Files
mercury/compiler/prog_io.m
Zoltan Somogyi a00596c283 The file modules.m contains lots of different kinds of functionality.
Estimated hours taken: 16
Branches: main

The file modules.m contains lots of different kinds of functionality.
While much of it belongs together, much of it does not. This diff moves
most of the functionality that does not belong with the rest to several
new modules:

	libs.file_util
	parse_tree.deps_map
	parse_tree.file_names
	parse_tree.module_cmds
	parse_tree.module_imports
	parse_tree.read_module
	parse_tree.write_deps_file

To make them coherent, move some predicates from hlds.passes_aux,
parse_tree.prog_io and parse_tree.prog_out to the new modules, making them
more accessible, reducing the required access from the hlds package to
parse_tree, or from the parse_tree package to libs.

In the same spirit, this diff also moves some simple predicates and functions
dealing with sym_names from prog_util.m to mdbcomp/prim_data.m. This allows
several modules to avoid depending on parse_tree.prog_util.

Rename some of the moved predicates and function symbols where this avoids
ambiguity. (There were several that differed from other predicates or function
symbols only in arity.)

Replace several uses of bools with purpose-specific types. This makes some
of the code significantly easier to read.

This diff moves modules.m from being by far the largest module, to being
only the seventh largest, from 8900+ lines to just 4200+. It also reduces
the number of modules that import parse_tree.modules considerably; most
modules that imported it now import only one or two of the new modules instead.

Despite the size of the diff, there should be no algorithmic changes.

compiler/modules.m:
compiler/passes_aux.m:
compiler/prog_io.m:
compiler/prog_out.m:
	Delete the moved functionality.

compiler/file_util.m:
	New module in the libs package. Its predicates search for files
	and do simple error or progress reporting.

compiler/file_names.m:
	New module in the parse_tree package. It contains predicates for
	converting module names to file names.

compiler/module_cmds.m:
	New module in the parse_tree package. Its predicates handle the
	commands for manipulating interface files of various kinds.

compiler/module_import.m:
	New module in the parse_tree package. It contains the module_imports
	type and its access predicates, and the predicates that compute
	various sorts of direct dependencies (those caused by imports)
	between modules.

compiler/deps_map.m:
	New module in the parse_tree package. It contains the data structure
	for recording indirect dependencies between modules, and the predicates
	for creating it.

compiler/read_module.m:
	New module in the parse_tree package. Its job is reading in modules,
	both human-written and machine-written (such as interface and
	optimization files).

compiler/write_deps_file.m:
	New module in the parse_tree package. Its job is writing out
	makefile fragments.

compiler/libs.m:
compiler/parse_tree.m:
	Include the new modules.

compiler/notes/compiler_design.m:
	Document the new modules.

mdbcomp/prim_data.m:
compiler/prog_util.m:
	Move the predicates that operate on nothing but sym_names from
	prog_util to prim_data.

	Move get_ancestors from modules to prim_data.

compiler/prog_item.m:
	Move stuff that looks for foreign code in a list of items here from
	modules.m.

compiler/source_file_map.m:
	Note why this module needs to be in the parse_tree package.

compiler/add_pred.m:
compiler/add_special_pred.m:
compiler/analysis.file.m:
compiler/analysis.m:
compiler/assertion.m:
compiler/check_typeclass.m:
compiler/compile_target_code.m:
compiler/cse_detection.m:
compiler/det_analysis.m:
compiler/elds_to_erlang.m:
compiler/exception_analysis.m:
compiler/export.m:
compiler/fact_table.m:
compiler/higher_order.m:
compiler/hlds_module.m:
compiler/hlds_pred.m:
compiler/intermod.m:
compiler/llds_out.m:
compiler/make.dependencies.m:
compiler/make.m:
compiler/make.module_dep_file.m:
compiler/make.module_target.m:
compiler/make.program_target.m:
compiler/make.util.m:
compiler/make_hlds_passes.m:
compiler/maybe_mlds_to_gcc.pp:
compiler/mercury_compile.m:
compiler/mlds.m:
compiler/mlds_to_c.m:
compiler/mlds_to_gcc.m:
compiler/mlds_to_ilasm.m:
compiler/mlds_to_java.m:
compiler/mmc_analysis.m:
compiler/mode_constraints.m:
compiler/mode_debug.m:
compiler/modes.m:
compiler/module_qual.m:
compiler/optimize.m:
compiler/passes_aux.m:
compiler/proc_gen.m:
compiler/prog_foreign.m:
compiler/prog_io.m:
compiler/prog_io_util.m:
compiler/prog_mutable.m:
compiler/prog_out.m:
compiler/pseudo_type_info.m:
compiler/purity.m:
compiler/recompilation.check.m:
compiler/recompilation.usage.m:
compiler/simplify.m:
compiler/structure_reuse.analysis.m:
compiler/structure_reuse.direct.detect_garbage.m:
compiler/structure_reuse.direct.m:
compiler/structure_sharing.analysis.m:
compiler/tabling_analysis.m:
compiler/term_constr_main.m:
compiler/termination.m:
compiler/trailing_analysis.m:
compiler/trans_opt.m:
compiler/type_util.m:
compiler/typecheck.m:
compiler/typecheck_info.m:
compiler/unify_proc.m:
compiler/unused_args.m:
compiler/unused_imports.m:
compiler/xml_documentation.m:
	Minor changes to conform to the changes above.
2008-07-21 03:10:29 +00:00

