = yes(CallLabelPrime),
CallLabel = CallLabelPrime
;
MaybeCallLabel = no,
error("stack_layout__construct_trace_layout: call label not present")
),
TraceSlotInfo = trace_slot_info(MaybeFromFullSlot,
MaybeIoSeqSlot, MaybeTrailSlots, MaybeMaxfrSlot,
MaybeCallTableSlot),
% The label associated with an event must have variable info.
CallLabelLayout = label_layout(CallLabel, label_has_var_info),
(
MaybeTableInfo = no,
MaybeTableName = no
;
MaybeTableInfo = yes(TableInfo),
(
TableInfo = table_io_decl_info(_),
MaybeTableName = yes(table_io_decl(RttiProcLabel))
;
TableInfo = table_gen_info(_, _, _, _),
MaybeTableName = yes(table_gen_info(RttiProcLabel))
)
),
ExecTrace = proc_layout_exec_trace(CallLabelLayout, MaybeProcRepRval,
MaybeTableName, HeadVarNumVector, VarNameVector,
MaxVarNum, MaxTraceReg, MaybeFromFullSlot, MaybeIoSeqSlot,
MaybeTrailSlots, MaybeMaxfrSlot, EvalMethod,
MaybeCallTableSlot).
:- pred stack_layout__construct_var_name_vector(prog_varset::in,
map(int, string)::in, bool::in, int::out, list(int)::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_var_name_vector(VarSet, UsedVarNameMap, NeedsAllNames,
Count, Offsets) -->
(
{ NeedsAllNames = yes },
{ varset__var_name_list(VarSet, VarNameList) },
{ list__map(stack_layout__convert_var_name_to_int,
VarNameList, VarNames) }
;
{ NeedsAllNames = no },
{ map__to_assoc_list(UsedVarNameMap, VarNames) }
),
( { VarNames = [FirstVar - _ | _] } ->
stack_layout__construct_var_name_rvals(VarNames, 1,
FirstVar, Count, Offsets)
;
{ Count = 0 },
{ Offsets = [] }
).
:- pred stack_layout__construct_var_name_rvals(assoc_list(int, string)::in,
int::in, int::in, int::out, list(int)::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_var_name_rvals([], _CurNum, MaxNum, MaxNum, []) --> [].
stack_layout__construct_var_name_rvals([Var - Name | VarNames1], CurNum,
MaxNum0, MaxNum, [Offset | Offsets1]) -->
( { Var = CurNum } ->
stack_layout__lookup_string_in_table(Name, Offset),
{ MaxNum1 = Var },
{ VarNames = VarNames1 }
;
{ Offset = 0 },
{ MaxNum1 = MaxNum0 },
{ VarNames = [Var - Name | VarNames1] }
),
stack_layout__construct_var_name_rvals(VarNames, CurNum + 1,
MaxNum1, MaxNum, Offsets1).
%---------------------------------------------------------------------------%
% Construct the layout describing a single internal label
% for accurate GC and/or execution tracing.
:- pred stack_layout__construct_internal_layout(layout_name::in,
pair(label, internal_layout_info)::in,
assoc_list(pair(label, label_vars), internal_layout_info)::in,
assoc_list(pair(label, label_vars), internal_layout_info)::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_internal_layout(ProcLayoutName, Label - Internal,
LabelLayouts, [(Label - LabelVars) - Internal | LabelLayouts])
-->
{ Internal = internal_layout_info(Trace, Resume, Return) },
(
{ Trace = no },
{ set__init(TraceLiveVarSet) },
{ map__init(TraceTypeVarMap) }
;
{ Trace = yes(trace_port_layout_info(_,_,_,_, TraceLayout)) },
{ TraceLayout = layout_label_info(TraceLiveVarSet,
TraceTypeVarMap) }
),
{
Resume = no,
set__init(ResumeLiveVarSet),
map__init(ResumeTypeVarMap)
;
Resume = yes(ResumeLayout),
ResumeLayout = layout_label_info(ResumeLiveVarSet,
ResumeTypeVarMap)
},
(
{ Trace = yes(trace_port_layout_info(_, Port, IsHidden,
GoalPath, _)) },
{ Return = no },
{ MaybePort = yes(Port) },
{ MaybeIsHidden = yes(IsHidden) },
{ goal_path_to_string(GoalPath, GoalPathStr) },
stack_layout__lookup_string_in_table(GoalPathStr, GoalPathNum),
{ MaybeGoalPath = yes(GoalPathNum) }
;
{ Trace = no },
{ Return = yes(ReturnInfo) },
% We only ever use the port fields of these layout
% structures when we process exception events.
% (Since exception events are interface events,
% the goal path field is not meaningful then.)
{ MaybePort = yes(exception) },
{ MaybeIsHidden = yes(no) },
% We only ever use the goal path fields of these
% layout structures when we process "fail" commands
% in the debugger.
{ ReturnInfo = return_layout_info(TargetsContexts, _) },
(
{ stack_layout__find_valid_return_context(
TargetsContexts, _, _, GoalPath) }
->
{ goal_path_to_string(GoalPath, GoalPathStr) },
stack_layout__lookup_string_in_table(GoalPathStr,
GoalPathNum),
{ MaybeGoalPath = yes(GoalPathNum) }
;
% If tracing is enabled, then exactly one of
% the calls for which this label is a return
% site would have had a valid context. If none
% do, then tracing is not enabled, and
% therefore the goal path of this label will
% not be accessed.
