Files
mercury/compiler/code_info.m
Zoltan Somogyi a1f326f4e9 Add an alternative to code_exprn that does eager code generation (code_exprn
Estimated hours taken: 140

Add an alternative to code_exprn that does eager code generation (code_exprn
always does lazy code generation). Its main advantages are that the new code
is significantly simpler, and that it does not generate unnecessary shuffling
code. Its main disadvantage, which is that it does not eliminate the creation
of unneeded cells, can be eliminated by switching on --unneeded-code.

For now, you can select the use of the new code generator with the
--no-lazy-code option (which was previously present but unused).
This will be made the default later, after I do more performance tests.

Var_locn contains stricter self-checks than code_exprn does. This required
modifications to some other parts of the code generator to ensure that the
self-checks do not fail unnecessarily. (This mostly took the form of explicitly
killing off dead variables before calling code_info__clear_all_registers, which
would complain about losing the last record of the value of a variable that was
alive as far as it knew.) To make my changes simpler, also took the opportunity
to simplify parts of the code generator which were handing around rvals that
in fact had to be wrappers around lvals, by handing around the lvals directly.

Testing this change also required fixing an old bug which prevented compiling
the library with -O1 --trace deep, together with the usual intermodule
optimization. The bug is that a library module reads predicates from
builtin.opt or private_builtin.opt, does not eliminate them because of the -O1,
and then tries to generate traced code for them. However, this fails because
the builtin modules contain some predicates that cannot be made to conform to
typeinfo-liveness, which is required by tracing.

compiler/var_locn.m:
	The new module that implements eager code generation.

compiler/follow_vars.m:
	Improve the follow_vars pass, since eager code generation requires
	better follow_vars information. We now generate correct information
	for generic calls, and record not only where some vars (e.g. those
	which appear as input arguments of following calls) should be put,
	but also which registers are not reserved for those variables and
	are thus available for other variables.

compiler/hlds_goal.m:
	Modify the follow_vars field of the goal_info to record the number
	of the first non-reserved register.

compiler/code_info.m:
 	Replace the general-purpose predicate code_info__cache_exprn, which
	associated a variable with an rval without generating code, with a set
	of special-purpose predicates such as code_info__assign_const_to_var
	and code_info__assign_cell_to_var, some of which can generate code.

	These new predicates and some older ones (e.g. code_info__setup_call)
	now choose at runtime whether to call code_exprn or var_locn. The
	basis for the decision is checking whether the code_info structure
	contains an exprn_info or a var_locn_info. This is decided in
	code_info__init based on the value of the lazy_code option, and
	maintained unchanged from then on.

	Rename some predicates to better reflect their current possible
	behaviors.

compiler/unify_gen.m:
	Call the new special-purpose predicates in code_info instead of
	code_info__cache_exprn.

	Replace an incorrect clause with a call to error, since that clause
	could never be invoked.

compiler/call_gen.m:
	Hand over the task of generating the args of generic calls to
	code_info, since it already has code to do the right thing, which
	includes reserving the registers to be used for the input args.

	Notify the rest of the code generator after the last use of
	non-forward-live variables, in order to avoid spurious calls to error
	(it is an error to clobber the last location of a live variable).

	Notify the rest of the code generator when generic calls overwrite
	registers, to allow the proper consistency checks to be made.

	If an output variable is singleton, then do not make it known to the
	code generator. It never will never become dead, and may thus cause a
	spurious compiler abort if its storage is ever clobbered.

	Export a predicate for use by follow_vars.

	Factor out some common code.

	Call the new preds in code_info where necessary.

compiler/pragma_c_gen.m:
	Notify the rest of the code generator after the last use of
	non-forward-live variables, in order to avoid spurious calls to error
	(it is an error to clobber the last location of a live variable).

	If an output variable is singleton, then do not make it known to the
	code generator. It never will never become dead, and may thus cause a
	spurious compiler abort if its storage is ever clobbered.

	When using var_locn, ensure that none of the input arguments of a
	model_semi pragma_c_code is assigned to r1. If we did, and the last
	reference to the value of that argument was after an assignment to
	SUCCESS_INDICATOR, the C compiler would be forced to generate code
	to shuffle the value of the argument out of the way.

compiler/code_exprn.m:
	Minor changes to return lvals directly instead of lvals wrapped inside
	rvals and to conform the new format of follow_vars.

	Do not include the registers reserved by follow_vars in the
	search for a spare register.

compiler/lookup_switch.m:
compiler/switch_gen.m:
	Fix an old bug that did not matter with code_exprn but does matter with
	var_locn: the branch end structure was being computed in the wrong
	place.

compiler/disj_gen.m:
	At the ends of non-last disjuncts, kill off the variables that we
	needed to know inside the disjunct but won't need to know after the
	disjunct, in order to avoid error messages about throwing away their
	state. The variables affected are those which are needed only by the
	resumption point of the next disjunct, not by enclosing resumption
	points or forward execution.

compiler/arg_info.m:
	Associate an lval, not an rval, with each argument.

compiler/*.m:
	Minor changes to conform to (a) the new format of follow_vars, (b)
	the replacement of rvals containing lvals by lvals.

compiler/code_util.m:
	Add some utility predicates for var_locn.m.

compiler/exprn_aux.m:
	Add some utility functions for var_locn.m.

	Export a predicate for var_locn.m.

compiler/handle_options.m:
	If --no-lazy-code is set, switch on the "optimizations" on whose
	presence it depends.

compiler/mercury_compile.m:
compiler/code_gen.m:
	Turn off tracing for predicates that don't obey typeinfo liveness
	for backend_by_preds and backend_by_phases respectively.

	Look up options in the globals structure in the module_info, not in the
	globals structure in the I/O state, since this is where we turn off
	tracing. (We should later make sure that other parts of the compiler
	are also consistent on this issue.)

compiler/stack_layout.m:
	Throw away any continuation_info structures that belong to predicates
	that don't obey typeinfo liveness.
2000-09-16 00:08:27 +00:00