4600 lines
186 KiB
Mathematica

% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------e
% Copyright (C) 1993-2008 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io.m.
% Main authors: fjh, zs.
%
% This module defines predicates for parsing Mercury programs.
%
% In some ways the representation of programs here is considerably
% more complex than is necessary for the compiler.
% The basic reason for this is that it was designed to preserve
% as much information about the source code as possible, so that
% this representation could also be used for other tools such
% as pretty-printers.
% Currently the only information that is lost is that comments and
% whitespace are stripped, any redundant parenthesization
% are lost, distinctions between different spellings of the same
% operator (eg "\+" vs "not") are lost, and DCG clauses get expanded.
% It would be a good idea to preserve all those too (well, maybe not
% the redundant parentheses), but right now it's not worth the effort.
%
% So that means that this phase of compilation is purely parsing.
% No simplifications are done (other than DCG expansion).
% The results of this phase specify
% basically the same information as is contained in the source code,
% but in a parse tree rather than a flat file.
% Simplifications are done only by make_hlds.m, which transforms
% the parse tree which we built here into the HLDS.
%
% Some of this code is a rather bad example of cut-and-paste style reuse.
% It should be cleaned up to eliminate most of the duplication.
% But that task really needs to wait until we implement higher-order
% predicates. For the moment, just be careful that any changes
% you make are reflected correctly in all similar parts of this file.
%
% Implication and equivalence implemented by squirrel, who would also
% like to get her hands on this file and give it a good clean up and
% put it into good clean "mercury" style!
%
% Wishlist:
%
% 1. implement importing/exporting operators with a particular fixity
% eg. :- import_op prefix(+). % only prefix +, not infix
% (not important, but should be there for reasons of symmetry.)
% 2. improve the handling of type and inst parameters
% 3. improve the error reporting (most of the semidet preds should
% be det and should return a meaningful indication of where an
% error occurred).
%-----------------------------------------------------------------------------%
:- module parse_tree.prog_io.
:- interface.
:- import_module libs.file_util.
:- import_module libs.timestamp.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.error_util.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_item.
:- import_module parse_tree.prog_io_util.
:- import_module io.
:- import_module list.
:- import_module maybe.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
% This module (prog_io) exports the following predicates:
:- type module_error
---> no_module_errors % no errors
; some_module_errors % some syntax errors
; fatal_module_errors. % couldn't open the file
:- type maybe_return_timestamp
---> do_return_timestamp
; do_not_return_timestamp.
% read_module(OpenFile, FileName, DefaultModuleName, ReturnTimestamp,
% MaybeFileInfo, ActualModuleName, Program, Specs, Error,
% MaybeModuleTimestamp, !IO):
%
% Reads and parses the file opened by OpenFile using the default module
% name DefaultModuleName. If ReturnTimestamp is `yes', attempt to return
% the modification timestamp in MaybeModuleTimestamp. Error is
% `fatal_module_errors' if the file coudn't be opened, `some_module_errors'
% if a syntax error was detected, and `no_module_errors' otherwise.
% MaybeFileInfo is the information about the file (usually the file or
% directory name) returned by OpenFile. ActualModuleName is the module name
% specified in the `:- module' declaration, if any, or the
% DefaultModuleName if there is no `:- module' declaration.
% Specs is a list of warning/error messages. Program is the parse tree.
%
:- pred read_module(open_file(FileInfo)::in(open_file),
module_name::in, maybe_return_timestamp::in, maybe(FileInfo)::out,
module_name::out, list(item)::out, list(error_spec)::out,
module_error::out, maybe(io.res(timestamp))::out, io::di, io::uo) is det.
:- pred read_module_if_changed(open_file(FileInfo)::in(open_file),
module_name::in, timestamp::in, maybe(FileInfo)::out, module_name::out,
list(item)::out, list(error_spec)::out, module_error::out,
maybe(io.res(timestamp))::out, io::di, io::uo) is det.
% Same as read_module, but use intermod_directories instead of
% search_directories when searching for the file.
% Also report an error if the actual module name doesn't match
% the expected module name.
%
:- pred read_opt_file(file_name::in, module_name::in, list(item)::out,
list(error_spec)::out, module_error::out, io::di, io::uo) is det.
% check_module_has_expected_name(FileName, ExpectedName, ActualName):
%
% Check that two module names are equal, and report an error if they
% aren't.
%
:- pred check_module_has_expected_name(file_name::in, module_name::in,
module_name::in, io::di, io::uo) is det.
% search_for_module_source(Dirs, InterfaceDirs, ModuleName,
% FoundSourceFileName, !IO):
%
% Look for the source for ModuleName in Dirs. This will also search for
% files matching partially qualified versions of ModuleName, but only if
% a more qualified `.m' or `.int' file doesn't exist in InterfaceDirs.
% in InterfaceDirs. For example, module foo.bar.baz can be found in
% foo.bar.m, bar.baz.m or bar.m.
%
:- pred search_for_module_source(list(dir_name)::in, list(dir_name)::in,
module_name::in, maybe_error(file_name)::out, io::di, io::uo) is det.
% Read the first item from the given file to find the module name.
%
:- pred find_module_name(file_name::in, maybe(module_name)::out,
io::di, io::uo) is det.
% parse_item(ModuleName, VarSet, Term, MaybeItem):
%
% Parse Term. If successful, MaybeItem is bound to the parsed item,
% otherwise it is bound to an appropriate error message. Qualify
% appropriate parts of the item, with ModuleName as the module name.
%
:- pred parse_item(module_name::in, varset::in, term::in, maybe1(item)::out)
is det.
% parse_decl(ModuleName, VarSet, Term, Result):
%
% Parse Term as a declaration. If successful, Result is bound to the
% parsed item, otherwise it is bound to an appropriate error message.
% Qualify appropriate parts of the item, with ModuleName as the module
% name.
%
:- pred parse_decl(module_name::in, varset::in, term::in, maybe1(item)::out)
is det.
% parse_type_defn_head(ModuleName, VarSet, Head, HeadResult):
%
% Check the head of a type definition for errors.
%
:- pred parse_type_defn_head(module_name::in, varset::in, term::in,
maybe2(sym_name, list(type_param))::out) is det.
% parse_type_decl_where_part_if_present(TypeSymName, Arity,
% IsSolverType, Inst, ModuleName, Term0, Term, Result):
%
% Checks if Term0 is a term of the form `<body> where <attributes>'.
% If so, returns the `<body>' in Term and the parsed `<attributes>'
% in Result. If not, returns Term = Term0 and Result = no.
%
:- pred parse_type_decl_where_part_if_present(is_solver_type::in,
module_name::in, varset::in, term::in, term::out,
maybe2(maybe(solver_type_details), maybe(unify_compare))::out) is det.
%-----------------------------------------------------------------------------%
% A QualifiedTerm is one of
% Name(Args)
% Module.Name(Args)
% (or if Args is empty, one of
% Name
% Module.Name)
% where Module is a SymName. For backwards compatibility, we allow `__'
% as an alternative to `.'.
% Sym_name_and_args takes a term and returns a sym_name that is its
% top function symbol, and a list of its argument terms. It fails
% if the input is not valid syntax for a QualifiedTerm.
%
:- pred sym_name_and_args(term(T)::in, sym_name::out, list(term(T))::out)
is semidet.
% parse_qualified_term(Term, _ContainingTerm, VarSet, ContextPieces,
% Result):
%
% Parse Term into a sym_name that is its top function symbol and a
% list of its argument terms, and if successful return them in Result.
% (parse_qualified_term thus does the same job as sym_name_and_args
% if it succeeds.) However, in case it does not succced,
% parse_qualified_term also takes as input Varset (from which the variables
% in Term are taken), the term containing Term, and a format_component
% list describing the context from which it was called, e.g.
% "In clause head:". XXX Currently, _ContainingTerm isn't used;
% maybe it should be deleted.
%
% Note: parse_qualified_term is used for places where a symbol is _used_,
% where no default module name exists for the sym_name. For places
% where a symbol is _defined_, use parse_implicitly_qualified_term.
%
% If you care only about the case where Result = ok2(SymName, Args),
% use sym_name_and_args.
%
:- pred parse_qualified_term(term(T)::in, term(T)::in, varset::in,
list(format_component)::in, maybe_functor(T)::out) is det.
% parse_implicitly_qualified_term(ModuleName, Term, _ContainingTerm,
% VarSet, ContextPieces, Result):
%
% Parse Term into a sym_name that is its top function symbol and a
% list of its argument terms, and if successful return them in Result.
% This predicate thus does almost the same job as the predicate
% parse_implicitly_qualified_term above, the difference being that
% that if the sym_name is qualified, then we check whether it is qualified
% with ModuleName, and if it isn't qualified, then we qualify it with
% Modulename (unless ModuleName is root_module_name). This is the
% right thing to do for clause heads, which is the intended job of
% parse_implicitly_qualified_term.
%
:- pred parse_implicitly_qualified_term(module_name::in, term(T)::in,
term(T)::in, varset::in, list(format_component)::in, maybe_functor(T)::out)
is det.
%-----------------------------------------------------------------------------%
% Replace all occurrences of inst_var(I) with
% constrained_inst_var(I, ground(shared, none)).
%
:- pred constrain_inst_vars_in_mode(mer_mode::in, mer_mode::out) is det.
% Replace all occurrences of inst_var(I) with
% constrained_inst_var(I, Inst) where I -> Inst is in the inst_var_sub.
% If I is not in the inst_var_sub, default to ground(shared, none).
%
:- pred constrain_inst_vars_in_mode(inst_var_sub::in,
mer_mode::in, mer_mode::out) is det.
%-----------------------------------------------------------------------------%
% Check that for each constrained_inst_var all occurrences have the
% same constraint.
%
:- pred inst_var_constraints_are_consistent_in_modes(list(mer_mode)::in)
is semidet.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module libs.compiler_util.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module parse_tree.file_names.
:- import_module parse_tree.mercury_to_mercury.
:- import_module parse_tree.prog_io_dcg.
:- import_module parse_tree.prog_io_goal.
:- import_module parse_tree.prog_io_pragma.
:- import_module parse_tree.prog_io_typeclass.
:- import_module parse_tree.prog_io_util.
:- import_module parse_tree.prog_mode.
:- import_module parse_tree.prog_out.
:- import_module parse_tree.prog_type.
:- import_module parse_tree.prog_util.
:- import_module recompilation.
:- import_module recompilation.version.
:- import_module assoc_list.
:- import_module bool.
:- import_module dir.
:- import_module int.
:- import_module map.
:- import_module pair.
:- import_module parser.
:- import_module set.
:- import_module string.
:- import_module term_io.
:- import_module unit.
%-----------------------------------------------------------------------------%
read_module(OpenFile, DefaultModuleName, ReturnTimestamp, FileData,
ModuleName, Items, Specs, Error, MaybeModuleTimestamp, !IO) :-
read_module_2(OpenFile, DefaultModuleName, no, ReturnTimestamp,
FileData, ModuleName, Items, Specs, Error, MaybeModuleTimestamp, !IO).
read_module_if_changed(OpenFile, DefaultModuleName, OldTimestamp, FileData,
ModuleName, Items, Specs, Error, MaybeModuleTimestamp, !IO) :-
read_module_2(OpenFile, DefaultModuleName, yes(OldTimestamp),
do_return_timestamp,
FileData, ModuleName, Items, Specs, Error,MaybeModuleTimestamp, !IO).
read_opt_file(FileName, DefaultModuleName, Items, Specs, Error, !IO) :-
globals.io_lookup_accumulating_option(intermod_directories, Dirs, !IO),
read_module_2(search_for_file(Dirs, FileName), DefaultModuleName, no,
do_not_return_timestamp, _, ModuleName, Items, Specs, Error, _, !IO),
check_module_has_expected_name(FileName, DefaultModuleName, ModuleName,
!IO).
check_module_has_expected_name(FileName, ExpectedName, ActualName, !IO) :-
( ActualName \= ExpectedName ->
Pieces = [words("Error: file"), quote(FileName),
words("contains the wrong module."), nl,
words("Expected module"), sym_name(ExpectedName), suffix(","),
words("found module"), sym_name(ActualName), suffix("."), nl],
write_error_pieces_plain(Pieces, !IO),
io.set_exit_status(1, !IO)
;
true
).
% This implementation uses io.read_term to read in the program one term
% at a time, and then converts those terms into clauses and declarations,
% checking for errors as it goes. Note that rather than using difference
% lists, we just build up the lists of items and messages in reverse order
% and then reverse them afterwards. (Using difference lists would require
% late-input modes.)
%
:- pred read_module_2(open_file(T)::in(open_file), module_name::in,
maybe(timestamp)::in, maybe_return_timestamp::in, maybe(T)::out,
module_name::out, list(item)::out, list(error_spec)::out,
module_error::out, maybe(io.res(timestamp))::out, io::di, io::uo) is det.
read_module_2(OpenFile, DefaultModuleName, MaybeOldTimestamp, ReturnTimestamp,
MaybeFileData, ModuleName, Items, Specs, Error,
MaybeModuleTimestamp, !IO) :-
io.input_stream(OldInputStream, !IO),
OpenFile(OpenResult, !IO),
(
OpenResult = ok(FileData),
MaybeFileData = yes(FileData),
(
ReturnTimestamp = do_return_timestamp,
io.input_stream_name(InputStreamName, !IO),
io.file_modification_time(InputStreamName, TimestampResult, !IO),
(
TimestampResult = ok(Timestamp),
MaybeModuleTimestamp = yes(ok(time_t_to_timestamp(Timestamp)))
;
TimestampResult = error(IOError),
MaybeModuleTimestamp = yes(error(IOError))
)
;
ReturnTimestamp = do_not_return_timestamp,
MaybeModuleTimestamp = no
),
(
MaybeOldTimestamp = yes(OldTimestamp),
MaybeModuleTimestamp = yes(ok(OldTimestamp))
->
% XXX Currently smart recompilation won't work
% if ModuleName \= DefaultModuleName.
% In that case, smart recompilation will be disabled
% and read_module should never be passed an old timestamp.
ModuleName = DefaultModuleName,
Items = [],
Specs = [],
Error = no_module_errors
;
read_all_items(DefaultModuleName, ModuleName, Items,
Specs, Error, !IO)
),
io.set_input_stream(OldInputStream, ModuleInputStream, !IO),
io.close_input(ModuleInputStream, !IO)
;
OpenResult = error(ErrorMsg),
MaybeFileData = no,
ModuleName = DefaultModuleName,
Items = [],
MaybeModuleTimestamp = no,
io.progname_base("mercury_compile", Progname, !IO),
Pieces = [fixed(Progname), suffix(":"), words(ErrorMsg), nl],
Spec = error_spec(severity_error, phase_read_files,
[error_msg(no, treat_as_first, 0, [always(Pieces)])]),
Specs = [Spec],
Error = fatal_module_errors
).
search_for_module_source(Dirs, InterfaceDirs,
ModuleName, MaybeFileName, !IO) :-
search_for_module_source_2(Dirs, ModuleName, ModuleName,
MaybeFileName0, !IO),
(
MaybeFileName0 = ok(SourceFileName),
(
string.remove_suffix(dir.basename(SourceFileName),
".m", SourceFileBaseName),
file_name_to_module_name(SourceFileBaseName, SourceFileModuleName),
ModuleName \= SourceFileModuleName
->
% The module name doesn't match the file name. Return an error
% if there is a more qualified matching `.m' or `.int' file in
% the interface search path. This avoids having a file `read.m'
% in the current directory prevent the compiler from finding
% `bit_buffer.read.int' in the standard library.
%
io.input_stream(SourceStream, !IO),
search_for_module_source_2(InterfaceDirs, ModuleName,
ModuleName, MaybeFileName2, !IO),
( MaybeFileName2 = ok(_) ->
io.seen(!IO)
;
true
),
(
MaybeFileName2 = ok(SourceFileName2),
SourceFileName2 \= SourceFileName,
string.remove_suffix(dir.basename(SourceFileName2), ".m",
SourceFileBaseName2),
file_name_to_module_name(SourceFileBaseName2,
SourceFileModuleName2),
match_sym_name(SourceFileModuleName, SourceFileModuleName2)
->
io.close_input(SourceStream, !IO),
MaybeFileName = error(find_source_error(ModuleName,
Dirs, yes(SourceFileName2)))
;
module_name_to_file_name(ModuleName, ".int",
do_not_create_dirs, IntFile, !IO),
search_for_file_returning_dir(InterfaceDirs, IntFile,
MaybeIntDir, !IO),
( MaybeIntDir = ok(_) ->
io.seen(!IO)
;
true
),
(
MaybeIntDir = ok(IntDir),
IntDir \= dir.this_directory
->
io.close_input(SourceStream, !IO),
MaybeFileName = error(find_source_error(ModuleName,
Dirs, yes(IntDir/IntFile)))
;
io.set_input_stream(SourceStream, _, !IO),
MaybeFileName = MaybeFileName0
)
)
;
MaybeFileName = MaybeFileName0
)
;
MaybeFileName0 = error(_),
MaybeFileName = MaybeFileName0
).
:- func find_source_error(module_name, list(dir_name),
maybe(file_name)) = string.
find_source_error(ModuleName, Dirs, MaybeBetterMatch) = Msg :-
ModuleNameStr = sym_name_to_string(ModuleName),
Msg0 = "cannot find source for module `" ++ ModuleNameStr ++
"' in directories " ++ string.join_list(", ", Dirs),
(
MaybeBetterMatch = no, Msg = Msg0
;
MaybeBetterMatch = yes(BetterMatchFile),
Msg = Msg0 ++ ", but found " ++ BetterMatchFile
++ " in interface search path"
).
:- pred search_for_module_source_2(list(dir_name)::in, module_name::in,
module_name::in, maybe_error(file_name)::out, io::di, io::uo) is det.
search_for_module_source_2(Dirs, ModuleName, PartialModuleName, Result, !IO) :-
module_name_to_file_name(PartialModuleName, ".m", do_not_create_dirs,
FileName, !IO),
search_for_file(Dirs, FileName, Result0, !IO),
(
Result0 = ok(_),
Result = Result0
;
Result0 = error(_),
( PartialModuleName1 = drop_one_qualifier(PartialModuleName) ->
search_for_module_source_2(Dirs, ModuleName, PartialModuleName1,
Result, !IO)
;
Result = error(find_source_error(ModuleName, Dirs, no))
)
).
:- func drop_one_qualifier(module_name) = module_name is semidet.
drop_one_qualifier(qualified(ParentQual, ChildName)) =
drop_one_qualifier_2(ParentQual, ChildName).
:- func drop_one_qualifier_2(module_name, string) = module_name.
drop_one_qualifier_2(ParentQual, ChildName) = PartialQual :-
(
ParentQual = unqualified(_ParentName),
PartialQual = unqualified(ChildName)
;
ParentQual = qualified(GrandParentQual, ParentName),
PartialGrandParentQual = drop_one_qualifier_2(GrandParentQual,
ParentName),
PartialQual = qualified(PartialGrandParentQual, ChildName)
).
%-----------------------------------------------------------------------------%
:- type module_end
---> module_end_no
; module_end_yes(module_name, prog_context).
% Extract the final `:- end_module' declaration if any.
%
:- pred get_end_module(module_name::in, list(item)::in, list(item)::out,
module_end::out) is det.
get_end_module(ModuleName, RevItems0, RevItems, EndModule) :-
(
% Note: if the module name in the end_module declaration does not match
% what we expect, given the source file name, then we assume that it is
% for a nested module, and so we leave it alone. If it is not for a
% nested module, the error will be caught by make_hlds.
RevItems0 = [Item | RevItemsPrime],
Item = item_module_defn(ItemModuleDefn),
ItemModuleDefn = item_module_defn_info(ModuleDefn, Context),
ModuleDefn = md_end_module(ModuleName)
->
RevItems = RevItemsPrime,
EndModule = module_end_yes(ModuleName, Context)
;
RevItems = RevItems0,
EndModule = module_end_no
).
%-----------------------------------------------------------------------------%
% Check that the module starts with a :- module declaration,
% and that the end_module declaration (if any) is correct,
% and construct the final parsing result.
%
:- pred check_end_module(module_end::in, list(item)::in, list(item)::out,
list(error_spec)::in, list(error_spec)::out,
module_error::in, module_error::out) is det.
check_end_module(EndModule, !Items, !Specs, !Error) :-
% Double-check that the first item is a `:- module ModuleName' declaration,
% and remove it from the front of the item list.
(
!.Items = [Item | !:Items],
Item = item_module_defn(ItemModuleDefn),
ItemModuleDefn = item_module_defn_info(md_module(ModuleName1), _)
->
% Check that the end module declaration (if any) matches
% the begin module declaration.
(
EndModule = module_end_yes(EndModuleName, EndModuleContext),
ModuleName1 \= EndModuleName
->
Pieces = [words("Error:"),
quote(":- end_module"), words("declaration"),
words("does not match"),
quote(":- module"), words("declaration."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(EndModuleContext, [always(Pieces)])]),
!:Specs = [Spec | !.Specs],
!:Error = some_module_errors
;
true
)
;
% If there's no `:- module' declaration at this point, it is
% an internal error -- read_first_item should have inserted one.
unexpected(this_file,
"check_end_module: no `:- module' declaration")
).
%-----------------------------------------------------------------------------%
% Create a dummy term. Used for error messages that are not associated
% with any particular term or context.
%
:- pred dummy_term(term::out) is det.
dummy_term(Term) :-
term.context_init(Context),
dummy_term_with_context(Context, Term).
% Create a dummy term with the specified context.
% Used for error messages that are associated with some specific
% context, but for which we don't want to print out the term
% (or for which the term isn't available to be printed out).
%
:- pred dummy_term_with_context(term.context::in, term::out) is det.
dummy_term_with_context(Context, Term) :-
Term = term.functor(term.atom(""), [], Context).
%-----------------------------------------------------------------------------%