{ MaybeGoalPath = no }
)
;
{ Trace = no },
{ Return = no },
{ MaybePort = no },
{ MaybeIsHidden = no },
{ MaybeGoalPath = no }
;
{ Trace = yes(_) },
{ Return = yes(_) },
{ error("label has both trace and return layout info") }
),
stack_layout__get_agc_stack_layout(AgcStackLayout),
{
Return = no,
set__init(ReturnLiveVarSet),
map__init(ReturnTypeVarMap)
;
Return = yes(return_layout_info(_, ReturnLayout)),
ReturnLayout = layout_label_info(ReturnLiveVarSet0,
ReturnTypeVarMap0),
(
AgcStackLayout = yes,
ReturnLiveVarSet = ReturnLiveVarSet0,
ReturnTypeVarMap = ReturnTypeVarMap0
;
AgcStackLayout = no,
% This set of variables must be for uplevel printing
% in execution tracing, so we are interested only
% in (a) variables, not temporaries, (b) only named
% variables, and (c) only those on the stack, not
% the return values.
set__to_sorted_list(ReturnLiveVarSet0,
ReturnLiveVarList0),
stack_layout__select_trace_return(
ReturnLiveVarList0, ReturnTypeVarMap0,
ReturnLiveVarList, ReturnTypeVarMap),
set__list_to_set(ReturnLiveVarList, ReturnLiveVarSet)
)
},
(
{ Trace = no },
{ Resume = no },
{ Return = no }
->
{ MaybeVarInfo = no },
{ LabelVars = label_has_no_var_info }
;
% XXX ignore differences in insts inside var_infos
{ set__union(TraceLiveVarSet, ResumeLiveVarSet, LiveVarSet0) },
{ set__union(LiveVarSet0, ReturnLiveVarSet, LiveVarSet) },
{ map__union(set__intersect, TraceTypeVarMap, ResumeTypeVarMap,
TypeVarMap0) },
{ map__union(set__intersect, TypeVarMap0, ReturnTypeVarMap,
TypeVarMap) },
stack_layout__construct_livelval_rvals(LiveVarSet, TypeVarMap,
EncodedLength, LiveValRval, NamesRval, TypeParamRval),
{ VarInfo = label_var_info(EncodedLength,
LiveValRval, NamesRval, TypeParamRval) },
{ MaybeVarInfo = yes(VarInfo) },
{ LabelVars = label_has_var_info }
),
{ LayoutData = label_layout_data(Label, ProcLayoutName,
MaybePort, MaybeIsHidden, MaybeGoalPath, MaybeVarInfo) },
{ CData = layout_data(LayoutData) },
{ LayoutName = label_layout(Label, LabelVars) },
stack_layout__add_internal_layout_data(CData, Label, LayoutName).
%---------------------------------------------------------------------------%
:- pred stack_layout__construct_livelval_rvals(set(var_info)::in,
map(tvar, set(layout_locn))::in, int::out, rval::out, rval::out,
rval::out, stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_livelval_rvals(LiveLvalSet, TVarLocnMap, EncodedLength,
LiveValRval, NamesRval, TypeParamRval, !Info) :-
set__to_sorted_list(LiveLvalSet, LiveLvals),
stack_layout__sort_livevals(LiveLvals, SortedLiveLvals),
stack_layout__construct_liveval_arrays(SortedLiveLvals,
EncodedLength, LiveValRval, NamesRval, !Info),
StaticCellInfo0 = !.Info ^ static_cell_info,
stack_layout__construct_tvar_vector(TVarLocnMap,
TypeParamRval, StaticCellInfo0, StaticCellInfo),
!:Info = !.Info ^ static_cell_info := StaticCellInfo.
:- pred stack_layout__construct_tvar_vector(map(tvar, set(layout_locn))::in,
rval::out, static_cell_info::in, static_cell_info::out) is det.
stack_layout__construct_tvar_vector(TVarLocnMap, TypeParamRval,
!StaticCellInfo) :-
( map__is_empty(TVarLocnMap) ->
TypeParamRval = const(int_const(0))
;
stack_layout__construct_tvar_rvals(TVarLocnMap, Vector),
add_static_cell(Vector, DataAddr, !StaticCellInfo),
TypeParamRval = const(data_addr_const(DataAddr, no))
).
:- pred stack_layout__construct_tvar_rvals(map(tvar, set(layout_locn))::in,
assoc_list(rval, llds_type)::out) is det.
stack_layout__construct_tvar_rvals(TVarLocnMap, Vector) :-
map__to_assoc_list(TVarLocnMap, TVarLocns),
stack_layout__construct_type_param_locn_vector(TVarLocns, 1,
TypeParamLocs),
list__length(TypeParamLocs, TypeParamsLength),
LengthRval = const(int_const(TypeParamsLength)),
Vector = [LengthRval - uint_least32 | TypeParamLocs].
%---------------------------------------------------------------------------%
% Given a list of var_infos and the type variables that occur in them,
% select only the var_infos that may be required by up-level printing
% in the trace-based debugger. At the moment the typeinfo list we
% return may be bigger than necessary, but this does not compromise
% correctness; we do this to avoid having to scan the types of all
% the selected var_infos.
:- pred stack_layout__select_trace_return(
list(var_info)::in, map(tvar, set(layout_locn))::in,
list(var_info)::out, map(tvar, set(layout_locn))::out) is det.
stack_layout__select_trace_return(Infos, TVars, TraceReturnInfos, TVars) :-
IsNamedReturnVar = (pred(LocnInfo::in) is semidet :-
LocnInfo = var_info(Locn, LvalType),
LvalType = var(_, Name, _, _),
Name \= "",
( Locn = direct(Lval) ; Locn = indirect(Lval, _)),
( Lval = stackvar(_) ; Lval = framevar(_) )
),
list__filter(IsNamedReturnVar, Infos, TraceReturnInfos).
% Given a list of var_infos, put the ones that tracing can be
% interested in (whether at an internal port or for uplevel printing)
% in a block at the start, and both this block and the remaining
% block. The division into two blocks can make the job of the
% debugger somewhat easier, the sorting of the named var block makes
% the output of the debugger look nicer, and the sorting of the both
% blocks makes it more likely that different labels' layout structures
% will have common parts (e.g. name vectors).
