Files
mercury/compiler/cse_detection.m
Zoltan Somogyi a00596c283 The file modules.m contains lots of different kinds of functionality.
Estimated hours taken: 16
Branches: main

The file modules.m contains lots of different kinds of functionality.
While much of it belongs together, much of it does not. This diff moves
most of the functionality that does not belong with the rest to several
new modules:

	libs.file_util
	parse_tree.deps_map
	parse_tree.file_names
	parse_tree.module_cmds
	parse_tree.module_imports
	parse_tree.read_module
	parse_tree.write_deps_file

To make them coherent, move some predicates from hlds.passes_aux,
parse_tree.prog_io and parse_tree.prog_out to the new modules, making them
more accessible, reducing the required access from the hlds package to
parse_tree, or from the parse_tree package to libs.

In the same spirit, this diff also moves some simple predicates and functions
dealing with sym_names from prog_util.m to mdbcomp/prim_data.m. This allows
several modules to avoid depending on parse_tree.prog_util.

Rename some of the moved predicates and function symbols where this avoids
ambiguity. (There were several that differed from other predicates or function
symbols only in arity.)

Replace several uses of bools with purpose-specific types. This makes some
of the code significantly easier to read.

This diff moves modules.m from being by far the largest module, to being
only the seventh largest, from 8900+ lines to just 4200+. It also reduces
the number of modules that import parse_tree.modules considerably; most
modules that imported it now import only one or two of the new modules instead.

Despite the size of the diff, there should be no algorithmic changes.

compiler/modules.m:
compiler/passes_aux.m:
compiler/prog_io.m:
compiler/prog_out.m:
	Delete the moved functionality.

compiler/file_util.m:
	New module in the libs package. Its predicates search for files
	and do simple error or progress reporting.

compiler/file_names.m:
	New module in the parse_tree package. It contains predicates for
	converting module names to file names.

compiler/module_cmds.m:
	New module in the parse_tree package. Its predicates handle the
	commands for manipulating interface files of various kinds.

compiler/module_import.m:
	New module in the parse_tree package. It contains the module_imports
	type and its access predicates, and the predicates that compute
	various sorts of direct dependencies (those caused by imports)
	between modules.

compiler/deps_map.m:
	New module in the parse_tree package. It contains the data structure
	for recording indirect dependencies between modules, and the predicates
	for creating it.

compiler/read_module.m:
	New module in the parse_tree package. Its job is reading in modules,
	both human-written and machine-written (such as interface and
	optimization files).

compiler/write_deps_file.m:
	New module in the parse_tree package. Its job is writing out
	makefile fragments.

compiler/libs.m:
compiler/parse_tree.m:
	Include the new modules.

compiler/notes/compiler_design.m:
	Document the new modules.

mdbcomp/prim_data.m:
compiler/prog_util.m:
	Move the predicates that operate on nothing but sym_names from
	prog_util to prim_data.

	Move get_ancestors from modules to prim_data.

compiler/prog_item.m:
	Move stuff that looks for foreign code in a list of items here from
	modules.m.

compiler/source_file_map.m:
	Note why this module needs to be in the parse_tree package.

compiler/add_pred.m:
compiler/add_special_pred.m:
compiler/analysis.file.m:
compiler/analysis.m:
compiler/assertion.m:
compiler/check_typeclass.m:
compiler/compile_target_code.m:
compiler/cse_detection.m:
compiler/det_analysis.m:
compiler/elds_to_erlang.m:
compiler/exception_analysis.m:
compiler/export.m:
compiler/fact_table.m:
compiler/higher_order.m:
compiler/hlds_module.m:
compiler/hlds_pred.m:
compiler/intermod.m:
compiler/llds_out.m:
compiler/make.dependencies.m:
compiler/make.m:
compiler/make.module_dep_file.m:
compiler/make.module_target.m:
compiler/make.program_target.m:
compiler/make.util.m:
compiler/make_hlds_passes.m:
compiler/maybe_mlds_to_gcc.pp:
compiler/mercury_compile.m:
compiler/mlds.m:
compiler/mlds_to_c.m:
compiler/mlds_to_gcc.m:
compiler/mlds_to_ilasm.m:
compiler/mlds_to_java.m:
compiler/mmc_analysis.m:
compiler/mode_constraints.m:
compiler/mode_debug.m:
compiler/modes.m:
compiler/module_qual.m:
compiler/optimize.m:
compiler/passes_aux.m:
compiler/proc_gen.m:
compiler/prog_foreign.m:
compiler/prog_io.m:
compiler/prog_io_util.m:
compiler/prog_mutable.m:
compiler/prog_out.m:
compiler/pseudo_type_info.m:
compiler/purity.m:
compiler/recompilation.check.m:
compiler/recompilation.usage.m:
compiler/simplify.m:
compiler/structure_reuse.analysis.m:
compiler/structure_reuse.direct.detect_garbage.m:
compiler/structure_reuse.direct.m:
compiler/structure_sharing.analysis.m:
compiler/tabling_analysis.m:
compiler/term_constr_main.m:
compiler/termination.m:
compiler/trailing_analysis.m:
compiler/trans_opt.m:
compiler/type_util.m:
compiler/typecheck.m:
compiler/typecheck_info.m:
compiler/unify_proc.m:
compiler/unused_args.m:
compiler/unused_imports.m:
compiler/xml_documentation.m:
	Minor changes to conform to the changes above.
2008-07-21 03:10:29 +00:00