3950 lines
132 KiB
Mathematica

%---------------------------------------------------------------------------%
% Copyright (C) 1994-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: code_info.m
%
% Main authors: conway, zs.
%
% This file defines the code_info type and various operations on it.
% The code_info structure is the 'state' of the code generator.
%
% This file is organized into nine submodules:
%
% - the code_info structure and its access predicates
% - simple wrappers around access predicates
% - handling branched control structures
% - handling failure continuations
% - handling liveness issues
% - saving and restoring heap pointers, trail tickets etc
% - interfacing to code_exprn
% - managing the info required by garbage collection and value numbering
% - managing stack slots
%
%---------------------------------------------------------------------------%
:- module code_info.
:- interface.
:- import_module hlds_module, hlds_pred, hlds_goal, llds, instmap, trace.
:- import_module continuation_info, prog_data, hlds_data, globals.
:- import_module bool, set, list, map, std_util, assoc_list, counter.
:- implementation.
:- import_module code_util, code_exprn, var_locn, llds_out, prog_out.
:- import_module exprn_aux, arg_info, type_util, mode_util, options.
:- import_module term, varset.
:- import_module set, stack.
:- import_module string, require, char, bimap, tree, int.
%---------------------------------------------------------------------------%
% Submodule for the code_info type and its access predicates.
%
% This submodule has the following components:
%
% declarations for exported access predicates
% declarations for non-exported access predicates
% the definition of the type and the init predicate
% the definition of the get access predicates
% the definition of the set access predicates
%
% Please keep the order of mention of the various fields
% consistent in each of these five components.
:- interface.
:- type code_info.
% Create a new code_info structure. Also return the
% outermost resumption point, and info about the non-fixed
% stack slots used for tracing purposes.
:- pred code_info__init(bool::in, globals::in, pred_id::in, proc_id::in,
proc_info::in, follow_vars::in, module_info::in, counter::in,
resume_point_info::out, trace_slot_info::out, code_info::out) is det.
% Get the globals table.
:- pred code_info__get_globals(globals::out,
code_info::in, code_info::out) is det.
% Get the HLDS of the entire module.
:- pred code_info__get_module_info(module_info::out,
code_info::in, code_info::out) is det.
% Get the id of the predicate we are generating code for.
:- pred code_info__get_pred_id(pred_id::out,
code_info::in, code_info::out) is det.
% Get the id of the procedure we are generating code for.
:- pred code_info__get_proc_id(proc_id::out,
code_info::in, code_info::out) is det.
% Get the HLDS of the procedure we are generating code for.
:- pred code_info__get_proc_info(proc_info::out,
code_info::in, code_info::out) is det.
% Get the variables for the current procedure.
:- pred code_info__get_varset(prog_varset::out,
code_info::in, code_info::out) is det.
:- pred code_info__get_maybe_trace_info(maybe(trace_info)::out,
code_info::in, code_info::out) is det.
% Get the set of currently forward-live variables.
:- pred code_info__get_forward_live_vars(set(prog_var)::out,
code_info::in, code_info::out) is det.
% Set the set of currently forward-live variables.
:- pred code_info__set_forward_live_vars(set(prog_var)::in,
code_info::in, code_info::out) is det.
% Get the table mapping variables to the current
% instantiation states.
:- pred code_info__get_instmap(instmap::out,
code_info::in, code_info::out) is det.
% Set the table mapping variables to the current
% instantiation states.
:- pred code_info__set_instmap(instmap::in,
code_info::in, code_info::out) is det.
% The number of the last local label allocated.
:- pred code_info__get_label_counter(counter::out,
code_info::in, code_info::out) is det.
% The current value of the counter we use to give
% each "create" rval its unique cell number, for use
% in case the cell can be allocated statically.
:- pred code_info__get_cell_counter(counter::out,
code_info::in, code_info::out) is det.
:- pred code_info__set_cell_counter(counter::in,
code_info::in, code_info::out) is det.
% Get the flag that indicates whether succip is used or not.
:- pred code_info__get_succip_used(bool::out,
code_info::in, code_info::out) is det.
% Get the label layout information created by tracing
% during code generation.
:- pred code_info__get_layout_info(map(label, internal_layout_info)::out,
code_info::in, code_info::out) is det.
% Get the global static data structures that have
% been created during code generation and which do
% not have to be scanned by llds_common, since they
% have no common parts by construction.
:- pred code_info__get_non_common_static_data(list(comp_gen_c_data)::out,
code_info::in, code_info::out) is det.
:- pred code_info__get_max_reg_in_use_at_trace(int::out,
code_info::in, code_info::out) is det.
:- pred code_info__set_max_reg_in_use_at_trace(int::in,
code_info::in, code_info::out) is det.
%---------------------------------------------------------------------------%
:- implementation.
:- pred code_info__get_var_slot_count(int::out,
code_info::in, code_info::out) is det.
:- pred code_info__set_maybe_trace_info(maybe(trace_info)::in,
code_info::in, code_info::out) is det.
:- pred code_info__get_zombies(set(prog_var)::out,
code_info::in, code_info::out) is det.
:- pred code_info__set_zombies(set(prog_var)::in,
code_info::in, code_info::out) is det.
:- pred code_info__get_var_locns_info(var_locns_info::out,
code_info::in, code_info::out) is det.
:- pred code_info__set_var_locns_info(var_locns_info::in,
code_info::in, code_info::out) is det.
:- pred code_info__get_temps_in_use(set(lval)::out,
code_info::in, code_info::out) is det.
:- pred code_info__set_temps_in_use(set(lval)::in,
code_info::in, code_info::out) is det.
:- pred code_info__get_fail_info(fail_info::out,
code_info::in, code_info::out) is det.
:- pred code_info__set_fail_info(fail_info::in,
code_info::in, code_info::out) is det.
:- pred code_info__set_label_counter(counter::in,
code_info::in, code_info::out) is det.
:- pred code_info__set_succip_used(bool::in,
code_info::in, code_info::out) is det.
:- pred code_info__set_layout_info(map(label, internal_layout_info)::in,
code_info::in, code_info::out) is det.
:- pred code_info__get_max_temp_slot_count(int::out,
code_info::in, code_info::out) is det.
:- pred code_info__set_max_temp_slot_count(int::in,
code_info::in, code_info::out) is det.
:- pred code_info__get_temp_content_map(map(lval, slot_contents)::out,
code_info::in, code_info::out) is det.
:- pred code_info__set_temp_content_map(map(lval, slot_contents)::in,
code_info::in, code_info::out) is det.
:- pred code_info__set_non_common_static_data(list(comp_gen_c_data)::in,
code_info::in, code_info::out) is det.
%---------------------------------------------------------------------------%
% The code_info structure has three groups of fields.
%
% Some fields are static; they are set when the code_info structure
% is initialized, and never changed afterwards.
%
% Some fields record information about the state of the code generator
% at a particular location in the HLDS code of the current procedure.
% At the start of the branched control structure, the code generator
% remembers the values of these fields, and starts generating code
% for each branch from the same location-dependent state.
%
% Some fields record persistent information that does not depend
% on a code location. Updates to these fields must remain effective
% even when the code generator resets its location-dependent state.
:- type code_info --->
code_info(
% STATIC fields
globals :: globals,
% For the code generation options.
module_info :: module_info,
% The module_info structure - you just
% never know when you might need it.
pred_id :: pred_id,
% The id of the current predicate.
proc_id :: proc_id,
% The id of the current procedure.
proc_info :: proc_info,
% The proc_info for the this procedure.
varset :: prog_varset,
% The variables in this procedure.
var_slot_count :: int,
% The number of stack slots allocated.
% for storing variables.
% (Some extra stack slots are used
% for saving and restoring registers.)
maybe_trace_info :: maybe(trace_info),
% Information about which stack slots
% the call sequence number and depth
% are stored in, provided tracing is
% switched on.
% LOCATION DEPENDENT fields
forward_live_vars :: set(prog_var),
% Variables that are forward live
% after this goal.
instmap :: instmap,
% Current insts of the live variables.
zombies :: set(prog_var),
% Zombie variables; variables that are not
% forward live but which are protected by
% an enclosing resume point.
var_locns_info :: var_locns_info,
% A map storing the information about
% the status of each known variable.
% (Known vars = forward live vars + zombies)
temps_in_use :: set(lval),
% The set of temporary locations currently in
% use. These lvals must be all be keys in the
% map of temporary locations ever used, which
% is one of the persistent fields below. Any
% keys in that map which are not in this set
% are free for reuse.
fail_info :: fail_info,
% Information about how to manage failures.
% PERSISTENT fields
label_num_src :: counter,
% Counter for the local labels used
% by this procedure.
cell_num_src :: counter,
% Counter for cells in this proc.
store_succip :: bool,
% do we need to store succip?
label_info :: map(label, internal_layout_info),
% Information on which values
% are live and where at which labels,
% for tracing and/or accurate gc.
stackslot_max :: int,
% The maximum number of extra
% temporary stackslots that have been
% used during the procedure.
temp_contents :: map(lval, slot_contents),
% The temporary locations that have ever been
% used on the stack, and what they contain.
% Once we have used a stack slot to store
% e.g. a ticket, we never reuse that slot
% to hold something else, e.g. a saved hp.
% This policy prevents us from making such
% conflicting choices in parallel branches,
% which would make it impossible to describe
% to gc what the slot contains after the end
% of the branched control structure.
comp_gen_c_data :: list(comp_gen_c_data),
% Static data structures created for this
% procedure which do not need to be scanned
% by llds_common.
max_reg_used :: int
% At each call to MR_trace, we compute the
% highest rN register number that contains
% a useful value. This slot contains the
% maximum of these highest values. Therefore
% at all calls to MR_trace in the procedure,
% we need only save the registers whose numbers
% are equal to or smaller than this field.
% This slot contains -1 if tracing is not
% enabled.
).
:- type var_locns_info
---> exprn_info(exprn_info)
; var_locn_info(var_locn_info).
%---------------------------------------------------------------------------%
code_info__init(SaveSuccip, Globals, PredId, ProcId, ProcInfo, FollowVars,
ModuleInfo, CellCounter, ResumePoint, TraceSlotInfo, CodeInfo)
:-
proc_info_get_initial_instmap(ProcInfo, ModuleInfo, InstMap),
proc_info_liveness_info(ProcInfo, Liveness),
proc_info_headvars(ProcInfo, HeadVars),
proc_info_arg_info(ProcInfo, ArgInfos),
proc_info_interface_code_model(ProcInfo, CodeModel),
assoc_list__from_corresponding_lists(HeadVars, ArgInfos, Args),
arg_info__build_input_arg_list(Args, ArgList),
proc_info_varset(ProcInfo, VarSet),
proc_info_stack_slots(ProcInfo, StackSlots),
globals__lookup_bool_option(Globals, lazy_code, LazyCode),
globals__get_options(Globals, Options),
globals__get_trace_level(Globals, TraceLevel),
( TraceLevel \= none ->
trace__fail_vars(ModuleInfo, ProcInfo, FailVars),
MaybeFailVars = yes(FailVars),
set__union(Liveness, FailVars, EffLiveness)
;
MaybeFailVars = no,
EffLiveness = Liveness
),
(
LazyCode = yes,
ArgRvalList = assoc_list__map_values(
exprn_aux__var_lval_to_rval, ArgList),
code_exprn__init_state(ArgRvalList, VarSet, StackSlots,
FollowVars, Options, ExprnInfo),
VarLocnsInfo = exprn_info(ExprnInfo)
;
LazyCode = no,
var_locn__init_state(ArgList, EffLiveness, VarSet,
StackSlots, FollowVars, Options, VarLocnInfo),
VarLocnsInfo = var_locn_info(VarLocnInfo)
),
stack__init(ResumePoints),
globals__lookup_bool_option(Globals, allow_hijacks, AllowHijack),
(
AllowHijack = yes,
Hijack = allowed
;
AllowHijack = no,
Hijack = not_allowed
),
DummyFailInfo = fail_info(ResumePoints, resume_point_unknown,
may_be_different, not_inside_non_condition, Hijack),
map__init(TempContentMap),
set__init(TempsInUse),
set__init(Zombies),
map__init(LayoutMap),
code_info__max_var_slot(StackSlots, VarSlotMax),
trace__reserved_slots(ProcInfo, Globals, FixedSlots),
int__max(VarSlotMax, FixedSlots, SlotMax),
CodeInfo0 = code_info(
Globals,
ModuleInfo,
PredId,
ProcId,
ProcInfo,
VarSet,
SlotMax,
no,
Liveness,
InstMap,
Zombies,
VarLocnsInfo,
TempsInUse,
DummyFailInfo, % code_info__init_fail_info
% will override this dummy value
counter__init(1),
CellCounter,
SaveSuccip,
LayoutMap,
0,
TempContentMap,
[],
-1
),
code_info__init_maybe_trace_info(TraceLevel, Globals, TraceSlotInfo,
CodeInfo0, CodeInfo1),
code_info__init_fail_info(CodeModel, MaybeFailVars, ResumePoint,
CodeInfo1, CodeInfo).
:- pred code_info__init_maybe_trace_info(trace_level::in, globals::in,
trace_slot_info::out, code_info::in, code_info::out) is det.
code_info__init_maybe_trace_info(TraceLevel, Globals, TraceSlotInfo) -->
( { TraceLevel \= none } ->
trace__setup(Globals, TraceSlotInfo, TraceInfo),
code_info__set_maybe_trace_info(yes(TraceInfo))
;
{ TraceSlotInfo = trace_slot_info(no, no, no) }
).
%---------------------------------------------------------------------------%
code_info__get_globals(CI^globals, CI, CI).
code_info__get_module_info(CI^module_info, CI, CI).
code_info__get_pred_id(CI^pred_id, CI, CI).
code_info__get_proc_id(CI^proc_id, CI, CI).
code_info__get_proc_info(CI^proc_info, CI, CI).
code_info__get_varset(CI^varset, CI, CI).
code_info__get_var_slot_count(CI^var_slot_count, CI, CI).
code_info__get_maybe_trace_info(CI^maybe_trace_info, CI, CI).
code_info__get_forward_live_vars(CI^forward_live_vars, CI, CI).
code_info__get_instmap(CI^instmap, CI, CI).
code_info__get_zombies(CI^zombies, CI, CI).
code_info__get_var_locns_info(CI^var_locns_info, CI, CI).
code_info__get_temps_in_use(CI^temps_in_use, CI, CI).
code_info__get_fail_info(CI^fail_info, CI, CI).
code_info__get_label_counter(CI^label_num_src, CI, CI).
code_info__get_cell_counter(CI^cell_num_src, CI, CI).
code_info__get_succip_used(CI^store_succip, CI, CI).
code_info__get_layout_info(CI^label_info, CI, CI).
code_info__get_max_temp_slot_count(CI^stackslot_max, CI, CI).
code_info__get_temp_content_map(CI^temp_contents, CI, CI).
code_info__get_non_common_static_data(CI^comp_gen_c_data, CI, CI).
code_info__get_max_reg_in_use_at_trace(CI^max_reg_used, CI, CI).
%---------------------------------------------------------------------------%
code_info__set_maybe_trace_info(TI, CI, CI^maybe_trace_info := TI).
code_info__set_forward_live_vars(LV, CI, CI^forward_live_vars := LV).
code_info__set_instmap(IM, CI, CI^instmap := IM).
code_info__set_zombies(Zs, CI, CI^zombies := Zs).
code_info__set_var_locns_info(EI, CI, CI^var_locns_info := EI).
code_info__set_temps_in_use(TI, CI, CI^temps_in_use := TI).
code_info__set_fail_info(FI, CI, CI^fail_info := FI).
code_info__set_label_counter(LC, CI, CI^label_num_src := LC).
code_info__set_cell_counter(CC, CI, CI^cell_num_src := CC).
code_info__set_succip_used(SU, CI, CI^store_succip := SU).
code_info__set_layout_info(LI, CI, CI^label_info := LI).
code_info__set_max_temp_slot_count(TM, CI, CI^stackslot_max := TM).
code_info__set_temp_content_map(CM, CI, CI^temp_contents := CM).
code_info__set_non_common_static_data(CG, CI, CI^comp_gen_c_data := CG).
code_info__set_max_reg_in_use_at_trace(MR, CI, CI^max_reg_used := MR).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Submodule for simple wrappers around access predicates.
:- interface.
% Get the hlds mapping from variables to stack slots
:- pred code_info__get_stack_slots(stack_slots, code_info, code_info).
:- mode code_info__get_stack_slots(out, in, out) is det.
% Get the table that contains advice about where
% variables should be put.
:- pred code_info__get_follow_var_map(follow_vars_map, code_info, code_info).
:- mode code_info__get_follow_var_map(out, in, out) is det.
% Get the integer that gives the number of the next
% non-reserved register.
:- pred code_info__get_next_non_reserved(int, code_info, code_info).
:- mode code_info__get_next_non_reserved(out, in, out) is det.
% Set the table that contains advice about where
% variables should be put.
:- pred code_info__set_follow_vars(follow_vars, code_info, code_info).
:- mode code_info__set_follow_vars(in, in, out) is det.
% code_info__pre_goal_update(GoalInfo, Atomic, OldCodeInfo, NewCodeInfo)
% updates OldCodeInfo to produce NewCodeInfo with the changes
% specified by GoalInfo.
:- pred code_info__pre_goal_update(hlds_goal_info, bool, code_info, code_info).
:- mode code_info__pre_goal_update(in, in, in, out) is det.
% code_info__post_goal_update(GoalInfo, OldCodeInfo, NewCodeInfo)
% updates OldCodeInfo to produce NewCodeInfo with the changes described
% by GoalInfo.
:- pred code_info__post_goal_update(hlds_goal_info, code_info, code_info).
:- mode code_info__post_goal_update(in, in, out) is det.
% Find out the type of the given variable.
:- pred code_info__variable_type(prog_var, type, code_info, code_info).
:- mode code_info__variable_type(in, out, in, out) is det.
:- pred code_info__lookup_type_defn(type, hlds_type_defn,
code_info, code_info).
:- mode code_info__lookup_type_defn(in, out, in, out) is det.
% Given a constructor id, and a variable (so that we can work out the
% type of the constructor), determine correct tag (representation)
% of that constructor.
:- pred code_info__cons_id_to_tag(prog_var, cons_id, cons_tag,
code_info, code_info).
:- mode code_info__cons_id_to_tag(in, in, out, in, out) is det.
% Get the code model of the current procedure.
:- pred code_info__get_proc_model(code_model, code_info, code_info).
:- mode code_info__get_proc_model(out, in, out) is det.