:- pred stack_layout__sort_livevals(list(var_info)::in, list(var_info)::out)
is det.
stack_layout__sort_livevals(OrigInfos, FinalInfos) :-
IsNamedVar = (pred(LvalInfo::in) is semidet :-
LvalInfo = var_info(_Lval, LvalType),
LvalType = var(_, Name, _, _),
Name \= ""
),
list__filter(IsNamedVar, OrigInfos, NamedVarInfos0, OtherInfos0),
CompareVarInfos = (pred(Var1::in, Var2::in, Result::out) is det :-
Var1 = var_info(Lval1, LiveType1),
Var2 = var_info(Lval2, LiveType2),
stack_layout__get_name_from_live_value_type(LiveType1, Name1),
stack_layout__get_name_from_live_value_type(LiveType2, Name2),
compare(NameResult, Name1, Name2),
( NameResult = (=) ->
compare(Result, Lval1, Lval2)
;
Result = NameResult
)
),
list__sort(CompareVarInfos, NamedVarInfos0, NamedVarInfos),
list__sort(CompareVarInfos, OtherInfos0, OtherInfos),
list__append(NamedVarInfos, OtherInfos, FinalInfos).
:- pred stack_layout__get_name_from_live_value_type(live_value_type::in,
string::out) is det.
stack_layout__get_name_from_live_value_type(LiveType, Name) :-
( LiveType = var(_, NamePrime, _, _) ->
Name = NamePrime
;
Name = ""
).
%---------------------------------------------------------------------------%
% Given a association list of type variables and their locations
% sorted on the type variables, represent them in an array of
% location descriptions indexed by the type variable. The next
% slot to fill is given by the second argument.
:- pred stack_layout__construct_type_param_locn_vector(
assoc_list(tvar, set(layout_locn))::in,
int::in, assoc_list(rval, llds_type)::out) is det.
stack_layout__construct_type_param_locn_vector([], _, []).
stack_layout__construct_type_param_locn_vector([TVar - Locns | TVarLocns],
CurSlot, Vector) :-
term__var_to_int(TVar, TVarNum),
NextSlot = CurSlot + 1,
( TVarNum = CurSlot ->
( set__remove_least(Locns, LeastLocn, _) ->
Locn = LeastLocn
;
error("tvar has empty set of locations")
),
stack_layout__represent_locn_as_int_rval(Locn, Rval),
stack_layout__construct_type_param_locn_vector(TVarLocns,
NextSlot, VectorTail),
Vector = [Rval - uint_least32 | VectorTail]
; TVarNum > CurSlot ->
stack_layout__construct_type_param_locn_vector(
[TVar - Locns | TVarLocns], NextSlot, VectorTail),
% This slot will never be referred to.
Vector = [const(int_const(0)) - uint_least32 | VectorTail]
;
error("unsorted tvars in construct_type_param_locn_vector")
).
%---------------------------------------------------------------------------%
:- type liveval_array_info
---> live_array_info(
rval, % Rval describing the location of a live value.
% Always of llds type uint_least8 if the cell
% is in the byte array, and uint_least32 if it
% is in the int array.
rval, % Rval describing the type of a live value.
llds_type, % The llds type of the rval describing the
% type.
rval % Rval describing the variable number of a
% live value. Always of llds type uint_least16.
% Contains zero if the live value is not
% a variable. Contains the hightest possible
% uint_least16 value if the variable number
% does not fit in 16 bits.
).
% Construct a vector of (locn, live_value_type) pairs,
% and a corresponding vector of variable names.
:- pred stack_layout__construct_liveval_arrays(list(var_info)::in,
int::out, rval::out, rval::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_liveval_arrays(VarInfos, EncodedLength,
TypeLocnVector, NumVector) -->
{ int__pow(2, stack_layout__short_count_bits, BytesLimit) },
stack_layout__construct_liveval_array_infos(VarInfos,
0, BytesLimit, IntArrayInfo, ByteArrayInfo),
{ list__length(IntArrayInfo, IntArrayLength) },
{ list__length(ByteArrayInfo, ByteArrayLength) },
{ list__append(IntArrayInfo, ByteArrayInfo, AllArrayInfo) },
{ EncodedLength = IntArrayLength << stack_layout__short_count_bits
+ ByteArrayLength },
{ SelectLocns = (pred(ArrayInfo::in, LocnRval::out) is det :-
ArrayInfo = live_array_info(LocnRval, _, _, _)
) },
{ SelectTypes = (pred(ArrayInfo::in, TypeRval - TypeType::out) is det :-
ArrayInfo = live_array_info(_, TypeRval, TypeType, _)
) },
{ AddRevNums = (pred(ArrayInfo::in, NumRvals0::in, NumRvals::out)
is det :-
ArrayInfo = live_array_info(_, _, _, NumRval),
NumRvals = [NumRval | NumRvals0]
) },
{ list__map(SelectTypes, AllArrayInfo, AllTypeRvalsTypes) },
{ list__map(SelectLocns, IntArrayInfo, IntLocns) },
{ list__map(associate_type(uint_least32), IntLocns, IntLocnsTypes) },
{ list__map(SelectLocns, ByteArrayInfo, ByteLocns) },
{ list__map(associate_type(uint_least8), ByteLocns, ByteLocnsTypes) },
{ list__append(IntLocnsTypes, ByteLocnsTypes, AllLocnsTypes) },
{ list__append(AllTypeRvalsTypes, AllLocnsTypes,
TypeLocnVectorRvalsTypes) },
stack_layout__get_static_cell_info(StaticCellInfo0),
{ add_static_cell(TypeLocnVectorRvalsTypes, TypeLocnVectorAddr,
StaticCellInfo0, StaticCellInfo1) },
{ TypeLocnVector = const(data_addr_const(TypeLocnVectorAddr, no)) },
stack_layout__set_static_cell_info(StaticCellInfo1),
stack_layout__get_trace_stack_layout(TraceStackLayout),
( { TraceStackLayout = yes } ->
{ list__foldl(AddRevNums, AllArrayInfo,
[], RevVarNumRvals) },
{ list__reverse(RevVarNumRvals, VarNumRvals) },
{ list__map(associate_type(uint_least16), VarNumRvals,
VarNumRvalsTypes) },
stack_layout__get_static_cell_info(StaticCellInfo2),
{ add_static_cell(VarNumRvalsTypes, NumVectorAddr,
StaticCellInfo2, StaticCellInfo) },
stack_layout__set_static_cell_info(StaticCellInfo),
{ NumVector = const(data_addr_const(NumVectorAddr, no)) }
;
{ NumVector = const(int_const(0)) }
).