900 lines
36 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1995-2008 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: cse_detection.m.
% Main author: zs.
% Much of the code is based on switch_detection.m by fjh.
%
% Common subexpression detection - hoist common subexpression goals out of
% branched structures. This can enable us to find more indexing opportunities
% and hence can make the code more deterministic.
% This code is switched on/off with the `--common-goal' option.
%
%-----------------------------------------------------------------------------%
:- module check_hlds.cse_detection.
:- interface.
:- import_module hlds.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module io.
:- pred detect_cse(module_info::in, module_info::out, io::di, io::uo) is det.
:- pred detect_cse_in_proc(proc_id::in, pred_id::in,
module_info::in, module_info::out, io::di, io::uo) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds.inst_match.
:- import_module check_hlds.modes.
:- import_module check_hlds.switch_detection.
:- import_module check_hlds.switch_detection.
:- import_module check_hlds.type_util.
:- import_module hlds.goal_util.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_out.
:- import_module hlds.hlds_rtti.
:- import_module hlds.instmap.
:- import_module hlds.quantification.
:- import_module libs.
:- import_module libs.compiler_util.
:- import_module libs.file_util.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module parse_tree.
:- import_module parse_tree.error_util.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_type_subst.
:- import_module assoc_list.
:- import_module bool.
:- import_module int.
:- import_module list.
:- import_module map.
:- import_module pair.
:- import_module set.
:- import_module string.
:- import_module svmap.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
detect_cse(!ModuleInfo, !IO) :-
% Traverse the module structure, calling `detect_cse_in_goal'
% for each procedure body.
module_info_predids(PredIds, !ModuleInfo),
detect_cse_in_preds(PredIds, !ModuleInfo, !IO).
:- pred detect_cse_in_preds(list(pred_id)::in,
module_info::in, module_info::out, io::di, io::uo) is det.
detect_cse_in_preds([], !ModuleInfo, !IO).
detect_cse_in_preds([PredId | PredIds], !ModuleInfo, !IO) :-
module_info_preds(!.ModuleInfo, PredTable),
map.lookup(PredTable, PredId, PredInfo),
detect_cse_in_pred(PredId, PredInfo, !ModuleInfo, !IO),
detect_cse_in_preds(PredIds, !ModuleInfo, !IO).
:- pred detect_cse_in_pred(pred_id::in, pred_info::in,
module_info::in, module_info::out, io::di, io::uo) is det.
detect_cse_in_pred(PredId, PredInfo0, !ModuleInfo, !IO) :-
ProcIds = pred_info_non_imported_procids(PredInfo0),
detect_cse_in_procs(ProcIds, PredId, !ModuleInfo, !IO).
:- pred detect_cse_in_procs(list(proc_id)::in, pred_id::in,
module_info::in, module_info::out, io::di, io::uo) is det.
detect_cse_in_procs([], _PredId, !ModuleInfo, !IO).
detect_cse_in_procs([ProcId | ProcIds], PredId, !ModuleInfo, !IO) :-
detect_cse_in_proc(ProcId, PredId, !ModuleInfo, !IO),
detect_cse_in_procs(ProcIds, PredId, !ModuleInfo, !IO).
detect_cse_in_proc(ProcId, PredId, !ModuleInfo, !IO) :-