% Get the list of the head variables of the current procedure.
:- pred code_info__get_headvars(list(prog_var), code_info, code_info).
:- mode code_info__get_headvars(out, in, out) is det.
% Get the call argument information for the current procedure
:- pred code_info__get_arginfo(list(arg_info), code_info, code_info).
:- mode code_info__get_arginfo(out, in, out) is det.
% Get the call argument info for a given mode of a given predicate
:- pred code_info__get_pred_proc_arginfo(pred_id, proc_id, list(arg_info),
code_info, code_info).
:- mode code_info__get_pred_proc_arginfo(in, in, out, in, out) is det.
% Get the set of variables currently needed by the resume
% points of enclosing goals.
:- pred code_info__current_resume_point_vars(set(prog_var),
code_info, code_info).
:- mode code_info__current_resume_point_vars(out, in, out) is det.
:- pred code_info__variable_to_string(prog_var, string, code_info, code_info).
:- mode code_info__variable_to_string(in, out, in, out) is det.
% Create a code address which holds the address of the specified
% procedure.
% The fourth argument should be `no' if the the caller wants the
% returned address to be valid from everywhere in the program.
% If being valid from within the current procedure is enough,
% this argument should be `yes' wrapped around the value of the
% --procs-per-c-function option and the current procedure id.
% Using an address that is only valid from within the current
% procedure may make jumps more efficient.
%
% If the procs_per_c_function option tells us to put more than one
% procedure into each C function, but not all procedures in the module
% are in one function, then we would like to be able to use the
% fast form of reference to a procedure for references not only from
% within the same procedure but also from other procedures within
% the same C function. However, at the time of code generation,
% we do not yet know which procedures will be put into the same
% C functions, and so we cannot do this.
:- pred code_info__make_entry_label(module_info, pred_id, proc_id, bool,
code_addr, code_info, code_info).
:- mode code_info__make_entry_label(in, in, in, in, out, in, out) is det.
% Generate the next local label in sequence.
:- pred code_info__get_next_label(label, code_info, code_info).
:- mode code_info__get_next_label(out, in, out) is det.
% Generate the next cell number in sequence.
:- pred code_info__get_next_cell_number(int, code_info, code_info).
:- mode code_info__get_next_cell_number(out, in, out) is det.
% Note that the succip slot is used, and thus cannot be
% optimized away.
:- pred code_info__succip_is_used(code_info, code_info).
:- mode code_info__succip_is_used(in, out) is det.
:- pred code_info__add_trace_layout_for_label(label, term__context,
trace_port, goal_path, layout_label_info, code_info, code_info).
:- mode code_info__add_trace_layout_for_label(in, in, in,in, in, in, out)
is det.
:- pred code_info__add_non_common_static_data(comp_gen_c_data,
code_info, code_info).
:- mode code_info__add_non_common_static_data(in, in, out) is det.
%---------------------------------------------------------------------------%
:- implementation.
:- pred code_info__add_resume_layout_for_label(label, layout_label_info,
code_info, code_info).
:- mode code_info__add_resume_layout_for_label(in, in, in, out) is det.
code_info__get_stack_slots(StackSlots, CI, CI) :-
code_info__get_var_locns_info(VarInfo, CI, _),
(
VarInfo = exprn_info(ExprnInfo),
code_exprn__get_stack_slots(StackSlots, ExprnInfo, _)
;
VarInfo = var_locn_info(VarLocnInfo),
var_locn__get_stack_slots(StackSlots, VarLocnInfo, _)
).
code_info__get_follow_var_map(FollowVarMap, CI, CI) :-
code_info__get_var_locns_info(VarInfo, CI, _),
(
VarInfo = exprn_info(ExprnInfo),
code_exprn__get_follow_vars(FollowVars, ExprnInfo, _),
FollowVars = follow_vars(FollowVarMap, _)
;
VarInfo = var_locn_info(VarLocnInfo),
var_locn__get_follow_var_map(FollowVarMap, VarLocnInfo, _)
).
code_info__get_next_non_reserved(NextNonReserved, CI, CI) :-
code_info__get_var_locns_info(VarInfo, CI, _),
(
VarInfo = exprn_info(ExprnInfo),
code_exprn__get_follow_vars(FollowVars, ExprnInfo, _),
FollowVars = follow_vars(_, NextNonReserved)
;
VarInfo = var_locn_info(VarLocnInfo),
var_locn__get_next_non_reserved(NextNonReserved, VarLocnInfo,
_)
).
code_info__set_follow_vars(FollowVars, CI0, CI) :-
code_info__get_var_locns_info(VarInfo0, CI0, _),
(
VarInfo0 = exprn_info(ExprnInfo0),
code_exprn__set_follow_vars(FollowVars, ExprnInfo0, ExprnInfo),
VarInfo = exprn_info(ExprnInfo)
;
VarInfo0 = var_locn_info(VarLocnInfo0),
var_locn__set_follow_vars(FollowVars,
VarLocnInfo0, VarLocnInfo),
VarInfo = var_locn_info(VarLocnInfo)
),
code_info__set_var_locns_info(VarInfo, CI0, CI).
%-----------------------------------------------------------------------------%
% Update the code info structure to be consistent
% immediately prior to generating a goal.
code_info__pre_goal_update(GoalInfo, Atomic) -->
% The liveness pass puts resume_point annotations on some kinds
% of goals. The parts of the code generator that handle those kinds
% of goals should handle the resume point annotation as well;
% when they do, they remove the annotation. The following code
% is a sanity check to make sure that this has in fact been done.
{ goal_info_get_resume_point(GoalInfo, ResumePoint) },
(
{ ResumePoint = no_resume_point }
;
{ ResumePoint = resume_point(_, _) },
{ error("pre_goal_update with resume point") }
),
{ goal_info_get_follow_vars(GoalInfo, MaybeFollowVars) },
(
{ MaybeFollowVars = yes(FollowVars) },
code_info__set_follow_vars(FollowVars)
;
{ MaybeFollowVars = no }
),
% note: we must be careful to apply deaths before births
{ goal_info_get_pre_deaths(GoalInfo, PreDeaths) },
code_info__rem_forward_live_vars(PreDeaths),
code_info__maybe_make_vars_forward_dead(PreDeaths, no),
{ goal_info_get_pre_births(GoalInfo, PreBirths) },
code_info__add_forward_live_vars(PreBirths),
( { Atomic = yes } ->
{ goal_info_get_post_deaths(GoalInfo, PostDeaths) },
code_info__rem_forward_live_vars(PostDeaths)
;
[]
).
% Update the code info structure to be consistent
% immediately after generating a goal.
code_info__post_goal_update(GoalInfo) -->
% note: we must be careful to apply deaths before births
{ goal_info_get_post_deaths(GoalInfo, PostDeaths) },
code_info__rem_forward_live_vars(PostDeaths),
code_info__maybe_make_vars_forward_dead(PostDeaths, no),
{ goal_info_get_post_births(GoalInfo, PostBirths) },
code_info__add_forward_live_vars(PostBirths),
code_info__make_vars_forward_live(PostBirths),
{ goal_info_get_instmap_delta(GoalInfo, InstMapDelta) },
code_info__get_instmap(InstMap0),
{ instmap__apply_instmap_delta(InstMap0, InstMapDelta, InstMap) },
code_info__set_instmap(InstMap).
%---------------------------------------------------------------------------%
:- pred code_info__get_var_types(map(prog_var, type), code_info, code_info).
:- mode code_info__get_var_types(out, in, out) is det.
code_info__get_var_types(VarTypes) -->
code_info__get_proc_info(ProcInfo),
{ proc_info_vartypes(ProcInfo, VarTypes) }.
code_info__variable_type(Var, Type) -->
code_info__get_var_types(VarTypes),
{ map__lookup(VarTypes, Var, Type) }.
code_info__lookup_type_defn(Type, TypeDefn) -->
code_info__get_module_info(ModuleInfo),
{ type_to_type_id(Type, TypeIdPrime, _) ->
TypeId = TypeIdPrime
;
error("unknown type in code_info__lookup_type_defn")
},
{ module_info_types(ModuleInfo, TypeTable) },
{ map__lookup(TypeTable, TypeId, TypeDefn) }.
code_info__cons_id_to_tag(Var, ConsId, ConsTag) -->
code_info__variable_type(Var, Type),
code_info__get_module_info(ModuleInfo),
{ code_util__cons_id_to_tag(ConsId, Type, ModuleInfo, ConsTag) }.
%---------------------------------------------------------------------------%
code_info__get_proc_model(CodeModel) -->
code_info__get_proc_info(ProcInfo),
{ proc_info_interface_code_model(ProcInfo, CodeModel) }.
code_info__get_headvars(HeadVars) -->
code_info__get_module_info(ModuleInfo),
code_info__get_pred_id(PredId),
code_info__get_proc_id(ProcId),
{ module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo) },
{ proc_info_headvars(ProcInfo, HeadVars) }.
code_info__get_arginfo(ArgInfo) -->
code_info__get_pred_id(PredId),
code_info__get_proc_id(ProcId),
code_info__get_pred_proc_arginfo(PredId, ProcId, ArgInfo).
code_info__get_pred_proc_arginfo(PredId, ProcId, ArgInfo) -->
code_info__get_module_info(ModuleInfo),
{ module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo) },
{ proc_info_arg_info(ProcInfo, ArgInfo) }.
code_info__current_resume_point_vars(ResumeVars) -->
code_info__get_fail_info(FailInfo),
{ FailInfo = fail_info(ResumePointStack, _, _, _, _) },
{ stack__top_det(ResumePointStack, ResumePointInfo) },
{ code_info__pick_first_resume_point(ResumePointInfo, ResumeMap, _) },
{ map__keys(ResumeMap, ResumeMapVarList) },
{ set__list_to_set(ResumeMapVarList, ResumeVars) }.
code_info__variable_to_string(Var, Name) -->
code_info__get_varset(Varset),
{ varset__lookup_name(Varset, Var, Name) }.
%---------------------------------------------------------------------------%
code_info__make_entry_label(ModuleInfo, PredId, ProcId, Immed0, PredAddress) -->
(
{ Immed0 = no },
{ Immed = no }
;
{ Immed0 = yes },
code_info__get_globals(Globals),
{ globals__lookup_int_option(Globals, procs_per_c_function,
ProcsPerFunc) },
code_info__get_pred_id(CurPredId),
code_info__get_proc_id(CurProcId),
{ Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)) }
),
{ code_util__make_entry_label(ModuleInfo, PredId, ProcId, Immed,
PredAddress) }.
code_info__get_next_label(Label) -->
code_info__get_module_info(ModuleInfo),
code_info__get_pred_id(PredId),
code_info__get_proc_id(ProcId),
code_info__get_label_counter(C0),
{ counter__allocate(N, C0, C) },
code_info__set_label_counter(C),
{ code_util__make_internal_label(ModuleInfo, PredId, ProcId, N,
Label) }.
code_info__get_next_cell_number(N) -->
code_info__get_cell_counter(C0),
{ counter__allocate(N, C0, C) },
code_info__set_cell_counter(C).
code_info__succip_is_used -->
code_info__set_succip_used(yes).
code_info__add_trace_layout_for_label(Label, Context, Port, Path, Layout) -->
code_info__get_layout_info(Internals0),
{ Exec = yes(trace_port_layout_info(Context, Port, Path, Layout)) },
{ map__search(Internals0, Label, Internal0) ->
Internal0 = internal_layout_info(Exec0, Resume, Return),
( Exec0 = no ->
true
;
error("adding trace layout for already known label")
),
Internal = internal_layout_info(Exec, Resume, Return),
map__set(Internals0, Label, Internal, Internals)
;
Internal = internal_layout_info(Exec, no, no),
map__det_insert(Internals0, Label, Internal, Internals)
},
code_info__set_layout_info(Internals).
code_info__add_resume_layout_for_label(Label, LayoutInfo) -->
code_info__get_layout_info(Internals0),
{ Resume = yes(LayoutInfo) },
{ map__search(Internals0, Label, Internal0) ->
Internal0 = internal_layout_info(Exec, Resume0, Return),
( Resume0 = no ->
true
;
error("adding gc layout for already known label")
),
Internal = internal_layout_info(Exec, Resume, Return),
map__set(Internals0, Label, Internal, Internals)
;
Internal = internal_layout_info(no, Resume, no),
map__det_insert(Internals0, Label, Internal, Internals)
},
code_info__set_layout_info(Internals).
:- pred code_info__get_active_temps_data(assoc_list(lval, slot_contents),
code_info, code_info).
:- mode code_info__get_active_temps_data(out, in, out) is det.
code_info__get_active_temps_data(Temps) -->
code_info__get_temps_in_use(TempsInUse),
code_info__get_temp_content_map(TempContentMap),
{ map__select(TempContentMap, TempsInUse, TempsInUseContentMap) },
{ map__to_assoc_list(TempsInUseContentMap, Temps) }.
code_info__add_non_common_static_data(NonCommonData) -->
code_info__get_non_common_static_data(NonCommonDatas0),
code_info__set_non_common_static_data(
[NonCommonData | NonCommonDatas0]).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Submodule for handling branched control structures.
:- interface.
:- type position_info.
:- type branch_end_info.
:- type branch_end == maybe(branch_end_info).
:- pred code_info__remember_position(position_info, code_info, code_info).
:- mode code_info__remember_position(out, in, out) is det.
:- pred code_info__reset_to_position(position_info, code_info, code_info).
:- mode code_info__reset_to_position(in, in, out) is det.
:- pred code_info__reset_resume_known(position_info, code_info, code_info).
:- mode code_info__reset_resume_known(in, in, out) is det.
:- pred code_info__generate_branch_end(store_map, branch_end, branch_end,
code_tree, code_info, code_info).
:- mode code_info__generate_branch_end(in, in, out, out, in, out) is det.
:- pred code_info__after_all_branches(store_map, branch_end,
code_info, code_info).
:- mode code_info__after_all_branches(in, in, in, out) is det.
:- pred code_info__save_hp_in_branch(code_tree, lval, position_info,
position_info).
:- mode code_info__save_hp_in_branch(out, out, in, out) is det.
:- implementation.
:- type position_info
---> position_info(
code_info % The code_info at a given position
% in the code of the procedure.
).
:- type branch_end_info
---> branch_end_info(
code_info % The code_info at the end of a branch.
).
code_info__remember_position(position_info(C), C, C).
code_info__reset_to_position(position_info(PosCI), CurCI, NextCI) :-
% The static fields in PosCI and CurCI should be identical.
PosCI = code_info(_, _, _, _, _, _, _, _,
LA, LB, LC, LD, LE, LF, _, _, _, _, _, _, _, _ ),
CurCI = code_info(SA, SB, SC, SD, SE, SF, SG, SH,
_, _, _, _, _, _, PA, PB, PC, PD, PE, PF, PG, PH),
NextCI = code_info(SA, SB, SC, SD, SE, SF, SG, SH,
LA, LB, LC, LD, LE, LF, PA, PB, PC, PD, PE, PF, PG, PH).
code_info__reset_resume_known(BranchStart) -->
{ BranchStart = position_info(BranchStartCI) },
{ code_info__get_fail_info(BranchStartFailInfo, BranchStartCI, _) },
{ BranchStartFailInfo = fail_info(_, BSResumeKnown, _, _, _) },
code_info__get_fail_info(CurFailInfo),
{ CurFailInfo = fail_info(CurFailStack, _,
CurCurfMaxfr, CurCondEnv, CurHijack) },
{ NewFailInfo = fail_info(CurFailStack, BSResumeKnown,
CurCurfMaxfr, CurCondEnv, CurHijack) },
code_info__set_fail_info(NewFailInfo).
code_info__generate_branch_end(StoreMap, MaybeEnd0, MaybeEnd, Code) -->
{ map__to_assoc_list(StoreMap, VarLocs) },
code_info__get_var_locns_info(VarInfo),
(
{ VarInfo = exprn_info(_) }
;
% The eager code generator generates better code
% if it knows in advance where each variable should
% go. We don't need to reset the follow_vars
% afterwards, since every goal following a branched
% control structure must in any case be annotated with
% its own follow_var set.
{ VarInfo = var_locn_info(_) },
{ map__from_assoc_list(VarLocs, FollowVarsMap) },
{ assoc_list__values(VarLocs, Locs) },
{ code_util__max_mentioned_reg(Locs, MaxMentionedReg) },
code_info__set_follow_vars(follow_vars(FollowVarsMap,
MaxMentionedReg + 1))
),
code_info__place_vars(VarLocs, Code),
=(EndCodeInfo1),
{
MaybeEnd0 = no,
EndCodeInfo = EndCodeInfo1
;
MaybeEnd0 = yes(branch_end_info(EndCodeInfo0)),
% Make sure the left context we leave the
% branched structure with is valid for all branches.
code_info__get_fail_info(FailInfo0, EndCodeInfo0, _),
code_info__get_fail_info(FailInfo1, EndCodeInfo1, _),
FailInfo0 = fail_info(_, ResumeKnown0, CurfrMaxfr0,
CondEnv0, Hijack0),
FailInfo1 = fail_info(R, ResumeKnown1, CurfrMaxfr1,
CondEnv1, Hijack1),
(
ResumeKnown0 = resume_point_known(Redoip0),
ResumeKnown1 = resume_point_known(Redoip1)
->
ResumeKnown = resume_point_known(Redoip0),
require(unify(Redoip0, Redoip1),
"redoip mismatch in generate_branch_end")
;
ResumeKnown = resume_point_unknown
),
(
CurfrMaxfr0 = must_be_equal,
CurfrMaxfr1 = must_be_equal
->
CurfrMaxfr = must_be_equal
;
CurfrMaxfr = may_be_different
),
(
Hijack0 = allowed,
Hijack1 = allowed
->
Hijack = allowed
;
Hijack = not_allowed
),
require(unify(CondEnv0, CondEnv1),
"some but not all branches inside a non condition"),
FailInfo = fail_info(R, ResumeKnown, CurfrMaxfr,
CondEnv0, Hijack),
code_info__set_fail_info(FailInfo, EndCodeInfo1, EndCodeInfoA),
% Make sure the "temps in use" set at the end of the
% branched control structure includes every slot
% in use at the end of any branch.
code_info__get_temps_in_use(TempsInUse0, EndCodeInfo0, _),
code_info__get_temps_in_use(TempsInUse1, EndCodeInfo1, _),
set__union(TempsInUse0, TempsInUse1, TempsInUse),
code_info__set_temps_in_use(TempsInUse, EndCodeInfoA,
EndCodeInfo)
},
{ MaybeEnd = yes(branch_end_info(EndCodeInfo)) }.
code_info__after_all_branches(StoreMap, MaybeEnd, CI0, CI) :-
(
MaybeEnd = yes(BranchEnd),
BranchEnd = branch_end_info(BranchEndCodeInfo),
code_info__reset_to_position(position_info(BranchEndCodeInfo),
CI0, CI1),
code_info__remake_with_store_map(StoreMap, CI1, CI)
;
MaybeEnd = no,
error("no branches in branched control structure")
).
% code_info__remake_with_store_map throws away the var_info data
% structure, forgetting the current locations of all variables,
% and rebuilds it from scratch based on the given store map.
% The new var_info will know about only the variables present
% in the store map, and will believe they are where the store map
% says they are.
:- pred code_info__remake_with_store_map(store_map, code_info, code_info).
:- mode code_info__remake_with_store_map(in, in, out) is det.
code_info__remake_with_store_map(StoreMap) -->
{ map__to_assoc_list(StoreMap, VarLvals) },
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
VarRvals = assoc_list__map_values(exprn_aux__var_lval_to_rval,
VarLvals),
code_exprn__reinit_state(VarRvals, Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocnInfo0),
var_locn__reinit_state(VarLvals, VarLocnInfo0, VarLocnInfo),
VarInfo = var_locn_info(VarLocnInfo)
},
code_info__set_var_locns_info(VarInfo).
code_info__save_hp_in_branch(Code, Slot, Pos0, Pos) :-
Pos0 = position_info(CodeInfo0),
code_info__save_hp(Code, Slot, CodeInfo0, CodeInfo),
Pos = position_info(CodeInfo).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Submodule for the handling of failure continuations.
% The principles underlying this submodule of code_info.m are
% documented in the file compiler/notes/failure.html, which also
% defines terms such as "quarter hijack"). Some parts of the submodule