find_module_name(FileName, MaybeModuleName, !IO) :-
io.open_input(FileName, OpenRes, !IO),
(
OpenRes = ok(InputStream),
io.set_input_stream(InputStream, OldInputStream, !IO),
( string.remove_suffix(FileName, ".m", PartialFileName0) ->
PartialFileName = PartialFileName0
;
PartialFileName = FileName
),
( dir.basename(PartialFileName, BaseName0) ->
BaseName = BaseName0
;
BaseName = ""
),
file_name_to_module_name(BaseName, DefaultModuleName),
read_first_item(DefaultModuleName, FileName, _,
ModuleName, _, _, Specs, _, !IO),
MaybeModuleName = yes(ModuleName),
% XXX _NumErrors
globals.io_get_globals(Globals, !IO),
write_error_specs(Specs, Globals, 0, _NumWarnings, 0, _NumErrors, !IO),
io.set_input_stream(OldInputStream, _, !IO),
io.close_input(InputStream, !IO)
;
OpenRes = error(Error),
ErrorMsg = io.error_message(Error),
io.progname_base("mercury_compile", Progname, !IO),
Pieces = [fixed(Progname), suffix(":"), words("error opening"),
quote(FileName), suffix(":"), words(ErrorMsg), suffix("."), nl],
Spec = error_spec(severity_error, phase_read_files,
[error_msg(no, treat_as_first, 0, [always(Pieces)])]),
globals.io_get_globals(Globals, !IO),
% XXX _NumErrors
write_error_spec(Spec, Globals, 0, _NumWarnings, 0, _NumErrors, !IO),
MaybeModuleName = no
).
% Read a source file from standard in, first reading in
% the input term by term and then parsing those terms and producing
% a high-level representation.
% Parsing is actually a 3-stage process instead of the
% normal two-stage process:
% lexical analysis (chars -> tokens),
% parsing stage 1 (tokens -> terms),
% parsing stage 2 (terms -> items).
% The final stage produces a list of program items, each of which
% may be a declaration or a clause.
%
% We use a continuation-passing style here.
%
:- pred read_all_items(module_name::in, module_name::out,
list(item)::out, list(error_spec)::out, module_error::out,
io::di, io::uo) is det.
read_all_items(DefaultModuleName, ModuleName, Items, Specs, Error, !IO) :-
% Read all the items (the first one is handled specially).
io.input_stream(Stream, !IO),
io.input_stream_name(Stream, SourceFileName0, !IO),
read_first_item(DefaultModuleName, SourceFileName0, SourceFileName,
ModuleName, RevItems0, MaybeSecondTerm, Specs0, Error0, !IO),
(
MaybeSecondTerm = yes(SecondTerm),
% XXX Should this be SourceFileName instead of SourceFileName0?
read_term_to_item_result(ModuleName, SourceFileName0, SecondTerm,
MaybeSecondItem),
read_items_loop_2(MaybeSecondItem, ModuleName, SourceFileName,
RevItems0, RevItems1, Specs0, Specs1, Error0, Error1, !IO)
;
MaybeSecondTerm = no,
read_items_loop(ModuleName, SourceFileName,
RevItems0, RevItems1, Specs0, Specs1, Error0, Error1, !IO)
),
% Get the end_module declaration (if any), check that it matches
% the initial module declaration (if any), and remove both of them
% from the final item list.
get_end_module(ModuleName, RevItems1, RevItems, EndModule),
check_end_module(EndModule, Items0, Items, Specs1, Specs, Error1, Error),
list.reverse(RevItems, Items0).
% We need to jump through a few hoops when reading the first item,
% to allow the initial `:- module' declaration to be optional.
% The reason is that in order to parse an item, we need to know
% which module it is defined in (because we do some module
% qualification and checking of module qualifiers at parse time),
% but the initial `:- module' declaration and the declaration
% that follows it occur in different scopes, so we need to know
% what it is that we're parsing before we can parse it!
% We solve this dilemma by first parsing it in the root scope,
% and then if it turns out to not be a `:- module' declaration
% we reparse it in the default module scope. Blecchh.
%
:- pred read_first_item(module_name::in, file_name::in, file_name::out,
module_name::out, list(item)::out, maybe(read_term)::out,
list(error_spec)::out, module_error::out, io::di, io::uo) is det.
read_first_item(DefaultModuleName, !SourceFileName, ModuleName,
Items, MaybeSecondTerm, Specs, Error, !IO) :-
% Parse the first term, treating it as occurring within the scope
% of the special "root" module (so that any `:- module' declaration
% is taken to be a non-nested module unless explicitly qualified).
parser.read_term_filename(!.SourceFileName, MaybeFirstTerm, !IO),
root_module_name(RootModuleName),
read_term_to_item_result(RootModuleName, !.SourceFileName, MaybeFirstTerm,
MaybeFirstItem),
(
% Apply and then skip `pragma source_file' decls, by calling ourselves
% recursively with the new source file name.
MaybeFirstItem = read_item_ok(FirstItem),
FirstItem = item_pragma(FirstItemPragma),
FirstItemPragma = item_pragma_info(_,
pragma_source_file(!:SourceFileName), _)
->
read_first_item(DefaultModuleName, !SourceFileName,
ModuleName, Items, MaybeSecondTerm, Specs, Error, !IO)
;
% Check if the first term was a `:- module' decl.
MaybeFirstItem = read_item_ok(FirstItem),
FirstItem = item_module_defn(FirstItemModuleDefn),
FirstItemModuleDefn = item_module_defn_info(ModuleDefn, FirstContext),
ModuleDefn = md_module(StartModuleName)
->
% If so, then check that it matches the expected module name,
% and if not, report a warning.
( match_sym_name(StartModuleName, DefaultModuleName) ->
ModuleName = DefaultModuleName,
Specs = []
; match_sym_name(DefaultModuleName, StartModuleName) ->
ModuleName = StartModuleName,
Specs = []
;
% XXX I think this should be an error, not a warning. -zs
Pieces = [words("Warning: source file"), quote(!.SourceFileName),
words("contains module named"), sym_name(StartModuleName),
suffix("."), nl],
Severity = severity_conditional(warn_wrong_module_name, yes,
severity_warning, no),
Msgs = [option_is_set(warn_wrong_module_name, yes,
[always(Pieces)])],
Spec = error_spec(Severity, phase_term_to_parse_tree,
[simple_msg(FirstContext, Msgs)]),
Specs = [Spec],
% Which one should we use here? We used to use the default module
% name (computed from the filename) but now we use the declared
% one.
ModuleName = StartModuleName
),
make_module_decl(ModuleName, FirstContext, FixedFirstItem),
Items = [FixedFirstItem],
Error = no_module_errors,
MaybeSecondTerm = no
;
% If the first term was not a `:- module' decl, then issue a warning
% (if warning enabled), and insert an implicit `:- module ModuleName'
% decl.
( MaybeFirstItem = read_item_ok(FirstItem) ->
FirstContext = get_item_context(FirstItem)
;
term.context_init(!.SourceFileName, 1, FirstContext)
),
% XXX I think this should be an error, not a warning. -zs
Pieces = [words("Warning: module should start with a"),
quote(":- module"), words("declaration."), nl],
Severity = severity_conditional(warn_missing_module_name, yes,
severity_warning, no),
Msgs = [option_is_set(warn_missing_module_name, yes,
[always(Pieces)])],
Spec = error_spec(Severity, phase_term_to_parse_tree,
[simple_msg(FirstContext, Msgs)]),
Specs = [Spec],
ModuleName = DefaultModuleName,
make_module_decl(ModuleName, FirstContext, FixedFirstItem),
% Reparse the first term, this time treating it as occuring within
% the scope of the implicit `:- module' decl rather than in the
% root module.
MaybeSecondTerm = yes(MaybeFirstTerm),
Items = [FixedFirstItem],
Error = no_module_errors
).
:- pred make_module_decl(module_name::in, term.context::in, item::out) is det.
make_module_decl(ModuleName, Context, Item) :-
ModuleDefn = md_module(ModuleName),
ItemInfo = item_module_defn_info(ModuleDefn, Context),
Item = item_module_defn(ItemInfo).
%-----------------------------------------------------------------------------%
% The code below was carefully optimized to run efficiently in NU-Prolog.
% We used to call read_item(MaybeItem) - which does all the work for
% a single item - via io.gc_call/1, which called the goal with
% garbage collection. But optimizing for NU-Prolog is no longer a concern.
:- pred read_items_loop(module_name::in, file_name::in,
list(item)::in, list(item)::out,
list(error_spec)::in, list(error_spec)::out,
module_error::in, module_error::out, io::di, io::uo) is det.
read_items_loop(ModuleName, SourceFileName, !Items, !Specs, !Error, !IO) :-
read_item(ModuleName, SourceFileName, MaybeItem, !IO),
read_items_loop_2(MaybeItem, ModuleName, SourceFileName, !Items,
!Specs, !Error, !IO).
%-----------------------------------------------------------------------------%
:- pred read_items_loop_2(read_item_result::in, module_name::in,
file_name::in, list(item)::in, list(item)::out,
list(error_spec)::in, list(error_spec)::out,
module_error::in, module_error::out, io::di, io::uo) is det.
read_items_loop_2(MaybeItemOrEOF, !.ModuleName, !.SourceFileName, !Items,
!Specs, !Error, !IO) :-
(
MaybeItemOrEOF = read_item_eof
% If the next item was end-of-file, then we're done.
;
% If the next item had some errors, then insert them
% in the list of errors and continue looping.
MaybeItemOrEOF = read_item_errors(ItemSpecs),
!:Specs = ItemSpecs ++ !.Specs,
!:Error = some_module_errors,
read_items_loop(!.ModuleName, !.SourceFileName, !Items,
!Specs, !Error, !IO)
;
MaybeItemOrEOF = read_item_ok(Item),
read_items_loop_ok(Item, !ModuleName, !SourceFileName, !Items,
!Specs, !Error, !IO),
read_items_loop(!.ModuleName, !.SourceFileName, !Items,
!Specs, !Error, !IO)
).
:- pred read_items_loop_ok(item::in, module_name::in, module_name::out,
file_name::in, file_name::out, list(item)::in, list(item)::out,
list(error_spec)::in, list(error_spec)::out,
module_error::in, module_error::out, io::di, io::uo) is det.
read_items_loop_ok(Item0, !ModuleName, !SourceFileName, !Items,
!Specs, !Error, !IO) :-
(
Item0 = item_nothing(ItemNothing0),
ItemNothing0 = item_nothing_info(yes(Warning), Context0)
->
Warning = item_warning(MaybeOption, Msg, Term),
(
MaybeOption = yes(Option),
globals.io_lookup_bool_option(Option, Warn, !IO)
;
MaybeOption = no,
Warn = yes
),
(
Warn = yes,
Pieces = [words("Warning: "), words(Msg), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
!:Specs = [Spec | !.Specs],
globals.io_lookup_bool_option(halt_at_warn, Halt, !IO),
(
Halt = yes,
!:Error = some_module_errors
;
Halt = no
)
;
Warn = no
),
ItemNothing = item_nothing_info(no, Context0),
Item = item_nothing(ItemNothing)
;
Item = Item0
),
% If the next item was a valid item, check whether it was a declaration
% that affects the current parsing context -- i.e. either a `module' or
% `end_module' declaration, or a `pragma source_file' declaration.
% If so, set the new parsing context according. Next, unless the item
% is a `pragma source_file' declaration, insert it into the item list.
% Then continue looping.
(
Item = item_pragma(ItemPragma),
ItemPragma = item_pragma_info(_, PragmaType, _),
PragmaType = pragma_source_file(NewSourceFileName)
->
!:SourceFileName = NewSourceFileName
;
Item = item_module_defn(ItemModuleDefn)
->
ItemModuleDefn = item_module_defn_info(ModuleDefn, Context),
( ModuleDefn = md_module(NestedModuleName) ->
!:ModuleName = NestedModuleName,
!:Items = [Item | !.Items]
; ModuleDefn = md_end_module(NestedModuleName) ->
root_module_name(RootModuleName),
sym_name_get_module_name_default(NestedModuleName, RootModuleName,
ParentModuleName),
!:ModuleName = ParentModuleName,
!:Items = [Item | !.Items]
; ModuleDefn = md_import(Modules) ->
ImportItems = list.map(make_pseudo_import_module_decl(Context),
Modules),
!:Items = ImportItems ++ !.Items
; ModuleDefn = md_use(Modules) ->
UseItems = list.map(make_pseudo_use_module_decl(Context),
Modules),
!:Items = UseItems ++ !.Items
; ModuleDefn = md_include_module(Modules) ->
IncludeItems = list.map(make_pseudo_include_module_decl(Context),
Modules),
!:Items = IncludeItems ++ !.Items
;
!:Items = [Item | !.Items]
)
;
!:Items = [Item | !.Items]
).
%-----------------------------------------------------------------------------%
:- func make_pseudo_import_module_decl(prog_context, module_specifier) = item.
make_pseudo_import_module_decl(Context, ModuleSpecifier) = Item :-
ModuleDefn = md_import([ModuleSpecifier]),
ItemModuleDefn = item_module_defn_info(ModuleDefn, Context),
Item = item_module_defn(ItemModuleDefn).
:- func make_pseudo_use_module_decl(prog_context, module_specifier) = item.
make_pseudo_use_module_decl(Context, ModuleSpecifier) = Item :-
ModuleDefn = md_use([ModuleSpecifier]),
ItemModuleDefn = item_module_defn_info(ModuleDefn, Context),
Item = item_module_defn(ItemModuleDefn).
:- func make_pseudo_include_module_decl(prog_context, module_name) = item.
make_pseudo_include_module_decl(Context, ModuleSpecifier) = Item :-
ModuleDefn = md_include_module([ModuleSpecifier]),
ItemModuleDefn = item_module_defn_info(ModuleDefn, Context),
Item = item_module_defn(ItemModuleDefn).
%-----------------------------------------------------------------------------%
:- type read_item_result
---> read_item_eof
; read_item_errors(list(error_spec))
; read_item_ok(item).
% Read_item/1 reads a single item, and if it is a valid term parses it.
%
:- pred read_item(module_name::in, file_name::in, read_item_result::out,
io::di, io::uo) is det.
read_item(ModuleName, SourceFileName, MaybeItem, !IO) :-
parser.read_term_filename(SourceFileName, MaybeTerm, !IO),
read_term_to_item_result(ModuleName, SourceFileName, MaybeTerm, MaybeItem).
:- pred read_term_to_item_result(module_name::in, string::in, read_term::in,
read_item_result::out) is det.
read_term_to_item_result(ModuleName, FileName, ReadTermResult,
ReadItemResult) :-
(
ReadTermResult = eof,
ReadItemResult = read_item_eof
;
ReadTermResult = error(ErrorMsg, LineNumber),
% XXX Do we need to add an "Error:" prefix?
Pieces = [words(ErrorMsg), suffix("."), nl],
Context = term.context_init(FileName, LineNumber),
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(Context, [always(Pieces)])]),
ReadItemResult = read_item_errors([Spec])
;
ReadTermResult = term(VarSet, Term),
parse_item(ModuleName, VarSet, Term, MaybeItem),
convert_item(MaybeItem, ReadItemResult)
).
:- pred convert_item(maybe1(item)::in, read_item_result::out) is det.
convert_item(ok1(Item), read_item_ok(Item)).
convert_item(error1(Specs), read_item_errors(Specs)).
parse_item(ModuleName, VarSet, Term, Result) :-
( Term = term.functor(term.atom(":-"), [Decl], _DeclContext) ->
% It's a declaration.
parse_decl(ModuleName, VarSet, Decl, Result)
; Term = term.functor(term.atom("-->"), [DCG_H, DCG_B], DCG_Context) ->
% It's a DCG clause.
parse_dcg_clause(ModuleName, VarSet, DCG_H, DCG_B, DCG_Context, Result)
;
% It's either a fact or a rule.
( Term = term.functor(term.atom(":-"), [H, B], TermContext) ->
% It's a rule.
Head = H,
Body = B,
TheContext = TermContext
;
% It's a fact.
Head = Term,
TheContext = get_term_context(Head),
Body = term.functor(term.atom("true"), [], TheContext)
),
varset.coerce(VarSet, ProgVarSet),
process_clause(ModuleName, Term, Head, Body, ProgVarSet, TheContext,
Result)
).
:- pred process_clause(module_name::in, term::in, term::in, term::in,
prog_varset::in, term.context::in, maybe1(item)::out) is det.
process_clause(ModuleName, Term, Head, Body0, ProgVarSet0, Context, Result) :-
GoalContextPieces = [],
parse_goal(Body0, GoalContextPieces, MaybeBody, ProgVarSet0, ProgVarSet),
(
MaybeBody = ok1(Body),
varset.coerce(ProgVarSet, VarSet),
(
Head = term.functor(term.atom("="), [FuncHead0, FuncResult], _),
FuncHead = desugar_field_access(FuncHead0)
->
HeadContextPieces = [words("In equation head:")],
parse_implicitly_qualified_term(ModuleName, FuncHead, Head,
VarSet, HeadContextPieces, MaybeFunctor),
process_func_clause(MaybeFunctor, FuncResult, ProgVarSet, Body,
Context, Result)
;
HeadContextPieces = [words("In clause head:")],
parse_implicitly_qualified_term(ModuleName, Head, Term,
VarSet, HeadContextPieces, MaybeFunctor),
process_pred_clause(MaybeFunctor, ProgVarSet, Body, Context,
Result)
)
;
MaybeBody = error1(Specs),
Result = error1(Specs)
).
:- pred process_pred_clause(maybe_functor::in, prog_varset::in, goal::in,
prog_context::in, maybe1(item)::out) is det.
process_pred_clause(MaybeFunctor, VarSet, Body, Context, MaybeItem) :-
(
MaybeFunctor = ok2(Name, Args0),
list.map(term.coerce, Args0, Args),
ItemClause = item_clause_info(user, VarSet, pf_predicate, Name,
Args, Body, Context),
Item = item_clause(ItemClause),
MaybeItem = ok1(Item)
;
MaybeFunctor = error2(Specs),
MaybeItem = error1(Specs)
).
:- pred process_func_clause(maybe_functor::in, term::in, prog_varset::in,
goal::in, prog_context::in, maybe1(item)::out) is det.
process_func_clause(MaybeFunctor, Result0, VarSet, Body, Context, MaybeItem) :-
(
MaybeFunctor = ok2(Name, Args0),
list.append(Args0, [Result0], Args1),
list.map(term.coerce, Args1, Args),
ItemClause = item_clause_info(user, VarSet, pf_function, Name,
Args, Body, Context),
Item = item_clause(ItemClause),
MaybeItem = ok1(Item)
;
MaybeFunctor = error2(Specs),
MaybeItem = error1(Specs)
).
%-----------------------------------------------------------------------------%
:- type decl_attribute
---> decl_attr_purity(purity)
; decl_attr_quantifier(quantifier_type, list(var))
; decl_attr_constraints(quantifier_type, term)
% the term here is the (not yet parsed) list of constraints
; decl_attr_solver_type.
:- type quantifier_type
---> quant_type_exist
; quant_type_univ.
% The term associated with each decl_attribute is the term containing
% both the attribute and the declaration that that attribute modifies;
% this term is used when printing out error messages for cases when
% attributes are used on declarations where they are not allowed.
:- type decl_attrs == assoc_list(decl_attribute, term.context).
parse_decl(ModuleName, VarSet, Term, Result) :-
parse_decl_2(ModuleName, VarSet, Term, [], Result).
% parse_decl_2(ModuleName, VarSet, Term, Attributes, Result):
%
% Succeeds if Term is a declaration and binds Result to a representation
% of that declaration. Attributes is a list of enclosing declaration
% attributes, in the order innermost to outermost.
%
:- pred parse_decl_2(module_name::in, varset::in, term::in, decl_attrs::in,
maybe1(item)::out) is det.
parse_decl_2(ModuleName, VarSet, Term, Attributes, Result) :-
( Term = term.functor(term.atom(Atom), Args, Context) ->
(
parse_decl_attribute(Atom, Args, Attribute, SubTerm)
->
NewAttributes = [Attribute - Context | Attributes],
parse_decl_2(ModuleName, VarSet, SubTerm, NewAttributes, Result)
;
process_decl(ModuleName, VarSet, Atom, Args, Attributes, Context,
ResultPrime)
->
ResultPrime = Result
;
TermStr = mercury_term_to_string(VarSet, no, Term),
Pieces = [words("Error: unrecognized declaration:"), nl,
words(TermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(Context, [always(Pieces)])]),
Result = error1([Spec])
)
;
Context = get_term_context(Term),
Pieces = [words("Error: atom expected after `:-'."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(Context, [always(Pieces)])]),
Result = error1([Spec])
).
% process_decl(ModuleName, VarSet, Attributes, Atom, Args, Result):
%
% Succeeds if Atom(Args) is a declaration and binds Result to a
% representation of that declaration. Attributes is a list of
% enclosing declaration attributes, in the order outermost to innermost.
%
:- pred process_decl(module_name::in, varset::in, string::in, list(term)::in,
decl_attrs::in, prog_context::in, maybe1(item)::out) is semidet.
% XXX Break this up into one predicate per declaration,
% with this predicate doing nothing except switching between them.
process_decl(ModuleName, VarSet, "type", [TypeDecl], Attributes, Context,
Result) :-
parse_type_decl(ModuleName, VarSet, TypeDecl, Attributes, Context, Result).
process_decl(ModuleName, VarSet, "pred", [PredDecl], Attributes, Context,
Result) :-
parse_type_decl_pred(ModuleName, VarSet, PredDecl, Attributes, Context,
Result).
process_decl(ModuleName, VarSet, "func", [FuncDecl], Attributes, Context,
Result) :-
parse_type_decl_func(ModuleName, VarSet, FuncDecl, Attributes, Context,
Result).
process_decl(ModuleName, VarSet, "mode", [ModeDecl], Attributes,
Context, Result) :-
parse_mode_decl(ModuleName, VarSet, ModeDecl, Attributes, Context, Result).
process_decl(ModuleName, VarSet, "inst", [InstDecl], Attributes,
Context, Result) :-
parse_inst_decl(ModuleName, VarSet, InstDecl, Context, Result0),
check_no_attributes(Result0, Attributes, Result).
process_decl(_ModuleName, VarSet, "import_module", [ModuleSpec], Attributes,
Context, Result) :-
parse_symlist_decl(parse_module_specifier(VarSet), make_import,
ModuleSpec, Attributes, Context, Result).
process_decl(_ModuleName, VarSet, "use_module", [ModuleSpec], Attributes,
Context, Result) :-
parse_symlist_decl(parse_module_specifier(VarSet), make_use,
ModuleSpec, Attributes, Context, Result).
process_decl(_ModuleName, VarSet, "export_module", [ModuleSpec], Attributes,
Context, Result) :-
parse_symlist_decl(parse_module_specifier(VarSet), make_export,
ModuleSpec, Attributes, Context, Result).
process_decl(_ModuleName, _VarSet, "interface", [], Attributes, Context,
Result) :-
ItemModuleDefn = item_module_defn_info(md_interface, Context),
Item = item_module_defn(ItemModuleDefn),
Result0 = ok1(Item),
check_no_attributes(Result0, Attributes, Result).
process_decl(_ModuleName, _VarSet, "implementation", [], Attributes, Context,
Result) :-
ItemModuleDefn = item_module_defn_info(md_implementation, Context),
Item = item_module_defn(ItemModuleDefn),
Result0 = ok1(Item),
check_no_attributes(Result0, Attributes, Result).
process_decl(ModuleName, VarSet, "external", Args, Attributes, Context,
Result) :-
(
Args = [PredSpec],
MaybeBackend = no
;
Args = [BackendArg, PredSpec],
BackendArg = term.functor(term.atom(Functor), [], _),
(
Functor = "high_level_backend",
Backend = high_level_backend
;
Functor = "low_level_backend",
Backend = low_level_backend
),
MaybeBackend = yes(Backend)
),
parse_implicitly_qualified_symbol_name_specifier(ModuleName, VarSet,
PredSpec, Result0),
process_maybe1(make_external(MaybeBackend, Context), Result0, Result1),
check_no_attributes(Result1, Attributes, Result).