:- pred associate_type(llds_type::in, rval::in, pair(rval, llds_type)::out)
is det.
associate_type(LldsType, Rval, Rval - LldsType).
:- pred stack_layout__construct_liveval_array_infos(list(var_info)::in,
int::in, int::in,
list(liveval_array_info)::out, list(liveval_array_info)::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_liveval_array_infos([], _, _, [], []) --> [].
stack_layout__construct_liveval_array_infos([VarInfo | VarInfos],
BytesSoFar, BytesLimit, IntVars, ByteVars) -->
{ VarInfo = var_info(Locn, LiveValueType) },
stack_layout__represent_live_value_type(LiveValueType, TypeRval,
TypeRvalType),
stack_layout__construct_liveval_num_rval(VarInfo, VarNumRval),
(
{ BytesSoFar < BytesLimit },
{ stack_layout__represent_locn_as_byte(Locn, LocnByteRval) }
->
{ Var = live_array_info(LocnByteRval, TypeRval, TypeRvalType,
VarNumRval) },
stack_layout__construct_liveval_array_infos(VarInfos,
BytesSoFar + 1, BytesLimit, IntVars, ByteVars0),
{ ByteVars = [Var | ByteVars0] }
;
{ stack_layout__represent_locn_as_int_rval(Locn, LocnRval) },
{ Var = live_array_info(LocnRval, TypeRval, TypeRvalType,
VarNumRval) },
stack_layout__construct_liveval_array_infos(VarInfos,
BytesSoFar, BytesLimit, IntVars0, ByteVars),
{ IntVars = [Var | IntVars0] }
).
:- pred stack_layout__construct_liveval_num_rval(var_info::in, rval::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_liveval_num_rval(var_info(_, LiveValueType),
VarNumRval, SLI0, SLI) :-
( LiveValueType = var(Var, Name, _, _) ->
stack_layout__convert_var_to_int(Var, VarNum),
VarNumRval = const(int_const(VarNum)),
stack_layout__get_cur_proc_named_vars(NamedVars0, SLI0, SLI1),
( map__insert(NamedVars0, VarNum, Name, NamedVars) ->
stack_layout__set_cur_proc_named_vars(NamedVars,
SLI1, SLI)
;
% The variable has been put into the map already at
% another label.
SLI = SLI1
)
;
VarNumRval = const(int_const(0)),
SLI = SLI0
).
:- pred stack_layout__convert_var_name_to_int(pair(prog_var, string)::in,
pair(int, string)::out) is det.
stack_layout__convert_var_name_to_int(Var - Name, VarNum - Name) :-
stack_layout__convert_var_to_int(Var, VarNum).
:- pred stack_layout__convert_var_to_int(prog_var::in, int::out) is det.
stack_layout__convert_var_to_int(Var, VarNum) :-
term__var_to_int(Var, VarNum0),
% The variable number has to fit into two bytes.
% We reserve the largest such number (Limit)
% to mean that the variable number is too large
% to be represented. This ought not to happen,
% since compilation would be glacial at best
% for procedures with that many variables.
Limit = (1 << (2 * stack_layout__byte_bits)) - 1,
int__min(VarNum0, Limit, VarNum).
%---------------------------------------------------------------------------%
% The representation we build here should be kept in sync
% with runtime/mercury_ho_call.h, which contains macros to access
% the data structures we build here.
stack_layout__construct_closure_layout(CallerProcLabel, SeqNo,
ClosureLayoutInfo, ClosureProcLabel, ModuleName,
FileName, LineNumber, GoalPath, !StaticCellInfo,
RvalsTypes, Data) :-
DataAddr = layout_addr(
closure_proc_id(CallerProcLabel, SeqNo, ClosureProcLabel)),
Data = layout_data(closure_proc_id_data(CallerProcLabel, SeqNo,
ClosureProcLabel, ModuleName, FileName, LineNumber, GoalPath)),
ProcIdRvalType = const(data_addr_const(DataAddr, no)) - data_ptr,
ClosureLayoutInfo = closure_layout_info(ClosureArgs, TVarLocnMap),
stack_layout__construct_closure_arg_rvals(ClosureArgs,
ClosureArgRvalsTypes, !StaticCellInfo),
stack_layout__construct_tvar_vector(TVarLocnMap, TVarVectorRval,
!StaticCellInfo),
RvalsTypes = [ProcIdRvalType, TVarVectorRval - data_ptr |
ClosureArgRvalsTypes].
:- pred stack_layout__construct_closure_arg_rvals(list(closure_arg_info)::in,
assoc_list(rval, llds_type)::out,
static_cell_info::in, static_cell_info::out) is det.
stack_layout__construct_closure_arg_rvals(ClosureArgs, ClosureArgRvalsTypes,
!StaticCellInfo) :-
list__map_foldl(stack_layout__construct_closure_arg_rval,
ClosureArgs, ArgRvalsTypes, !StaticCellInfo),
list__length(ArgRvalsTypes, Length),
ClosureArgRvalsTypes =
[const(int_const(Length)) - integer | ArgRvalsTypes].
:- pred stack_layout__construct_closure_arg_rval(closure_arg_info::in,
pair(rval, llds_type)::out,
static_cell_info::in, static_cell_info::out) is det.
stack_layout__construct_closure_arg_rval(ClosureArg, ArgRval - ArgRvalType,
!StaticCellInfo) :-
ClosureArg = closure_arg_info(Type, _Inst),
% For a stack layout, we can treat all type variables as
% universally quantified. This is not the argument of a
% constructor, so we do not need to distinguish between type
% variables that are and aren't in scope; we can take the
% variable number directly from the procedure's tvar set.