% also require knowledge of compiler/notes/allocation.html.
:- interface.
:- type resume_map.
:- type resume_point_info.
% `prepare_for_disj_hijack' should be called before entering
% a disjunction. It saves the values of any nondet stack slots
% the disjunction may hijack, and if necessary, sets the redofr
% slot of the top frame to point to this frame. The code at the
% start of the individual disjuncts will override the redoip slot.
%
% `undo_disj_hijack' should be called before entering the last
% disjunct of a disjunction. It undoes the effects of
% `prepare_for_disj_hijack'.
:- type disj_hijack_info.
:- pred code_info__prepare_for_disj_hijack(code_model::in,
disj_hijack_info::out, code_tree::out,
code_info::in, code_info::out) is det.
:- pred code_info__undo_disj_hijack(disj_hijack_info::in,
code_tree::out, code_info::in, code_info::out) is det.
% `prepare_for_ite_hijack' should be called before entering
% an if-then-else. It saves the values of any nondet stack slots
% the if-then-else may hijack, and if necessary, sets the redofr
% slot of the top frame to point to this frame. Our caller
% will then override the redoip slot to point to the start of
% the else part before generating the code of the condition.
%
% `ite_enter_then', which should be called generating code for
% the condition, sets up the failure state of the code generator
% for generating the then-part, and returns the code sequences
% to be used at the starts of the then-part and the else-part
% to undo the effects of any hijacking.
:- type ite_hijack_info.
:- pred code_info__prepare_for_ite_hijack(code_model::in,
ite_hijack_info::out, code_tree::out,
code_info::in, code_info::out) is det.
:- pred code_info__ite_enter_then(ite_hijack_info::in,
code_tree::out, code_tree::out, code_info::in, code_info::out) is det.
% `enter_simple_neg' and `leave_simple_neg' should be called before
% and after generating the code for a negated unification, in
% situations where failure is a direct branch. We handle this case
% specially, because it occurs frequently and should not require
% a flushing of the expression cache, whereas the general way of
% handling negations does require a flush. These two predicates
% handle all aspects of the negation except for the unification
% itself.
:- type simple_neg_info.
:- pred code_info__enter_simple_neg(set(prog_var)::in, hlds_goal_info::in,
simple_neg_info::out, code_info::in, code_info::out) is det.
:- pred code_info__leave_simple_neg(hlds_goal_info::in, simple_neg_info::in,
code_info::in, code_info::out) is det.
% `prepare_for_det_commit' and `generate_det_commit' should be
% called before and after generating the code for the multi goal
% being cut across. If the goal succeeds, the commit will cut
% any choice points generated in the goal.
:- type det_commit_info.
:- pred code_info__prepare_for_det_commit(det_commit_info::out,
code_tree::out, code_info::in, code_info::out) is det.
:- pred code_info__generate_det_commit(det_commit_info::in,
code_tree::out, code_info::in, code_info::out) is det.
% `prepare_for_semi_commit' and `generate_semi_commit' should be
% called before and after generating the code for the nondet goal
% being cut across. If the goal succeeds, the commit will cut
% any choice points generated in the goal.
:- type semi_commit_info.
:- pred code_info__prepare_for_semi_commit(semi_commit_info::out,
code_tree::out, code_info::in, code_info::out) is det.
:- pred code_info__generate_semi_commit(semi_commit_info::in,
code_tree::out, code_info::in, code_info::out) is det.
% Put the given resume point into effect, by pushing it on to
% the resume point stack, and if necessary generating code to
% override the redoip of the top nondet stack frame.
:- pred code_info__effect_resume_point(resume_point_info::in, code_model::in,
code_tree::out, code_info::in, code_info::out) is det.
:- pred code_info__pop_resume_point(code_info::in, code_info::out) is det.
% Return the details of the resume point currently on top of the
% failure continuation stack.
:- pred code_info__top_resume_point(resume_point_info::out,
code_info::in, code_info::out) is det.
% Call this predicate to say "we have just left a disjunction;
% we don't know what address the following code will need to
% backtrack to".
:- pred code_info__set_resume_point_to_unknown(code_info::in, code_info::out)
is det.
% Call this predicate to say "we have just returned a model_non call;
% we don't know what address the following code will need to
% backtrack to, and there may now be nondet frames on top of ours
% that do not have their redofr slots pointing to our frame".
:- pred code_info__set_resume_point_and_frame_to_unknown(code_info::in,
code_info::out) is det.
% Generate code for executing a failure that is appropriate for the
% current failure environment.
:- pred code_info__generate_failure(code_tree::out,
code_info::in, code_info::out) is det.
% Generate code that checks if the given rval is false, and if yes,
% executes a failure that is appropriate for the current failure
% environment.
:- pred code_info__fail_if_rval_is_false(rval::in, code_tree::out,
code_info::in, code_info::out) is det.
% Checks whether the appropriate code for failure in the current
% failure environment is a direct branch.
:- pred code_info__failure_is_direct_branch(code_addr::out,
code_info::in, code_info::out) is semidet.
% Checks under what circumstances the current failure environment
% would allow a model_non call at this point to be turned into a
% tail call, provided of course that the return from the call is
% followed immediately by succeed().
:- pred code_info__may_use_nondet_tailcall(nondet_tail_call::out,
code_info::in, code_info::out) is det.
% Materialize the given variables into registers or stack slots.
:- pred code_info__produce_vars(set(prog_var)::in, resume_map::out,
code_tree::out, code_info::in, code_info::out) is det.
% Put the variables needed in enclosing failure continuations
% into their stack slots.
:- pred code_info__flush_resume_vars_to_stack(code_tree::out,
code_info::in, code_info::out) is det.
% Set up the resume_point_info structure.
:- pred code_info__make_resume_point(set(prog_var)::in, resume_locs::in,
resume_map::in, resume_point_info::out, code_info::in, code_info::out)
is det.
% Generate the code for a resume point.
:- pred code_info__generate_resume_point(resume_point_info::in,
code_tree::out, code_info::in, code_info::out) is det.
% List the variables that need to be preserved for the given
% resume point.
:- pred code_info__resume_point_vars(resume_point_info::in, list(prog_var)::out)
is det.
% See whether the given resume point includes a code address
% that presumes all the resume point variables to be in their
% stack slots. If yes, return that code address; otherwise,
% abort the compiler.
:- pred code_info__resume_point_stack_addr(resume_point_info::in,
code_addr::out) is det.
%---------------------------------------------------------------------------%
:- implementation.
% The part of the code generator state that says how to handle
% failures; also called the failure continuation stack.
:- type fail_info
---> fail_info(
stack(resume_point_info),
resume_point_known,
curfr_vs_maxfr,
condition_env,
hijack_allowed
).
% A resumption point has one or two labels associated with it.
% Backtracking can arrive at either label. The code following
% each label will assume that the variables needed at the resumption
% point are in the locations given by the resume_map associated with
% the given label and nowhere else. Any code that can cause
% backtracking to a label must make sure that those variables are
% in the positions expected by the label.
%
% The only time when a code_addr in a resume_point info is not a label
% is when the code_addr is do_fail, which indicates that the resumption
% point is not in (this invocation of) this procedure.
:- type resume_point_info
---> orig_only(resume_map, code_addr)
; stack_only(resume_map, code_addr)
; orig_and_stack(resume_map, code_addr, resume_map, code_addr)
; stack_and_orig(resume_map, code_addr, resume_map, code_addr).
% A resume map maps the variables that will be needed at a resumption
% point to the locations in which they will be.
:- type resume_map == map(prog_var, set(lval)).
:- type redoip_update ---> has_been_done
; wont_be_done.
:- type resume_point_known ---> resume_point_known(redoip_update)
; resume_point_unknown.
:- type curfr_vs_maxfr ---> must_be_equal
; may_be_different.
:- type condition_env ---> inside_non_condition
; not_inside_non_condition.
:- type hijack_allowed ---> allowed
; not_allowed.
%---------------------------------------------------------------------------%
:- type disj_hijack_info
---> disj_no_hijack
; disj_temp_frame
; disj_quarter_hijack
; disj_half_hijack(
lval % The stack slot in which we saved
% the value of the hijacked redoip.
)
; disj_full_hijack(
lval, % The stack slot in which we saved
% the value of the hijacked redoip.
lval % The stack slot in which we saved
% the value of the hijacked redofr.
).
code_info__prepare_for_disj_hijack(CodeModel, HijackInfo, Code) -->
code_info__get_fail_info(FailInfo),
{ FailInfo = fail_info(_, ResumeKnown, CurfrMaxfr, CondEnv, Allow) },
(
{ CodeModel \= model_non }
->
{ HijackInfo = disj_no_hijack },
{ Code = node([
comment("disj no hijack")
- ""
]) }
;
{ Allow = not_allowed ; CondEnv = inside_non_condition }
->
{ HijackInfo = disj_temp_frame },
code_info__create_temp_frame(do_fail,
"prepare for disjunction", Code)
;
{ CurfrMaxfr = must_be_equal },
{ ResumeKnown = resume_point_known(has_been_done) }
->
{ HijackInfo = disj_quarter_hijack },
{ Code = node([
comment("disj quarter hijack")
- ""
]) }
;
{ CurfrMaxfr = must_be_equal }
->
% Here ResumeKnown must be resume_point_unknown
% or resume_point_known(wont_be_done).
code_info__acquire_temp_slot(lval(redoip(lval(curfr))),
RedoipSlot),
{ HijackInfo = disj_half_hijack(RedoipSlot) },
{ Code = node([
assign(RedoipSlot, lval(redoip(lval(curfr))))
- "prepare for half disj hijack"
]) }
;
% Here CurfrMaxfr must be may_be_different.
code_info__acquire_temp_slot(lval(redoip(lval(maxfr))),
RedoipSlot),
code_info__acquire_temp_slot(lval(redofr(lval(maxfr))),
RedofrSlot),
{ HijackInfo = disj_full_hijack(RedoipSlot, RedofrSlot) },
{ Code = node([
assign(RedoipSlot, lval(redoip(lval(maxfr))))
- "prepare for full disj hijack",
assign(RedofrSlot, lval(redofr(lval(maxfr))))
- "prepare for full disj hijack",
assign(redofr(lval(maxfr)), lval(curfr))
- "prepare for full disj hijack"
]) }
).
code_info__undo_disj_hijack(HijackInfo, Code) -->
code_info__get_fail_info(FailInfo0),
{ FailInfo0 = fail_info(ResumePoints, ResumeKnown, CurfrMaxfr,
CondEnv, Allow) },
(
{ HijackInfo = disj_no_hijack },
{ Code = empty }
;
{ HijackInfo = disj_temp_frame },
{ Code = node([
assign(maxfr, lval(prevfr(lval(maxfr))))
- "restore maxfr for temp frame disj"
]) }
;
{ HijackInfo = disj_quarter_hijack },
{ require(unify(CurfrMaxfr, must_be_equal),
"maxfr may differ from curfr in disj_quarter_hijack") },
{ stack__top_det(ResumePoints, ResumePoint) },
{ code_info__pick_stack_resume_point(ResumePoint,
_, StackLabel) },
{ LabelConst = const(code_addr_const(StackLabel)) },
{ Code = node([
assign(redoip(lval(curfr)), LabelConst)
- "restore redoip for quarter disj hijack"
]) }
;
{ HijackInfo = disj_half_hijack(RedoipSlot) },
{ require(unify(ResumeKnown, resume_point_unknown),
"resume point known in disj_half_hijack") },
{ require(unify(CurfrMaxfr, must_be_equal),
"maxfr may differ from curfr in disj_half_hijack") },
{ Code = node([
assign(redoip(lval(curfr)), lval(RedoipSlot))
- "restore redoip for half disj hijack"
]) }
;
{ HijackInfo = disj_full_hijack(RedoipSlot, RedofrSlot) },
{ require(unify(CurfrMaxfr, may_be_different),
"maxfr same as curfr in disj_full_hijack") },
{ Code = node([
assign(redoip(lval(maxfr)), lval(RedoipSlot))
- "restore redoip for full disj hijack",
assign(redofr(lval(maxfr)), lval(RedofrSlot))
- "restore redofr for full disj hijack"
]) }
),
(
% HijackInfo \= disj_no_hijack if and only if
% the disjunction is model_non.
{ HijackInfo \= disj_no_hijack },
{ CondEnv = inside_non_condition }
->
{ FailInfo = fail_info(ResumePoints, resume_point_unknown,
CurfrMaxfr, CondEnv, Allow) },
code_info__set_fail_info(FailInfo)
;
[]
).
%---------------------------------------------------------------------------%
:- type ite_hijack_info
---> ite_info(
resume_point_known,
condition_env,
ite_hijack_type
).
:- type ite_hijack_type
---> ite_no_hijack
; ite_temp_frame(
lval % The stack slot in which we saved
% the value of maxfr.
)
; ite_quarter_hijack
; ite_half_hijack(
lval % The stack slot in which we saved
% the value of the hijacked redoip.
)
; ite_full_hijack(
lval, % The stack slot in which we saved
% the value of the hijacked redoip.
lval, % The stack slot in which we saved
% the value of the hijacked redofr.
lval % The stack slot in which we saved
% the value of maxfr.
).
code_info__prepare_for_ite_hijack(EffCodeModel, HijackInfo, Code) -->
code_info__get_fail_info(FailInfo),
{ FailInfo = fail_info(_, ResumeKnown, CurfrMaxfr, CondEnv, Allow) },
(
{ EffCodeModel \= model_non }
->
{ HijackType = ite_no_hijack },
{ Code = node([
comment("ite no hijack")
- ""
]) }
;
{ Allow = not_allowed ; CondEnv = inside_non_condition }
->
code_info__acquire_temp_slot(lval(maxfr), MaxfrSlot),
{ HijackType = ite_temp_frame(MaxfrSlot) },
code_info__create_temp_frame(do_fail, "prepare for ite",
TempFrameCode),
{ MaxfrCode = node([
assign(MaxfrSlot, lval(maxfr))
- "prepare for ite"
]) },
{ Code = tree(TempFrameCode, MaxfrCode) }
;
{ CurfrMaxfr = must_be_equal },
{ ResumeKnown = resume_point_known(_) }
->
{ HijackType = ite_quarter_hijack },
{ Code = node([
comment("ite quarter hijack")
- ""
]) }
;
{ CurfrMaxfr = must_be_equal }
->
% Here ResumeKnown must be resume_point_unknown.
code_info__acquire_temp_slot(lval(redoip(lval(curfr))),
RedoipSlot),
{ HijackType = ite_half_hijack(RedoipSlot) },
{ Code = node([
assign(RedoipSlot, lval(redoip(lval(curfr))))
- "prepare for half ite hijack"
]) }
;
% Here CurfrMaxfr must be may_be_different.
code_info__acquire_temp_slot(lval(redoip(lval(maxfr))),
RedoipSlot),
code_info__acquire_temp_slot(lval(redofr(lval(maxfr))),
RedofrSlot),
code_info__acquire_temp_slot(lval(maxfr),
MaxfrSlot),
{ HijackType = ite_full_hijack(RedoipSlot, RedofrSlot,
MaxfrSlot) },
{ Code = node([
assign(MaxfrSlot, lval(maxfr))
- "prepare for full ite hijack",
assign(RedoipSlot, lval(redoip(lval(maxfr))))
- "prepare for full ite hijack",
assign(RedofrSlot, lval(redofr(lval(maxfr))))
- "prepare for full ite hijack",
assign(redofr(lval(maxfr)), lval(curfr))
- "prepare for full ite hijack"
]) }
),
{ HijackInfo = ite_info(ResumeKnown, CondEnv, HijackType) },
( { EffCodeModel = model_non } ->
code_info__inside_non_condition
;
[]
).
code_info__ite_enter_then(HijackInfo, ThenCode, ElseCode) -->
code_info__get_fail_info(FailInfo0),
{ FailInfo0 = fail_info(ResumePoints0, ResumeKnown0, CurfrMaxfr,
_, Allow) },
{ stack__pop_det(ResumePoints0, _, ResumePoints) },
{ HijackInfo = ite_info(HijackResumeKnown, OldCondEnv, HijackType) },
{
HijackType = ite_no_hijack,
ThenCode = empty,
ElseCode = ThenCode
;
HijackType = ite_temp_frame(MaxfrSlot),
ThenCode = node([
% We can't remove the frame, it may not be on top.
assign(redoip(lval(MaxfrSlot)),
const(code_addr_const(do_fail)))
- "soft cut for temp frame ite"
]),
ElseCode = node([
assign(maxfr, lval(prevfr(lval(MaxfrSlot))))
- "restore maxfr for temp frame ite"
])
;
HijackType = ite_quarter_hijack,
stack__top_det(ResumePoints, ResumePoint),
(
code_info__maybe_pick_stack_resume_point(ResumePoint,
_, StackLabel)
->
LabelConst = const(code_addr_const(StackLabel)),
ThenCode = node([
assign(redoip(lval(curfr)), LabelConst) -
"restore redoip for quarter ite hijack"
])
;
% This can happen only if ResumePoint is unreachable
% from here.
ThenCode = empty
),
ElseCode = ThenCode
;
HijackType = ite_half_hijack(RedoipSlot),
ThenCode = node([
assign(redoip(lval(curfr)), lval(RedoipSlot))
- "restore redoip for half ite hijack"
]),
ElseCode = ThenCode
;
HijackType = ite_full_hijack(RedoipSlot, RedofrSlot,
MaxfrSlot),
ThenCode = node([
assign(redoip(lval(MaxfrSlot)), lval(RedoipSlot))
- "restore redoip for full ite hijack",
assign(redofr(lval(MaxfrSlot)), lval(RedofrSlot))
- "restore redofr for full ite hijack"
]),
ElseCode = node([
assign(redoip(lval(maxfr)), lval(RedoipSlot))
- "restore redoip for full ite hijack",
assign(redofr(lval(maxfr)), lval(RedofrSlot))
- "restore redofr for full ite hijack"
])
},
{ ResumeKnown0 = resume_point_unknown ->
ResumeKnown = resume_point_unknown
;
ResumeKnown = HijackResumeKnown
},
{ FailInfo = fail_info(ResumePoints, ResumeKnown, CurfrMaxfr,
OldCondEnv, Allow) },
code_info__set_fail_info(FailInfo).
%---------------------------------------------------------------------------%
:- type simple_neg_info == fail_info.
code_info__enter_simple_neg(ResumeVars, GoalInfo, FailInfo0) -->
code_info__get_fail_info(FailInfo0),
% The only reason why we push a resume point at all
% is to protect the variables in ResumeVars from becoming
% unknown; by including them in the domain of the resume point,
% we guarantee that they will become zombies instead of
% unknown if they die in the pre- or post-goal updates.
% Therefore the only part of ResumePoint that matters
% is the set of variables in the resume map; the other
% parts of ResumePoint (the locations, the code address)
% will not be referenced.
{ set__to_sorted_list(ResumeVars, ResumeVarList) },
{ map__init(ResumeMap0) },
{ code_info__make_fake_resume_map(ResumeVarList,
ResumeMap0, ResumeMap) },
{ ResumePoint = orig_only(ResumeMap, do_redo) },
code_info__effect_resume_point(ResumePoint, model_semi, Code),
{ require(unify(Code, empty), "nonempty code for simple neg") },
code_info__pre_goal_update(GoalInfo, yes).
code_info__leave_simple_neg(GoalInfo, FailInfo) -->
code_info__post_goal_update(GoalInfo),
code_info__set_fail_info(FailInfo).
:- pred code_info__make_fake_resume_map(list(prog_var)::in,
map(prog_var, set(lval))::in, map(prog_var, set(lval))::out) is det.
code_info__make_fake_resume_map([], ResumeMap, ResumeMap).
code_info__make_fake_resume_map([Var | Vars], ResumeMap0, ResumeMap) :-
% a visibly fake location
set__singleton_set(Locns, reg(r, -1)),