process_decl(DefaultModuleName, VarSet, "module", [ModuleName], Attributes,
Context, Result) :-
parse_module_name(DefaultModuleName, VarSet, ModuleName, Result0),
(
Result0 = ok1(ModuleNameSym),
ModuleDefn = md_module(ModuleNameSym),
ItemModuleDefn = item_module_defn_info(ModuleDefn, Context),
Item = item_module_defn(ItemModuleDefn),
Result1 = ok1(Item)
;
Result0 = error1(Specs),
Result1 = error1(Specs)
),
check_no_attributes(Result1, Attributes, Result).
process_decl(DefaultModuleName, VarSet, "include_module", [ModuleNames],
Attributes, Context, Result) :-
parse_list(parse_module_name(DefaultModuleName, VarSet), ModuleNames,
Result0),
(
Result0 = ok1(ModuleNameSyms),
ModuleDefn = md_include_module(ModuleNameSyms),
ItemModuleDefn = item_module_defn_info(ModuleDefn, Context),
Item = item_module_defn(ItemModuleDefn),
Result1 = ok1(Item)
;
Result0 = error1(Specs),
Result1 = error1(Specs)
),
check_no_attributes(Result1, Attributes, Result).
process_decl(DefaultModuleName, VarSet, "end_module", [ModuleName],
Attributes, Context, Result) :-
% The name in an `end_module' declaration not inside the scope of the
% module being ended, so the default module name here is the parent
% of the previous default module name.
root_module_name(RootModuleName),
sym_name_get_module_name_default(DefaultModuleName, RootModuleName,
ParentOfDefaultModuleName),
parse_module_name(ParentOfDefaultModuleName, VarSet, ModuleName, Result0),
(
Result0 = ok1(ModuleNameSym),
ModuleDefn = md_end_module(ModuleNameSym),
ItemModuleDefn = item_module_defn_info(ModuleDefn, Context),
Item = item_module_defn(ItemModuleDefn),
Result1 = ok1(Item)
;
Result0 = error1(Specs),
Result1 = error1(Specs)
),
check_no_attributes(Result1, Attributes, Result).
process_decl(ModuleName, VarSet, "pragma", Pragma, Attributes, Context,
Result):-
parse_pragma(ModuleName, VarSet, Pragma, Context, Result0),
check_no_attributes(Result0, Attributes, Result).
process_decl(ModuleName, VarSet, "promise", Assertion, Attributes, Context,
Result):-
parse_promise(ModuleName, promise_type_true, VarSet,
Assertion, Attributes, Context, Result0),
check_no_attributes(Result0, Attributes, Result).
process_decl(ModuleName, VarSet, "promise_exclusive", PromiseGoal, Attributes,
Context, Result):-
parse_promise(ModuleName, promise_type_exclusive, VarSet,
PromiseGoal, Attributes, Context, Result).
process_decl(ModuleName, VarSet, "promise_exhaustive", PromiseGoal, Attributes,
Context, Result):-
parse_promise(ModuleName, promise_type_exhaustive, VarSet,
PromiseGoal, Attributes, Context, Result).
process_decl(ModuleName, VarSet, "promise_exclusive_exhaustive", PromiseGoal,
Attributes, Context, Result):-
parse_promise(ModuleName, promise_type_exclusive_exhaustive, VarSet,
PromiseGoal, Attributes, Context, Result).
process_decl(ModuleName, VarSet, "typeclass", Args, Attributes, Context,
Result):-
parse_typeclass(ModuleName, VarSet, Args, Context, Result0),
(
Result0 = ok1(ItemTypeClass),
Result1 = ok1(item_typeclass(ItemTypeClass))
;
Result0 = error1(Specs),
Result1 = error1(Specs)
),
check_no_attributes(Result1, Attributes, Result).
process_decl(ModuleName, VarSet, "instance", Args, Attributes, Context,
Result):-
parse_instance(ModuleName, VarSet, Args, Context, Result0),
(
Result0 = ok1(ItemInstance),
Result1 = ok1(item_instance(ItemInstance))
;
Result0 = error1(Specs),
Result1 = error1(Specs)
),
check_no_attributes(Result1, Attributes, Result).
process_decl(ModuleName, VarSet, "version_numbers",
[VersionNumberTerm, ModuleNameTerm, VersionNumbersTerm],
Attributes, Context, Result) :-
parse_module_specifier(VarSet, ModuleNameTerm, ModuleNameResult),
(
VersionNumberTerm = term.functor(term.integer(VersionNumber), [], _),
VersionNumber = version_numbers_version_number
->
(
ModuleNameResult = ok1(ModuleName),
recompilation.version.parse_version_numbers(VersionNumbersTerm,
Result0),
(
Result0 = ok1(VersionNumbers),
ModuleDefn = md_version_numbers(ModuleName, VersionNumbers),
ItemModuleDefn = item_module_defn_info(ModuleDefn, Context),
Item = item_module_defn(ItemModuleDefn),
Result1 = ok1(Item),
check_no_attributes(Result1, Attributes, Result)
;
Result0 = error1(Specs),
Result = error1(Specs)
)
;
% XXX _Spec
ModuleNameResult = error1(_Spec),
Pieces = [words("Error: invalid module name in"),
quote(":- version_numbers"), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(ModuleNameTerm),
[always(Pieces)])]),
Result = error1([Spec])
)
;
(
VersionNumberTerm = term.functor(_, _, _VersionNumberContext),
Msg = "interface file needs to be recreated, " ++
"the version numbers are out of date",
dummy_term_with_context(Context, DummyTerm),
Warning = item_warning(yes(warn_smart_recompilation),
Msg, DummyTerm),
ItemNothing = item_nothing_info(yes(Warning), Context),
Item = item_nothing(ItemNothing),
Result = ok1(Item)
;
VersionNumberTerm = term.variable(_, VersionNumberContext),
Pieces = [words("Error: invalid version number in"),
quote(":- version_numbers"), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(VersionNumberContext, [always(Pieces)])]),
Result = error1([Spec])
)
).
process_decl(ModuleName, VarSet, InitDecl, Args, Attributes, Context,
Result) :-
( InitDecl = "initialise" ; InitDecl = "initialize" ),
parse_initialise_decl(ModuleName, VarSet, Args, Context, Result0),
check_no_attributes(Result0, Attributes, Result).
process_decl(ModuleName, VarSet, FinalDecl, Args, Attributes, Context,
Result) :-
( FinalDecl = "finalise" ; FinalDecl = "finalize" ),
parse_finalise_decl(ModuleName, VarSet, Args, Context, Result0),
check_no_attributes(Result0, Attributes, Result).
process_decl(ModuleName, VarSet, "mutable", Args, Attributes, Context,
Result) :-
parse_mutable_decl(ModuleName, VarSet, Args, Context, Result0),
check_no_attributes(Result0, Attributes, Result).
:- pred parse_decl_attribute(string::in, list(term)::in, decl_attribute::out,
term::out) is semidet.
parse_decl_attribute("impure", [Decl],
decl_attr_purity(purity_impure), Decl).
parse_decl_attribute("semipure", [Decl],
decl_attr_purity(purity_semipure), Decl).
parse_decl_attribute("<=", [Decl, Constraints],
decl_attr_constraints(quant_type_univ, Constraints), Decl).
parse_decl_attribute("=>", [Decl, Constraints],
decl_attr_constraints(quant_type_exist, Constraints), Decl).
parse_decl_attribute("some", [TVars, Decl],
decl_attr_quantifier(quant_type_exist, TVarsList), Decl) :-
parse_list_of_vars(TVars, TVarsList).
parse_decl_attribute("all", [TVars, Decl],
decl_attr_quantifier(quant_type_univ, TVarsList), Decl) :-
parse_list_of_vars(TVars, TVarsList).
parse_decl_attribute("solver", [Decl], decl_attr_solver_type, Decl).
:- pred check_no_attributes(maybe1(T)::in, decl_attrs::in, maybe1(T)::out)
is det.
check_no_attributes(Result0, Attributes, Result) :-
(
Result0 = ok1(_),
Attributes = [Attr - Context | _]
->
% XXX Shouldn't we mention EVERY element of Attributes?
Pieces = [words("Error:"), words(attribute_description(Attr)),
words("not allowed here."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(Context, [always(Pieces)])]),
Result = error1([Spec])
;
Result = Result0
).
:- func attribute_description(decl_attribute) = string.
attribute_description(decl_attr_purity(_)) = "purity specifier".
attribute_description(decl_attr_quantifier(quant_type_univ, _)) =
"universal quantifier (`all')".
attribute_description(decl_attr_quantifier(quant_type_exist, _)) =
"existential quantifier (`some')".
attribute_description(decl_attr_constraints(quant_type_univ, _)) =
"type class constraint (`<=')".
attribute_description(decl_attr_constraints(quant_type_exist, _)) =
"existentially quantified type class constraint (`=>')".
attribute_description(decl_attr_solver_type) = "solver type specifier".
%-----------------------------------------------------------------------------%
:- pred parse_promise(module_name::in, promise_type::in, varset::in,
list(term)::in, decl_attrs::in, prog_context::in, maybe1(item)::out)
is semidet.
parse_promise(ModuleName, PromiseType, VarSet, [Term], Attributes, Context,
Result) :-
varset.coerce(VarSet, ProgVarSet0),
ContextPieces = [],
parse_goal(Term, ContextPieces, MaybeGoal0, ProgVarSet0, ProgVarSet),
(
MaybeGoal0 = ok1(Goal0),
% Get universally quantified variables.
(
PromiseType = promise_type_true,
( Goal0 = all_expr(UnivVars0, AllGoal) - _Context ->
UnivVars0 = UnivVars,
Goal = AllGoal
;
UnivVars = [],
Goal = Goal0
)
;
( PromiseType = promise_type_exclusive
; PromiseType = promise_type_exhaustive
; PromiseType = promise_type_exclusive_exhaustive
),
get_quant_vars(quant_type_univ, ModuleName, Attributes, _,
[], UnivVars0),
list.map(term.coerce_var, UnivVars0, UnivVars),
Goal0 = Goal
),
ItemPromise = item_promise_info(PromiseType, Goal, ProgVarSet,
UnivVars, Context),
Item = item_promise(ItemPromise),
Result = ok1(Item)
;
MaybeGoal0 = error1(Specs),
Result = error1(Specs)
).
%-----------------------------------------------------------------------------%
:- pred parse_type_decl(module_name::in, varset::in, term::in, decl_attrs::in,
prog_context::in, maybe1(item)::out) is det.
parse_type_decl(ModuleName, VarSet, TypeDecl, Attributes, Context, Result) :-
(
TypeDecl = term.functor(term.atom(Name), Args, _),
parse_type_decl_type(ModuleName, VarSet, Name, Args, Attributes, Cond,
TypeDeclResultPrime)
->
TypeDeclResult = TypeDeclResultPrime,
Cond1 = Cond
;
process_abstract_type(ModuleName, VarSet, TypeDecl, Attributes,
TypeDeclResult),
Cond1 = cond_true
),
% We should check the condition for errors (don't bother at the moment,
% since we ignore conditions anyhow :-).
process_maybe1(make_type_defn(VarSet, Cond1, Context), TypeDeclResult,
Result).
:- pred make_type_defn(varset::in, condition::in, prog_context::in,
processed_type_body::in, item::out) is det.
make_type_defn(VarSet0, Cond, Context, ProcessedTypeBody, Item) :-
ProcessedTypeBody = processed_type_body(Name, Args, TypeDefn),
varset.coerce(VarSet0, VarSet),
ItemTypeDefn = item_type_defn_info(VarSet, Name, Args, TypeDefn, Cond,
Context),
Item = item_type_defn(ItemTypeDefn).
:- pred make_external(maybe(backend)::in, prog_context::in,
sym_name_specifier::in, item::out) is det.
make_external(MaybeBackend, Context, SymSpec, Item) :-
ModuleDefn = md_external(MaybeBackend, SymSpec),
ItemModuleDefn = item_module_defn_info(ModuleDefn, Context),
Item = item_module_defn(ItemModuleDefn).
:- pred get_is_solver_type(is_solver_type::out,
decl_attrs::in, decl_attrs::out) is det.
get_is_solver_type(IsSolverType, !Attributes) :-
( !.Attributes = [decl_attr_solver_type - _ | !:Attributes] ->
IsSolverType = solver_type
;
IsSolverType = non_solver_type
).
%-----------------------------------------------------------------------------%
% parse_type_decl_type(Term, Condition, Result) succeeds if Term is
% a "type" type declaration, and binds Condition to the condition for
% that declaration (if any), and Result to a representation of the
% declaration.
%
:- pred parse_type_decl_type(module_name::in, varset::in, string::in,
list(term)::in, decl_attrs::in, condition::out,
maybe1(processed_type_body)::out) is semidet.
parse_type_decl_type(ModuleName, VarSet, Connective, [HeadTerm, BodyTerm],
Attributes0, Condition, Result) :-
(
Connective = "--->",
get_condition(BodyTerm, Body, Condition),
get_is_solver_type(IsSolverType, Attributes0, Attributes),
(
IsSolverType = solver_type,
Pieces = [words("Error: a solver type:"),
words("cannot have data constructors."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(HeadTerm), [always(Pieces)])]),
Result = error1([Spec])
;
IsSolverType = non_solver_type,
du_type_rhs_ctors_and_where_terms(Body, CtorsTerm, MaybeWhereTerm),
CtorsResult = convert_constructors(ModuleName, VarSet, CtorsTerm),
(
CtorsResult = error1(Specs),
Result = error1(Specs)
;
CtorsResult = ok1(Ctors),
WhereResult = parse_type_decl_where_term(non_solver_type,
ModuleName, VarSet, MaybeWhereTerm),
(
WhereResult = error2(Specs),
Result = error1(Specs)
;
% The code to process `where' attributes will return
% an error result if solver attributes are given for
% a non-solver type. Because this is a du type, if the
% unification with WhereResult succeeds then
% _NoSolverTypeDetails is guaranteed to be `no'.
WhereResult = ok2(_NoSolverTypeDetails, MaybeUserEqComp),
process_du_type(ModuleName, VarSet, HeadTerm, BodyTerm,
Ctors, MaybeUserEqComp, Result0),
check_no_attributes(Result0, Attributes, Result)
)
)
)
;
Connective = "==",
get_condition(BodyTerm, Body, Condition),
process_eqv_type(ModuleName, VarSet, HeadTerm, Body, Result0),
check_no_attributes(Result0, Attributes0, Result)
;
Connective = "where",
get_condition(BodyTerm, Body, Condition),
get_is_solver_type(IsSolverType, Attributes0, Attributes),
(
IsSolverType = non_solver_type,
Pieces = [words("Error: only solver types can be defined"),
words("by a `where' block alone."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(HeadTerm), [always(Pieces)])]),
Result = error1([Spec])
;
IsSolverType = solver_type,
Result0 = parse_type_decl_where_term(solver_type, ModuleName,
VarSet, yes(Body)),
(
Result0 = error2(Specs),
Result = error1(Specs)
;
Result0 = ok2(MaybeSolverTypeDetails, MaybeUserEqComp),
process_solver_type(ModuleName, VarSet, HeadTerm,
MaybeSolverTypeDetails, MaybeUserEqComp, Result1),
check_no_attributes(Result1, Attributes, Result)
)
)
).
:- pred du_type_rhs_ctors_and_where_terms(term::in,
term::out, maybe(term)::out) is det.
du_type_rhs_ctors_and_where_terms(Term, CtorsTerm, MaybeWhereTerm) :-
(
Term = term.functor(term.atom("where"), Args, _Context),
Args = [CtorsTerm0, WhereTerm]
->
CtorsTerm = CtorsTerm0,
MaybeWhereTerm = yes(WhereTerm)
;
CtorsTerm = Term,
MaybeWhereTerm = no
).
%-----------------------------------------------------------------------------%
% parse_type_decl_pred(ModuleName, VarSet, Pred, Attributes, Result)
% succeeds if Pred is a predicate type declaration, and binds Result
% to a representation of the declaration.
%
:- pred parse_type_decl_pred(module_name::in, varset::in, term::in,
decl_attrs::in, prog_context::in, maybe1(item)::out) is det.
parse_type_decl_pred(ModuleName, VarSet, Pred, Attributes, Context, Result) :-
get_condition(Pred, Body, Condition),
get_determinism(VarSet, Body, Body2, MaybeDeterminism),
get_with_inst(Body2, Body3, WithInst),
get_with_type(VarSet, Body3, Body4, WithTypeResult),
( WithTypeResult = ok1(WithType),
process_type_decl_pred_or_func(pf_predicate, ModuleName, WithType,
WithInst, MaybeDeterminism, VarSet, Body4, Condition, Attributes,
Context, Result)
;
WithTypeResult = error1(Specs),
Result = error1(Specs)
).
:- pred process_type_decl_pred_or_func(pred_or_func::in, module_name::in,
maybe(mer_type)::in, maybe1(maybe(mer_inst))::in,
maybe1(maybe(determinism))::in, varset::in, term::in, condition::in,
decl_attrs::in, prog_context::in, maybe1(item)::out) is det.
process_type_decl_pred_or_func(PredOrFunc, ModuleName, WithType, WithInst0,
MaybeDeterminism0, VarSet, Body, Condition, Attributes, Context,
Result) :-
(
MaybeDeterminism0 = ok1(MaybeDeterminism),
(
WithInst0 = ok1(WithInst),
( MaybeDeterminism = yes(_), WithInst = yes(_) ->
Pieces = [words("Error:"), quote("with_inst"),
words("and determinism both specified."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Body), [always(Pieces)])]),
Result = error1([Spec])
; WithInst = yes(_), WithType = no ->
Pieces = [words("Error:"), quote("with_inst"),
words("specified without"), quote("with_type"),
suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Body), [always(Pieces)])]),
Result = error1([Spec])
;
(
% Function declarations with `with_type` annotations
% have the same form as predicate declarations.
PredOrFunc = pf_function,
WithType = no
->
process_func(ModuleName, VarSet, Body, Condition,
MaybeDeterminism, Attributes, Context, Result)
;
process_pred_decl(PredOrFunc, ModuleName, VarSet, Body,
Condition, WithType, WithInst, MaybeDeterminism,
Attributes, Context, Result)
)
)
;
WithInst0 = error1(Specs),
Result = error1(Specs)
)
;
MaybeDeterminism0 = error1(Specs),
Result = error1(Specs)
).
%-----------------------------------------------------------------------------%
% parse_type_decl_func(ModuleName, VarSet, Func, Attributes, Result)
% succeeds if Func is a function type declaration, and binds Result to
% a representation of the declaration.
%
:- pred parse_type_decl_func(module_name::in, varset::in, term::in,
decl_attrs::in, prog_context::in, maybe1(item)::out) is det.
parse_type_decl_func(ModuleName, VarSet, Func, Attributes, Context, Result) :-
get_condition(Func, Body, Condition),
get_determinism(VarSet, Body, Body2, MaybeDeterminism),
get_with_inst(Body2, Body3, WithInst),
get_with_type(VarSet, Body3, Body4, WithTypeResult),
(
WithTypeResult = ok1(WithType),
process_type_decl_pred_or_func(pf_function, ModuleName,
WithType, WithInst, MaybeDeterminism, VarSet, Body4,
Condition, Attributes, Context, Result)
;
WithTypeResult = error1(Specs),
Result = error1(Specs)
).
%-----------------------------------------------------------------------------%
% parse_mode_decl_pred(ModuleName, Pred, Condition, Result) succeeds
% if Pred is a predicate mode declaration, and binds Condition to the
% condition for that declaration (if any), and Result to a
% representation of the declaration.
%
:- pred parse_mode_decl_pred(module_name::in, varset::in, term::in,
decl_attrs::in, prog_context::in, maybe1(item)::out) is det.
parse_mode_decl_pred(ModuleName, VarSet, Pred, Attributes, Context, Result) :-
get_condition(Pred, Body, Condition),
get_determinism(VarSet, Body, Body2, MaybeDeterminism0),
get_with_inst(Body2, Body3, WithInst0),
(
MaybeDeterminism0 = ok1(MaybeDeterminism),
(
WithInst0 = ok1(WithInst),
(
MaybeDeterminism = yes(_),
WithInst = yes(_)
->
Pieces = [words("Error:"), quote("with_inst"),
words("and determinism both specified."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Body), [always(Pieces)])]),
Result = error1([Spec])
;
process_mode(ModuleName, VarSet, Body3, Condition, Attributes,
WithInst, MaybeDeterminism, Context, Result)
)
;
WithInst0 = error1(Specs),
Result = error1(Specs)
)
;
MaybeDeterminism0 = error1(Specs),
Result = error1(Specs)
).
%-----------------------------------------------------------------------------%
:- pred parse_initialise_decl(module_name::in, varset::in, list(term)::in,
prog_context::in, maybe1(item)::out) is semidet.
parse_initialise_decl(_ModuleName, VarSet, [Term], Context, Result) :-
parse_symbol_name_specifier(VarSet, Term, MaybeSymNameSpecifier),
(
MaybeSymNameSpecifier = error1(Specs),
Result = error1(Specs)
;
MaybeSymNameSpecifier = ok1(SymNameSpecifier),
(
SymNameSpecifier = name(_),
TermStr = describe_error_term(VarSet, Term),
Pieces = [words("Error:"), quote("initialise"),
words("declaration"), words("requires arity, found"),
words(TermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error1([Spec])
;
SymNameSpecifier = name_arity(SymName, Arity),
(
( Arity = 0 ; Arity = 2 )
->
ItemInitialise = item_initialise_info(user, SymName, Arity,
Context),
Item = item_initialise(ItemInitialise),
Result = ok1(Item)
;
TermStr = describe_error_term(VarSet, Term),
Pieces = [words("Error:"), quote("initialise"),
words("declaration specifies a predicate"),
words("whose arity is not zero or two:"),
words(TermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error1([Spec])
)
)
).
%-----------------------------------------------------------------------------%
:- pred parse_finalise_decl(module_name::in, varset::in, list(term)::in,
prog_context::in, maybe1(item)::out) is semidet.
parse_finalise_decl(_ModuleName, VarSet, [Term], Context, Result) :-
parse_symbol_name_specifier(VarSet, Term, MaybeSymNameSpecifier),
(
MaybeSymNameSpecifier = error1(Specs),
Result = error1(Specs)
;
MaybeSymNameSpecifier = ok1(SymNameSpecifier),
(
SymNameSpecifier = name(_),
TermStr = describe_error_term(VarSet, Term),
Pieces = [words("Error:"), quote("finalise"),
words("declaration"), words("requires arity, found"),
words(TermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error1([Spec])
;
SymNameSpecifier = name_arity(SymName, Arity),
(
( Arity = 0 ; Arity = 2 )
->
ItemFinalise = item_finalise_info(user, SymName, Arity,
Context),
Item = item_finalise(ItemFinalise),
Result = ok1(Item)
;
TermStr = describe_error_term(VarSet, Term),
Pieces = [words("Error:"), quote("finalise"),
words("declaration specifies a predicate"),
words("whose arity is not zero or two:"),
words(TermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error1([Spec])
)
)
).
%-----------------------------------------------------------------------------%
%
% Mutable declarations
%
% See prog_mutable.m for implementation details.
%
:- pred parse_mutable_decl(module_name::in, varset::in, list(term)::in,
prog_context::in, maybe1(item)::out) is semidet.
parse_mutable_decl(_ModuleName, VarSet, Terms, Context, Result) :-
Terms = [NameTerm, TypeTerm, ValueTerm, InstTerm | OptMutAttrsTerm],
parse_mutable_name(NameTerm, NameResult),
parse_mutable_type(VarSet, TypeTerm, TypeResult),
term.coerce(ValueTerm, Value),
varset.coerce(VarSet, ProgVarSet),
parse_mutable_inst(VarSet, InstTerm, InstResult),
% The list of attributes is optional.
(
OptMutAttrsTerm = [],
MutAttrsResult = ok1(default_mutable_attributes)
;
OptMutAttrsTerm = [MutAttrsTerm],
parse_mutable_attrs(VarSet, MutAttrsTerm, MutAttrsResult)
),
(
NameResult = ok1(Name),
TypeResult = ok1(Type),
InstResult = ok1(Inst),
MutAttrsResult = ok1(MutAttrs)
->
% We *must* attach the varset to the mutable item because if the
% initial value is non-ground, then the initial value will be a
% variable and the mutable initialisation predicate will contain
% references to it. Ignoring the varset may lead to later compiler
% passes attempting to reuse this variable when fresh variables are
% allocated.