ExistQTvars = [],
NumUnivQTvars = -1,
ll_pseudo_type_info__construct_typed_llds_pseudo_type_info(Type,
NumUnivQTvars, ExistQTvars, !StaticCellInfo,
ArgRval, ArgRvalType).
%---------------------------------------------------------------------------%
:- pred stack_layout__make_table_data(rtti_proc_label::in,
proc_layout_kind::in, proc_table_info::in, layout_data::out,
static_cell_info::in, static_cell_info::out) is det.
stack_layout__make_table_data(RttiProcLabel, Kind, TableInfo, TableData,
!StaticCellInfo) :-
(
TableInfo = table_io_decl_info(TableArgInfo),
stack_layout__convert_table_arg_info(TableArgInfo,
NumPTIs, PTIVectorRval, TVarVectorRval,
!StaticCellInfo),
TableData = table_io_decl_data(RttiProcLabel, Kind,
NumPTIs, PTIVectorRval, TVarVectorRval)
;
TableInfo = table_gen_info(NumInputs, NumOutputs, Steps,
TableArgInfo),
stack_layout__convert_table_arg_info(TableArgInfo,
NumPTIs, PTIVectorRval, TVarVectorRval,
!StaticCellInfo),
NumArgs = NumInputs + NumOutputs,
require(unify(NumArgs, NumPTIs),
"stack_layout__make_table_data: args mismatch"),
TableData = table_gen_data(RttiProcLabel,
NumInputs, NumOutputs, Steps,
PTIVectorRval, TVarVectorRval)
).
:- pred stack_layout__convert_table_arg_info(table_arg_infos::in,
int::out, rval::out, rval::out,
static_cell_info::in, static_cell_info::out) is det.
stack_layout__convert_table_arg_info(TableArgInfos, NumPTIs,
PTIVectorRval, TVarVectorRval, !StaticCellInfo) :-
TableArgInfos = table_arg_infos(Args, TVarSlotMap),
list__length(Args, NumPTIs),
list__map_foldl(stack_layout__construct_table_arg_pti_rval,
Args, PTIRvalsTypes, !StaticCellInfo),
add_static_cell(PTIRvalsTypes, PTIVectorAddr, !StaticCellInfo),
PTIVectorRval = const(data_addr_const(PTIVectorAddr, no)),
map__map_values(stack_layout__convert_slot_to_locn_map,
TVarSlotMap, TVarLocnMap),
stack_layout__construct_tvar_vector(TVarLocnMap, TVarVectorRval,
!StaticCellInfo).
:- pred stack_layout__convert_slot_to_locn_map(tvar::in, table_locn::in,
set(layout_locn)::out) is det.
stack_layout__convert_slot_to_locn_map(_TVar, SlotLocn, LvalLocns) :-
(
SlotLocn = direct(SlotNum),
LvalLocn = direct(reg(r, SlotNum))
;
SlotLocn = indirect(SlotNum, Offset),
LvalLocn = indirect(reg(r, SlotNum), Offset)
),
LvalLocns = set__make_singleton_set(LvalLocn).
:- pred stack_layout__construct_table_arg_pti_rval(
table_arg_info::in, pair(rval, llds_type)::out,
static_cell_info::in, static_cell_info::out) is det.
stack_layout__construct_table_arg_pti_rval(ClosureArg,
ArgRval - ArgRvalType, !StaticCellInfo) :-
ClosureArg = table_arg_info(_, _, Type),
ExistQTvars = [],
NumUnivQTvars = -1,
ll_pseudo_type_info__construct_typed_llds_pseudo_type_info(Type,
NumUnivQTvars, ExistQTvars, !StaticCellInfo,
ArgRval, ArgRvalType).
%---------------------------------------------------------------------------%
% Construct a representation of the type of a value.
%
% For values representing variables, this will be a pseudo_type_info
% describing the type of the variable.
%
% For the kinds of values used internally by the compiler,
% this will be a pointer to a specific type_ctor_info (acting as a
% type_info) defined by hand in builtin.m to stand for values of
% each such kind; one for succips, one for hps, etc.
:- pred stack_layout__represent_live_value_type(live_value_type, rval,
llds_type, stack_layout_info, stack_layout_info).
:- mode stack_layout__represent_live_value_type(in, out, out, in, out) is det.
stack_layout__represent_live_value_type(succip, Rval, data_ptr, !Info) :-
stack_layout__represent_special_live_value_type("succip", Rval).
stack_layout__represent_live_value_type(hp, Rval, data_ptr, !Info) :-
stack_layout__represent_special_live_value_type("hp", Rval).
stack_layout__represent_live_value_type(curfr, Rval, data_ptr, !Info) :-
stack_layout__represent_special_live_value_type("curfr", Rval).
stack_layout__represent_live_value_type(maxfr, Rval, data_ptr, !Info) :-
stack_layout__represent_special_live_value_type("maxfr", Rval).
stack_layout__represent_live_value_type(redofr, Rval, data_ptr, !Info) :-
stack_layout__represent_special_live_value_type("redofr", Rval).
stack_layout__represent_live_value_type(redoip, Rval, data_ptr, !Info) :-
stack_layout__represent_special_live_value_type("redoip", Rval).
stack_layout__represent_live_value_type(trail_ptr, Rval, data_ptr, !Info) :-
stack_layout__represent_special_live_value_type("trail_ptr", Rval).
stack_layout__represent_live_value_type(ticket, Rval, data_ptr, !Info) :-
stack_layout__represent_special_live_value_type("ticket", Rval).
stack_layout__represent_live_value_type(unwanted, Rval, data_ptr, !Info) :-
stack_layout__represent_special_live_value_type("unwanted", Rval).
stack_layout__represent_live_value_type(var(_, _, Type, _), Rval, LldsType,
!Info) :-
% For a stack layout, we can treat all type variables as
% universally quantified. This is not the argument of a
% constructor, so we do not need to distinguish between type
% variables that are and aren't in scope; we can take the
% variable number directly from the procedure's tvar set.