map__det_insert(ResumeMap0, Var, Locns, ResumeMap1),
code_info__make_fake_resume_map(Vars, ResumeMap1, ResumeMap).
%---------------------------------------------------------------------------%
:- type det_commit_info
---> det_commit_info(
maybe(lval), % Location of saved maxfr.
maybe(pair(lval)) % Location of saved ticket
% counter and trail pointer.
).
code_info__prepare_for_det_commit(DetCommitInfo, Code) -->
code_info__get_fail_info(FailInfo0),
{ FailInfo0 = fail_info(_, _, CurfrMaxfr, _, _) },
(
{ CurfrMaxfr = may_be_different },
code_info__acquire_temp_slot(lval(maxfr), MaxfrSlot),
{ SaveMaxfrCode = node([
assign(MaxfrSlot, lval(maxfr))
- "save the value of maxfr"
]) },
{ MaybeMaxfrSlot = yes(MaxfrSlot) }
;
{ CurfrMaxfr = must_be_equal },
{ SaveMaxfrCode = empty },
{ MaybeMaxfrSlot = no }
),
code_info__maybe_save_trail_info(MaybeTrailSlots, SaveTrailCode),
{ DetCommitInfo = det_commit_info(MaybeMaxfrSlot, MaybeTrailSlots) },
{ Code = tree(SaveMaxfrCode, SaveTrailCode) }.
code_info__generate_det_commit(DetCommitInfo, Code) -->
{ DetCommitInfo = det_commit_info(MaybeMaxfrSlot, MaybeTrailSlots) },
(
{ MaybeMaxfrSlot = yes(MaxfrSlot) },
{ RestoreMaxfrCode = node([
assign(maxfr, lval(MaxfrSlot))
- "restore the value of maxfr - perform commit"
]) },
code_info__release_temp_slot(MaxfrSlot)
;
{ MaybeMaxfrSlot = no },
{ RestoreMaxfrCode = node([
assign(maxfr, lval(curfr))
- "restore the value of maxfr - perform commit"
]) }
),
code_info__maybe_restore_trail_info(MaybeTrailSlots,
CommitTrailCode, _),
{ Code = tree(RestoreMaxfrCode, CommitTrailCode) }.
%---------------------------------------------------------------------------%
:- type semi_commit_info
---> semi_commit_info(
fail_info, % Fail_info on entry.
resume_point_info,
commit_hijack_info,
maybe(pair(lval)) % Location of saved ticket
% counter and trail pointer.
).
:- type commit_hijack_info
---> commit_temp_frame(
lval, % The stack slot in which we saved
% the old value of maxfr.
bool % Do we bracket the goal with
% MR_commit_mark and MR_commit_cut?
)
; commit_quarter_hijack
; commit_half_hijack(
lval % The stack slot in which we saved
% the value of the hijacked redoip.
)
; commit_full_hijack(
lval, % The stack slot in which we saved
% the value of the hijacked redoip.
lval, % The stack slot in which we saved
% the value of the hijacked redofr.
lval % The stack slot in which we saved
% the value of maxfr.
).
code_info__prepare_for_semi_commit(SemiCommitInfo, Code) -->
code_info__get_fail_info(FailInfo0),
{ FailInfo0 = fail_info(ResumePoints0, ResumeKnown, CurfrMaxfr,
CondEnv, Allow) },
{ stack__top_det(ResumePoints0, TopResumePoint) },
code_info__clone_resume_point(TopResumePoint, NewResumePoint),
{ stack__push(ResumePoints0, NewResumePoint, ResumePoints) },
{ FailInfo = fail_info(ResumePoints, resume_point_known(has_been_done),
CurfrMaxfr, CondEnv, Allow) },
code_info__set_fail_info(FailInfo),
{ code_info__pick_stack_resume_point(NewResumePoint, _, StackLabel) },
{ StackLabelConst = const(code_addr_const(StackLabel)) },
(
{ Allow = not_allowed ; CondEnv = inside_non_condition }
->
code_info__acquire_temp_slot(lval(maxfr), MaxfrSlot),
{ MaxfrCode = node([
assign(MaxfrSlot, lval(maxfr))
- "prepare for temp frame commit"
]) },
code_info__create_temp_frame(StackLabel,
"prepare for temp frame commit", TempFrameCode),
code_info__get_globals(Globals),
{ globals__lookup_bool_option(Globals, use_minimal_model,
UseMinimalModel) },
{ HijackInfo = commit_temp_frame(MaxfrSlot, UseMinimalModel) },
{
UseMinimalModel = yes,
% If the code we are committing across starts but
% does not complete the evaluation of a tabled subgoal,
% the cut will remove the generator's choice point,
% so that the evaluation of the subgoal will never
% be completed. We handle such "dangling" generators
% by removing them from the subgoal trie of the
% tabled procedure. This requires knowing what
% tabled subgoals are started inside commits,
% which is why we wrap the goal being committed across
% inside MR_commit_{mark,cut}.
Components = [
pragma_c_raw_code(
"\tsave_transient_registers();\n"),
pragma_c_raw_code(
"\tMR_commit_mark();\n"),
pragma_c_raw_code(
"\trestore_transient_registers();\n")
],
MarkCode = node([
pragma_c([], Components, will_not_call_mercury,
no, no, no, no) - ""
])
;
UseMinimalModel = no,
MarkCode = empty
},
{ HijackCode = tree(MaxfrCode, tree(TempFrameCode, MarkCode)) }
;
{ ResumeKnown = resume_point_known(has_been_done) },
{ CurfrMaxfr = must_be_equal }
->
{ HijackInfo = commit_quarter_hijack },
{ HijackCode = node([
assign(redoip(lval(curfr)), StackLabelConst)
- "hijack the redofr slot"
]) }
;
{ CurfrMaxfr = must_be_equal }
->
% Here ResumeKnown must be resume_point_unknown or
% resume_point_known(wont_be_done).
code_info__acquire_temp_slot(lval(redoip(lval(curfr))),
RedoipSlot),
{ HijackInfo = commit_half_hijack(RedoipSlot) },
{ HijackCode = node([
assign(RedoipSlot, lval(redoip(lval(curfr))))
- "prepare for half commit hijack",
assign(redoip(lval(curfr)), StackLabelConst)
- "hijack the redofr slot"
]) }
;
% Here CurfrMaxfr must be may_be_different.
code_info__acquire_temp_slot(lval(redoip(lval(maxfr))),
RedoipSlot),
code_info__acquire_temp_slot(lval(redofr(lval(maxfr))),
RedofrSlot),
code_info__acquire_temp_slot(lval(maxfr), MaxfrSlot),
{ HijackInfo = commit_full_hijack(RedoipSlot, RedofrSlot,
MaxfrSlot) },
{ HijackCode = node([
assign(RedoipSlot, lval(redoip(lval(maxfr))))
- "prepare for full commit hijack",
assign(RedofrSlot, lval(redofr(lval(maxfr))))
- "prepare for full commit hijack",
assign(MaxfrSlot, lval(maxfr))
- "prepare for full commit hijack",
assign(redofr(lval(maxfr)), lval(curfr))
- "hijack the redofr slot",
assign(redoip(lval(maxfr)), StackLabelConst)
- "hijack the redoip slot"
]) }
),
code_info__maybe_save_trail_info(MaybeTrailSlots, SaveTrailCode),
{ SemiCommitInfo = semi_commit_info(FailInfo0, NewResumePoint,
HijackInfo, MaybeTrailSlots) },
{ Code = tree(HijackCode, SaveTrailCode) }.
code_info__generate_semi_commit(SemiCommitInfo, Code) -->
{ SemiCommitInfo = semi_commit_info(FailInfo, ResumePoint,
HijackInfo, MaybeTrailSlots) },
code_info__set_fail_info(FailInfo),
% XXX should release the temp slots in each arm of the switch
(
{ HijackInfo = commit_temp_frame(MaxfrSlot, UseMinimalModel) },
{ MaxfrCode = node([
assign(maxfr, lval(MaxfrSlot))
- "restore maxfr for temp frame hijack"
]) },
{
UseMinimalModel = yes,
% See the comment in prepare_for_semi_commit above.
Components = [
pragma_c_raw_code("\tMR_commit_cut();\n")
],
CutCode = node([
pragma_c([], Components, will_not_call_mercury,
no, no, no, no)
- "commit for temp frame hijack"
])
;
UseMinimalModel = no,
CutCode = empty
},
{ SuccessUndoCode = tree(MaxfrCode, CutCode) },
{ FailureUndoCode = tree(MaxfrCode, CutCode) }
;
{ HijackInfo = commit_quarter_hijack },
{ FailInfo = fail_info(ResumePoints, _, _, _, _) },
{ stack__top_det(ResumePoints, TopResumePoint) },
{ code_info__pick_stack_resume_point(TopResumePoint,
_, StackLabel) },
{ StackLabelConst = const(code_addr_const(StackLabel)) },
{ SuccessUndoCode = node([
assign(maxfr, lval(curfr))
- "restore maxfr for quarter commit hijack",
assign(redoip(lval(maxfr)), StackLabelConst)
- "restore redoip for quarter commit hijack"
]) },
{ FailureUndoCode = node([
assign(redoip(lval(maxfr)), StackLabelConst)
- "restore redoip for quarter commit hijack"
]) }
;
{ HijackInfo = commit_half_hijack(RedoipSlot) },
{ SuccessUndoCode = node([
assign(maxfr, lval(curfr))
- "restore maxfr for half commit hijack",
assign(redoip(lval(maxfr)), lval(RedoipSlot))
- "restore redoip for half commit hijack"
]) },
{ FailureUndoCode = node([
assign(redoip(lval(maxfr)), lval(RedoipSlot))
- "restore redoip for half commit hijack"
]) }
;
{ HijackInfo = commit_full_hijack(RedoipSlot, RedofrSlot,
MaxfrSlot) },
{ SuccessUndoCode = node([
assign(maxfr, lval(MaxfrSlot))
- "restore maxfr for full commit hijack",
assign(redoip(lval(maxfr)), lval(RedoipSlot))
- "restore redoip for full commit hijack",
assign(redofr(lval(maxfr)), lval(RedofrSlot))
- "restore redofr for full commit hijack"
]) },
{ FailureUndoCode = node([
assign(redoip(lval(maxfr)), lval(RedoipSlot))
- "restore redoip for full commit hijack",
assign(redofr(lval(maxfr)), lval(RedofrSlot))
- "restore redofr for full commit hijack"
]) }
),
code_info__remember_position(AfterCommit),
code_info__generate_resume_point(ResumePoint, ResumePointCode),
code_info__generate_failure(FailCode),
code_info__reset_to_position(AfterCommit),
code_info__maybe_restore_trail_info(MaybeTrailSlots,
CommitTrailCode, RestoreTrailCode),
code_info__get_next_label(SuccLabel),
{ GotoSuccLabel = node([
goto(label(SuccLabel)) - "Jump to success continuation"
]) },
{ SuccLabelCode = node([
label(SuccLabel) - "Success continuation"
]) },
{ SuccessCode =
tree(SuccessUndoCode,
CommitTrailCode)
},
{ FailureCode =
tree(ResumePointCode,
tree(FailureUndoCode,
tree(RestoreTrailCode,
FailCode)))
},
{ Code =
tree(SuccessCode,
tree(GotoSuccLabel,
tree(FailureCode,
SuccLabelCode)))
}.
%---------------------------------------------------------------------------%
:- pred code_info__inside_non_condition(code_info::in, code_info::out) is det.
code_info__inside_non_condition -->
code_info__get_fail_info(FailInfo0),
{ FailInfo0 = fail_info(ResumePoints, ResumeKnown, CurfrMaxfr,
_, Allow) },
{ FailInfo = fail_info(ResumePoints, ResumeKnown, CurfrMaxfr,
inside_non_condition, Allow) },
code_info__set_fail_info(FailInfo).
:- pred code_info__create_temp_frame(code_addr::in, string::in, code_tree::out,
code_info::in, code_info::out) is det.
code_info__create_temp_frame(Redoip, Comment, Code) -->
code_info__get_proc_model(ProcModel),
{ ProcModel = model_non ->
Kind = nondet_stack_proc
;
Kind = det_stack_proc
},
{ Code = node([
mkframe(temp_frame(Kind), Redoip)
- Comment
]) },
code_info__get_fail_info(FailInfo0),
{ FailInfo0 = fail_info(ResumePoints, ResumeKnown, _, CondEnv, Allow) },
{ FailInfo = fail_info(ResumePoints, ResumeKnown, may_be_different,
CondEnv, Allow) },
code_info__set_fail_info(FailInfo).
%---------------------------------------------------------------------------%
code_info__effect_resume_point(ResumePoint, CodeModel, Code) -->
code_info__get_fail_info(FailInfo0),
{ FailInfo0 = fail_info(ResumePoints0, _ResumeKnown, CurfrMaxfr,
CondEnv, Allow) },
{ stack__top(ResumePoints0, OldResumePoint) ->
code_info__pick_first_resume_point(OldResumePoint, OldMap, _),
code_info__pick_first_resume_point(ResumePoint, NewMap, _),
map__keys(OldMap, OldKeys),
map__keys(NewMap, NewKeys),
set__list_to_set(OldKeys, OldKeySet),
set__list_to_set(NewKeys, NewKeySet),
require(set__subset(OldKeySet, NewKeySet),
"non-nested resume point variable sets")
;
true
},
{ stack__push(ResumePoints0, ResumePoint, ResumePoints) },
( { CodeModel = model_non } ->
{ code_info__pick_stack_resume_point(ResumePoint,
_, StackLabel) },
{ LabelConst = const(code_addr_const(StackLabel)) },
{ Code = node([
assign(redoip(lval(maxfr)), LabelConst)
- "hijack redoip to effect resume point"
]) },
{ RedoipUpdate = has_been_done }
;
{ Code = empty },
{ RedoipUpdate = wont_be_done }
),
{ FailInfo = fail_info(ResumePoints, resume_point_known(RedoipUpdate),
CurfrMaxfr, CondEnv, Allow) },
code_info__set_fail_info(FailInfo).
code_info__pop_resume_point -->
code_info__get_fail_info(FailInfo0),
{ FailInfo0 = fail_info(ResumePoints0, ResumeKnown, CurfrMaxfr,
CondEnv, Allow) },
{ stack__pop_det(ResumePoints0, _, ResumePoints) },
{ FailInfo = fail_info(ResumePoints, ResumeKnown, CurfrMaxfr,
CondEnv, Allow) },
code_info__set_fail_info(FailInfo).
%---------------------------------------------------------------------------%
code_info__top_resume_point(ResumePoint) -->
code_info__get_fail_info(FailInfo),
{ FailInfo = fail_info(ResumePoints, _, _, _, _) },
{ stack__top_det(ResumePoints, ResumePoint) }.
code_info__set_resume_point_to_unknown -->
code_info__get_fail_info(FailInfo0),
{ FailInfo0 = fail_info(ResumePoints, _, CurfrMaxfr, CondEnv, Allow) },
{ FailInfo = fail_info(ResumePoints, resume_point_unknown,
CurfrMaxfr, CondEnv, Allow) },
code_info__set_fail_info(FailInfo).
code_info__set_resume_point_and_frame_to_unknown -->
code_info__get_fail_info(FailInfo0),
{ FailInfo0 = fail_info(ResumePoints, _, _, CondEnv, Allow) },
{ FailInfo = fail_info(ResumePoints, resume_point_unknown,
may_be_different, CondEnv, Allow) },
code_info__set_fail_info(FailInfo).
%---------------------------------------------------------------------------%
code_info__generate_failure(Code) -->
code_info__get_fail_info(FailInfo),
{ FailInfo = fail_info(ResumePoints, ResumeKnown, _, _, _) },
(
{ ResumeKnown = resume_point_known(_) },
{ stack__top_det(ResumePoints, TopResumePoint) },
(
code_info__pick_matching_resume_addr(TopResumePoint,
FailureAddress0)
->
{ FailureAddress = FailureAddress0 },
{ PlaceCode = empty }
;
{ code_info__pick_first_resume_point(TopResumePoint,
Map, FailureAddress) },
{ map__to_assoc_list(Map, AssocList) },
code_info__remember_position(CurPos),
code_info__pick_and_place_vars(AssocList, PlaceCode),
code_info__reset_to_position(CurPos)
),
{ BranchCode = node([goto(FailureAddress) - "fail"]) },
{ Code = tree(PlaceCode, BranchCode) }
;
{ ResumeKnown = resume_point_unknown },
{ Code = node([goto(do_redo) - "fail"]) }
).
code_info__fail_if_rval_is_false(Rval0, Code) -->
code_info__get_fail_info(FailInfo),
{ FailInfo = fail_info(ResumePoints, ResumeKnown, _, _, _) },
(
{ ResumeKnown = resume_point_known(_) },
{ stack__top_det(ResumePoints, TopResumePoint) },
(
code_info__pick_matching_resume_addr(TopResumePoint,
FailureAddress0)
->
% We branch away if the test *fails*
{ code_util__neg_rval(Rval0, Rval) },
{ Code = node([
if_val(Rval, FailureAddress0) -
"Test for failure"
]) }
;
{ code_info__pick_first_resume_point(TopResumePoint,
Map, FailureAddress) },
{ map__to_assoc_list(Map, AssocList) },
code_info__get_next_label(SuccessLabel),
code_info__remember_position(CurPos),
code_info__pick_and_place_vars(AssocList, PlaceCode),
code_info__reset_to_position(CurPos),
{ SuccessAddress = label(SuccessLabel) },
% We branch away if the test *fails*,
% therefore if the test succeeds, we branch
% around the code that moves variables to
% their failure locations and branches away
% to the failure continuation
{ TestCode = node([
if_val(Rval0, SuccessAddress) -
"Test for failure"
]) },
{ TailCode = node([
goto(FailureAddress) -
"Goto failure",
label(SuccessLabel) -
"Success continuation"
]) },
{ Code = tree(TestCode, tree(PlaceCode, TailCode)) }
)
;
{ ResumeKnown = resume_point_unknown },
% We branch away if the test *fails*
{ code_util__neg_rval(Rval0, Rval) },
{ Code = node([
if_val(Rval, do_redo) -
"Test for failure"
]) }
).
%---------------------------------------------------------------------------%
code_info__failure_is_direct_branch(CodeAddr) -->
code_info__get_fail_info(FailInfo),
{ FailInfo = fail_info(ResumePoints, resume_point_known(_), _, _, _) },
{ stack__top(ResumePoints, TopResumePoint) },
code_info__pick_matching_resume_addr(TopResumePoint, CodeAddr).
code_info__may_use_nondet_tailcall(TailCallStatus) -->
code_info__get_fail_info(FailInfo),
{ FailInfo = fail_info(ResumePoints0, ResumeKnown, _, _, _) },
{
stack__pop(ResumePoints0, ResumePoint1, ResumePoints1),
stack__is_empty(ResumePoints1),
ResumePoint1 = stack_only(_, do_fail)
->
(
ResumeKnown = resume_point_known(_),
TailCallStatus = unchecked_tail_call
;
ResumeKnown = resume_point_unknown,
TailCallStatus = checked_tail_call
)
;
TailCallStatus = no_tail_call
}.
%---------------------------------------------------------------------------%
% See whether the current locations of variables match the locations
% associated with any of the options in the given failure map.
% If yes, return the code_addr of that option.
:- pred code_info__pick_matching_resume_addr(resume_point_info::in,
code_addr::out, code_info::in, code_info::out) is semidet.
code_info__pick_matching_resume_addr(ResumeMaps, Addr) -->
code_info__variable_locations(CurLocs),
{
ResumeMaps = orig_only(Map1, Addr1),
( code_info__match_resume_loc(Map1, CurLocs) ->
Addr = Addr1
;
fail
)
;
ResumeMaps = stack_only(Map1, Addr1),
( code_info__match_resume_loc(Map1, CurLocs) ->
Addr = Addr1
;
fail
)
;
ResumeMaps = orig_and_stack(Map1, Addr1, Map2, Addr2),
( code_info__match_resume_loc(Map1, CurLocs) ->
Addr = Addr1
; code_info__match_resume_loc(Map2, CurLocs) ->
Addr = Addr2
;
fail
)
;
ResumeMaps = stack_and_orig(Map1, Addr1, Map2, Addr2),
( code_info__match_resume_loc(Map1, CurLocs) ->
Addr = Addr1
; code_info__match_resume_loc(Map2, CurLocs) ->
Addr = Addr2
;
fail
)
}.
:- pred code_info__match_resume_loc(resume_map::in, resume_map::in) is semidet.
code_info__match_resume_loc(Map, Locations0) :-
map__keys(Map, KeyList),
set__list_to_set(KeyList, Keys),
map__select(Locations0, Keys, Locations),
map__to_assoc_list(Locations, List),
\+ (
list__member(Var - Actual, List),
\+ (
map__search(Map, Var, Lvals),
set__subset(Lvals, Actual)
)
).
:- pred code_info__pick_first_resume_point(resume_point_info::in,
resume_map::out, code_addr::out) is det.
code_info__pick_first_resume_point(orig_only(Map, Addr), Map, Addr).
code_info__pick_first_resume_point(stack_only(Map, Addr), Map, Addr).
code_info__pick_first_resume_point(orig_and_stack(Map, Addr, _, _), Map, Addr).
code_info__pick_first_resume_point(stack_and_orig(Map, Addr, _, _), Map, Addr).
:- pred code_info__pick_stack_resume_point(resume_point_info::in,
resume_map::out, code_addr::out) is det.
code_info__pick_stack_resume_point(ResumePoint, Map, Addr) :-
( code_info__maybe_pick_stack_resume_point(ResumePoint, Map1, Addr1) ->
Map = Map1,
Addr = Addr1
;
error("no stack resume point")
).
:- pred code_info__maybe_pick_stack_resume_point(resume_point_info::in,
resume_map::out, code_addr::out) is semidet.
code_info__maybe_pick_stack_resume_point(stack_only(Map, Addr), Map, Addr).
code_info__maybe_pick_stack_resume_point(orig_and_stack(_, _, Map, Addr),
Map, Addr).
code_info__maybe_pick_stack_resume_point(stack_and_orig(Map, Addr, _, _),
Map, Addr).
%---------------------------------------------------------------------------%
code_info__produce_vars(Vars, Map, Code) -->
{ set__to_sorted_list(Vars, VarList) },
code_info__produce_vars_2(VarList, Map, Code).