ItemMutable = item_mutable_info(Name, Type, Value, Inst, MutAttrs,
ProgVarSet, Context),
Item = item_mutable(ItemMutable),
Result = ok1(Item)
;
Specs = get_any_errors1(NameResult) ++ get_any_errors1(TypeResult) ++
get_any_errors1(InstResult) ++ get_any_errors1(MutAttrsResult),
Result = error1(Specs)
).
:- pred parse_mutable_name(term::in, maybe1(string)::out) is det.
parse_mutable_name(NameTerm, NameResult) :-
( NameTerm = term.functor(atom(Name), [], _) ->
NameResult = ok1(Name)
;
Pieces = [words("Error: invalid mutable name."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(NameTerm), [always(Pieces)])]),
NameResult = error1([Spec])
).
:- pred parse_mutable_type(varset::in, term::in, maybe1(mer_type)::out) is det.
parse_mutable_type(VarSet, TypeTerm, TypeResult) :-
( term.contains_var(TypeTerm, _) ->
TypeTermStr = describe_error_term(VarSet, TypeTerm),
Pieces = [words("Error: the type in a mutable declaration"),
words("cannot contain variables:"),
words(TypeTermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(TypeTerm), [always(Pieces)])]),
TypeResult = error1([Spec])
;
ContextPieces = [],
parse_type(TypeTerm, VarSet, ContextPieces, TypeResult)
).
:- pred parse_mutable_inst(varset::in, term::in, maybe1(mer_inst)::out) is det.
parse_mutable_inst(VarSet, InstTerm, InstResult) :-
( term.contains_var(InstTerm, _) ->
InstTermStr = describe_error_term(VarSet, InstTerm),
Pieces = [words("Error: the inst in a mutable declaration"),
words("cannot contain variables:"),
words(InstTermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(InstTerm), [always(Pieces)])]),
InstResult = error1([Spec])
; convert_inst(no_allow_constrained_inst_var, InstTerm, Inst) ->
InstResult = ok1(Inst)
;
Pieces = [words("Error: invalid inst in mutable declaration."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(InstTerm), [always(Pieces)])]),
InstResult = error1([Spec])
).
:- type collected_mutable_attribute
---> mutable_attr_trailed(mutable_trailed)
; mutable_attr_foreign_name(foreign_name)
; mutable_attr_attach_to_io_state(bool)
; mutable_attr_constant(bool)
; mutable_attr_thread_local(mutable_thread_local).
:- pred parse_mutable_attrs(varset::in, term::in,
maybe1(mutable_var_attributes)::out) is det.
parse_mutable_attrs(VarSet, MutAttrsTerm, MutAttrsResult) :-
Attributes0 = default_mutable_attributes,
ConflictingAttributes = [
mutable_attr_trailed(mutable_trailed) -
mutable_attr_trailed(mutable_untrailed),
mutable_attr_trailed(mutable_trailed) -
mutable_attr_thread_local(mutable_thread_local),
mutable_attr_constant(yes) - mutable_attr_trailed(mutable_trailed),
mutable_attr_constant(yes) - mutable_attr_attach_to_io_state(yes),
mutable_attr_constant(yes) -
mutable_attr_thread_local(mutable_thread_local)
],
(
list_term_to_term_list(MutAttrsTerm, MutAttrTerms),
map_parser(parse_mutable_attr, MutAttrTerms, MaybeAttrList),
MaybeAttrList = ok1(CollectedMutAttrs)
->
% We check for trailed/untrailed, constant/trailed,
% trailed/thread_local, constant/attach_to_io_state,
% constant/thread_local conflicts here and deal with conflicting
% foreign_name attributes in make_hlds_passes.m.
(
list.member(Conflict1 - Conflict2, ConflictingAttributes),
list.member(Conflict1, CollectedMutAttrs),
list.member(Conflict2, CollectedMutAttrs)
->
% XXX Should generate more specific error message.
MutAttrsStr = mercury_term_to_string(VarSet, no, MutAttrsTerm),
Pieces = [words("Error: conflicting attributes"),
words("in attribute list:"), nl,
words(MutAttrsStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(MutAttrsTerm),
[always(Pieces)])]),
MutAttrsResult = error1([Spec])
;
list.foldl(process_mutable_attribute, CollectedMutAttrs,
Attributes0, Attributes),
MutAttrsResult = ok1(Attributes)
)
;
MutAttrsStr = mercury_term_to_string(VarSet, no, MutAttrsTerm),
Pieces = [words("Error: malformed attribute list"),
words("in mutable declaration:"),
words(MutAttrsStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(MutAttrsTerm), [always(Pieces)])]),
MutAttrsResult = error1([Spec])
).
:- pred process_mutable_attribute(collected_mutable_attribute::in,
mutable_var_attributes::in, mutable_var_attributes::out) is det.
process_mutable_attribute(mutable_attr_trailed(Trailed), !Attributes) :-
set_mutable_var_trailed(Trailed, !Attributes).
process_mutable_attribute(mutable_attr_foreign_name(ForeignName),
!Attributes) :-
set_mutable_add_foreign_name(ForeignName, !Attributes).
process_mutable_attribute(mutable_attr_attach_to_io_state(AttachToIOState),
!Attributes) :-
set_mutable_var_attach_to_io_state(AttachToIOState, !Attributes).
process_mutable_attribute(mutable_attr_constant(Constant), !Attributes) :-
set_mutable_var_constant(Constant, !Attributes),
(
Constant = yes,
set_mutable_var_trailed(mutable_untrailed, !Attributes),
set_mutable_var_attach_to_io_state(no, !Attributes)
;
Constant = no
).
process_mutable_attribute(mutable_attr_thread_local(ThrLocal), !Attributes) :-
set_mutable_var_thread_local(ThrLocal, !Attributes).
:- pred parse_mutable_attr(term::in,
maybe1(collected_mutable_attribute)::out) is det.
parse_mutable_attr(MutAttrTerm, MutAttrResult) :-
(
MutAttrTerm = term.functor(term.atom(String), [], _),
(
String = "untrailed",
MutAttr = mutable_attr_trailed(mutable_untrailed)
;
String = "trailed",
MutAttr = mutable_attr_trailed(mutable_trailed)
;
String = "attach_to_io_state",
MutAttr = mutable_attr_attach_to_io_state(yes)
;
String = "constant",
MutAttr = mutable_attr_constant(yes)
;
String = "thread_local",
MutAttr = mutable_attr_thread_local(mutable_thread_local)
)
->
MutAttrResult = ok1(MutAttr)
;
MutAttrTerm = term.functor(term.atom("foreign_name"), Args, _),
Args = [LangTerm, ForeignNameTerm],
parse_foreign_language(LangTerm, Lang),
ForeignNameTerm = term.functor(term.string(ForeignName), [], _)
->
MutAttr = mutable_attr_foreign_name(foreign_name(Lang, ForeignName)),
MutAttrResult = ok1(MutAttr)
;
Pieces = [words("Error: unrecognised attribute"),
words("in mutable declaration."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(MutAttrTerm), [always(Pieces)])]),
MutAttrResult = error1([Spec])
).
%-----------------------------------------------------------------------------%
% The optional `where ...' part of the type definition syntax
% is a comma separated list of special type `attributes'.
%
% The possible attributes (in this order) are either
% - `type_is_abstract_noncanonical' on its own appears only in .int2
% files and indicates that the type has user-defined equality and/or
% comparison, but that what these predicates are is not known at
% this point
% or
% - `representation is <<type name>>' (required for solver types)
% - `initialisation is <<pred name>>' (required for solver types)
% - `ground is <<inst>>' (required for solver types)
% - `any is <<inst>>' (required for solver types)
% - `equality is <<pred name>>' (optional)
% - `comparison is <<pred name>>' (optional).
%
parse_type_decl_where_part_if_present(IsSolverType, ModuleName, VarSet,
Term0, Term, Result) :-
(
Term0 = term.functor(term.atom("where"), Args0, _Context),
Args0 = [Term1, WhereTerm]
->
Term = Term1,
Result = parse_type_decl_where_term(IsSolverType, ModuleName,
VarSet, yes(WhereTerm))
;
Term = Term0,
Result = ok2(no, no)
).
% The maybe2 wrapper allows us to return an error code or a pair
% of results. Either result half may be empty, hence the maybe
% wrapper around each of those.
%
:- func parse_type_decl_where_term(is_solver_type, module_name, varset,
maybe(term)) = maybe2(maybe(solver_type_details), maybe(unify_compare)).
parse_type_decl_where_term(IsSolverType, ModuleName, VarSet, MaybeTerm0) =
MaybeWhereDetails :-
(
MaybeTerm0 = no,
MaybeWhereDetails = ok2(no, no)
;
MaybeTerm0 = yes(Term0),
some [!MaybeTerm] (
!:MaybeTerm = MaybeTerm0,
parse_where_attribute(parse_where_type_is_abstract_noncanonical,
TypeIsAbstractNoncanonicalResult, !MaybeTerm),
parse_where_attribute(parse_where_is("representation",
parse_where_type_is(ModuleName, VarSet)),
RepresentationIsResult, !MaybeTerm),
parse_where_attribute(parse_where_initialisation_is(ModuleName,
VarSet),
InitialisationIsResult, !MaybeTerm),
parse_where_attribute(parse_where_is("ground",
parse_where_inst_is(ModuleName)),
GroundIsResult, !MaybeTerm),
parse_where_attribute(parse_where_is("any",
parse_where_inst_is(ModuleName)),
AnyIsResult, !MaybeTerm),
parse_where_attribute(parse_where_is("constraint_store",
parse_where_mutable_is(ModuleName)),
CStoreIsResult, !MaybeTerm),
parse_where_attribute(parse_where_is("equality",
parse_where_pred_is(ModuleName, VarSet)),
EqualityIsResult, !MaybeTerm),
parse_where_attribute(parse_where_is("comparison",
parse_where_pred_is(ModuleName, VarSet)),
ComparisonIsResult, !MaybeTerm),
parse_where_end(!.MaybeTerm, WhereEndResult)
),
MaybeWhereDetails = make_maybe_where_details(
IsSolverType,
TypeIsAbstractNoncanonicalResult,
RepresentationIsResult,
InitialisationIsResult,
GroundIsResult,
AnyIsResult,
CStoreIsResult,
EqualityIsResult,
ComparisonIsResult,
WhereEndResult,
Term0
)
).
% parse_where_attribute(Parser, Result, MaybeTerm0, MaybeTerm)
% handles
% - where MaybeTerm0 may contain nothing
% - where MaybeTerm0 may be a comma-separated pair
% - applies Parser to the appropriate (sub)term to obtain Result
% - sets MaybeTerm depending upon whether the Result is an error
% or not and whether there is more to parse because MaybeTerm0
% was a comma-separated pair.
%
:- pred parse_where_attribute((func(term) = maybe1(maybe(T)))::in,
maybe1(maybe(T))::out, maybe(term)::in, maybe(term)::out) is det.
parse_where_attribute(Parser, Result, MaybeTerm0, MaybeRest) :-
(
MaybeTerm0 = no,
MaybeRest = no,
Result = ok1(no)
;
MaybeTerm0 = yes(Term0),
(
Term0 = term.functor(term.atom(","), [Term1, Term], _Context)
->
Result = Parser(Term1),
MaybeRestIfYes = yes(Term)
;
Result = Parser(Term0),
MaybeRestIfYes = no
),
(
Result = error1(_),
MaybeRest = no
;
Result = ok1(no),
MaybeRest = yes(Term0)
;
Result = ok1(yes(_)),
MaybeRest = MaybeRestIfYes
)
).
% Parser for `where ...' attributes of the form
% `attributename is attributevalue'.
%
:- func parse_where_is(string, func(term) = maybe1(T), term) =
maybe1(maybe(T)).
parse_where_is(Name, Parser, Term) = Result :-
( Term = term.functor(term.atom("is"), [LHS, RHS], _) ->
( LHS = term.functor(term.atom(Name), [], _) ->
RHSResult = Parser(RHS),
(
RHSResult = ok1(ParsedRHS),
Result = ok1(yes(ParsedRHS))
;
RHSResult = error1(Specs),
Result = error1(Specs)
)
;
Result = ok1(no)
)
;
Pieces = [words("Error: expected"), quote("is"), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error1([Spec])
).
:- func parse_where_type_is_abstract_noncanonical(term) = maybe1(maybe(unit)).
parse_where_type_is_abstract_noncanonical(Term) =
(
Term = term.functor(term.atom("type_is_abstract_noncanonical"), [],
_Context)
->
ok1(yes(unit))
;
ok1(no)
).
:- func parse_where_initialisation_is(module_name, varset, term) =
maybe1(maybe(sym_name)).
parse_where_initialisation_is(ModuleName, VarSet, Term) = Result :-
Result0 = parse_where_is("initialisation",
parse_where_pred_is(ModuleName, VarSet),
Term),
(
Result0 = ok1(no)
->
Result1 = parse_where_is("initialization",
parse_where_pred_is(ModuleName, VarSet), Term)
;
Result1 = Result0
),
promise_pure (
(
Result1 = ok1(yes(_)),
semipure
semipure_get_solver_auto_init_supported(AutoInitSupported),
(
AutoInitSupported = yes,
Result = Result1
;
AutoInitSupported = no,
Pieces = [words("Error: unknown attribute"),
words("in solver type definition."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error1([Spec])
)
;
( Result1 = ok1(no)
; Result1 = error1(_)
),
Result = Result1
)
).
:- func parse_where_pred_is(module_name, varset, term) = maybe1(sym_name).
parse_where_pred_is(ModuleName, VarSet, Term) = Result :-
parse_implicitly_qualified_symbol_name(ModuleName, VarSet, Term, Result).
:- func parse_where_inst_is(module_name, term) = maybe1(mer_inst).
parse_where_inst_is(_ModuleName, Term) = Result :-
(
prog_io_util.convert_inst(no_allow_constrained_inst_var, Term, Inst),
not prog_mode.inst_contains_unconstrained_var(Inst)
->
Result = ok1(Inst)
;
Pieces = [words("Error: expected a ground, unconstrained inst."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error1([Spec])
).
:- func parse_where_type_is(module_name, varset, term) = maybe1(mer_type).
parse_where_type_is(_ModuleName, VarSet, Term) = Result :-
% XXX We should pass meaningful ContextPieces.
ContextPieces = [],
parse_type(Term, VarSet, ContextPieces, Result).
:- func parse_where_mutable_is(module_name, term) = maybe1(list(item)).
parse_where_mutable_is(ModuleName, Term) = Result :-
( Term = term.functor(term.atom("mutable"), _Args, _Ctxt) ->
parse_mutable_decl_term(ModuleName, Term, Result0),
(
Result0 = ok1(Mutable),
Result = ok1([Mutable])
;
Result0 = error1(Specs),
Result = error1(Specs)
)
; list_term_to_term_list(Term, Terms) ->
map_parser(parse_mutable_decl_term(ModuleName), Terms, Result)
;
Pieces = [words("Error: expected a mutable declaration"),
words("or a list of mutable declarations."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error1([Spec])
).
:- pred parse_mutable_decl_term(module_name::in, term::in, maybe1(item)::out)
is det.
parse_mutable_decl_term(ModuleName, Term, Result) :-
(
Term = term.functor(term.atom("mutable"), Args, Context),
varset.init(VarSet),
parse_mutable_decl(ModuleName, VarSet, Args, Context, Result0)
->
Result = Result0
;
Pieces = [words("Error: expected a mutable declaration."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error1([Spec])
).
:- pred parse_where_end(maybe(term)::in, maybe1(maybe(unit))::out) is det.
parse_where_end(no, ok1(yes(unit))).
parse_where_end(yes(Term), error1([Spec])) :-
Pieces = [words("Error: attributes are either badly ordered"),
words("or contain an unrecognised attribute."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]).
:- func make_maybe_where_details(is_solver_type, maybe1(maybe(unit)),
maybe1(maybe(mer_type)), maybe1(maybe(init_pred)),
maybe1(maybe(mer_inst)), maybe1(maybe(mer_inst)),
maybe1(maybe(list(item))),
maybe1(maybe(equality_pred)), maybe1(maybe(comparison_pred)),
maybe1(maybe(unit)), term)
= maybe2(maybe(solver_type_details), maybe(unify_compare)).
make_maybe_where_details(IsSolverType, TypeIsAbstractNoncanonicalResult,
RepresentationIsResult, InitialisationIsResult,
GroundIsResult, AnyIsResult, CStoreIsResult,
EqualityIsResult, ComparisonIsResult, WhereEndResult, WhereTerm)
= Result :-
(
TypeIsAbstractNoncanonicalResult = ok1(TypeIsAbstractNoncanonical),
RepresentationIsResult = ok1(RepresentationIs),
InitialisationIsResult = ok1(InitialisationIs),
GroundIsResult = ok1(GroundIs),
AnyIsResult = ok1(AnyIs),
CStoreIsResult = ok1(CStoreIs),
EqualityIsResult = ok1(EqualityIs),
ComparisonIsResult = ok1(ComparisonIs),
WhereEndResult = ok1(WhereEnd)
->
Result = make_maybe_where_details_2(IsSolverType,
TypeIsAbstractNoncanonical, RepresentationIs, InitialisationIs,
GroundIs, AnyIs, CStoreIs, EqualityIs, ComparisonIs,
WhereEnd, WhereTerm)
;
TypeIsAbstractNoncanonicalSpecs =
get_any_errors1(TypeIsAbstractNoncanonicalResult),
RepresentationIsSpecs = get_any_errors1(RepresentationIsResult),
InitialisationIsSpecs = get_any_errors1(InitialisationIsResult),
GroundIsSpecs = get_any_errors1(GroundIsResult),
AnyIsSpecs = get_any_errors1(AnyIsResult),
CStoreIsSpecs = get_any_errors1(CStoreIsResult),
EqualityIsSpecs = get_any_errors1(EqualityIsResult),
ComparisonIsSpecs = get_any_errors1(ComparisonIsResult),
WhereEndSpecs = get_any_errors1(WhereEndResult),
Specs = TypeIsAbstractNoncanonicalSpecs ++ RepresentationIsSpecs ++
InitialisationIsSpecs ++ GroundIsSpecs ++ AnyIsSpecs ++
CStoreIsSpecs ++ EqualityIsSpecs ++ ComparisonIsSpecs ++
WhereEndSpecs,
Result = error2(Specs)
).
:- func make_maybe_where_details_2(is_solver_type, maybe(unit),
maybe(mer_type), maybe(init_pred), maybe(mer_inst), maybe(mer_inst),
maybe(list(item)), maybe(equality_pred), maybe(comparison_pred),
maybe(unit), term)
= maybe2(maybe(solver_type_details), maybe(unify_compare)).
make_maybe_where_details_2(IsSolverType, TypeIsAbstractNoncanonical,
RepresentationIs, InitialisationIs, GroundIs, AnyIs, CStoreIs,
EqualityIs, ComparisonIs, _WhereEnd, WhereTerm) = Result :-
(
TypeIsAbstractNoncanonical = yes(_),
% rafe: XXX I think this is wrong. There isn't a problem with having
% the solver_type_details and type_is_abstract_noncanonical.
(
RepresentationIs = maybe.no,
InitialisationIs = maybe.no,
GroundIs = maybe.no,
AnyIs = maybe.no,
EqualityIs = maybe.no,
ComparisonIs = maybe.no,
CStoreIs = maybe.no
->
Result = ok2(no, yes(abstract_noncanonical_type(IsSolverType)))
;
Pieces = [words("Error:"),
quote("where type_is_abstract_noncanonical"),
words("excludes other"), quote("where ..."),
words("attributes."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(WhereTerm), [always(Pieces)])]),
Result = error2([Spec])
)
;
TypeIsAbstractNoncanonical = maybe.no,
(
IsSolverType = solver_type,
(
RepresentationIs = yes(RepnType),
InitialisationIs = MaybeInitialisation,
GroundIs = MaybeGroundInst,
AnyIs = MaybeAnyInst,
EqualityIs = MaybeEqPred,
ComparisonIs = MaybeCmpPred,
CStoreIs = MaybeMutableItems
->
(
MaybeGroundInst = yes(GroundInst)
;
MaybeGroundInst = no,
GroundInst = ground_inst
),
(
MaybeAnyInst = yes(AnyInst)
;
MaybeAnyInst = no,
AnyInst = ground_inst
),
(
MaybeMutableItems = yes(MutableItems)
;
MaybeMutableItems = no,
MutableItems = []
),
(
MaybeInitialisation = yes(InitPred),
HowToInit = solver_init_automatic(InitPred)
;
MaybeInitialisation = no,
HowToInit = solver_init_explicit
),
SolverTypeDetails = solver_type_details(
RepnType, HowToInit, GroundInst, AnyInst, MutableItems),
MaybeSolverTypeDetails = yes(SolverTypeDetails),
(
MaybeEqPred = no,
MaybeCmpPred = no
->
MaybeUnifyCompare = no
;
MaybeUnifyCompare = yes(unify_compare(
MaybeEqPred, MaybeCmpPred))
),
Result = ok2(MaybeSolverTypeDetails, MaybeUnifyCompare)
;
RepresentationIs = no
->
Pieces = [words("Error: solver type definitions must have a"),
quote("representation"), words("attribute."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(WhereTerm),
[always(Pieces)])]),
Result = error2([Spec])
;
unexpected(this_file, "make_maybe_where_details_2: " ++
"shouldn't have reached this point! (1)")
)
;
IsSolverType = non_solver_type,
(
( RepresentationIs = yes(_)
; InitialisationIs = yes(_)
; GroundIs = yes(_)
; AnyIs = yes(_)
; CStoreIs = yes(_)
)
->
Pieces = [words("Error: solver type attribute given"),
words("for non-solver type."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(WhereTerm),
[always(Pieces)])]),
Result = error2([Spec])
;
EqualityIs = MaybeEqPred,
ComparisonIs = MaybeCmpPred,
Result = ok2(no, yes(unify_compare(MaybeEqPred, MaybeCmpPred)))
)
)
).
% get_determinism(VarSet, BodyTerm0, BodyTerm, MaybeMaybeDeterminism) binds
% MaybeMaybeDeterminism to ok1(yes()) wrapped around the determinism
% of BodyTerm0, if any, and binds BodyTerm to the other part of BodyTerm0.
% If BodyTerm0 does not contain a determinism, then MaybeMaybeDeterminism
% is bound to ok1(no).
%
:- pred get_determinism(varset::in, term::in, term::out,
maybe1(maybe(determinism))::out) is det.
get_determinism(VarSet, BodyTerm0, BodyTerm, MaybeMaybeDeterminism) :-
(
BodyTerm0 = term.functor(term.atom("is"), Args, _),
Args = [BodyTerm1, DeterminismTerm]
->
BodyTerm = BodyTerm1,
(
DeterminismTerm = term.functor(term.atom(DeterminismFunctor),
[], _),
standard_det(DeterminismFunctor, Determinism)
->
MaybeMaybeDeterminism = ok1(yes(Determinism))
;
BodyTermStr = describe_error_term(VarSet, BodyTerm),
Pieces = [words("Error: invalid determinism category"),
words(BodyTermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(DeterminismTerm),
[always(Pieces)])]),
MaybeMaybeDeterminism = error1([Spec])
)
;
BodyTerm = BodyTerm0,
MaybeMaybeDeterminism = ok1(no)
).
% Process the `with_inst` part of a declaration of the form:
% :- mode p(int) `with_inst` (pred(in, out) is det).
%
:- pred get_with_inst(term::in, term::out, maybe1(maybe(mer_inst))::out)
is det.
get_with_inst(BodyTerm0, BodyTerm, WithInst) :-
(
BodyTerm0 = term.functor(term.atom("with_inst"),
[BodyTerm1, InstTerm], _)
->
( convert_inst(allow_constrained_inst_var, InstTerm, Inst) ->
WithInst = ok1(yes(Inst))
;
Pieces = [words("Error: invalid inst in"), quote("with_inst"),
suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(BodyTerm0), [always(Pieces)])]),
WithInst = error1([Spec])
),
BodyTerm = BodyTerm1
;
BodyTerm = BodyTerm0,
WithInst = ok1(no)
).
:- pred get_with_type(varset::in, term::in, term::out,
maybe1(maybe(mer_type))::out) is det.
get_with_type(VarSet, BodyTerm0, BodyTerm, Result) :-
(
BodyTerm0 = term.functor(TypeQualifier, [BodyTerm1, TypeTerm1], _),
(
TypeQualifier = term.atom("with_type")
;
TypeQualifier = term.atom(":")
)
->
BodyTerm = BodyTerm1,
% XXX Should supply more correct ContextPieces.
ContextPieces = [],
parse_type(TypeTerm1, VarSet, ContextPieces, Result0),
(
Result0 = ok1(Type),
Result = ok1(yes(Type))
;
Result0 = error1(Specs),
Result = error1(Specs)
)
;
BodyTerm = BodyTerm0,
Result = ok1(no)
).
%-----------------------------------------------------------------------------%
% get_condition(Term0, Term, Condition) binds Condition
% to a representation of the 'where' condition of Term0, if any,
% and binds Term to the other part of Term0. If Term0 does not
% contain a condition, then Condition is bound to true.
%
:- pred get_condition(term::in, term::out, condition::out) is det.
get_condition(Body, Body, cond_true).
% % NU-Prolog supported type declarations of the form
% % :- pred p(T) where p(X) : sorted(X).
% % or
% % :- type sorted_list(T) = list(T) where X : sorted(X).
% % :- pred p(sorted_list(T).
% % There is some code here to support that sort of thing, but
% % probably we would now need to use a different syntax, since