ExistQTvars = [],
NumUnivQTvars = -1,
stack_layout__get_static_cell_info(StaticCellInfo0, !Info),
ll_pseudo_type_info__construct_typed_llds_pseudo_type_info(Type,
NumUnivQTvars, ExistQTvars, StaticCellInfo0, StaticCellInfo,
Rval, LldsType),
stack_layout__set_static_cell_info(StaticCellInfo, !Info).
:- pred stack_layout__represent_special_live_value_type(string::in, rval::out)
is det.
stack_layout__represent_special_live_value_type(SpecialTypeName, Rval) :-
RttiTypeCtor = rtti_type_ctor(unqualified(""), SpecialTypeName, 0),
DataAddr = rtti_addr(ctor_rtti_id(RttiTypeCtor, type_ctor_info)),
Rval = const(data_addr_const(DataAddr, no)).
%---------------------------------------------------------------------------%
% Construct a representation of a variable location as a 32-bit
% integer.
%
% Most of the time, a layout specifies a location as an lval.
% However, a type_info variable may be hidden inside a typeclass_info,
% In this case, accessing the type_info requires indirection.
% The address of the typeclass_info is given as an lval, and
% the location of the typeinfo within the typeclass_info as an index;
% private_builtin:type_info_from_typeclass_info interprets the index.
%
% This one level of indirection is sufficient, since type_infos
% cannot be nested inside typeclass_infos any deeper than this.
% A more general representation that would allow more indirection
% would be much harder to fit into one machine word.
:- pred stack_layout__represent_locn_as_int_rval(layout_locn::in, rval::out)
is det.
stack_layout__represent_locn_as_int_rval(Locn, Rval) :-
stack_layout__represent_locn_as_int(Locn, Word),
Rval = const(int_const(Word)).
stack_layout__represent_locn_as_int(direct(Lval), Word) :-
stack_layout__represent_lval(Lval, Word).
stack_layout__represent_locn_as_int(indirect(Lval, Offset), Word) :-
stack_layout__represent_lval(Lval, BaseWord),
require((1 << stack_layout__long_lval_offset_bits) > Offset,
"stack_layout__represent_locn: offset too large to be represented"),
BaseAndOffset is (BaseWord << stack_layout__long_lval_offset_bits)
+ Offset,
stack_layout__make_tagged_word(lval_indirect, BaseAndOffset, Word).
% Construct a four byte representation of an lval.
:- pred stack_layout__represent_lval(lval::in, int::out) is det.
stack_layout__represent_lval(reg(r, Num), Word) :-
stack_layout__make_tagged_word(lval_r_reg, Num, Word).
stack_layout__represent_lval(reg(f, Num), Word) :-
stack_layout__make_tagged_word(lval_f_reg, Num, Word).
stack_layout__represent_lval(stackvar(Num), Word) :-
stack_layout__make_tagged_word(lval_stackvar, Num, Word).
stack_layout__represent_lval(framevar(Num), Word) :-
stack_layout__make_tagged_word(lval_framevar, Num, Word).
stack_layout__represent_lval(succip, Word) :-
stack_layout__make_tagged_word(lval_succip, 0, Word).
stack_layout__represent_lval(maxfr, Word) :-
stack_layout__make_tagged_word(lval_maxfr, 0, Word).
stack_layout__represent_lval(curfr, Word) :-
stack_layout__make_tagged_word(lval_curfr, 0, Word).
stack_layout__represent_lval(hp, Word) :-
stack_layout__make_tagged_word(lval_hp, 0, Word).
stack_layout__represent_lval(sp, Word) :-
stack_layout__make_tagged_word(lval_sp, 0, Word).
stack_layout__represent_lval(temp(_, _), _) :-
error("stack_layout: continuation live value stored in temp register").
stack_layout__represent_lval(succip(_), _) :-
error("stack_layout: continuation live value stored in fixed slot").
stack_layout__represent_lval(redoip(_), _) :-
error("stack_layout: continuation live value stored in fixed slot").
stack_layout__represent_lval(redofr(_), _) :-
error("stack_layout: continuation live value stored in fixed slot").
stack_layout__represent_lval(succfr(_), _) :-
error("stack_layout: continuation live value stored in fixed slot").
stack_layout__represent_lval(prevfr(_), _) :-
error("stack_layout: continuation live value stored in fixed slot").
stack_layout__represent_lval(field(_, _, _), _) :-
error("stack_layout: continuation live value stored in field").
stack_layout__represent_lval(mem_ref(_), _) :-
error("stack_layout: continuation live value stored in mem_ref").
stack_layout__represent_lval(lvar(_), _) :-
error("stack_layout: continuation live value stored in lvar").
% Some things in this module are encoded using a low tag.
% This is not done using the normal compiler mkword, but by
% doing the bit shifting here.
%
% This allows us to use more than the usual 2 or 3 bits, but
% we have to use low tags and cannot tag pointers this way.
:- pred stack_layout__make_tagged_word(locn_type::in, int::in, int::out) is det.
stack_layout__make_tagged_word(Locn, Value, TaggedValue) :-
stack_layout__locn_type_code(Locn, Tag),
TaggedValue is (Value << stack_layout__long_lval_tag_bits) + Tag.
:- type locn_type
---> lval_r_reg
; lval_f_reg
; lval_stackvar
; lval_framevar
; lval_succip
; lval_maxfr
; lval_curfr
; lval_hp
; lval_sp
; lval_indirect.
:- pred stack_layout__locn_type_code(locn_type::in, int::out) is det.
stack_layout__locn_type_code(lval_r_reg, 0).
stack_layout__locn_type_code(lval_f_reg, 1).
stack_layout__locn_type_code(lval_stackvar, 2).
stack_layout__locn_type_code(lval_framevar, 3).
stack_layout__locn_type_code(lval_succip, 4).
stack_layout__locn_type_code(lval_maxfr, 5).
stack_layout__locn_type_code(lval_curfr, 6).
stack_layout__locn_type_code(lval_hp, 7).
stack_layout__locn_type_code(lval_sp, 8).
stack_layout__locn_type_code(lval_indirect, 9).