:- pred code_info__produce_vars_2(list(prog_var)::in,
map(prog_var, set(lval))::out,
code_tree::out, code_info::in, code_info::out) is det.
code_info__produce_vars_2([], Map, empty) -->
{ map__init(Map) }.
code_info__produce_vars_2([V | Vs], Map, Code) -->
code_info__produce_vars_2(Vs, Map0, Code0),
code_info__produce_variable_in_reg_or_stack(V, Code1, Lval),
{ set__singleton_set(Lvals, Lval) },
{ map__set(Map0, V, Lvals, Map) },
{ Code = tree(Code0, Code1) }.
code_info__flush_resume_vars_to_stack(Code) -->
code_info__get_fail_info(FailInfo),
{ FailInfo = fail_info(ResumePointStack, _, _, _, _) },
{ stack__top_det(ResumePointStack, ResumePoint) },
{ code_info__pick_stack_resume_point(ResumePoint, StackMap, _) },
{ map__to_assoc_list(StackMap, StackLocs) },
code_info__pick_and_place_vars(StackLocs, Code).
%---------------------------------------------------------------------------%
:- pred code_info__init_fail_info(code_model::in, maybe(set(prog_var))::in,
resume_point_info::out, code_info::in, code_info::out) is det.
code_info__init_fail_info(CodeModel, MaybeFailVars, ResumePoint) -->
(
{ CodeModel = model_det },
code_info__get_next_label(ResumeLabel),
{ ResumeAddress = label(ResumeLabel) },
{ ResumeKnown = resume_point_unknown },
{ CurfrMaxfr = may_be_different }
;
{ CodeModel = model_semi },
% The resume point for this label
% will be part of the procedure epilog.
code_info__get_next_label(ResumeLabel),
{ ResumeAddress = label(ResumeLabel) },
{ ResumeKnown = resume_point_known(wont_be_done) },
{ CurfrMaxfr = may_be_different }
;
{ CodeModel = model_non },
( { MaybeFailVars = yes(_) } ->
code_info__get_next_label(ResumeLabel),
{ ResumeAddress = label(ResumeLabel) }
;
{ ResumeAddress = do_fail }
),
{ ResumeKnown = resume_point_known(has_been_done) },
{ CurfrMaxfr = must_be_equal }
),
( { MaybeFailVars = yes(FailVars) } ->
code_info__get_stack_slots(StackSlots),
{ map__select(StackSlots, FailVars, StackMap0) },
{ map__to_assoc_list(StackMap0, StackList0) },
{ code_info__make_singleton_sets(StackList0, StackList) },
{ map__from_assoc_list(StackList, StackMap) }
;
{ map__init(StackMap) }
),
{ ResumePoint = stack_only(StackMap, ResumeAddress) },
{ stack__init(ResumeStack0) },
{ stack__push(ResumeStack0, ResumePoint, ResumeStack) },
code_info__get_fail_info(FailInfo0),
{ FailInfo0 = fail_info(_, _, _, _, Allow) },
{ FailInfo = fail_info(ResumeStack, ResumeKnown, CurfrMaxfr,
not_inside_non_condition, Allow) },
code_info__set_fail_info(FailInfo).
%---------------------------------------------------------------------------%
code_info__make_resume_point(ResumeVars, ResumeLocs, FullMap, ResumePoint) -->
code_info__get_stack_slots(StackSlots),
{ map__select(FullMap, ResumeVars, OrigMap) },
(
{ ResumeLocs = orig_only },
code_info__get_next_label(OrigLabel),
{ OrigAddr = label(OrigLabel) },
{ ResumePoint = orig_only(OrigMap, OrigAddr) }
;
{ ResumeLocs = stack_only },
{ map__select(StackSlots, ResumeVars, StackMap0) },
{ map__to_assoc_list(StackMap0, StackList0) },
{ code_info__make_singleton_sets(StackList0, StackList) },
{ map__from_assoc_list(StackList, StackMap) },
code_info__get_next_label(StackLabel),
{ StackAddr = label(StackLabel) },
{ ResumePoint = stack_only(StackMap, StackAddr) }
;
{ ResumeLocs = orig_and_stack },
{ map__select(StackSlots, ResumeVars, StackMap0) },
{ map__to_assoc_list(StackMap0, StackList0) },
{ code_info__make_singleton_sets(StackList0, StackList) },
{ map__from_assoc_list(StackList, StackMap) },
code_info__get_next_label(OrigLabel),
{ OrigAddr = label(OrigLabel) },
code_info__get_next_label(StackLabel),
{ StackAddr = label(StackLabel) },
{ ResumePoint = orig_and_stack(OrigMap, OrigAddr,
StackMap, StackAddr) }
;
{ ResumeLocs = stack_and_orig },
{ map__select(StackSlots, ResumeVars, StackMap0) },
{ map__to_assoc_list(StackMap0, StackList0) },
{ code_info__make_singleton_sets(StackList0, StackList) },
{ map__from_assoc_list(StackList, StackMap) },
code_info__get_next_label(StackLabel),
{ StackAddr = label(StackLabel) },
code_info__get_next_label(OrigLabel),
{ OrigAddr = label(OrigLabel) },
{ ResumePoint = stack_and_orig(StackMap, StackAddr,
OrigMap, OrigAddr) }
).
:- pred code_info__make_singleton_sets(assoc_list(prog_var, lval)::in,
assoc_list(prog_var, set(lval))::out) is det.
code_info__make_singleton_sets([], []).
code_info__make_singleton_sets([V - L | Rest0], [V - Ls | Rest]) :-
set__singleton_set(Ls, L),
code_info__make_singleton_sets(Rest0, Rest).
%---------------------------------------------------------------------------%
% The code we generate for a resumption point looks like this:
%
% label(StackLabel)
% <assume variables are where StackMap says they are>
% <copy variables to their locations according to OrigMap>
% label(OrigLabel)
% <assume variables are where OrigMap says they are>
%
% Failures at different points may cause control to arrive at
% the resumption point via either label, which is why the last
% line is necessary.
%
% The idea is that failures from other procedures will go to
% StackLabel, and that failures from this procedure while
% everything is in its original place will go to OrigLabel.
% Failures from this procedure where not everything is in its
% original place can go to either, after moving the resume variables
% to the places where the label expects them.
%
% The above layout (stack, then orig) is the most common. However,
% liveness.m may decide that one or other of the two labels will
% never be referred to (e.g. because there are no calls inside
% the range of effect of the resumption point or because a call
% follows immediately after the establishment of the resumption
% point), or that it would be more efficient to put the two labels
% in the other order (e.g. because the code after the resumption point
% needs most of the variables in their stack slots).
code_info__generate_resume_point(ResumePoint, Code) -->
(
{ ResumePoint = orig_only(Map1, Addr1) },
{ extract_label_from_code_addr(Addr1, Label1) },
{ Code = node([
label(Label1) -
"orig only failure continuation"
]) },
code_info__set_var_locations(Map1)
;
{ ResumePoint = stack_only(Map1, Addr1) },
{ extract_label_from_code_addr(Addr1, Label1) },
{ Code = node([
label(Label1) -
"stack only failure continuation"
]) },
code_info__set_var_locations(Map1),
code_info__generate_resume_layout(Label1, Map1)
;
{ ResumePoint = stack_and_orig(Map1, Addr1, Map2, Addr2) },
{ extract_label_from_code_addr(Addr1, Label1) },
{ extract_label_from_code_addr(Addr2, Label2) },
{ Label1Code = node([
label(Label1) -
"stack failure continuation before orig"
]) },
code_info__set_var_locations(Map1),
code_info__generate_resume_layout(Label1, Map1),
{ map__to_assoc_list(Map2, AssocList2) },
code_info__place_resume_vars(AssocList2, PlaceCode),
{ Label2Code = node([
label(Label2) -
"orig failure continuation after stack"
]) },
code_info__set_var_locations(Map2),
{ Code = tree(Label1Code, tree(PlaceCode, Label2Code)) }
;
{ ResumePoint = orig_and_stack(Map1, Addr1, Map2, Addr2) },
{ extract_label_from_code_addr(Addr1, Label1) },
{ extract_label_from_code_addr(Addr2, Label2) },
{ Label1Code = node([
label(Label1) -
"orig failure continuation before stack"
]) },
code_info__set_var_locations(Map1),
{ map__to_assoc_list(Map2, AssocList2) },
code_info__place_resume_vars(AssocList2, PlaceCode),
{ Label2Code = node([
label(Label2) -
"stack failure continuation after orig"
]) },
code_info__set_var_locations(Map2),
code_info__generate_resume_layout(Label2, Map2),
{ Code = tree(Label1Code, tree(PlaceCode, Label2Code)) }
).
:- pred extract_label_from_code_addr(code_addr::in, label::out) is det.
extract_label_from_code_addr(CodeAddr, Label) :-
( CodeAddr = label(Label0) ->
Label = Label0
;
error("extract_label_from_code_addr: non-label!")
).
:- pred code_info__place_resume_vars(assoc_list(prog_var, set(lval))::in,
code_tree::out, code_info::in, code_info::out) is det.
code_info__place_resume_vars([], empty) --> [].
code_info__place_resume_vars([Var - TargetSet | Rest], Code) -->
{ set__to_sorted_list(TargetSet, Targets) },
code_info__place_resume_var(Var, Targets, FirstCode),
{ Code = tree(FirstCode, RestCode) },
code_info__place_resume_vars(Rest, RestCode).
:- pred code_info__place_resume_var(prog_var::in, list(lval)::in,
code_tree::out, code_info::in, code_info::out) is det.
code_info__place_resume_var(_Var, [], empty) --> [].
code_info__place_resume_var(Var, [Target | Targets], Code) -->
code_info__place_var(Var, Target, FirstCode),
code_info__place_resume_var(Var, Targets, RestCode),
{ Code = tree(FirstCode, RestCode) }.
% Reset the code generator's database of what is where.
% Remember that the variables in the map are available in their
% associated rvals; forget about all other variables.
:- pred code_info__set_var_locations(resume_map::in,
code_info::in, code_info::out) is det.
code_info__set_var_locations(Map) -->
{ map__to_assoc_list(Map, LvalList0) },
{ code_info__flatten_varlval_list(LvalList0, LvalList) },
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
RvalList = assoc_list__map_values(exprn_aux__var_lval_to_rval,
LvalList),
code_exprn__reinit_state(RvalList, Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocnInfo0),
var_locn__reinit_state(LvalList, VarLocnInfo0, VarLocnInfo),
VarInfo = var_locn_info(VarLocnInfo)
},
code_info__set_var_locns_info(VarInfo).
:- pred code_info__flatten_varlval_list(assoc_list(prog_var, set(lval))::in,
assoc_list(prog_var, lval)::out) is det.
code_info__flatten_varlval_list([], []).
code_info__flatten_varlval_list([V - Rvals | Rest0], All) :-
code_info__flatten_varlval_list(Rest0, Rest),
set__to_sorted_list(Rvals, RvalList),
code_info__flatten_varlval_list_2(RvalList, V, Rest1),
list__append(Rest1, Rest, All).
:- pred code_info__flatten_varlval_list_2(list(lval)::in, prog_var::in,
assoc_list(prog_var, lval)::out) is det.
code_info__flatten_varlval_list_2([], _V, []).
code_info__flatten_varlval_list_2([R | Rs], V, [V - R | Rest]) :-
code_info__flatten_varlval_list_2(Rs, V, Rest).
code_info__resume_point_vars(ResumePoint, Vars) :-
code_info__pick_first_resume_point(ResumePoint, ResumeMap, _),
map__keys(ResumeMap, Vars).
code_info__resume_point_stack_addr(ResumePoint, StackAddr) :-
code_info__pick_stack_resume_point(ResumePoint, _, StackAddr).
%---------------------------------------------------------------------------%
:- pred code_info__maybe_save_trail_info(maybe(pair(lval))::out,
code_tree::out, code_info::in, code_info::out) is det.
code_info__maybe_save_trail_info(MaybeTrailSlots, SaveTrailCode) -->
code_info__get_globals(Globals),
{ globals__lookup_bool_option(Globals, use_trail, UseTrail) },
( { UseTrail = yes } ->
code_info__acquire_temp_slot(ticket_counter, CounterSlot),
code_info__acquire_temp_slot(ticket, TrailPtrSlot),
{ MaybeTrailSlots = yes(CounterSlot - TrailPtrSlot) },
{ SaveTrailCode = node([
mark_ticket_stack(CounterSlot)
- "save the ticket counter",
store_ticket(TrailPtrSlot)
- "save the trail pointer"
]) }
;
{ MaybeTrailSlots = no },
{ SaveTrailCode = empty }
).
:- pred code_info__maybe_restore_trail_info(maybe(pair(lval))::in,
code_tree::out, code_tree::out, code_info::in, code_info::out) is det.
code_info__maybe_restore_trail_info(MaybeTrailSlots,
CommitCode, RestoreCode) -->
(
{ MaybeTrailSlots = no },
{ CommitCode = empty },
{ RestoreCode = empty }
;
{ MaybeTrailSlots = yes(CounterSlot - TrailPtrSlot) },
{ CommitCode = node([
reset_ticket(lval(TrailPtrSlot), commit)
- "discard trail entries and restore trail ptr",
prune_tickets_to(lval(CounterSlot))
- "restore ticket counter (but not high water mark)"
]) },
{ RestoreCode = node([
reset_ticket(lval(TrailPtrSlot), undo)
- "apply trail entries and restore trail ptr",
discard_ticket
- "restore ticket counter and high water mark"
]) },
code_info__release_temp_slot(CounterSlot),
code_info__release_temp_slot(TrailPtrSlot)
).
%---------------------------------------------------------------------------%
:- pred code_info__clone_resume_point(resume_point_info::in,
resume_point_info::out, code_info::in, code_info::out) is det.
code_info__clone_resume_point(ResumePoint0, ResumePoint) -->
(
{ ResumePoint0 = orig_only(_, _) },
{ error("cloning orig_only resume point") }
;
{ ResumePoint0 = stack_only(Map1, _) },
code_info__get_next_label(Label1),
{ Addr1 = label(Label1) },
{ ResumePoint = stack_only(Map1, Addr1) }
;
{ ResumePoint0 = stack_and_orig(Map1, _, Map2, _) },
code_info__get_next_label(Label1),
{ Addr1 = label(Label1) },
code_info__get_next_label(Label2),
{ Addr2 = label(Label2) },
{ ResumePoint = stack_and_orig(Map1, Addr1, Map2, Addr2) }
;
{ ResumePoint0 = orig_and_stack(Map1, _, Map2, _) },
code_info__get_next_label(Label2),
{ Addr2 = label(Label2) },
code_info__get_next_label(Label1),
{ Addr1 = label(Label1) },
{ ResumePoint = stack_and_orig(Map2, Addr2, Map1, Addr1) }
).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Submodule to deal with liveness issues.
% The principles underlying this submodule of code_info.m are
% documented in the file compiler/notes/allocation.html.
:- interface.
:- pred code_info__get_known_variables(list(prog_var), code_info, code_info).
:- mode code_info__get_known_variables(out, in, out) is det.
:- pred code_info__variable_is_forward_live(prog_var, code_info, code_info).
:- mode code_info__variable_is_forward_live(in, in, out) is semidet.
:- pred code_info__make_vars_forward_dead(set(prog_var), code_info, code_info).
:- mode code_info__make_vars_forward_dead(in, in, out) is det.
:- pred code_info__pickup_zombies(set(prog_var), code_info, code_info).
:- mode code_info__pickup_zombies(out, in, out) is det.
%---------------------------------------------------------------------------%
:- implementation.
:- pred code_info__add_forward_live_vars(set(prog_var), code_info, code_info).
:- mode code_info__add_forward_live_vars(in, in, out) is det.
:- pred code_info__rem_forward_live_vars(set(prog_var), code_info, code_info).
:- mode code_info__rem_forward_live_vars(in, in, out) is det.
% Make these variables appear magically live.
% We don't care where they are put.
:- pred code_info__make_vars_forward_live(set(prog_var), code_info, code_info).
:- mode code_info__make_vars_forward_live(in, in, out) is det.
code_info__get_known_variables(VarList) -->
code_info__get_forward_live_vars(ForwardLiveVars),
code_info__current_resume_point_vars(ResumeVars),
{ set__union(ForwardLiveVars, ResumeVars, Vars) },
{ set__to_sorted_list(Vars, VarList) }.
code_info__variable_is_forward_live(Var) -->
code_info__get_forward_live_vars(Liveness),
{ set__member(Var, Liveness) }.
code_info__add_forward_live_vars(Births) -->
code_info__get_forward_live_vars(Liveness0),
{ set__union(Liveness0, Births, Liveness) },
code_info__set_forward_live_vars(Liveness).
code_info__rem_forward_live_vars(Deaths) -->
code_info__get_forward_live_vars(Liveness0),
{ set__difference(Liveness0, Deaths, Liveness) },
code_info__set_forward_live_vars(Liveness).
code_info__make_vars_forward_live(Vars) -->
code_info__get_stack_slots(StackSlots),
code_info__get_var_locns_info(VarInfo0),
{ set__to_sorted_list(Vars, VarList) },
{ code_info__make_vars_forward_live_2(VarList, StackSlots, 1,
VarInfo0, VarInfo) },
code_info__set_var_locns_info(VarInfo).
:- pred code_info__make_vars_forward_live_2(list(prog_var), stack_slots, int,
var_locns_info, var_locns_info).
:- mode code_info__make_vars_forward_live_2(in, in, in, in, out) is det.
code_info__make_vars_forward_live_2([], _, _, VarInfo, VarInfo).
code_info__make_vars_forward_live_2([Var | Vars], StackSlots, N0,
VarInfo0, VarInfo) :-
( map__search(StackSlots, Var, Lval0) ->
Lval = Lval0,
N1 = N0
;
code_info__find_unused_reg(N0, VarInfo0, N1),
Lval = reg(r, N1)
),
(
VarInfo0 = exprn_info(Exprn0),
code_exprn__maybe_set_var_location(Var, Lval, Exprn0, Exprn1),
VarInfo1 = exprn_info(Exprn1)
;
VarInfo0 = var_locn_info(VarLocn0),
var_locn__set_magic_var_location(Var, Lval,
VarLocn0, VarLocn1),
VarInfo1 = var_locn_info(VarLocn1)
),
code_info__make_vars_forward_live_2(Vars, StackSlots, N1,
VarInfo1, VarInfo).
:- pred code_info__find_unused_reg(int, var_locns_info, int).
:- mode code_info__find_unused_reg(in, in, out) is det.
code_info__find_unused_reg(N0, VarInfo0, N) :-
(
VarInfo0 = exprn_info(Exprn0),
code_info__find_unused_reg_lazy(N0, Exprn0, N)
;
VarInfo0 = var_locn_info(VarLocn0),
code_info__find_unused_reg_eager(N0, VarLocn0, N)
).
:- pred code_info__find_unused_reg_eager(int, var_locn_info, int).
:- mode code_info__find_unused_reg_eager(in, in, out) is det.
code_info__find_unused_reg_eager(N0, Exprn0, N) :-
( var_locn__lval_in_use(reg(r, N0), Exprn0, _) ->
N1 is N0 + 1,
code_info__find_unused_reg_eager(N1, Exprn0, N)
;
N = N0
).
:- pred code_info__find_unused_reg_lazy(int, exprn_info, int).
:- mode code_info__find_unused_reg_lazy(in, in, out) is det.
code_info__find_unused_reg_lazy(N0, Exprn0, N) :-
( code_exprn__lval_in_use(reg(r, N0), Exprn0, _) ->
N1 is N0 + 1,
code_info__find_unused_reg_lazy(N1, Exprn0, N)
;
N = N0
).
code_info__make_vars_forward_dead(Vars) -->
code_info__maybe_make_vars_forward_dead(Vars, yes).
:- pred code_info__maybe_make_vars_forward_dead(set(prog_var), bool,
code_info, code_info).
:- mode code_info__maybe_make_vars_forward_dead(in, in, in, out) is det.
code_info__maybe_make_vars_forward_dead(Vars0, FirstTime) -->
code_info__current_resume_point_vars(ResumeVars),
{ set__intersect(Vars0, ResumeVars, FlushVars) },
code_info__get_zombies(Zombies0),
{ set__union(Zombies0, FlushVars, Zombies) },
code_info__set_zombies(Zombies),
{ set__difference(Vars0, Zombies, Vars) },
{ set__to_sorted_list(Vars, VarList) },
code_info__maybe_make_vars_forward_dead_2(VarList, FirstTime).
:- pred code_info__maybe_make_vars_forward_dead_2(list(prog_var), bool,
code_info, code_info).
:- mode code_info__maybe_make_vars_forward_dead_2(in, in, in, out) is det.
code_info__maybe_make_vars_forward_dead_2([], _) --> [].
code_info__maybe_make_vars_forward_dead_2([V | Vs], FirstTime) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__var_becomes_dead(V, Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocn0),
var_locn__var_becomes_dead(V, FirstTime, VarLocn0, VarLocn),
VarInfo = var_locn_info(VarLocn)
},
code_info__set_var_locns_info(VarInfo),
code_info__maybe_make_vars_forward_dead_2(Vs, FirstTime).