% % Mercury now uses `where' for different purposes (e.g. specifying
% % user-defined equality predicates, and also for type classes ...)
%
% get_condition(B, Body, Condition) :-
% (
% B = term.functor(term.atom("where"), [Body1, Condition1],
% _Context)
% ->
% Body = Body1,
% Condition = where(Condition1)
% ;
% Body = B,
% Condition = true
% ).
%-----------------------------------------------------------------------------%
:- type processed_type_body
---> processed_type_body(
sym_name,
list(type_param),
type_defn
).
%-----------------------------------------------------------------------------%
:- pred process_solver_type(module_name::in, varset::in, term::in,
maybe(solver_type_details)::in, maybe(unify_compare)::in,
maybe1(processed_type_body)::out) is det.
process_solver_type(ModuleName, VarSet, HeadTerm,
MaybeSolverTypeDetails, MaybeUserEqComp, Result) :-
(
MaybeSolverTypeDetails = yes(SolverTypeDetails),
parse_type_defn_head(ModuleName, VarSet, HeadTerm, Result0),
(
Result0 = error2(Specs),
Result = error1(Specs)
;
Result0 = ok2(Name, Params),
(
RepnType = SolverTypeDetails ^ representation_type,
type_contains_var(RepnType, Var),
not list.member(Var, Params)
->
HeadTermStr = describe_error_term(VarSet, HeadTerm),
Pieces = [words("Error: free type variable"),
words("in representation type:"),
words(HeadTermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(HeadTerm),
[always(Pieces)])]),
Result = error1([Spec])
;
Result = ok1(processed_type_body(Name, Params,
parse_tree_solver_type(SolverTypeDetails,
MaybeUserEqComp)))
)
)
;
MaybeSolverTypeDetails = no,
Pieces = [words("Solver type with no solver_type_details."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(HeadTerm), [always(Pieces)])]),
Result = error1([Spec])
).
%-----------------------------------------------------------------------------%
% This is for "Head == Body" (equivalence) definitions.
%
:- pred process_eqv_type(module_name::in, varset::in, term::in, term::in,
maybe1(processed_type_body)::out) is det.
process_eqv_type(ModuleName, VarSet, HeadTerm, BodyTerm, Result) :-
parse_type_defn_head(ModuleName, VarSet, HeadTerm, Result0),
process_eqv_type_2(Result0, VarSet, BodyTerm, Result).
:- pred process_eqv_type_2(maybe2(sym_name, list(type_param))::in,
varset::in, term::in, maybe1(processed_type_body)::out) is det.
process_eqv_type_2(error2(Specs), _, _, error1(Specs)).
process_eqv_type_2(ok2(Name, Params), VarSet, BodyTerm0, Result) :-
% Check that all the variables in the body occur in the head.
(
term.contains_var(BodyTerm0, Var),
term.coerce_var(Var, TVar),
\+ list.member(TVar, Params)
->
BodyTerm0Str = describe_error_term(VarSet, BodyTerm0),
Pieces = [words("Error: free type parameter"),
words("in RHS of type definition:"),
words(BodyTerm0Str), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(BodyTerm0), [always(Pieces)])]),
Result = error1([Spec])
;
% XXX Should pass more correct ContextPieces.
ContextPieces = [],
parse_type(BodyTerm0, VarSet, ContextPieces, BodyResult),
(
BodyResult = ok1(BodyTerm),
Result = ok1(processed_type_body(Name, Params,
parse_tree_eqv_type(BodyTerm)))
;
BodyResult = error1(Specs),
Result = error1(Specs)
)
).
%-----------------------------------------------------------------------------%
% process_du_type(ModuleName, HeadTerm, BodyTerm, Ctors,
% MaybeUserEqComp, Result):
%
% Checks that its arguments are well formed, and if they are,
% binds Result to a representation of the type information about the
% TypeHead.
% This is for "Head ---> Body [where ...]" (constructor) definitions.
%
:- pred process_du_type(module_name::in, varset::in, term::in, term::in,
list(constructor)::in, maybe(unify_compare)::in,
maybe1(processed_type_body)::out) is det.
process_du_type(ModuleName, VarSet, HeadTerm, BodyTerm, Ctors, MaybeUserEqComp,
Result) :-
parse_type_defn_head(ModuleName, VarSet, HeadTerm, Result0),
(
Result0 = error2(Specs),
Result = error1(Specs)
;
Result0 = ok2(Functor, Params),
process_du_ctors(Params, VarSet, BodyTerm, Ctors, [], Specs),
(
Specs = [],
TypeDefn = parse_tree_du_type(Ctors, MaybeUserEqComp),
ProcessedTypeBody = processed_type_body(Functor, Params, TypeDefn),
Result = ok1(ProcessedTypeBody)
;
Specs = [_ | _],
Result = error1(Specs)
)
).
:- pred process_du_ctors(list(type_param)::in, varset::in, term::in,
list(constructor)::in, list(error_spec)::in, list(error_spec)::out) is det.
process_du_ctors(_Params, _, _, [], !Specs).
process_du_ctors(Params, VarSet, BodyTerm, [Ctor | Ctors], !Specs) :-
Ctor = ctor(ExistQVars, Constraints, _CtorName, CtorArgs, _Context),
(
% Check that all type variables in the ctor are either explicitly
% existentially quantified or occur in the head of the type.
CtorArgTypes = list.map(func(C) = C ^ arg_type, CtorArgs),
type_vars_list(CtorArgTypes, VarsInCtorArgTypes0),
list.sort_and_remove_dups(VarsInCtorArgTypes0, VarsInCtorArgTypes),
list.filter(list.contains(ExistQVars ++ Params), VarsInCtorArgTypes,
_ExistQOrParamVars, NotExistQOrParamVars),
NotExistQOrParamVars = [_ | _]
->
% There should be no duplicate names to remove.
varset.coerce(VarSet, GenericVarSet),
NotExistQOrParamVarsStr =
mercury_vars_to_string(GenericVarSet, no, NotExistQOrParamVars),
Pieces = [words("Error: free type"),
words(choose_number(NotExistQOrParamVars,
"parameter", "parameters")),
words(NotExistQOrParamVarsStr),
words("in RHS of type definition."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(BodyTerm), [always(Pieces)])]),
!:Specs = [Spec | !.Specs]
;
% Check that all type variables in existential quantifiers do not
% occur in the head (maybe this should just be a warning, not an error?
% If we were to allow it, we would need to rename them apart.)
set.list_to_set(ExistQVars, ExistQVarsSet),
set.list_to_set(Params, ParamsSet),
set.intersect(ExistQVarsSet, ParamsSet, ExistQParamsSet),
set.non_empty(ExistQParamsSet)
->
% There should be no duplicate names to remove.
set.to_sorted_list(ExistQParamsSet, ExistQParams),
varset.coerce(VarSet, GenericVarSet),
ExistQParamVarsStr =
mercury_vars_to_string(GenericVarSet, no, ExistQParams),
Pieces = [words("Error:"),
words(choose_number(ExistQParams,
"type variable", "type variables")),
words(ExistQParamVarsStr),
words(choose_number(ExistQParams, "has", "have")),
words("overlapping scopes"),
words("(explicit type quantifier shadows argument type)."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(BodyTerm), [always(Pieces)])]),
!:Specs = [Spec | !.Specs]
;
% Check that all type variables in existential quantifiers occur
% somewhere in the constructor argument types or constraints.
CtorArgTypes = list.map(func(C) = C ^ arg_type, CtorArgs),
type_vars_list(CtorArgTypes, VarsInCtorArgTypes0),
list.sort_and_remove_dups(VarsInCtorArgTypes0, VarsInCtorArgTypes),
constraint_list_get_tvars(Constraints, ConstraintTVars),
list.filter(list.contains(VarsInCtorArgTypes ++ ConstraintTVars),
ExistQVars, _OccursExistQVars, NotOccursExistQVars),
NotOccursExistQVars = [_ | _]
->
% There should be no duplicate names to remove.
varset.coerce(VarSet, GenericVarSet),
NotOccursExistQVarsStr =
mercury_vars_to_string(GenericVarSet, no, NotOccursExistQVars),
Pieces = [words("Error:"),
words(choose_number(NotOccursExistQVars,
"type variable", "type variables")),
words(NotOccursExistQVarsStr),
words("in existential quantifier"),
words(choose_number(NotOccursExistQVars,
"does not occur", "do not occur")),
words("in arguments or constraints of constructor."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(BodyTerm), [always(Pieces)])]),
!:Specs = [Spec | !.Specs]
;
% Check that all type variables in existential constraints occur in
% the existential quantifiers.
ConstraintArgTypeLists =
list.map(prog_constraint_get_arg_types, Constraints),
list.condense(ConstraintArgTypeLists, ConstraintArgTypes),
type_vars_list(ConstraintArgTypes, VarsInCtorArgTypes0),
list.sort_and_remove_dups(VarsInCtorArgTypes0, VarsInCtorArgTypes),
list.filter(list.contains(ExistQVars), VarsInCtorArgTypes,
_ExistQArgTypes, NotExistQArgTypes),
NotExistQArgTypes = [_ | _]
->
varset.coerce(VarSet, GenericVarSet),
NotExistQArgTypesStr =
mercury_vars_to_string(GenericVarSet, no, NotExistQArgTypes),
Pieces = [words("Error:"),
words(choose_number(NotExistQArgTypes,
"type variable", "type variables")),
words(NotExistQArgTypesStr),
words("in class constraints,"),
words(choose_number(NotExistQArgTypes,
"which was", "which were")),
words("introduced with"), quote("=>"),
words("must be explicitly existentially quantified"),
words("using"), quote("some"), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(BodyTerm), [always(Pieces)])]),
!:Specs = [Spec | !.Specs]
;
true
),
process_du_ctors(Params, VarSet, BodyTerm, Ctors, !Specs).
%-----------------------------------------------------------------------------%
% process_abstract_type(ModuleName, TypeHead, Result):
%
% Checks that its argument is well formed, and if it is, binds Result
% to a representation of the type information about the TypeHead.
%
:- pred process_abstract_type(module_name::in, varset::in, term::in,
decl_attrs::in, maybe1(processed_type_body)::out) is det.
process_abstract_type(ModuleName, VarSet, HeadTerm, Attributes0, Result) :-
parse_type_defn_head(ModuleName, VarSet, HeadTerm, Result0),
get_is_solver_type(IsSolverType, Attributes0, Attributes),
process_abstract_type_2(Result0, IsSolverType, Result1),
check_no_attributes(Result1, Attributes, Result).
:- pred process_abstract_type_2(maybe2(sym_name, list(type_param))::in,
is_solver_type::in, maybe1(processed_type_body)::out) is det.
process_abstract_type_2(error2(Specs), _, error1(Specs)).
process_abstract_type_2(ok2(Functor, Params), IsSolverType, Result) :-
Result = ok1(processed_type_body(Functor, Params,
parse_tree_abstract_type(IsSolverType))).
%-----------------------------------------------------------------------------%
parse_type_defn_head(ModuleName, VarSet, HeadTerm, Result) :-
(
HeadTerm = term.variable(_, Context),
Pieces = [words("Error: variable on LHS of type definition."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(Context, [always(Pieces)])]),
Result = error2([Spec])
;
HeadTerm = term.functor(_, _, _),
ContextPieces = [words("In type definition:")],
parse_implicitly_qualified_term(ModuleName, HeadTerm, HeadTerm,
VarSet, ContextPieces, Headresult),
parse_type_defn_head_2(Headresult, VarSet, HeadTerm, Result)
).
:- pred parse_type_defn_head_2(maybe_functor::in, varset::in, term::in,
maybe2(sym_name, list(tvar))::out) is det.
parse_type_defn_head_2(error2(Specs), _, _, error2(Specs)).
parse_type_defn_head_2(ok2(Name, Args), VarSet, HeadTerm, Result) :-
parse_type_defn_head_3(Name, Args, VarSet, HeadTerm, Result).
:- pred parse_type_defn_head_3(sym_name::in, list(term)::in, varset::in,
term::in, maybe2(sym_name, list(tvar))::out) is det.
parse_type_defn_head_3(Name, Args, VarSet, HeadTerm, Result) :-
% Check that all the head args are variables.
( term_list_to_var_list(Args, Params0) ->
% Check that all the head arg variables are distinct.
(
list.member(_, Params0, [Param | OtherParams]),
list.member(Param, OtherParams)
->
Pieces = [words("Error: repeated type parameters"),
words("in LHS of type definition."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(HeadTerm), [always(Pieces)])]),
Result = error2([Spec])
;
list.map(term.coerce_var, Params0, Params),
Result = ok2(Name, Params)
)
;
HeadTermStr = describe_error_term(VarSet, HeadTerm),
Pieces = [words("Error: type parameters must be variables:"),
words(HeadTermStr), suffix(".") ,nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(HeadTerm), [always(Pieces)])]),
Result = error2([Spec])
).
%-----------------------------------------------------------------------------%
% Convert a list of terms separated by semi-colons (known as a
% "disjunction", even thought the terms aren't goals in this case)
% into a list of constructors.
%
:- func convert_constructors(module_name, varset, term) =
maybe1(list(constructor)).
convert_constructors(ModuleName, VarSet, BodyTerm) = Result :-
disjunction_to_list(BodyTerm, BodyTermList),
Result = convert_constructors_2(ModuleName, VarSet, BodyTermList).
% True if input argument is a valid list of constructors.
%
:- func convert_constructors_2(module_name, varset, list(term)) =
maybe1(list(constructor)).
convert_constructors_2(_ModuleName, _, []) = ok1([]).
convert_constructors_2(ModuleName, VarSet, [Term | Terms]) = Result :-
Result0 = convert_constructor(ModuleName, VarSet, Term),
(
Result0 = error1(Specs),
Result = error1(Specs)
;
Result0 = ok1(Constructor),
Result1 = convert_constructors_2(ModuleName, VarSet, Terms),
(
Result1 = error1(Specs),
Result = error1(Specs)
;
Result1 = ok1(Constructors),
Result = ok1([Constructor | Constructors])
)
).
:- func convert_constructor(module_name, varset, term) = maybe1(constructor).
convert_constructor(ModuleName, VarSet, Term0) = Result :-
( Term0 = term.functor(term.atom("some"), [Vars, Term1], _Context) ->
( parse_list_of_vars(Vars, ExistQVars0) ->
list.map(term.coerce_var, ExistQVars0, ExistQVars),
Result = convert_constructor_2(ModuleName, VarSet, ExistQVars,
Term0, Term1)
;
Term0Str = describe_error_term(VarSet, Term0),
Pieces = [words("Error: syntax error in variable list at"),
words(Term0Str), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term0), [always(Pieces)])]),
Result = error1([Spec])
)
;
ExistQVars = [],
Result = convert_constructor_2(ModuleName, VarSet, ExistQVars,
Term0, Term0)
).
:- func convert_constructor_2(module_name, varset, list(tvar), term, term) =
maybe1(constructor).
convert_constructor_2(ModuleName, VarSet, ExistQVars, Term0, Term1) = Result :-
get_existential_constraints_from_term(ModuleName, VarSet, Term1, Term2,
Result0),
(
Result0 = error1(Specs),
Result = error1(Specs)
;
Result0 = ok1(Constraints),
(
% Note that as a special case, one level of curly braces around
% the constructor are ignored. This is to allow you to define
% ';'/2 and 'some'/2 constructors.
Term2 = term.functor(term.atom("{}"), [Term3], _Context)
->
Term4 = Term3
;
Term4 = Term2
),
Result = convert_constructor_3(ModuleName, VarSet, ExistQVars,
Constraints, Term0, Term4)
).
:- func convert_constructor_3(module_name, varset, list(tvar),
list(prog_constraint), term, term) = maybe1(constructor).
convert_constructor_3(ModuleName, VarSet, ExistQVars, Constraints,
Term0, Term1) = Result :-
ContextPieces = [words("In constructor definition:")],
parse_implicitly_qualified_term(ModuleName, Term1, Term0, VarSet,
ContextPieces, Result0),
(
Result0 = error2(Specs),
Result = error1(Specs)
;
Result0 = ok2(Functor, ArgTerms),
Result1 = convert_constructor_arg_list(ModuleName, VarSet, ArgTerms),
(
Result1 = error1(Specs),
Result = error1(Specs)
;
Result1 = ok1(Args),
Ctxt = get_term_context(Term1),
Result = ok1(ctor(ExistQVars, Constraints, Functor, Args, Ctxt))
)
).
%-----------------------------------------------------------------------------%
% parse a `:- pred p(...)' declaration or a
% `:- func f(...) `with_type` t' declaration
%
:- pred process_pred_decl(pred_or_func::in, module_name::in, varset::in,
term::in, condition::in, maybe(mer_type)::in, maybe(mer_inst)::in,
maybe(determinism)::in, decl_attrs::in, prog_context::in,
maybe1(item)::out) is det.
process_pred_decl(PredOrFunc, ModuleName, VarSet, PredType, Cond, WithType,
WithInst, MaybeDet, Attributes0, Context, Result) :-
get_class_context_and_inst_constraints(ModuleName, VarSet,
Attributes0, Attributes, MaybeClassContext),
(
MaybeClassContext = ok3(ExistQVars, Constraints, InstConstraints),
ContextPieces = [words("In")] ++ pred_or_func_decl_pieces(PredOrFunc)
++ [suffix(":")],
parse_implicitly_qualified_term(ModuleName, PredType, PredType,
VarSet, ContextPieces, PredTypeResult),
process_pred_decl_2(PredOrFunc, PredTypeResult, PredType, VarSet,
WithType, WithInst, MaybeDet, Cond, ExistQVars,
Constraints, InstConstraints, Attributes, Context, Result)
;
MaybeClassContext = error3(Specs),
Result = error1(Specs)
).
:- pred process_pred_decl_2(pred_or_func::in, maybe_functor::in, term::in,
varset::in, maybe(mer_type)::in, maybe(mer_inst)::in,
maybe(determinism)::in, condition::in, existq_tvars::in,
prog_constraints::in, inst_var_sub::in, decl_attrs::in, prog_context::in,
maybe1(item)::out) is det.
process_pred_decl_2(_, error2(Specs), _, _, _, _, _, _, _, _, _, _, _,
error1(Specs)).
process_pred_decl_2(PredOrFunc, ok2(F, As0), PredTypeTerm, VarSet,
WithType, WithInst, MaybeDet, Cond, ExistQVars,
ClassContext, InstConstraints, Attributes0, Context, Result) :-
( convert_type_and_mode_list(InstConstraints, As0, As) ->
( verify_type_and_mode_list(As) ->
(
WithInst = yes(_),
As = [type_only(_) | _]
->
Pieces = [words("Error:"), quote("with_inst"),
words("specified without argument modes."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(PredTypeTerm),
[always(Pieces)])]),
Result = error1([Spec])
;
WithInst = no,
WithType = yes(_),
As = [type_and_mode(_, _) | _]
->
Pieces = [words("Error: arguments have modes but"),
quote("with_inst"), words("not specified."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(PredTypeTerm),
[always(Pieces)])]),
Result = error1([Spec])
;
\+ inst_var_constraints_are_consistent_in_type_and_modes(As)
->
PredTypeTermStr = describe_error_term(VarSet, PredTypeTerm),
Pieces = [words("Error: inconsistent constraints on"),
words("inst variables in")] ++
pred_or_func_decl_pieces(PredOrFunc) ++
[suffix(":"), nl, words(PredTypeTermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(PredTypeTerm),
[always(Pieces)])]),
Result = error1([Spec])
;
get_purity(Purity, Attributes0, Attributes),
varset.coerce(VarSet, TVarSet),
varset.coerce(VarSet, IVarSet),
Origin = user,
ItemPredDecl = item_pred_decl_info(Origin, TVarSet, IVarSet,
ExistQVars, PredOrFunc, F, As, WithType, WithInst,
MaybeDet, Cond, Purity, ClassContext, Context),
Item = item_pred_decl(ItemPredDecl),
Result0 = ok1(Item),
check_no_attributes(Result0, Attributes, Result)
)
;
Pieces = [words("Error: some but not all arguments have modes."),
nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(PredTypeTerm),
[always(Pieces)])]),
Result = error1([Spec])
)
;
PredTypeTermStr = describe_error_term(VarSet, PredTypeTerm),
Pieces = [words("Error: syntax error in")] ++
pred_or_func_decl_pieces(PredOrFunc) ++
[words("at"), words(PredTypeTermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(PredTypeTerm), [always(Pieces)])]),
Result = error1([Spec])
).
:- pred get_purity(purity::out, decl_attrs::in, decl_attrs::out) is det.
get_purity(Purity, !Attributes) :-
( !.Attributes = [decl_attr_purity(Purity0) - _ | !:Attributes] ->
Purity = Purity0
;
Purity = purity_pure
).
:- func pred_or_func_decl_pieces(pred_or_func) = list(format_component).
pred_or_func_decl_pieces(pf_function) =
[quote(":- func"), words("declaration")].
pred_or_func_decl_pieces(pf_predicate) =
[quote(":- pred"), words("declaration")].
%-----------------------------------------------------------------------------%
% We could perhaps get rid of some code duplication between here and
% prog_io_typeclass.m?
% get_class_context_and_inst_constraints(ModuleName, Attributes0,
% Attributes, MaybeContext, MaybeInstConstraints):
%
% Parse type quantifiers, type class constraints and inst constraints
% from the declaration attributes in Attributes0.
% MaybeContext is either bound to the correctly parsed context, or
% an appropriate error message (if there was a syntax error).
% MaybeInstConstraints is either bound to a map containing the inst
% constraints or an appropriate error message (if there was a syntax
% error).
% Attributes is bound to the remaining attributes.
%
:- pred get_class_context_and_inst_constraints(module_name::in, varset::in,
decl_attrs::in, decl_attrs::out,
maybe3(existq_tvars, prog_constraints, inst_var_sub)::out) is det.
get_class_context_and_inst_constraints(ModuleName, VarSet, RevAttributes0,
RevAttributes, MaybeContext) :-
% Constraints and quantifiers should occur in the following order
% (outermost to innermost):
%
% operator precedence
% -------- ----------
% 1. universal quantifiers all 950
% 2. existential quantifiers some 950
% 3. universal constraints <= 920
% 4. existential constraints => 920 [*]
% 5. the decl itself pred or func 800
%
% When we reach here, Attributes0 contains declaration attributes
% in the opposite order -- innermost to outermost -- so we reverse
% them before we start.
%
% [*] Note that the semantic meaning of `=>' is not quite the same
% as implication; logically speaking it's more like conjunction.
% Oh well, at least it has the right precedence.
%
% In theory it could make sense to allow the order of 2 & 3 to be
% swapped, or (in the case of multiple constraints & multiple
% quantifiers) to allow arbitrary interleaving of 2 & 3, but in
% practice it seems there would be little benefit in allowing that
% flexibility, so we don't.
%
% Universal quantification is the default, so we just ignore
% universal quantifiers. (XXX It might be a good idea to check
% that any universally quantified type variables do actually
% occur somewhere in the type declaration, and are not also
% existentially quantified, and if not, issue a warning or
% error message.)
list.reverse(RevAttributes0, Attributes0),
get_quant_vars(quant_type_univ, ModuleName, Attributes0, Attributes1,
[], _UnivQVars),
get_quant_vars(quant_type_exist, ModuleName, Attributes1, Attributes2,
[], ExistQVars0),
list.map(term.coerce_var, ExistQVars0, ExistQVars),
get_constraints(quant_type_univ, ModuleName, VarSet, Attributes2,
Attributes3, MaybeUnivConstraints),
get_constraints(quant_type_exist, ModuleName, VarSet, Attributes3,
Attributes, MaybeExistConstraints),
list.reverse(Attributes, RevAttributes),
combine_quantifier_results(MaybeUnivConstraints, MaybeExistConstraints,
ExistQVars, MaybeContext).