:- func stack_layout__long_lval_tag_bits = int.
% This number of tag bits must be able to encode all values of
% stack_layout__locn_type_code.
stack_layout__long_lval_tag_bits = 4.
% This number of tag bits must be able to encode the largest offset
% of a type_info within a typeclass_info.
:- func stack_layout__long_lval_offset_bits = int.
stack_layout__long_lval_offset_bits = 6.
%---------------------------------------------------------------------------%
% Construct a representation of a variable location as a byte,
% if this is possible.
:- pred stack_layout__represent_locn_as_byte(layout_locn::in, rval::out)
is semidet.
stack_layout__represent_locn_as_byte(LayoutLocn, Rval) :-
LayoutLocn = direct(Lval),
stack_layout__represent_lval_as_byte(Lval, Byte),
Rval = const(int_const(Byte)).
% Construct a representation of an lval in a byte, if possible.
:- pred stack_layout__represent_lval_as_byte(lval::in, int::out) is semidet.
stack_layout__represent_lval_as_byte(reg(r, Num), Byte) :-
stack_layout__make_tagged_byte(0, Num, Byte).
stack_layout__represent_lval_as_byte(stackvar(Num), Byte) :-
stack_layout__make_tagged_byte(1, Num, Byte).
stack_layout__represent_lval_as_byte(framevar(Num), Byte) :-
stack_layout__make_tagged_byte(2, Num, Byte).
stack_layout__represent_lval_as_byte(succip, Byte) :-
stack_layout__locn_type_code(lval_succip, Val),
stack_layout__make_tagged_byte(3, Val, Byte).
stack_layout__represent_lval_as_byte(maxfr, Byte) :-
stack_layout__locn_type_code(lval_maxfr, Val),
stack_layout__make_tagged_byte(3, Val, Byte).
stack_layout__represent_lval_as_byte(curfr, Byte) :-
stack_layout__locn_type_code(lval_curfr, Val),
stack_layout__make_tagged_byte(3, Val, Byte).
stack_layout__represent_lval_as_byte(hp, Byte) :-
stack_layout__locn_type_code(lval_hp, Val),
stack_layout__make_tagged_byte(3, Val, Byte).
stack_layout__represent_lval_as_byte(sp, Byte) :-
stack_layout__locn_type_code(lval_sp, Val),
stack_layout__make_tagged_byte(3, Val, Byte).
:- pred stack_layout__make_tagged_byte(int::in, int::in, int::out) is semidet.
stack_layout__make_tagged_byte(Tag, Value, TaggedValue) :-
Limit = 1 << (stack_layout__byte_bits -
stack_layout__short_lval_tag_bits),
Value < Limit,
TaggedValue is unchecked_left_shift(Value,
stack_layout__short_lval_tag_bits) + Tag.
:- func stack_layout__short_lval_tag_bits = int.
stack_layout__short_lval_tag_bits = 2.
:- func stack_layout__short_count_bits = int.
stack_layout__short_count_bits = 10.
:- func stack_layout__byte_bits = int.
stack_layout__byte_bits = 8.
%---------------------------------------------------------------------------%
% Construct a representation of the interface determinism of a
% procedure. The code we have chosen is not sequential; instead
% it encodes the various properties of each determinism.
%
% The 8 bit is set iff the context is first_solution.
% The 4 bit is set iff the min number of solutions is more than zero.
% The 2 bit is set iff the max number of solutions is more than zero.
% The 1 bit is set iff the max number of solutions is more than one.
:- pred stack_layout__represent_determinism_rval(determinism::in, rval::out)
is det.
stack_layout__represent_determinism_rval(Detism, const(int_const(Code))) :-
stack_layout__represent_determinism(Detism, Code).
:- pred stack_layout__represent_determinism(determinism::in, int::out) is det.
stack_layout__represent_determinism(Detism, Code) :-
(
Detism = det,
Code = 6 /* 0110 */
;
Detism = semidet, /* 0010 */
Code = 2
;
Detism = nondet,
Code = 3 /* 0011 */
;
Detism = multidet,
Code = 7 /* 0111 */
;
Detism = erroneous,
Code = 4 /* 0100 */
;
Detism = failure,
Code = 0 /* 0000 */
;
Detism = cc_nondet,
Code = 10 /* 1010 */
;
Detism = cc_multidet,
Code = 14 /* 1110 */
).
%---------------------------------------------------------------------------%
% Access to the stack_layout data structure.
% The per-sourcefile label table maps line numbers to the list of
% labels that correspond to that line. Each label is accompanied
% by a flag that says whether the label is the return site of a call
% or not, and if it is, whether the called procedure is known.
:- type is_label_return
---> known_callee(label)
; unknown_callee
; not_a_return.
:- type line_no_info == pair(layout_name, is_label_return).
:- type label_table == map(int, list(line_no_info)).
:- type stack_layout_info --->
stack_layout_info(
module_info :: module_info,
agc_stack_layout :: bool, % generate agc info?
trace_stack_layout :: bool, % generate tracing info?
procid_stack_layout :: bool, % generate proc id info?
static_code_addresses :: bool, % have static code addresses?
table_infos :: list(comp_gen_c_data),
proc_layouts :: list(comp_gen_c_data),
internal_layouts :: list(comp_gen_c_data),
label_set :: map(label, data_addr),
% The set of labels (both entry
% and internal) with layouts.
proc_layout_name_list :: list(layout_name),
% The list of proc_layouts in
% the module.
string_table :: string_table,
label_tables :: map(string, label_table),
% Maps each filename that
% contributes labels to this module
% to a table describing those
% labels.
cur_proc_named_vars :: map(int, string),
% Maps the number of each variable
% in the current procedure whose
% name is of interest in an internal
% label's layout structure to the
% name of that variable.
static_cell_info :: static_cell_info
).