code_info__pickup_zombies(Zombies) -->
code_info__get_zombies(Zombies),
{ set__init(Empty) },
code_info__set_zombies(Empty).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Submodule for handling the saving and restoration
% of trail tickets, heap pointers, stack pointers etc.
:- interface.
:- pred code_info__save_hp(code_tree, lval, code_info, code_info).
:- mode code_info__save_hp(out, out, in, out) is det.
:- pred code_info__restore_hp(lval, code_tree, code_info, code_info).
:- mode code_info__restore_hp(in, out, in, out) is det.
:- pred code_info__release_hp(lval, code_info, code_info).
:- mode code_info__release_hp(in, in, out) is det.
:- pred code_info__restore_and_release_hp(lval, code_tree,
code_info, code_info).
:- mode code_info__restore_and_release_hp(in, out, in, out) is det.
:- pred code_info__maybe_save_hp(bool, code_tree, maybe(lval),
code_info, code_info).
:- mode code_info__maybe_save_hp(in, out, out, in, out) is det.
:- pred code_info__maybe_restore_hp(maybe(lval), code_tree,
code_info, code_info).
:- mode code_info__maybe_restore_hp(in, out, in, out) is det.
:- pred code_info__maybe_release_hp(maybe(lval), code_info, code_info).
:- mode code_info__maybe_release_hp(in, in, out) is det.
:- pred code_info__maybe_restore_and_release_hp(maybe(lval), code_tree,
code_info, code_info).
:- mode code_info__maybe_restore_and_release_hp(in, out, in, out) is det.
:- pred code_info__save_ticket(code_tree, lval, code_info, code_info).
:- mode code_info__save_ticket(out, out, in, out) is det.
:- pred code_info__reset_ticket(lval, reset_trail_reason, code_tree,
code_info, code_info).
:- mode code_info__reset_ticket(in, in, out, in, out) is det.
:- pred code_info__release_ticket(lval, code_info, code_info).
:- mode code_info__release_ticket(in, in, out) is det.
:- pred code_info__reset_and_prune_ticket(lval, reset_trail_reason,
code_tree, code_info, code_info).
:- mode code_info__reset_and_prune_ticket(in, in, out, in, out) is det.
:- pred code_info__reset_prune_and_release_ticket(lval, reset_trail_reason,
code_tree, code_info, code_info).
:- mode code_info__reset_prune_and_release_ticket(in, in, out, in, out)
is det.
:- pred code_info__reset_and_discard_ticket(lval, reset_trail_reason,
code_tree, code_info, code_info).
:- mode code_info__reset_and_discard_ticket(in, in, out, in, out) is det.
:- pred code_info__reset_discard_and_release_ticket(lval, reset_trail_reason,
code_tree, code_info, code_info).
:- mode code_info__reset_discard_and_release_ticket(in, in, out, in, out)
is det.
:- pred code_info__maybe_save_ticket(bool, code_tree, maybe(lval),
code_info, code_info).
:- mode code_info__maybe_save_ticket(in, out, out, in, out) is det.
:- pred code_info__maybe_reset_ticket(maybe(lval), reset_trail_reason,
code_tree, code_info, code_info).
:- mode code_info__maybe_reset_ticket(in, in, out, in, out) is det.
:- pred code_info__maybe_release_ticket(maybe(lval), code_info, code_info).
:- mode code_info__maybe_release_ticket(in, in, out) is det.
:- pred code_info__maybe_reset_and_prune_ticket(maybe(lval),
reset_trail_reason, code_tree, code_info, code_info).
:- mode code_info__maybe_reset_and_prune_ticket(in, in, out, in, out) is det.
:- pred code_info__maybe_reset_prune_and_release_ticket(maybe(lval),
reset_trail_reason, code_tree, code_info, code_info).
:- mode code_info__maybe_reset_prune_and_release_ticket(in, in, out, in, out)
is det.
:- pred code_info__maybe_reset_and_discard_ticket(maybe(lval),
reset_trail_reason, code_tree, code_info, code_info).
:- mode code_info__maybe_reset_and_discard_ticket(in, in, out, in, out) is det.
:- pred code_info__maybe_reset_discard_and_release_ticket(maybe(lval),
reset_trail_reason, code_tree, code_info, code_info).
:- mode code_info__maybe_reset_discard_and_release_ticket(in, in, out, in, out)
is det.
%---------------------------------------------------------------------------%
:- implementation.
code_info__save_hp(Code, HpSlot) -->
code_info__acquire_temp_slot(lval(hp), HpSlot),
{ Code = node([
mark_hp(HpSlot) - "Save heap pointer"
]) }.
code_info__restore_hp(HpSlot, Code) -->
{ Code = node([
restore_hp(lval(HpSlot)) - "Restore heap pointer"
]) }.
code_info__release_hp(HpSlot) -->
code_info__release_temp_slot(HpSlot).
code_info__restore_and_release_hp(HpSlot, Code) -->
{ Code = node([
restore_hp(lval(HpSlot)) - "Release heap pointer"
]) },
code_info__release_hp(HpSlot).
%---------------------------------------------------------------------------%
code_info__maybe_save_hp(Maybe, Code, MaybeHpSlot) -->
( { Maybe = yes } ->
code_info__save_hp(Code, HpSlot),
{ MaybeHpSlot = yes(HpSlot) }
;
{ Code = empty },
{ MaybeHpSlot = no }
).
code_info__maybe_restore_hp(MaybeHpSlot, Code) -->
( { MaybeHpSlot = yes(HpSlot) } ->
code_info__restore_hp(HpSlot, Code)
;
{ Code = empty }
).
code_info__maybe_release_hp(MaybeHpSlot) -->
( { MaybeHpSlot = yes(HpSlot) } ->
code_info__release_hp(HpSlot)
;
[]
).
code_info__maybe_restore_and_release_hp(MaybeHpSlot, Code) -->
( { MaybeHpSlot = yes(HpSlot) } ->
code_info__restore_and_release_hp(HpSlot, Code)
;
{ Code = empty }
).
%---------------------------------------------------------------------------%
code_info__save_ticket(Code, TicketSlot) -->
code_info__acquire_temp_slot(ticket, TicketSlot),
{ Code = node([
store_ticket(TicketSlot) - "Save trail state"
]) }.
code_info__reset_ticket(TicketSlot, Reason, Code) -->
{ Code = node([
reset_ticket(lval(TicketSlot), Reason) - "Reset trail"
]) }.
code_info__release_ticket(TicketSlot) -->
code_info__release_temp_slot(TicketSlot).
code_info__reset_and_prune_ticket(TicketSlot, Reason, Code) -->
{ Code = node([
reset_ticket(lval(TicketSlot), Reason) - "Restore trail",
prune_ticket - "Prune ticket stack"
]) }.
code_info__reset_prune_and_release_ticket(TicketSlot, Reason, Code) -->
{ Code = node([
reset_ticket(lval(TicketSlot), Reason) - "Release trail",
prune_ticket - "Prune ticket stack"
]) },
code_info__release_temp_slot(TicketSlot).
code_info__reset_and_discard_ticket(TicketSlot, Reason, Code) -->
{ Code = node([
reset_ticket(lval(TicketSlot), Reason) - "Restore trail",
discard_ticket - "Pop ticket stack"
]) }.
code_info__reset_discard_and_release_ticket(TicketSlot, Reason, Code) -->
{ Code = node([
reset_ticket(lval(TicketSlot), Reason) - "Release trail",
discard_ticket - "Pop ticket stack"
]) },
code_info__release_temp_slot(TicketSlot).
%---------------------------------------------------------------------------%
code_info__maybe_save_ticket(Maybe, Code, MaybeTicketSlot) -->
( { Maybe = yes } ->
code_info__save_ticket(Code, TicketSlot),
{ MaybeTicketSlot = yes(TicketSlot) }
;
{ Code = empty },
{ MaybeTicketSlot = no }
).
code_info__maybe_reset_ticket(MaybeTicketSlot, Reason, Code) -->
( { MaybeTicketSlot = yes(TicketSlot) } ->
code_info__reset_ticket(TicketSlot, Reason, Code)
;
{ Code = empty }
).
code_info__maybe_release_ticket(MaybeTicketSlot) -->
( { MaybeTicketSlot = yes(TicketSlot) } ->
code_info__release_ticket(TicketSlot)
;
[]
).
code_info__maybe_reset_and_prune_ticket(MaybeTicketSlot, Reason, Code) -->
( { MaybeTicketSlot = yes(TicketSlot) } ->
code_info__reset_and_prune_ticket(TicketSlot, Reason, Code)
;
{ Code = empty }
).
code_info__maybe_reset_prune_and_release_ticket(MaybeTicketSlot, Reason,
Code) -->
( { MaybeTicketSlot = yes(TicketSlot) } ->
code_info__reset_prune_and_release_ticket(TicketSlot, Reason,
Code)
;
{ Code = empty }
).
code_info__maybe_reset_and_discard_ticket(MaybeTicketSlot, Reason, Code) -->
( { MaybeTicketSlot = yes(TicketSlot) } ->
code_info__reset_and_discard_ticket(TicketSlot, Reason, Code)
;
{ Code = empty }
).
code_info__maybe_reset_discard_and_release_ticket(MaybeTicketSlot, Reason,
Code) -->
( { MaybeTicketSlot = yes(TicketSlot) } ->
code_info__reset_discard_and_release_ticket(TicketSlot, Reason,
Code)
;
{ Code = empty }
).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Submodule to deal with code_exprn.
:- interface.
:- pred code_info__variable_locations(map(prog_var, set(lval))::out,
code_info::in, code_info::out) is det.
:- pred code_info__set_var_location(prog_var::in, lval::in,
code_info::in, code_info::out) is det.
:- pred code_info__assign_var_to_var(prog_var::in, prog_var::in,
code_info::in, code_info::out) is det.
:- pred code_info__assign_lval_to_var(prog_var::in, lval::in,
code_info::in, code_info::out) is det.
:- pred code_info__assign_const_to_var(prog_var::in, rval::in,
code_info::in, code_info::out) is det.
:- pred code_info__assign_expr_to_var(prog_var::in, rval::in, code_tree::out,
code_info::in, code_info::out) is det.
:- pred code_info__assign_cell_to_var(prog_var::in, tag::in,
list(maybe(rval))::in, string::in, code_tree::out,
code_info::in, code_info::out) is det.
:- pred code_info__place_var(prog_var::in, lval::in, code_tree::out,
code_info::in, code_info::out) is det.
:- pred code_info__produce_variable(prog_var::in, code_tree::out, rval::out,
code_info::in, code_info::out) is det.
:- pred code_info__produce_variable_in_reg(prog_var::in, code_tree::out,
lval::out, code_info::in, code_info::out) is det.
:- pred code_info__produce_variable_in_reg_or_stack(prog_var::in,
code_tree::out, lval::out, code_info::in, code_info::out) is det.
:- pred code_info__materialize_vars_in_rval(rval::in, rval::out,
code_tree::out, code_info::in, code_info::out) is det.
:- pred code_info__acquire_reg_for_var(prog_var::in, lval::out,
code_info::in, code_info::out) is det.
:- pred code_info__acquire_reg(reg_type::in, lval::out,
code_info::in, code_info::out) is det.
:- pred code_info__release_reg(lval::in, code_info::in, code_info::out) is det.
:- pred code_info__reserve_r1(code_tree::out, code_info::in, code_info::out)
is det.
:- pred code_info__clear_r1(code_tree::out, code_info::in, code_info::out)
is det.
:- type call_direction ---> caller ; callee.
% Generate code to either setup the input arguments for a call
% (i.e. in the caller), or to setup the output arguments in the
% predicate epilog (i.e. in the callee).
:- pred code_info__setup_call(assoc_list(prog_var, arg_info)::in,
call_direction::in, code_tree::out,
code_info::in, code_info::out) is det.
:- pred code_info__eager_lock_regs(int::in, assoc_list(prog_var, lval)::in,
code_info::in, code_info::out) is det.
:- pred code_info__eager_unlock_regs(code_info::in, code_info::out) is det.
:- pred code_info__clear_all_registers(code_info::in, code_info::out) is det.
:- pred code_info__clobber_regs(list(lval)::in,
code_info::in, code_info::out) is det.
:- pred code_info__save_variables(set(prog_var)::in, code_tree::out,
code_info::in, code_info::out) is det.
:- pred code_info__save_variable_on_stack(prog_var::in, code_tree::out,
code_info::in, code_info::out) is det.
:- pred code_info__save_variables_on_stack(list(prog_var)::in, code_tree::out,
code_info::in, code_info::out) is det.
:- pred code_info__max_reg_in_use(int::out, code_info::in, code_info::out)
is det.
%---------------------------------------------------------------------------%
:- implementation.
:- pred code_info__pick_and_place_vars(assoc_list(prog_var, set(lval))::in,
code_tree::out, code_info::in, code_info::out) is det.
:- pred code_info__place_vars(assoc_list(prog_var, lval)::in,
code_tree::out, code_info::in, code_info::out) is det.
code_info__variable_locations(Lvals) -->
code_info__get_var_locns_info(VarInfo),
{
VarInfo = exprn_info(Exprn),
code_exprn__get_varlocs(Exprn, Rvals),
Lvals = map__map_values(code_info__rval_map_to_lval_map, Rvals)
;
VarInfo = var_locn_info(VarLocn),
var_locn__get_var_locations(VarLocn, Lvals)
}.
:- func code_info__rval_map_to_lval_map(prog_var, set(rval)) = set(lval).
code_info__rval_map_to_lval_map(_Var, Rvals) =
set__filter_map(code_info__rval_is_lval, Rvals).
:- func code_info__rval_is_lval(rval) = lval is semidet.
code_info__rval_is_lval(lval(Lval)) = Lval.
code_info__set_var_location(Var, Lval) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__set_var_location(Var, Lval, Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocn0),
var_locn__check_and_set_magic_var_location(Var, Lval,
VarLocn0, VarLocn),
VarInfo = var_locn_info(VarLocn)
},
code_info__set_var_locns_info(VarInfo).
code_info__assign_var_to_var(Var, AssignedVar) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__cache_exprn(Var, var(AssignedVar), Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocInfo0),
var_locn__assign_var_to_var(Var, AssignedVar,
VarLocInfo0, VarLocInfo),
VarInfo = var_locn_info(VarLocInfo)
},
code_info__set_var_locns_info(VarInfo).
code_info__assign_lval_to_var(Var, Lval) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__cache_exprn(Var, lval(Lval), Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocInfo0),
var_locn__assign_lval_to_var(Var, Lval,
VarLocInfo0, VarLocInfo),
VarInfo = var_locn_info(VarLocInfo)
},
code_info__set_var_locns_info(VarInfo).
code_info__assign_const_to_var(Var, ConstRval) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__cache_exprn(Var, ConstRval, Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocInfo0),
var_locn__assign_const_to_var(Var, ConstRval,
VarLocInfo0, VarLocInfo),
VarInfo = var_locn_info(VarLocInfo)
},
code_info__set_var_locns_info(VarInfo).
code_info__assign_expr_to_var(Var, Rval, Code) -->
code_info__get_var_locns_info(VarInfo0),
{
code_util__lvals_in_rval(Rval, Lvals),
Lvals = []
->
(
VarInfo0 = exprn_info(Exprn0),
code_exprn__cache_exprn(Var, Rval, Exprn0, Exprn),
VarInfo = exprn_info(Exprn),
Code = empty
;
VarInfo0 = var_locn_info(VarLocInfo0),
var_locn__assign_expr_to_var(Var, Rval, Code,
VarLocInfo0, VarLocInfo),
VarInfo = var_locn_info(VarLocInfo)
)
;
error("code_info__assign_expr_to_var: non-var lvals")
},
code_info__set_var_locns_info(VarInfo).
code_info__assign_cell_to_var(Var, Ptag, Vector, TypeMsg, Code) -->
code_info__get_var_locns_info(VarInfo0),
code_info__get_next_cell_number(CellNum),
{
VarInfo0 = exprn_info(Exprn0),
% XXX Later we will need to worry about
% whether the cell must be unique or not.
Reuse = no,
Rval = create(Ptag, Vector, uniform(no), can_be_either,
CellNum, TypeMsg, Reuse),
code_exprn__cache_exprn(Var, Rval, Exprn0, Exprn),
VarInfo = exprn_info(Exprn),
Code = empty
;
VarInfo0 = var_locn_info(VarLocInfo0),
var_locn__assign_cell_to_var(Var, Ptag, Vector, CellNum,
TypeMsg, Code, VarLocInfo0, VarLocInfo),
VarInfo = var_locn_info(VarLocInfo)
},
code_info__set_var_locns_info(VarInfo).
code_info__place_var(Var, Lval, Code) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__place_var(Var, Lval, Code, Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocn0),
var_locn__place_var(Var, Lval, Code, VarLocn0, VarLocn),
VarInfo = var_locn_info(VarLocn)
},
code_info__set_var_locns_info(VarInfo).
code_info__pick_and_place_vars(VarLocSets, Code) -->
{ code_info__pick_var_places(VarLocSets, VarLocs) },
code_info__place_vars(VarLocs, Code).
:- pred code_info__pick_var_places(assoc_list(prog_var, set(lval))::in,
assoc_list(prog_var, lval)::out) is det.
code_info__pick_var_places([], []).
code_info__pick_var_places([Var - LvalSet | VarLvalSets], VarLvals) :-
code_info__pick_var_places(VarLvalSets, VarLvals0),
(
set__to_sorted_list(LvalSet, LvalList),
LvalList = [Lval | _]
->
VarLvals = [Var - Lval | VarLvals0]
;
VarLvals = VarLvals0
).
code_info__place_vars(VarLocs, Code) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__place_vars(VarLocs, Code, Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocn0),
var_locn__place_vars(VarLocs, Code, VarLocn0, VarLocn),
VarInfo = var_locn_info(VarLocn)
},
code_info__set_var_locns_info(VarInfo).
code_info__produce_variable(Var, Code, Rval) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__produce_var(Var, Rval, Code, Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocn0),
var_locn__produce_var(Var, Rval, Code, VarLocn0, VarLocn),
VarInfo = var_locn_info(VarLocn)
},
code_info__set_var_locns_info(VarInfo).
code_info__produce_variable_in_reg(Var, Code, Lval) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__produce_var_in_reg(Var, Lval, Code, Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocn0),
var_locn__produce_var_in_reg(Var, Lval, Code,
VarLocn0, VarLocn),
VarInfo = var_locn_info(VarLocn)
},
code_info__set_var_locns_info(VarInfo).
code_info__produce_variable_in_reg_or_stack(Var, Code, Lval) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__produce_var_in_reg_or_stack(Var, Lval, Code,
Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocn0),
var_locn__produce_var_in_reg_or_stack(Var, Lval, Code,
VarLocn0, VarLocn),
VarInfo = var_locn_info(VarLocn)
},
code_info__set_var_locns_info(VarInfo).
code_info__materialize_vars_in_rval(Rval0, Rval, Code) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__materialize_vars_in_rval(Rval0, Rval, Code,
Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocnInfo0),
( Rval0 = lval(Lval0) ->
var_locn__materialize_vars_in_lval(Lval0, Lval,
VarLocnInfo0, VarLocnInfo),
Rval = lval(Lval),
Code = empty,
VarInfo = var_locn_info(VarLocnInfo)
; exprn_aux__vars_in_rval(Rval0, []) ->
Rval = Rval0,
Code = empty,
VarInfo = VarInfo0
;
error("eager code_info__materialize_vars_in_rval")
)
},
code_info__set_var_locns_info(VarInfo).
code_info__acquire_reg_for_var(Var, Lval) -->
code_info__get_follow_var_map(FollowVarsMap),
code_info__get_next_non_reserved(NextNonReserved),
code_info__get_var_locns_info(VarInfo0),
{
map__search(FollowVarsMap, Var, PrefLval),
PrefLval = reg(PrefRegType, PrefRegNum),
PrefRegNum >= 1
->
(
VarInfo0 = exprn_info(Exprn0),
code_exprn__acquire_reg_prefer_given(PrefRegType,
PrefRegNum, Lval, Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocn0),
require(unify(PrefRegType, r), "acquire non-r reg"),
var_locn__acquire_reg_prefer_given(PrefRegNum, Lval,
VarLocn0, VarLocn),
VarInfo = var_locn_info(VarLocn)
)
;
% XXX We should only get a register if the map__search
% succeeded; otherwise we should put the var in its stack slot.
(
VarInfo0 = exprn_info(Exprn0),
code_exprn__acquire_reg(r, Lval, Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocn0),
var_locn__acquire_reg_start_at_given(
NextNonReserved,Lval, VarLocn0, VarLocn),
VarInfo = var_locn_info(VarLocn)
)
},
code_info__set_var_locns_info(VarInfo).
code_info__acquire_reg(Type, Lval) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__acquire_reg(Type, Lval, Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocnInfo0),