:- pred combine_quantifier_results(maybe_class_and_inst_constraints::in,
maybe_class_and_inst_constraints::in, existq_tvars::in,
maybe3(existq_tvars, prog_constraints, inst_var_sub)::out) is det.
combine_quantifier_results(error2(Specs1), error2(Specs2), _,
error3(Specs1 ++ Specs2)).
combine_quantifier_results(error2(Specs), ok2(_, _), _, error3(Specs)).
combine_quantifier_results(ok2(_, _), error2(Specs), _, error3(Specs)).
combine_quantifier_results(ok2(UnivConstraints, InstConstraints0),
ok2(ExistConstraints, InstConstraints1), ExistQVars,
ok3(ExistQVars, constraints(UnivConstraints, ExistConstraints),
InstConstraints0 `map.old_merge` InstConstraints1)).
:- pred get_quant_vars(quantifier_type::in, module_name::in,
decl_attrs::in, decl_attrs::out, list(var)::in, list(var)::out) is det.
get_quant_vars(QuantType, ModuleName, !Attributes, !Vars) :-
(
!.Attributes = [decl_attr_quantifier(QuantType, QuantVars) - _
| !:Attributes]
->
list.append(!.Vars, QuantVars, !:Vars),
get_quant_vars(QuantType, ModuleName, !Attributes, !Vars)
;
true
).
:- pred get_constraints(quantifier_type::in, module_name::in, varset::in,
decl_attrs::in, decl_attrs::out, maybe_class_and_inst_constraints::out)
is det.
get_constraints(QuantType, ModuleName, VarSet, !Attributes,
MaybeConstraints) :-
(
!.Attributes = [
decl_attr_constraints(QuantType, ConstraintsTerm) - _Term
| !:Attributes]
->
parse_class_and_inst_constraints(ModuleName, VarSet, ConstraintsTerm,
MaybeConstraints0),
% there may be more constraints of the same type --
% collect them all and combine them
get_constraints(QuantType, ModuleName, VarSet, !Attributes,
MaybeConstraints1),
combine_constraint_list_results(MaybeConstraints1,
MaybeConstraints0, MaybeConstraints)
;
MaybeConstraints = ok2([], map.init)
).
:- pred combine_constraint_list_results(maybe_class_and_inst_constraints::in,
maybe_class_and_inst_constraints::in,
maybe_class_and_inst_constraints::out) is det.
combine_constraint_list_results(error2(Specs1), error2(Specs2),
error2(Specs1 ++ Specs2)).
combine_constraint_list_results(error2(Specs), ok2(_, _), error2(Specs)).
combine_constraint_list_results(ok2(_, _), error2(Specs), error2(Specs)).
combine_constraint_list_results(ok2(CC0, IC0), ok2(CC1, IC1),
ok2(CC0 ++ CC1, IC0 `map.old_merge` IC1)).
:- pred get_existential_constraints_from_term(module_name::in, varset::in,
term::in, term::out, maybe1(list(prog_constraint))::out) is det.
get_existential_constraints_from_term(ModuleName, VarSet, !PredTypeTerm,
MaybeExistentialConstraints) :-
(
!.PredTypeTerm = term.functor(term.atom("=>"),
[!:PredTypeTerm, ExistentialConstraints], _)
->
parse_class_constraints(ModuleName, VarSet, ExistentialConstraints,
MaybeExistentialConstraints)
;
MaybeExistentialConstraints = ok1([])
).
%-----------------------------------------------------------------------------%
% Verify that among the arguments of a :- pred declaration,
% either all arguments specify a mode or none of them do.
%
:- pred verify_type_and_mode_list(list(type_and_mode)::in) is semidet.
verify_type_and_mode_list([]).
verify_type_and_mode_list([First | Rest]) :-
verify_type_and_mode_list_2(Rest, First).
:- pred verify_type_and_mode_list_2(list(type_and_mode)::in, type_and_mode::in)
is semidet.
verify_type_and_mode_list_2([], _).
verify_type_and_mode_list_2([Head | Tail], First) :-
(
Head = type_only(_),
First = type_only(_)
;
Head = type_and_mode(_, _),
First = type_and_mode(_, _)
),
verify_type_and_mode_list_2(Tail, First).
%-----------------------------------------------------------------------------%
% Parse a `:- func p(...)' declaration.
%
:- pred process_func(module_name::in, varset::in, term::in, condition::in,
maybe(determinism)::in, decl_attrs::in, prog_context::in,
maybe1(item)::out) is det.
process_func(ModuleName, VarSet, Term, Cond, MaybeDet, Attributes0,
Context, Result) :-
get_class_context_and_inst_constraints(ModuleName, VarSet,
Attributes0, Attributes, MaybeContext),
(
MaybeContext = ok3(ExistQVars, Constraints, InstConstraints),
process_func_2(ModuleName, VarSet, Term, Cond, MaybeDet, ExistQVars,
Constraints, InstConstraints, Attributes, Context, Result)
;
MaybeContext = error3(Specs),
Result = error1(Specs)
).
:- pred process_func_2(module_name::in, varset::in, term::in, condition::in,
maybe(determinism)::in, existq_tvars::in, prog_constraints::in,
inst_var_sub::in, decl_attrs::in, prog_context::in, maybe1(item)::out)
is det.
process_func_2(ModuleName, VarSet, Term, Cond, MaybeDet, ExistQVars,
Constraints, InstConstraints, Attributes, Context, Result) :-
(
Term = term.functor(term.atom("="),
[FuncTerm0, ReturnTypeTerm], _Context),
FuncTerm = desugar_field_access(FuncTerm0)
->
ContextPieces = [words("In"), quote(":- func"), words("declaration")],
parse_implicitly_qualified_term(ModuleName, FuncTerm, Term,
VarSet, ContextPieces, FuncTermResult),
process_func_3(FuncTermResult, FuncTerm, ReturnTypeTerm, Term, VarSet,
MaybeDet, Cond, ExistQVars, Constraints, InstConstraints,
Attributes, Context, Result)
;
Pieces = [words("Error:"), quote("="), words("expected in"),
quote(":- func"), words("declaration."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error1([Spec])
).
:- pred process_func_3(maybe_functor::in, term::in, term::in, term::in,
varset::in, maybe(determinism)::in, condition::in, existq_tvars::in,
prog_constraints::in, inst_var_sub::in, decl_attrs::in,
prog_context::in, maybe1(item)::out) is det.
process_func_3(error2(Specs), _, _, _, _, _, _, _, _, _, _, _,
error1(Specs)).
process_func_3(ok2(F, As0), FuncTerm, ReturnTypeTerm, FullTerm, VarSet,
MaybeDet, Cond, ExistQVars, ClassContext, InstConstraints,
Attributes0, Context, Result) :-
( convert_type_and_mode_list(InstConstraints, As0, As) ->
(
\+ verify_type_and_mode_list(As)
->
Pieces = [words("Error: some but not all arguments have modes."),
nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(FuncTerm), [always(Pieces)])]),
Result = error1([Spec])
;
convert_type_and_mode(InstConstraints, ReturnTypeTerm, ReturnType)
->
(
As = [type_and_mode(_, _) | _],
ReturnType = type_only(_)
->
Pieces = [words("Error: function arguments have modes,"),
words("but function result does not."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(FuncTerm), [always(Pieces)])]),
Result = error1([Spec])
;
As = [type_only(_) | _],
ReturnType = type_and_mode(_, _)
->
Pieces = [words("Error: function result has mode,"),
words("but function arguments do not."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(FuncTerm), [always(Pieces)])]),
Result = error1([Spec])
;
get_purity(Purity, Attributes0, Attributes),
varset.coerce(VarSet, TVarSet),
varset.coerce(VarSet, IVarSet),
list.append(As, [ReturnType], Args),
(
inst_var_constraints_are_consistent_in_type_and_modes(Args)
->
Origin = user,
Result0 = ok1(Item),
Item = item_pred_decl(ItemPredDecl),
ItemPredDecl = item_pred_decl_info(Origin, TVarSet, IVarSet,
ExistQVars, pf_function, F, Args, no, no, MaybeDet,
Cond, Purity, ClassContext, Context),
check_no_attributes(Result0, Attributes, Result)
;
FullTermStr = describe_error_term(VarSet, FullTerm),
Pieces = [words("Error: inconsistent constraints"),
words("on inst variables in function declaration:"),
nl, words(FullTermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(FullTerm),
[always(Pieces)])]),
Result = error1([Spec])
)
)
;
Pieces = [words("Error: syntax error in return type of"),
quote(":- func"), words("declaration."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(ReturnTypeTerm),
[always(Pieces)])]),
Result = error1([Spec])
)
;
FuncTermStr = describe_error_term(VarSet, FuncTerm),
Pieces = [words("Error: syntax error in arguments of"),
quote(":- func"), words("declaration at"),
words(FuncTermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(FuncTerm), [always(Pieces)])]),
Result = error1([Spec])
).
%-----------------------------------------------------------------------------%
% Perform one of the following field-access syntax rewrites if possible:
%
% A ^ f(B, ...) ---> f(B, ..., A)
% (A ^ f(B, ...) := X) ---> 'f :='(B, ..., A, X)
%
:- func desugar_field_access(term) = term.
desugar_field_access(Term) =
(
Term = functor(atom("^"), [A, RHS], _),
RHS = functor(atom(FieldName), Bs, Context)
->
functor(atom(FieldName), Bs ++ [A], Context)
;
Term = functor(atom(":="), [LHS, X], _),
LHS = functor(atom("^"), [A, RHS], Context),
RHS = functor(atom(FieldName), Bs, Context)
->
functor(atom(FieldName ++ " :="), Bs ++ [A, X], Context)
;
Term
).
%-----------------------------------------------------------------------------%
% Parse a `:- mode p(...)' declaration.
%
:- pred process_mode(module_name::in, varset::in, term::in, condition::in,
decl_attrs::in, maybe(mer_inst)::in, maybe(determinism)::in,
prog_context::in, maybe1(item)::out) is det.
process_mode(ModuleName, VarSet, Term, Cond, Attributes, WithInst, MaybeDet,
Context, Result) :-
(
WithInst = no,
Term = term.functor(term.atom("="), [FuncTerm0, ReturnTypeTerm],
_Context),
FuncTerm = desugar_field_access(FuncTerm0)
->
ContextPieces = [words("In function"), quote(":- mode"),
words("declaration")],
parse_implicitly_qualified_term(ModuleName, FuncTerm, Term,
VarSet, ContextPieces, R),
process_func_mode(R, ModuleName, FuncTerm, ReturnTypeTerm,
Term, VarSet, MaybeDet, Cond, Attributes, Context, Result)
;
ContextPieces = [words("In"), quote(":- mode"), words("declaration")],
parse_implicitly_qualified_term(ModuleName, Term, Term,
VarSet, ContextPieces, R),
process_mode_decl(R, ModuleName, Term, VarSet,
WithInst, MaybeDet, Cond, Attributes, Context, Result)
).
:- pred process_mode_decl(maybe_functor::in, module_name::in, term::in,
varset::in, maybe(mer_inst)::in, maybe(determinism)::in, condition::in,
decl_attrs::in, prog_context::in, maybe1(item)::out) is det.
process_mode_decl(error2(Specs), _, _, _, _, _, _, _, _, error1(Specs)).
process_mode_decl(ok2(F, As0), ModuleName, PredModeTerm, VarSet, WithInst,
MaybeDet, Cond, Attributes0, Context, Result) :-
( convert_mode_list(allow_constrained_inst_var, As0, As1) ->
get_class_context_and_inst_constraints(ModuleName, VarSet,
Attributes0, Attributes, MaybeConstraints),
(
MaybeConstraints = ok3(_, _, InstConstraints),
list.map(constrain_inst_vars_in_mode(InstConstraints), As1, As),
varset.coerce(VarSet, ProgVarSet),
( inst_var_constraints_are_consistent_in_modes(As) ->
(
WithInst = no,
PredOrFunc = yes(pf_predicate)
;
WithInst = yes(_),
% We don't know whether it's a predicate or a function
% until we expand out the inst.
PredOrFunc = no
),
ItemModeDecl = item_mode_decl_info(ProgVarSet, PredOrFunc,
F, As, WithInst, MaybeDet, Cond, Context),
Item = item_mode_decl(ItemModeDecl),
Result0 = ok1(Item)
;
PredModeTermStr = describe_error_term(VarSet, PredModeTerm),
Pieces = [words("Error: inconsistent constraints"),
words("on inst variables"),
words("in predicate mode declaration:"), nl,
words(PredModeTermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(PredModeTerm),
[always(Pieces)])]),
Result0 = error1([Spec])
)
;
MaybeConstraints = error3(Specs),
Result0 = error1(Specs)
),
check_no_attributes(Result0, Attributes, Result)
;
PredModeTermStr = describe_error_term(VarSet, PredModeTerm),
Pieces = [words("Error: syntax error in mode declaration at"),
words(PredModeTermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(PredModeTerm), [always(Pieces)])]),
Result = error1([Spec])
).
:- pred process_func_mode(maybe_functor::in, module_name::in, term::in,
term::in, term::in, varset::in, maybe(determinism)::in, condition::in,
decl_attrs::in, prog_context::in, maybe1(item)::out) is det.
process_func_mode(error2(Specs), _, _, _, _, _, _, _, _, _, error1(Specs)).
process_func_mode(ok2(F, As0), ModuleName, FuncMode, RetMode0, FullTerm,
VarSet, MaybeDet, Cond, Attributes0, Context, Result) :-
(
convert_mode_list(allow_constrained_inst_var, As0, As1)
->
get_class_context_and_inst_constraints(ModuleName, VarSet,
Attributes0, Attributes, MaybeConstraints),
(
MaybeConstraints = ok3(_, _, InstConstraints),
list.map(constrain_inst_vars_in_mode(InstConstraints), As1, As),
(
convert_mode(allow_constrained_inst_var, RetMode0, RetMode1)
->
constrain_inst_vars_in_mode(InstConstraints,
RetMode1, RetMode),
varset.coerce(VarSet, InstVarSet),
list.append(As, [RetMode], ArgModes),
( inst_var_constraints_are_consistent_in_modes(ArgModes) ->
ItemModeDecl = item_mode_decl_info(InstVarSet,
yes(pf_function), F, ArgModes, no, MaybeDet, Cond,
Context),
Item = item_mode_decl(ItemModeDecl),
Result0 = ok1(Item)
;
FullTermStr = describe_error_term(VarSet, FullTerm),
Pieces = [words("Error: inconsistent constraints"),
words("on inst variables"),
words("in function mode declaration:"), nl,
words(FullTermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(FullTerm),
[always(Pieces)])]),
Result0 = error1([Spec])
)
;
Pieces = [words("Error: syntax error in return mode"),
words("of function mode declaration."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(RetMode0),
[always(Pieces)])]),
Result0 = error1([Spec])
)
;
MaybeConstraints = error3(Specs),
Result0 = error1(Specs)
),
check_no_attributes(Result0, Attributes, Result)
;
% XXX Should say which argument.
FuncModeStr = describe_error_term(VarSet, FuncMode),
Pieces = [words("Error: syntax error in arguments of"),
words("function mode declaration at"),
words(FuncModeStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(FuncMode), [always(Pieces)])]),
Result = error1([Spec])
).
%-----------------------------------------------------------------------------%
constrain_inst_vars_in_mode(Mode0, Mode) :-
constrain_inst_vars_in_mode(map.init, Mode0, Mode).
constrain_inst_vars_in_mode(InstConstraints, I0 -> F0, I -> F) :-
constrain_inst_vars_in_inst(InstConstraints, I0, I),
constrain_inst_vars_in_inst(InstConstraints, F0, F).
constrain_inst_vars_in_mode(InstConstraints, user_defined_mode(Name, Args0),
user_defined_mode(Name, Args)) :-
list.map(constrain_inst_vars_in_inst(InstConstraints), Args0, Args).
:- pred constrain_inst_vars_in_inst(inst_var_sub::in,
mer_inst::in, mer_inst::out) is det.
constrain_inst_vars_in_inst(_, any(U, none), any(U, none)).
constrain_inst_vars_in_inst(InstConstraints,
any(U, higher_order(PredInstInfo0)),
any(U, higher_order(PredInstInfo))) :-
constrain_inst_vars_in_pred_inst_info(InstConstraints, PredInstInfo0,
PredInstInfo).
constrain_inst_vars_in_inst(_, free, free).
constrain_inst_vars_in_inst(_, free(T), free(T)).
constrain_inst_vars_in_inst(InstConstraints, bound(U, BIs0), bound(U, BIs)) :-
list.map(
(pred(bound_functor(C, Is0)::in, bound_functor(C, Is)::out) is det :-
list.map(constrain_inst_vars_in_inst(InstConstraints), Is0, Is)),
BIs0, BIs).
constrain_inst_vars_in_inst(_, ground(U, none), ground(U, none)).
constrain_inst_vars_in_inst(InstConstraints,
ground(U, higher_order(PredInstInfo0)),
ground(U, higher_order(PredInstInfo))) :-
constrain_inst_vars_in_pred_inst_info(InstConstraints, PredInstInfo0,
PredInstInfo).
constrain_inst_vars_in_inst(InstConstraints,
constrained_inst_vars(Vars0, Inst0),
constrained_inst_vars(Vars, Inst)) :-
constrain_inst_vars_in_inst(InstConstraints, Inst0, Inst1),
( Inst1 = constrained_inst_vars(Vars2, Inst2) ->
Vars = Vars0 `set.union` Vars2,
Inst = Inst2
;
Vars = Vars0,
Inst = Inst1
).
constrain_inst_vars_in_inst(_, not_reached, not_reached).
constrain_inst_vars_in_inst(InstConstraints, inst_var(Var),
constrained_inst_vars(set.make_singleton_set(Var), Inst)) :-
( map.search(InstConstraints, Var, Inst0) ->
Inst = Inst0
;
Inst = ground(shared, none)
).
constrain_inst_vars_in_inst(InstConstraints, defined_inst(Name0),
defined_inst(Name)) :-
constrain_inst_vars_in_inst_name(InstConstraints, Name0, Name).
constrain_inst_vars_in_inst(InstConstraints, abstract_inst(N, Is0),
abstract_inst(N, Is)) :-
list.map(constrain_inst_vars_in_inst(InstConstraints), Is0, Is).
:- pred constrain_inst_vars_in_pred_inst_info(inst_var_sub::in,
pred_inst_info::in, pred_inst_info::out) is det.
constrain_inst_vars_in_pred_inst_info(InstConstraints, PII0, PII) :-
PII0 = pred_inst_info(PredOrFunc, Modes0, Det),
list.map(constrain_inst_vars_in_mode(InstConstraints), Modes0, Modes),
PII = pred_inst_info(PredOrFunc, Modes, Det).
:- pred constrain_inst_vars_in_inst_name(inst_var_sub::in,
inst_name::in, inst_name::out) is det.
constrain_inst_vars_in_inst_name(InstConstraints, Name0, Name) :-
( Name0 = user_inst(SymName, Args0) ->
list.map(constrain_inst_vars_in_inst(InstConstraints), Args0, Args),
Name = user_inst(SymName, Args)
;
Name = Name0
).
%-----------------------------------------------------------------------------%
inst_var_constraints_are_consistent_in_modes(Modes) :-
inst_var_constraints_are_consistent_in_modes(Modes, map.init, _).
:- pred inst_var_constraints_are_consistent_in_modes(list(mer_mode)::in,
inst_var_sub::in, inst_var_sub::out) is semidet.
inst_var_constraints_are_consistent_in_modes(Modes, !Sub) :-
list.foldl(inst_var_constraints_are_consistent_in_mode, Modes, !Sub).
:- pred inst_var_constraints_are_consistent_in_type_and_modes(
list(type_and_mode)::in) is semidet.
inst_var_constraints_are_consistent_in_type_and_modes(TypeAndModes) :-
list.foldl((pred(TypeAndMode::in, in, out) is semidet -->
(
{ TypeAndMode = type_only(_) }
;
{ TypeAndMode = type_and_mode(_, Mode) },
inst_var_constraints_are_consistent_in_mode(Mode)
)), TypeAndModes, map.init, _).
:- pred inst_var_constraints_are_consistent_in_mode(mer_mode::in,
inst_var_sub::in, inst_var_sub::out) is semidet.
inst_var_constraints_are_consistent_in_mode(InitialInst -> FinalInst, !Sub) :-
inst_var_constraints_are_consistent_in_inst(InitialInst, !Sub),
inst_var_constraints_are_consistent_in_inst(FinalInst, !Sub).
inst_var_constraints_are_consistent_in_mode(user_defined_mode(_, ArgInsts),
!Sub) :-
inst_var_constraints_are_consistent_in_insts(ArgInsts, !Sub).
:- pred inst_var_constraints_are_consistent_in_insts(list(mer_inst)::in,
inst_var_sub::in, inst_var_sub::out) is semidet.
inst_var_constraints_are_consistent_in_insts(Insts, !Sub) :-
list.foldl(inst_var_constraints_are_consistent_in_inst, Insts, !Sub).
:- pred inst_var_constraints_are_consistent_in_inst(mer_inst::in,
inst_var_sub::in, inst_var_sub::out) is semidet.
inst_var_constraints_are_consistent_in_inst(any(_, HOInstInfo), !Sub) :-
(
HOInstInfo = none
;
HOInstInfo = higher_order(pred_inst_info(_, Modes, _)),
inst_var_constraints_are_consistent_in_modes(Modes, !Sub)
).
inst_var_constraints_are_consistent_in_inst(free, !Sub).
inst_var_constraints_are_consistent_in_inst(free(_), !Sub).
inst_var_constraints_are_consistent_in_inst(bound(_, BoundInsts), !Sub) :-
list.foldl(
(pred(bound_functor(_, Insts)::in, in, out) is semidet -->
inst_var_constraints_are_consistent_in_insts(Insts)),
BoundInsts, !Sub).
inst_var_constraints_are_consistent_in_inst(ground(_, HOInstInfo), !Sub) :-
(
HOInstInfo = none
;
HOInstInfo = higher_order(pred_inst_info(_, Modes, _)),
inst_var_constraints_are_consistent_in_modes(Modes, !Sub)
).
inst_var_constraints_are_consistent_in_inst(not_reached, !Sub).
inst_var_constraints_are_consistent_in_inst(inst_var(_), !Sub) :-
unexpected(this_file, "inst_var_constraints_are_consistent_in_inst: " ++
"unconstrained inst_var").
inst_var_constraints_are_consistent_in_inst(defined_inst(InstName), !Sub) :-
( InstName = user_inst(_, Insts) ->
inst_var_constraints_are_consistent_in_insts(Insts, !Sub)
;
true
).
inst_var_constraints_are_consistent_in_inst(abstract_inst(_, Insts), !Sub) :-
inst_var_constraints_are_consistent_in_insts(Insts, !Sub).
inst_var_constraints_are_consistent_in_inst(
constrained_inst_vars(InstVars, Inst), !Sub) :-
set.fold((pred(InstVar::in, in, out) is semidet -->
( Inst0 =^ map.elem(InstVar) ->
% Check that the inst_var constraint is consistent with
% the previous constraint on this inst_var.
{ Inst = Inst0 }
;
^ map.elem(InstVar) := Inst
)), InstVars, !Sub),
inst_var_constraints_are_consistent_in_inst(Inst, !Sub).
%-----------------------------------------------------------------------------%
% Parse a `:- inst <InstDefn>.' declaration.
%
:- pred parse_inst_decl(module_name::in, varset::in, term::in,
prog_context::in, maybe1(item)::out) is det.
parse_inst_decl(ModuleName, VarSet, InstDefn, Context, Result) :-
% XXX Some of the tests here could be factored out.
(
InstDefn = term.functor(term.atom("=="), [H, B], _Context)
->
get_condition(B, Body, Condition),
convert_inst_defn(ModuleName, VarSet, H, Body, R),
process_maybe1(make_inst_defn(VarSet, Condition, Context), R, Result)
;
% XXX This is for `abstract inst' declarations,
% which are not really supported.
InstDefn = term.functor(term.atom("is"), Args, _Context),
Args = [Head, term.functor(term.atom("private"), [], _)]
->
Condition = cond_true,
convert_abstract_inst_defn(ModuleName, VarSet, Head, R),
process_maybe1(make_inst_defn(VarSet, Condition, Context), R, Result)
;
InstDefn = term.functor(term.atom("--->"), [H, B], _Context)
->
get_condition(B, Body, Condition),
Body1 = term.functor(term.atom("bound"), [Body], Context),
convert_inst_defn(ModuleName, VarSet, H, Body1, R),
% We should check the condition for errors. We don't bother
% at the moment, since we ignore conditions anyhow :-)
process_maybe1(make_inst_defn(VarSet, Condition, Context), R, Result)
;
Pieces = [words("Error:"), quote("=="), words("expected in"),
quote(":- inst"), words("definition."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(InstDefn), [always(Pieces)])]),
Result = error1([Spec])
).
% Parse a `:- inst <Head> ---> <Body>.' definition.
%
:- pred convert_inst_defn(module_name::in, varset::in, term::in, term::in,
maybe1(processed_inst_body)::out) is det.
convert_inst_defn(ModuleName, VarSet, HeadTerm, BodyTerm, Result) :-
ContextPieces = [words("In inst definition:")],
parse_implicitly_qualified_term(ModuleName, HeadTerm, BodyTerm,