:- pred stack_layout__get_module_info(module_info::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_agc_stack_layout(bool::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_trace_stack_layout(bool::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_procid_stack_layout(bool::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_static_code_addresses(bool::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_table_infos(list(comp_gen_c_data)::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_proc_layout_data(list(comp_gen_c_data)::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_internal_layout_data(list(comp_gen_c_data)::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_label_set(map(label, data_addr)::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_string_table(string_table::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_label_tables(map(string, label_table)::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_cur_proc_named_vars(map(int, string)::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_static_cell_info(static_cell_info::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__get_module_info(LI ^ module_info, LI, LI).
stack_layout__get_agc_stack_layout(LI ^ agc_stack_layout, LI, LI).
stack_layout__get_trace_stack_layout(LI ^ trace_stack_layout, LI, LI).
stack_layout__get_procid_stack_layout(LI ^ procid_stack_layout, LI, LI).
stack_layout__get_static_code_addresses(LI ^ static_code_addresses, LI, LI).
stack_layout__get_table_infos(LI ^ table_infos, LI, LI).
stack_layout__get_proc_layout_data(LI ^ proc_layouts, LI, LI).
stack_layout__get_internal_layout_data(LI ^ internal_layouts, LI, LI).
stack_layout__get_label_set(LI ^ label_set, LI, LI).
stack_layout__get_string_table(LI ^ string_table, LI, LI).
stack_layout__get_label_tables(LI ^ label_tables, LI, LI).
stack_layout__get_cur_proc_named_vars(LI ^ cur_proc_named_vars, LI, LI).
stack_layout__get_static_cell_info(LI ^ static_cell_info, LI, LI).
:- pred stack_layout__get_module_name(module_name::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__get_module_name(ModuleName) -->
stack_layout__get_module_info(ModuleInfo),
{ module_info_name(ModuleInfo, ModuleName) }.
:- pred stack_layout__add_table_data(layout_data::in,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__add_table_data(TableIoDeclData, LI0, LI) :-
TableIoDecls0 = LI0 ^ table_infos,
TableIoDecls = [layout_data(TableIoDeclData) | TableIoDecls0],
LI = LI0 ^ table_infos := TableIoDecls.
:- pred stack_layout__add_proc_layout_data(comp_gen_c_data::in,
layout_name::in, label::in,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__add_proc_layout_data(ProcLayout, ProcLayoutName, Label,
LI0, LI) :-
ProcLayouts0 = LI0 ^ proc_layouts,
ProcLayouts = [ProcLayout | ProcLayouts0],
LabelSet0 = LI0 ^ label_set,
map__det_insert(LabelSet0, Label, layout_addr(ProcLayoutName),
LabelSet),
ProcLayoutNames0 = LI0 ^ proc_layout_name_list,
ProcLayoutNames = [ProcLayoutName | ProcLayoutNames0],
LI = (((LI0 ^ proc_layouts := ProcLayouts)
^ label_set := LabelSet)
^ proc_layout_name_list := ProcLayoutNames).
:- pred stack_layout__add_internal_layout_data(comp_gen_c_data::in,
label::in, layout_name::in, stack_layout_info::in,
stack_layout_info::out) is det.
stack_layout__add_internal_layout_data(InternalLayout, Label, LayoutName,
LI0, LI) :-
InternalLayouts0 = LI0 ^ internal_layouts,
InternalLayouts = [InternalLayout | InternalLayouts0],
LabelSet0 = LI0 ^ label_set,
map__det_insert(LabelSet0, Label, layout_addr(LayoutName), LabelSet),
LI = ((LI0 ^ internal_layouts := InternalLayouts)
^ label_set := LabelSet).
:- pred stack_layout__set_string_table(string_table::in,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__set_label_tables(map(string, label_table)::in,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__set_cur_proc_named_vars(map(int, string)::in,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__set_static_cell_info(static_cell_info::in,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__set_string_table(ST, LI0, LI0 ^ string_table := ST).
stack_layout__set_label_tables(LT, LI0, LI0 ^ label_tables := LT).
stack_layout__set_cur_proc_named_vars(NV, LI0,
LI0 ^ cur_proc_named_vars := NV).
stack_layout__set_static_cell_info(SCI, LI0,
LI0 ^ static_cell_info := SCI).
%---------------------------------------------------------------------------%
% Access to the string_table data structure.
:- type string_table --->
string_table(
map(string, int), % Maps strings to their offsets.
list(string), % List of strings so far,
% in reverse order.
int % Next available offset
).
:- pred stack_layout__lookup_string_in_table(string::in, int::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__lookup_string_in_table(String, Offset) -->
stack_layout__get_string_table(StringTable0),
{ StringTable0 = string_table(TableMap0, TableList0, TableOffset0) },
(
{ map__search(TableMap0, String, OldOffset) }
->
{ Offset = OldOffset }
;
{ string__length(String, Length) },
{ TableOffset = TableOffset0 + Length + 1 },
% We use a 32 bit unsigned integer to represent the offset.
% Computing that limit exactly without getting an overflow
% or using unportable code isn't trivial. The code below
% is overly conservative, requiring the offset to be
% representable in only 30 bits. The over-conservatism
% should not be an issue; the machine will run out of
% virtual memory before the test below fails, for the
% next several years anyway. (Compiling a module that has
% a 1 Gb string table will require several tens of Gb
% of other compiler structures.)
{ TableOffset < (1 << ((4 * stack_layout__byte_bits) - 2)) }
->
{ Offset = TableOffset0 },
{ map__det_insert(TableMap0, String, TableOffset0,
TableMap) },
{ TableList = [String | TableList0] },
{ StringTable = string_table(TableMap, TableList,
TableOffset) },
stack_layout__set_string_table(StringTable)
;
% Says that the name of the variable is "TOO_MANY_VARIABLES".
{ Offset = 1 }
).