require(unify(Type, r),
"code_info__acquire_reg: unknown reg type"),
var_locn__acquire_reg(Lval, VarLocnInfo0, VarLocnInfo),
VarInfo = var_locn_info(VarLocnInfo)
},
code_info__set_var_locns_info(VarInfo).
code_info__release_reg(Lval) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__release_reg(Lval, Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocnInfo0),
var_locn__release_reg(Lval, VarLocnInfo0, VarLocnInfo),
VarInfo = var_locn_info(VarLocnInfo)
},
code_info__set_var_locns_info(VarInfo).
code_info__reserve_r1(Code) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(_Exprn0),
VarInfo = VarInfo0,
Code = empty
;
VarInfo0 = var_locn_info(VarLocnInfo0),
var_locn__clear_r1(Code, VarLocnInfo0, VarLocnInfo1),
var_locn__acquire_reg_require_given(reg(r, 1), VarLocnInfo1,
VarLocnInfo),
VarInfo = var_locn_info(VarLocnInfo)
},
code_info__set_var_locns_info(VarInfo).
code_info__clear_r1(Code) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__clear_r1(Code, Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocnInfo0),
var_locn__release_reg(reg(r, 1), VarLocnInfo0, VarLocnInfo),
VarInfo = var_locn_info(VarLocnInfo),
Code = empty
},
code_info__set_var_locns_info(VarInfo).
%---------------------------------------------------------------------------%
code_info__setup_call(VarArgInfos, Direction, Code) -->
code_info__get_var_locns_info(VarInfo0),
(
{ VarInfo0 = exprn_info(_) },
code_info__setup_call_lazy(VarArgInfos, Direction, Code)
;
{ VarInfo0 = var_locn_info(_) },
code_info__setup_call_eager(VarArgInfos, Direction, Code)
).
:- pred code_info__setup_call_eager(assoc_list(prog_var, arg_info)::in,
call_direction::in, code_tree::out, code_info::in, code_info::out)
is det.
code_info__setup_call_eager(AllArgsInfos, Direction, Code) -->
{ list__filter(code_info__call_arg_in_selected_dir(Direction),
AllArgsInfos, ArgsInfos) },
{ code_info__var_arg_info_to_lval(ArgsInfos, ArgsLocns) },
code_info__get_eager_var_locns_info(VarLocnInfo0),
{ var_locn__place_vars(ArgsLocns, Code, VarLocnInfo0, VarLocnInfo1) },
code_info__set_var_locns_info(var_locn_info(VarLocnInfo1)),
{ assoc_list__keys(ArgsLocns, ArgVars) },
{ set__init(DeadVars0) },
code_info__which_variables_are_forward_live(ArgVars,
DeadVars0, DeadVars),
code_info__make_vars_forward_dead(DeadVars).
:- pred code_info__var_arg_info_to_lval(assoc_list(prog_var, arg_info)::in,
assoc_list(prog_var, lval)::out) is det.
code_info__var_arg_info_to_lval([], []).
code_info__var_arg_info_to_lval([Var - ArgInfo | RestInfos],
[Var - Lval | RestLvals]) :-
ArgInfo = arg_info(Loc, _Mode),
code_util__arg_loc_to_register(Loc, Lval),
code_info__var_arg_info_to_lval(RestInfos, RestLvals).
:- pred code_info__which_variables_are_forward_live(list(prog_var)::in,
set(prog_var)::in, set(prog_var)::out,
code_info::in, code_info::out) is det.
code_info__which_variables_are_forward_live([], DeadVars, DeadVars) --> [].
code_info__which_variables_are_forward_live([Var | Vars], DeadVars0, DeadVars)
-->
( code_info__variable_is_forward_live(Var) ->
{ DeadVars1 = DeadVars0 }
;
{ set__insert(DeadVars0, Var, DeadVars1) }
),
code_info__which_variables_are_forward_live(Vars, DeadVars1, DeadVars).
:- pred code_info__setup_call_lazy(assoc_list(prog_var, arg_info)::in,
call_direction::in, code_tree::out, code_info::in, code_info::out)
is det.
code_info__setup_call_lazy([], _Direction, empty) --> [].
code_info__setup_call_lazy([First | Rest], Direction, Code) -->
( { code_info__call_arg_in_selected_dir(Direction, First) } ->
{ First = V - arg_info(Loc, _Mode) },
{ code_util__arg_loc_to_register(Loc, Reg) },
code_info__get_lazy_var_locns_info(Exprn0),
{ code_exprn__place_var(V, Reg, Code0, Exprn0, Exprn1) },
% We need to test that either the variable
% is live OR it occurs in the remaining arguments
% because of a bug in polymorphism.m which
% causes some compiler generated code to violate
% superhomogeneous form
(
code_info__variable_is_forward_live(V)
->
{ IsLive = yes }
;
{ IsLive = no }
),
{
list__member(Vtmp - _, Rest),
V = Vtmp
->
Occurs = yes
;
Occurs = no
},
(
% We can't simply use a disj here
% because of bugs in modes/det_analysis
{ bool__or(Occurs, IsLive, yes) }
->
{ code_exprn__lock_reg(Reg, Exprn1, Exprn2) },
code_info__set_var_locns_info(exprn_info(Exprn2)),
code_info__setup_call_lazy(Rest, Direction, Code1),
code_info__get_lazy_var_locns_info(Exprn3),
{ code_exprn__unlock_reg(Reg, Exprn3, Exprn) },
code_info__set_var_locns_info(exprn_info(Exprn)),
{ Code = tree(Code0, Code1) }
;
{ code_exprn__lock_reg(Reg, Exprn1, Exprn2) },
code_info__set_var_locns_info(exprn_info(Exprn2)),
{ set__singleton_set(Vset, V) },
code_info__make_vars_forward_dead(Vset),
code_info__setup_call_lazy(Rest, Direction, Code1),
code_info__get_lazy_var_locns_info(Exprn4),
{ code_exprn__unlock_reg(Reg, Exprn4, Exprn) },
code_info__set_var_locns_info(exprn_info(Exprn)),
{ Code = tree(Code0, Code1) }
)
;
code_info__setup_call_lazy(Rest, Direction, Code)
).
:- pred code_info__call_arg_in_selected_dir(call_direction::in,
pair(prog_var, arg_info)::in) is semidet.
code_info__call_arg_in_selected_dir(Direction, _ - arg_info(_, Mode)) :-
(
Mode = top_in,
Direction = caller
;
Mode = top_out,
Direction = callee
).
code_info__eager_lock_regs(N, Exceptions) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(_),
VarInfo = VarInfo0
;
VarInfo0 = var_locn_info(VarLocnInfo0),
var_locn__lock_regs(N, Exceptions, VarLocnInfo0, VarLocnInfo),
VarInfo = var_locn_info(VarLocnInfo)
},
code_info__set_var_locns_info(VarInfo).
code_info__eager_unlock_regs -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(_),
VarInfo = VarInfo0
;
VarInfo0 = var_locn_info(VarLocnInfo0),
var_locn__unlock_regs(VarLocnInfo0, VarLocnInfo),
VarInfo = var_locn_info(VarLocnInfo)
},
code_info__set_var_locns_info(VarInfo).
:- pred code_info__get_eager_var_locns_info(var_locn_info::out,
code_info::in, code_info::out) is det.
code_info__get_eager_var_locns_info(VarLocnInfo) -->
code_info__get_var_locns_info(VarInfo),
{
VarInfo = exprn_info(_),
error("lazy code_info__get_eager_var_locns_info")
;
VarInfo = var_locn_info(VarLocnInfo)
}.
:- pred code_info__get_lazy_var_locns_info(exprn_info::out,
code_info::in, code_info::out) is det.
code_info__get_lazy_var_locns_info(Exprn) -->
code_info__get_var_locns_info(VarInfo),
{
VarInfo = exprn_info(Exprn)
;
VarInfo = var_locn_info(_),
error("eager code_info__get_lazy_var_locns_info")
}.
% As a sanity check, we could test whether any known variable
% has its only value in a register, but we do so only with eager
% code generation.
code_info__clear_all_registers -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__clobber_regs([], Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocn0),
var_locn__clobber_all_regs(VarLocn0, VarLocn),
VarInfo = var_locn_info(VarLocn)
},
code_info__set_var_locns_info(VarInfo).
code_info__clobber_regs(Regs) -->
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(_Exprn0),
% The clobber_regs predicate has no function except to ensure
% that sanity check in eager code generation does not fail
% when it shouldn't. Since lazy code generation lacks this
% sanity check, it doesn't need to do anything.
VarInfo = VarInfo0
;
VarInfo0 = var_locn_info(VarLocn0),
var_locn__clobber_regs(Regs, VarLocn0, VarLocn),
VarInfo = var_locn_info(VarLocn)
},
code_info__set_var_locns_info(VarInfo).
code_info__save_variables(OutArgs, Code) -->
code_info__get_known_variables(Variables0),
{ set__list_to_set(Variables0, Vars0) },
code_info__get_module_info(ModuleInfo),
code_info__get_pred_id(PredId),
{ module_info_pred_info(ModuleInfo, PredId, PredInfo) },
code_info__get_globals(Globals),
{ body_should_use_typeinfo_liveness(PredInfo, Globals,
TypeInfoLiveness) },
code_info__get_proc_info(ProcInfo),
{ proc_info_vartypes(ProcInfo, VarTypes) },
{ proc_info_typeinfo_varmap(ProcInfo, TVarMap) },
{ proc_info_maybe_complete_with_typeinfo_vars(Vars0, TypeInfoLiveness,
VarTypes, TVarMap, Vars1) },
{ set__difference(Vars1, OutArgs, Vars) },
{ set__to_sorted_list(Vars, Variables) },
code_info__save_variables_2(Variables, Code).
:- pred code_info__save_variables_2(list(prog_var)::in, code_tree::out,
code_info::in, code_info::out) is det.
code_info__save_variables_2([], empty) --> [].
code_info__save_variables_2([Var | Vars], Code) -->
code_info__save_variable_on_stack(Var, CodeA),
code_info__save_variables_2(Vars, CodeB),
{ Code = tree(CodeA, CodeB) }.
code_info__save_variable_on_stack(Var, Code) -->
code_info__get_variable_slot(Var, Slot),
code_info__get_var_locns_info(VarInfo0),
{
VarInfo0 = exprn_info(Exprn0),
code_exprn__place_var(Var, Slot, Code, Exprn0, Exprn),
VarInfo = exprn_info(Exprn)
;
VarInfo0 = var_locn_info(VarLocn0),
var_locn__place_var(Var, Slot, Code, VarLocn0, VarLocn),
VarInfo = var_locn_info(VarLocn)
},
code_info__set_var_locns_info(VarInfo).
code_info__save_variables_on_stack([], empty) --> [].
code_info__save_variables_on_stack([Var | Vars], Code) -->
code_info__save_variable_on_stack(Var, FirstCode),
code_info__save_variables_on_stack(Vars, RestCode),
{ Code = tree(FirstCode, RestCode) }.
code_info__max_reg_in_use(Max) -->
code_info__get_var_locns_info(VarInfo),
{
VarInfo = exprn_info(Exprn),
code_exprn__max_reg_in_use(Exprn, Max)
;
VarInfo = var_locn_info(VarLocn),
var_locn__max_reg_in_use(VarLocn, Max)
}.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Submodule for dealing with the recording of variable liveness
% information around calls.
%
% Value numbering needs to know what locations are live before calls;
% the garbage collector and the debugger need to know what locations
% are live containing what types of values after calls.
:- interface.
:- pred code_info__generate_call_stack_vn_livevals(set(prog_var)::in,
set(lval)::out, code_info::in, code_info::out) is det.
:- pred code_info__generate_call_vn_livevals(list(arg_loc)::in,
set(prog_var)::in, set(lval)::out, code_info::in, code_info::out)
is det.
:- pred code_info__generate_return_live_lvalues(
assoc_list(prog_var, arg_loc)::in, instmap::in, list(liveinfo)::out,
code_info::in, code_info::out) is det.
%---------------------------------------------------------------------------%
:- implementation.
code_info__generate_call_stack_vn_livevals(OutputArgs, LiveVals) -->
code_info__get_known_variables(KnownVarList),
{ set__list_to_set(KnownVarList, KnownVars) },
{ set__difference(KnownVars, OutputArgs, LiveVars) },
{ set__to_sorted_list(LiveVars, LiveVarList) },
{ set__init(LiveVals0) },
code_info__generate_stack_var_vn(LiveVarList, LiveVals0, LiveVals1),
code_info__get_active_temps_data(Temps),
{ code_info__generate_call_temp_vn(Temps, LiveVals1, LiveVals) }.
code_info__generate_call_vn_livevals(InputArgLocs, OutputArgs, LiveVals) -->
code_info__generate_call_stack_vn_livevals(OutputArgs, StackLiveVals),
{ code_info__generate_input_var_vn(InputArgLocs, StackLiveVals,
LiveVals) }.
:- pred code_info__generate_stack_var_vn(list(prog_var)::in, set(lval)::in,
set(lval)::out, code_info::in, code_info::out) is det.
code_info__generate_stack_var_vn([], Vals, Vals) --> [].
code_info__generate_stack_var_vn([V | Vs], Vals0, Vals) -->
code_info__get_variable_slot(V, Lval),
{ set__insert(Vals0, Lval, Vals1) },
code_info__generate_stack_var_vn(Vs, Vals1, Vals).
:- pred code_info__generate_call_temp_vn(assoc_list(lval, slot_contents)::in,
set(lval)::in, set(lval)::out) is det.
code_info__generate_call_temp_vn([], Vals, Vals).
code_info__generate_call_temp_vn([Lval - _ | Temps], Vals0, Vals) :-
set__insert(Vals0, Lval, Vals1),
code_info__generate_call_temp_vn(Temps, Vals1, Vals).
:- pred code_info__generate_input_var_vn(list(arg_loc)::in,
set(lval)::in, set(lval)::out) is det.
code_info__generate_input_var_vn([], Vals, Vals).
code_info__generate_input_var_vn([InputArgLoc | InputArgLocs], Vals0, Vals) :-
code_util__arg_loc_to_register(InputArgLoc, Lval),
set__insert(Vals0, Lval, Vals1),
code_info__generate_input_var_vn(InputArgLocs, Vals1, Vals).
%---------------------------------------------------------------------------%
code_info__generate_return_live_lvalues(OutputArgLocs, ReturnInstMap,
LiveLvalues) -->
code_info__variable_locations(VarLocs),
code_info__get_known_variables(Vars),
code_info__get_active_temps_data(Temps),
code_info__get_proc_info(ProcInfo),
code_info__get_globals(Globals),
code_info__get_module_info(ModuleInfo),
{ continuation_info__generate_return_live_lvalues(OutputArgLocs,
ReturnInstMap, Vars, VarLocs, Temps, ProcInfo, ModuleInfo,
Globals, LiveLvalues) }.
:- pred code_info__generate_resume_layout(label::in, resume_map::in,
code_info::in, code_info::out) is det.
code_info__generate_resume_layout(Label, ResumeMap) -->
code_info__get_globals(Globals),
{ globals__lookup_bool_option(Globals, agc_stack_layout,
AgcStackLayout) },
( { AgcStackLayout = yes } ->
code_info__get_active_temps_data(Temps),
code_info__get_instmap(InstMap),
code_info__get_proc_info(ProcInfo),
code_info__get_module_info(ModuleInfo),
{ continuation_info__generate_resume_layout(ResumeMap,
Temps, InstMap, ProcInfo, ModuleInfo, Layout) },
code_info__add_resume_layout_for_label(Label, Layout)
;
[]
).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Submodule for managing stack slots.
% Det stack frames are organized as follows.
%
% ... unused ...
% sp ---> <first unused slot>
% <space for local var 1>
% ... local vars ...
% <space for local var n>
% <space for temporary 1>
% ... temporaries ...
% <space for temporary n>
% <space for saved succip, if needed>
%
% The stack pointer points to the first free location at the
% top of the stack.
%
% `code_info__succip_is_used' determines whether we need a slot to
% hold the succip.
%
% Nondet stack frames also have the local variables above the
% temporaries, but contain several fixed slots on top, and the
% saved succip is stored in one of these.
%
% For both kinds of stack frames, the slots holding variables
% are allocated during the live_vars pass, while the slots holding
% temporaries are acquired (and if possible, released) on demand
% during code generation.
:- interface.
% Returns the total stackslot count, but not including space for
% succip. This total can change in the future if this call is
% followed by further allocations of temp slots.
:- pred code_info__get_total_stackslot_count(int, code_info, code_info).
:- mode code_info__get_total_stackslot_count(out, in, out) is det.
% Acquire a stack slot for storing a temporary. The slot_contents
% description is for accurate gc.
:- pred code_info__acquire_temp_slot(slot_contents, lval,
code_info, code_info).
:- mode code_info__acquire_temp_slot(in, out, in, out) is det.
% Release a stack slot acquired earlier for a temporary value.
:- pred code_info__release_temp_slot(lval, code_info, code_info).
:- mode code_info__release_temp_slot(in, in, out) is det.
% Return the lval of the stack slot in which the given variable
% is stored. Aborts if the variable does not have a stack slot
% an assigned to it.
:- pred code_info__get_variable_slot(prog_var, lval, code_info, code_info).
:- mode code_info__get_variable_slot(in, out, in, out) is det.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
code_info__acquire_temp_slot(Item, StackVar) -->
code_info__get_temps_in_use(TempsInUse0),
{ IsTempUsable = lambda([TempContent::in, Lval::out] is semidet, (
TempContent = Lval - ContentType,
ContentType = Item,
\+ set__member(Lval, TempsInUse0)
)) },
code_info__get_temp_content_map(TempContentMap0),
{ map__to_assoc_list(TempContentMap0, TempContentList) },
{ list__filter_map(IsTempUsable, TempContentList, UsableLvals) },
(
{ UsableLvals = [UsableLval | _] },
{ StackVar = UsableLval }
;
{ UsableLvals = [] },
code_info__get_var_slot_count(VarSlots),
code_info__get_max_temp_slot_count(TempSlots0),
{ TempSlots is TempSlots0 + 1 },
{ Slot is VarSlots + TempSlots },
code_info__stack_variable(Slot, StackVar),
code_info__set_max_temp_slot_count(TempSlots),
{ map__det_insert(TempContentMap0, StackVar, Item,
TempContentMap) },
code_info__set_temp_content_map(TempContentMap)
),
{ set__insert(TempsInUse0, StackVar, TempsInUse) },
code_info__set_temps_in_use(TempsInUse).
code_info__release_temp_slot(StackVar) -->
code_info__get_temps_in_use(TempsInUse0),
{ set__delete(TempsInUse0, StackVar, TempsInUse) },
code_info__set_temps_in_use(TempsInUse).
%---------------------------------------------------------------------------%
code_info__get_variable_slot(Var, Slot) -->
code_info__get_stack_slots(StackSlots),
( { map__search(StackSlots, Var, SlotPrime) } ->
{ Slot = SlotPrime }
;
code_info__variable_to_string(Var, Name),
{ term__var_to_int(Var, Num) },
{ string__int_to_string(Num, NumStr) },
{ string__append_list([
"code_info__get_variable_slot: variable `",
Name, "' (", NumStr, ") not found"], Str) },
{ error(Str) }
).
code_info__get_total_stackslot_count(NumSlots) -->
code_info__get_var_slot_count(SlotsForVars),
code_info__get_max_temp_slot_count(SlotsForTemps),
{ NumSlots is SlotsForVars + SlotsForTemps }.
:- pred code_info__max_var_slot(stack_slots, int).
:- mode code_info__max_var_slot(in, out) is det.
code_info__max_var_slot(StackSlots, SlotCount) :-
map__values(StackSlots, StackSlotList),
code_info__max_var_slot_2(StackSlotList, 0, SlotCount).
:- pred code_info__max_var_slot_2(list(lval), int, int).
:- mode code_info__max_var_slot_2(in, in, out) is det.
code_info__max_var_slot_2([], Max, Max).
code_info__max_var_slot_2([L | Ls], Max0, Max) :-
( L = stackvar(N) ->
int__max(N, Max0, Max1)
; L = framevar(N) ->
int__max(N, Max0, Max1)
;
Max1 = Max0
),
code_info__max_var_slot_2(Ls, Max1, Max).
:- pred code_info__stack_variable(int, lval, code_info, code_info).
:- mode code_info__stack_variable(in, out, in, out) is det.
code_info__stack_variable(Num, Lval) -->
code_info__get_proc_model(CodeModel),
( { CodeModel = model_non } ->
{ Lval = framevar(Num) }
;
{ Lval = stackvar(Num) }
).
:- pred code_info__stack_variable_reference(int, rval, code_info, code_info).
:- mode code_info__stack_variable_reference(in, out, in, out) is det.
code_info__stack_variable_reference(Num, mem_addr(Ref)) -->
code_info__get_proc_model(CodeModel),
( { CodeModel = model_non } ->
{ Ref = framevar_ref(Num) }
;
{ Ref = stackvar_ref(Num) }
).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%