VarSet, ContextPieces, QualResult),
convert_inst_defn_2(QualResult, VarSet, HeadTerm, BodyTerm, Result).
:- pred convert_inst_defn_2(maybe_functor::in, varset::in, term::in, term::in,
maybe1(processed_inst_body)::out) is det.
convert_inst_defn_2(error2(Specs), _, _, _, error1(Specs)).
convert_inst_defn_2(ok2(Name, ArgTerms), VarSet, HeadTerm, BodyTerm, Result) :-
(
% Check that all the head args are variables.
term.term_list_to_var_list(ArgTerms, Args)
->
(
% Check that all the head arg variables are distinct.
list.member(Arg2, Args, [Arg2 | OtherArgs]),
list.member(Arg2, OtherArgs)
->
% XXX Should improve the error message here.
Pieces = [words("Error: repeated inst parameters"),
words("in LHS of inst definition."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(HeadTerm), [always(Pieces)])]),
Result = error1([Spec])
;
% Check that all the variables in the body occur in the head.
term.contains_var(BodyTerm, Var2),
\+ list.member(Var2, Args)
->
Pieces = [words("Error: free inst parameter"),
words("in RHS of inst definition."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(BodyTerm), [always(Pieces)])]),
Result = error1([Spec])
;
% Check that the inst is a valid user-defined inst, i.e. that it
% does not have the form of one of the builtin insts.
\+ (
convert_inst(no_allow_constrained_inst_var, HeadTerm,
UserInst),
UserInst = defined_inst(user_inst(_, _))
)
->
% XXX Name the builtin inst.
Pieces = [words("Error: attempt to redefine builtin inst."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(HeadTerm), [always(Pieces)])]),
Result = error1([Spec])
;
% Should improve the error message here.
(
convert_inst(no_allow_constrained_inst_var, BodyTerm,
ConvertedBody)
->
list.map(term.coerce_var, Args, InstArgs),
Result = ok1(processed_inst_body(Name, InstArgs,
eqv_inst(ConvertedBody)))
;
BodyTermStr = describe_error_term(VarSet, BodyTerm),
Pieces = [words("Error: syntax error in inst body at"),
words(BodyTermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(BodyTerm),
[always(Pieces)])]),
Result = error1([Spec])
)
)
;
% XXX If term_list_to_var_list returned the non-var's term or context,
% we could use it here.
Pieces = [words("Error: inst parameters must be variables."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(HeadTerm), [always(Pieces)])]),
Result = error1([Spec])
).
:- type processed_inst_body
---> processed_inst_body(
sym_name,
list(inst_var),
inst_defn
).
:- pred convert_abstract_inst_defn(module_name::in, varset::in, term::in,
maybe1(processed_inst_body)::out) is det.
convert_abstract_inst_defn(ModuleName, VarSet, HeadTerm, Result) :-
ContextPieces = [words("In inst definition:")],
parse_implicitly_qualified_term(ModuleName, HeadTerm, HeadTerm,
VarSet, ContextPieces, HeadResult),
convert_abstract_inst_defn_2(HeadResult, HeadTerm, Result).
:- pred convert_abstract_inst_defn_2(maybe_functor::in, term::in,
maybe1(processed_inst_body)::out) is det.
convert_abstract_inst_defn_2(error2(Specs), _, error1(Specs)).
convert_abstract_inst_defn_2(ok2(Name, ArgTerms), Head, Result) :-
(
% Check that all the head args are variables.
term.term_list_to_var_list(ArgTerms, Args)
->
(
% Check that all the head arg variables are distinct.
list.member(Arg2, Args, [Arg2 | OtherArgs]),
list.member(Arg2, OtherArgs)
->
% XXX We should we list the repeated parameters?
Pieces = [words("Error: repeated inst parameters"),
words("in abstract inst definition."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Head), [always(Pieces)])]),
Result = error1([Spec])
;
list.map(term.coerce_var, Args, InstArgs),
Result = ok1(processed_inst_body(Name, InstArgs, abstract_inst))
)
;
% XXX If term_list_to_var_list returned the non-var's term or context,
% we could use it here.
Pieces = [words("Error: inst parameters must be variables."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Head), [always(Pieces)])]),
Result = error1([Spec])
).
:- pred make_inst_defn(varset::in, condition::in, prog_context::in,
processed_inst_body::in, item::out) is det.
make_inst_defn(VarSet0, Cond, Context, ProcessedInstBody, Item) :-
ProcessedInstBody = processed_inst_body(Name, Params, InstDefn),
varset.coerce(VarSet0, VarSet),
ItemInstDefn = item_inst_defn_info(VarSet, Name, Params, InstDefn, Cond,
Context),
Item = item_inst_defn(ItemInstDefn).
%-----------------------------------------------------------------------------%
% Parse a `:- mode foo == ...' definition.
%
:- pred parse_mode_decl(module_name::in, varset::in, term::in, decl_attrs::in,
prog_context::in, maybe1(item)::out) is det.
parse_mode_decl(ModuleName, VarSet, ModeDefn, Attributes, Context, Result) :-
( mode_op(ModeDefn, H, B) ->
get_condition(B, Body, Condition),
convert_mode_defn(ModuleName, VarSet, H, Body, R),
process_maybe1(make_mode_defn(VarSet, Condition, Context), R, Result)
;
parse_mode_decl_pred(ModuleName, VarSet, ModeDefn, Attributes,
Context, Result)
).
:- pred mode_op(term::in, term::out, term::out) is semidet.
mode_op(term.functor(term.atom(Op), [H, B], _), H, B) :-
Op = "==".
:- type processed_mode_body
---> processed_mode_body(
sym_name,
list(inst_var),
mode_defn
).
:- pred convert_mode_defn(module_name::in, varset::in, term::in, term::in,
maybe1(processed_mode_body)::out) is det.
convert_mode_defn(ModuleName, VarSet, HeadTerm, BodyTerm, Result) :-
ContextPieces = [words("In mode definition:")],
parse_implicitly_qualified_term(ModuleName, HeadTerm, HeadTerm,
VarSet, ContextPieces, HeadResult),
convert_mode_defn_2(HeadResult, HeadTerm, BodyTerm, Result).
:- pred convert_mode_defn_2(maybe_functor::in, term::in, term::in,
maybe1(processed_mode_body)::out) is det.
convert_mode_defn_2(error2(Specs), _, _, error1(Specs)).
convert_mode_defn_2(ok2(Name, ArgTerms), Head, Body, Result) :-
(
% Check that all the head args are variables.
term.term_list_to_var_list(ArgTerms, Args)
->
(
% Check that all the head arg variables are distinct.
list.member(Arg2, Args, [Arg2 | OtherArgs]),
list.member(Arg2, OtherArgs)
->
% Check that all the head arg variables are distinct.
% XXX We should list the duplicated head arg variables.
Pieces = [words("Error: repeated parameters"),
words("in LHS of mode definition."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Head), [always(Pieces)])]),
Result = error1([Spec])
;
% Check that all the variables in the body occur in the head.
term.contains_var(Body, Var2),
\+ list.member(Var2, Args)
->
% XXX Shouldn't we be using the Body's context?
% XXX We should list the Var2s for which the condition holds.
Pieces = [words("Error: free inst parameter"),
words("in RHS of mode definition."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Head), [always(Pieces)])]),
Result = error1([Spec])
;
(
convert_mode(no_allow_constrained_inst_var, Body,
ConvertedBody)
->
list.map(term.coerce_var, Args, InstArgs),
Result = ok1(processed_mode_body(Name, InstArgs,
eqv_mode(ConvertedBody)))
;
% XXX We should improve the error message here.
Pieces = [words("Error: syntax error"),
words("in mode definition body."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Body), [always(Pieces)])]),
Result = error1([Spec])
)
)
;
% XXX If term_list_to_var_list returned the non-var's term or context,
% we could use it here.
Pieces = [words("Error: mode parameters must be variables."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Head), [always(Pieces)])]),
Result = error1([Spec])
).
:- pred convert_type_and_mode_list(inst_var_sub::in, list(term)::in,
list(type_and_mode)::out) is semidet.
convert_type_and_mode_list(_, [], []).
convert_type_and_mode_list(InstConstraints, [H0 | T0], [H | T]) :-
convert_type_and_mode(InstConstraints, H0, H),
convert_type_and_mode_list(InstConstraints, T0, T).
:- pred convert_type_and_mode(inst_var_sub::in, term::in, type_and_mode::out)
is semidet.
convert_type_and_mode(InstConstraints, Term, Result) :-
( Term = term.functor(term.atom("::"), [TypeTerm, ModeTerm], _Context) ->
maybe_parse_type(TypeTerm, Type),
convert_mode(allow_constrained_inst_var, ModeTerm, Mode0),
constrain_inst_vars_in_mode(InstConstraints, Mode0, Mode),
Result = type_and_mode(Type, Mode)
;
maybe_parse_type(Term, Type),
Result = type_only(Type)
).
:- pred make_mode_defn(varset::in, condition::in, prog_context::in,
processed_mode_body::in, item::out) is det.
make_mode_defn(VarSet0, Cond, Context, ProcessedModeBody, Item) :-
ProcessedModeBody = processed_mode_body(Name, Params, ModeDefn),
varset.coerce(VarSet0, VarSet),
ItemModeDefn = item_mode_defn_info(VarSet, Name, Params, ModeDefn, Cond,
Context),
Item = item_mode_defn(ItemModeDefn).
%-----------------------------------------------------------------------------%
:- type maker(T1, T2) == pred(T1, T2).
:- mode maker == (pred(in, out) is det).
:- pred parse_symlist_decl(parser(module_specifier)::parser,
maker(list(module_specifier), module_defn)::maker,
term::in, decl_attrs::in, prog_context::in, maybe1(item)::out) is det.
parse_symlist_decl(ParserPred, MakeModuleDefnPred, Term, Attributes, Context,
Result) :-
parse_list(ParserPred, Term, Result0),
process_maybe1(make_module_defn(MakeModuleDefnPred, Context),
Result0, Result1),
check_no_attributes(Result1, Attributes, Result).
:- pred make_module_defn(maker(list(module_specifier), module_defn)::maker,
prog_context::in, list(module_specifier)::in, item::out) is det.
make_module_defn(MakeModuleDefnPred, Context, ModuleSpecs, Item) :-
call(MakeModuleDefnPred, ModuleSpecs, ModuleDefn),
ItemModuleDefn = item_module_defn_info(ModuleDefn, Context),
Item = item_module_defn(ItemModuleDefn).
%-----------------------------------------------------------------------------%
:- pred process_maybe1(maker(T1, T2)::maker, maybe1(T1)::in, maybe1(T2)::out)
is det.
process_maybe1(Maker, ok1(X), ok1(Y)) :-
call(Maker, X, Y).
process_maybe1(_, error1(Specs), error1(Specs)).
:- pred process_maybe1_to_t(maker(T1, maybe1(T2))::maker,
maybe1(T1)::in, maybe1(T2)::out) is det.
process_maybe1_to_t(Maker, ok1(X), Y) :-
call(Maker, X, Y).
process_maybe1_to_t(_, error1(Specs), error1(Specs)).
%-----------------------------------------------------------------------------%
% A ModuleSpecifier is just an sym_name.
%
:- pred parse_module_specifier(varset::in, term::in,
maybe1(module_specifier)::out) is det.
parse_module_specifier(VarSet, Term, Result) :-
parse_symbol_name(VarSet, Term, Result).
% A ModuleName is an implicitly-quantified sym_name.
%
% We check for module names starting with capital letters as a special
% case, so that we can report a better error message for that case.
%
:- pred parse_module_name(module_name::in, varset::in, term::in,
maybe1(module_name)::out) is det.
parse_module_name(DefaultModuleName, VarSet, Term, Result) :-
(
Term = term.variable(_, Context),
Pieces = [words("Error: module names starting with capital letters"),
words("must be quoted using single quotes"),
words("(e.g. "":- module 'Foo'."")."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(Context, [always(Pieces)])]),
Result = error1([Spec])
;
Term = term.functor(_, _, _),
parse_implicitly_qualified_symbol_name(DefaultModuleName, VarSet,
Term, Result)
).
%-----------------------------------------------------------------------------%
% A SymbolNameSpecifier is one of
% SymbolName
% SymbolName/Arity
% Matches only symbols of the specified arity.
%
:- pred parse_symbol_name_specifier(varset::in, term::in,
maybe1(sym_name_specifier)::out) is det.
parse_symbol_name_specifier(VarSet, Term, Result) :-
root_module_name(DefaultModule),
parse_implicitly_qualified_symbol_name_specifier(DefaultModule, VarSet,
Term, Result).
:- pred parse_implicitly_qualified_symbol_name_specifier(module_name::in,
varset::in, term::in, maybe1(sym_name_specifier)::out) is det.
parse_implicitly_qualified_symbol_name_specifier(DefaultModule, VarSet, Term,
Result) :-
( Term = term.functor(term.atom("/"), [NameTerm, ArityTerm], _Context) ->
( ArityTerm = term.functor(term.integer(Arity), [], _Context2) ->
( Arity >= 0 ->
parse_implicitly_qualified_symbol_name(DefaultModule, VarSet,
NameTerm, NameResult),
process_maybe1(make_name_arity_specifier(Arity),
NameResult, Result)
;
Pieces = [words("Error: arity in symbol name specifier"),
words("must be a non-negative integer."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error1([Spec])
)
;
Pieces = [words("Error: arity in symbol name specifier"),
words("must be an integer."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error1([Spec])
)
;
parse_implicitly_qualified_symbol_name(DefaultModule, VarSet, Term,
SymbolNameResult),
process_maybe1(make_name_specifier, SymbolNameResult, Result)
).
:- pred make_name_arity_specifier(arity::in, sym_name::in,
sym_name_specifier::out) is det.
make_name_arity_specifier(Arity, Name, name_arity(Name, Arity)).
:- pred make_name_specifier(sym_name::in, sym_name_specifier::out) is det.
make_name_specifier(Name, name(Name)).
%-----------------------------------------------------------------------------%
% A SymbolName is one of
% Name
% Matches symbols with the specified name in the
% current namespace.
% Module.Name
% Matches symbols with the specified name exported
% by the specified module (where Module is itself a SymbolName).
%
% We also allow the syntax `Module__Name' as an alternative
% for `Module.Name'.
%
:- pred parse_symbol_name(varset(T)::in, term(T)::in, maybe1(sym_name)::out)
is det.
parse_symbol_name(VarSet, Term, Result) :-
(
Term = term.functor(term.atom(FunctorName), [ModuleTerm, NameTerm],
TermContext),
( FunctorName = ":"
; FunctorName = "."
)
->
( NameTerm = term.functor(term.atom(Name), [], _Context1) ->
parse_symbol_name(VarSet, ModuleTerm, ModuleResult),
(
ModuleResult = ok1(Module),
Result = ok1(qualified(Module, Name))
;
ModuleResult = error1(_ModuleResultSpecs),
% XXX We should say "module name" OR "identifier", not both.
Pieces = [words("Error: module name identifier"),
words("expected before"), quote(FunctorName),
words("in qualified symbol name."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(TermContext, [always(Pieces)])]),
% XXX Should we include _ModuleResultSpecs?
Result = error1([Spec])
)
;
Pieces = [words("Error: identifier expected after"),
quote(FunctorName), words("in qualified symbol name."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(TermContext, [always(Pieces)])]),
Result = error1([Spec])
)
;
( Term = term.functor(term.atom(Name), [], _) ->
SymName = string_to_sym_name_sep(Name, "__"),
Result = ok1(SymName)
;
TermStr = describe_error_term(VarSet, Term),
Pieces = [words("Error: symbol name expected at"),
words(TermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error1([Spec])
)
).
:- pred parse_implicitly_qualified_symbol_name(module_name::in, varset::in,
term::in, maybe1(sym_name)::out) is det.
parse_implicitly_qualified_symbol_name(DefaultModName, VarSet, Term, Result) :-
parse_symbol_name(VarSet, Term, Result0),
(
Result0 = ok1(SymName),
(
root_module_name(DefaultModName)
->
Result = Result0
;
SymName = qualified(ModName, _),
\+ match_sym_name(ModName, DefaultModName)
->
Pieces = [words("Error: module qualifier in definition"),
words("does not match preceding"), quote(":- module"),
words("declaration."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error1([Spec])
;
UnqualName = unqualify_name(SymName),
Result = ok1(qualified(DefaultModName, UnqualName))
)
;
Result0 = error1(_),
Result = Result0
).
%-----------------------------------------------------------------------------%
parse_implicitly_qualified_term(DefaultModuleName, Term, ContainingTerm,
VarSet, ContextPieces, Result) :-
parse_qualified_term(Term, ContainingTerm, VarSet, ContextPieces, Result0),
( Result0 = ok2(SymName, Args) ->
(
root_module_name(DefaultModuleName)
->
Result = Result0
;
SymName = qualified(ModuleName, _),
\+ match_sym_name(ModuleName, DefaultModuleName)
->
Pieces = [words("Error: module qualifier in definition"),
words("does not match preceding"), quote(":- module"),
words("declaration."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error2([Spec])
;
UnqualName = unqualify_name(SymName),
Result = ok2(qualified(DefaultModuleName, UnqualName), Args)
)
;
Result = Result0
).
sym_name_and_args(Term, SymName, Args) :-
% The values of VarSet and ContextPieces do not matter here, since
% we succeed only if they aren't used.
VarSet = varset.init,
ContextPieces = [],
parse_qualified_term(Term, Term, VarSet, ContextPieces,
ok2(SymName, Args)).
parse_qualified_term(Term, _ContainingTerm, VarSet, ContextPieces, Result) :-
% XXX We should delete the _ContainingTerm argument.
(
Term = term.functor(Functor, FunctorArgs, TermContext),
Functor = term.atom("."),
FunctorArgs = [ModuleTerm, NameArgsTerm]
->
( NameArgsTerm = term.functor(term.atom(Name), Args, _) ->
varset.coerce(VarSet, GenericVarSet),
parse_symbol_name(GenericVarSet, ModuleTerm, ModuleResult),
(
ModuleResult = ok1(Module),
Result = ok2(qualified(Module, Name), Args)
;
ModuleResult = error1(_),
ModuleTermStr = describe_error_term(GenericVarSet, ModuleTerm),
% XXX We should say "module name" OR "identifier", not both.
Pieces = ContextPieces ++ [lower_case_next_if_not_first,
words("Error: module name identifier expected before '.'"),
words("in qualified symbol name, not"),
words(ModuleTermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(TermContext, [always(Pieces)])]),
Result = error2([Spec])
)
;
varset.coerce(VarSet, GenericVarSet),
TermStr = describe_error_term(GenericVarSet, Term),
Pieces = ContextPieces ++ [lower_case_next_if_not_first,
words("Error: identifier expected after '.'"),
words("in qualified symbol name, not"),
words(TermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(TermContext, [always(Pieces)])]),
Result = error2([Spec])
)
;
varset.coerce(VarSet, GenericVarSet),
( Term = term.functor(term.atom(Name), Args, _) ->
SymName = string_to_sym_name_sep(Name, "__"),
Result = ok2(SymName, Args)
;
TermStr = describe_error_term(GenericVarSet, Term),
Pieces = ContextPieces ++ [lower_case_next_if_not_first,
words("Error: atom expected at"),
words(TermStr), suffix("."), nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error2([Spec])
)
).
%-----------------------------------------------------------------------------%
%
% Predicates used to convert a sym_list to a program item.
:- pred make_use(list(module_specifier)::in, module_defn::out) is det.
make_use(Syms, md_use(Syms)).
:- pred make_import(list(module_specifier)::in, module_defn::out) is det.
make_import(Syms, md_import(Syms)).
:- pred make_export(list(module_specifier)::in, module_defn::out) is det.
make_export(Syms, md_export(Syms)).
%-----------------------------------------------------------------------------%
:- func convert_constructor_arg_list(module_name, varset, list(term)) =
maybe1(list(constructor_arg)).
convert_constructor_arg_list(_, _, []) = ok1([]).
convert_constructor_arg_list(ModuleName, VarSet, [Term | Terms]) = Result :-
( Term = term.functor(term.atom("::"), [NameTerm, TypeTerm], _) ->
ContextPieces = [words("In field name:")],
parse_implicitly_qualified_term(ModuleName, NameTerm, Term,
VarSet, ContextPieces, NameResult),
(
NameResult = error2(Specs),
Result = error1(Specs)
;
NameResult = ok2(SymName, SymNameArgs),
(
SymNameArgs = [_ | _],
% XXX Should we add "... at function symbol ..."?
Pieces = [words("Error: syntax error in constructor name."),
nl],
Spec = error_spec(severity_error, phase_term_to_parse_tree,
[simple_msg(get_term_context(Term), [always(Pieces)])]),
Result = error1([Spec])
;
SymNameArgs = [],
MaybeFieldName = yes(SymName),
Result = convert_constructor_arg_list_2(ModuleName, VarSet,
MaybeFieldName, TypeTerm, Terms)
)
)
;
MaybeFieldName = no,
TypeTerm = Term,
Result = convert_constructor_arg_list_2(ModuleName, VarSet,
MaybeFieldName, TypeTerm, Terms)
).
:- func convert_constructor_arg_list_2(module_name, varset, maybe(sym_name),
term, list(term)) = maybe1(list(constructor_arg)).
convert_constructor_arg_list_2(ModuleName, VarSet, MaybeFieldName,
TypeTerm, Terms) = Result :-
ContextPieces = [words("In type definition:")],
parse_type(TypeTerm, VarSet, ContextPieces, TypeResult),
(
TypeResult = ok1(Type),
Context = get_term_context(TypeTerm),
Arg = ctor_arg(MaybeFieldName, Type, Context),
Result0 = convert_constructor_arg_list(ModuleName, VarSet, Terms),
(
Result0 = error1(Specs),
Result = error1(Specs)
;
Result0 = ok1(Args),
Result = ok1([Arg | Args])
)
;
TypeResult = error1(Specs),
Result = error1(Specs)
).
%-----------------------------------------------------------------------------%
% We use the empty module name ('') as the "root" module name; when adding
% default module qualifiers in parse_implicitly_qualified_{term,symbol},
% if the default module is the root module then we don't add any qualifier.
%
:- pred root_module_name(module_name::out) is det.
root_module_name(unqualified("")).
%-----------------------------------------------------------------------------%
%
% You can uncomment this section for debugging.
%
% :- interface.
%
% :- pred write_item_to_stream(io.output_stream::in, item::in, io::di, io::uo)
% is det.
%
% :- pred write_item_to_stdout(item::in, io::di, io::uo) is det.
%
% :- pred write_items_to_file(string::in, list(item)::in, io::di, io::uo)
% is det.
%
% :- implementation.
%
% :- import_module pretty_printer.
%
% write_item_to_stream(Stream, Item, !IO) :-
% write_doc(Stream, format(Item), !IO),
% io.nl(Stream, !IO).
%
% write_item_to_stdout(Item, !IO) :-
% write_item_to_stream(io.stdout_stream, Item, !IO).
%
% write_items_to_file(FileName, Items, !IO) :-
% io.open_output(FileName, Result, !IO),
% (
% Result = ok(Stream),
% list.foldl(write_item_to_stream(Stream), Items, !IO)
% ;
% Result = error(_)
% ).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "prog_io.m".
%-----------------------------------------------------------------------------%