globals.io_lookup_bool_option(very_verbose, VeryVerbose, !IO),
(
VeryVerbose = yes,
io.write_string("% Detecting common deconstructions for ", !IO),
hlds_out.write_pred_id(!.ModuleInfo, PredId, !IO),
io.write_string("\n", !IO)
;
VeryVerbose = no
),
detect_cse_in_proc_pass(ProcId, PredId, Redo, !ModuleInfo),
globals.io_lookup_bool_option(detailed_statistics, Statistics, !IO),
maybe_report_stats(Statistics, !IO),
(
Redo = no
;
Redo = yes,
(
VeryVerbose = yes,
io.write_string("% Repeating mode check for ", !IO),
hlds_out.write_pred_id(!.ModuleInfo, PredId, !IO),
io.write_string("\n", !IO)
;
VeryVerbose = no
),
modecheck_proc(ProcId, PredId, !ModuleInfo, ErrorSpecs, _Changed, !IO),
maybe_report_stats(Statistics, !IO),
module_info_get_globals(!.ModuleInfo, Globals),
write_error_specs(ErrorSpecs, Globals, 0, _NumWarnings, 0, NumErrors,
!IO),
module_info_incr_num_errors(NumErrors, !ModuleInfo),
( NumErrors > 0 ->
unexpected(this_file, "mode check fails when repeated")
;
true
),
(
VeryVerbose = yes,
io.write_string("% Repeating switch detection for ", !IO),
hlds_out.write_pred_id(!.ModuleInfo, PredId, !IO),
io.write_string("\n", !IO)
;
VeryVerbose = no
),
detect_switches_in_proc(ProcId, PredId, !ModuleInfo),
maybe_report_stats(Statistics, !IO),
(
VeryVerbose = yes,
io.write_string("% Repeating common " ++
"deconstruction detection for ", !IO),
hlds_out.write_pred_id(!.ModuleInfo, PredId, !IO),
io.write_string("\n", !IO)
;
VeryVerbose = no
),
detect_cse_in_proc(ProcId, PredId, !ModuleInfo, !IO)
).
:- type cse_info
---> cse_info(
csei_varset :: prog_varset,
csei_vartypes :: vartypes,
csei_rtti_varmaps :: rtti_varmaps,
csei_module_info :: module_info
).
:- pred detect_cse_in_proc_pass(proc_id::in, pred_id::in, bool::out,
module_info::in, module_info::out) is det.
detect_cse_in_proc_pass(ProcId, PredId, Redo, ModuleInfo0, ModuleInfo) :-
module_info_preds(ModuleInfo0, PredTable0),
map.lookup(PredTable0, PredId, PredInfo0),
pred_info_get_procedures(PredInfo0, ProcTable0),
map.lookup(ProcTable0, ProcId, ProcInfo0),
% To process each ProcInfo, we get the goal, initialize the instmap
% based on the modes of the head vars, and pass these to
% `detect_cse_in_goal'.
proc_info_get_goal(ProcInfo0, Goal0),
proc_info_get_initial_instmap(ProcInfo0, ModuleInfo0, InstMap0),
proc_info_get_varset(ProcInfo0, Varset0),
proc_info_get_vartypes(ProcInfo0, VarTypes0),
proc_info_get_rtti_varmaps(ProcInfo0, RttiVarMaps0),
CseInfo0 = cse_info(Varset0, VarTypes0, RttiVarMaps0, ModuleInfo0),
detect_cse_in_goal(Goal0, Goal1, CseInfo0, CseInfo, InstMap0, Redo),
(
Redo = no,
ModuleInfo = ModuleInfo0
;
Redo = yes,
% ModuleInfo should not be changed by detect_cse_in_goal.
CseInfo = cse_info(VarSet1, VarTypes1, RttiVarMaps1, _),
proc_info_get_headvars(ProcInfo0, HeadVars),
implicitly_quantify_clause_body(HeadVars, _Warnings,
Goal1, Goal, VarSet1, VarSet, VarTypes1, VarTypes,
RttiVarMaps1, RttiVarMaps),
proc_info_set_goal(Goal, ProcInfo0, ProcInfo1),
proc_info_set_varset(VarSet, ProcInfo1, ProcInfo2),
proc_info_set_vartypes(VarTypes, ProcInfo2, ProcInfo3),
proc_info_set_rtti_varmaps(RttiVarMaps, ProcInfo3, ProcInfo),
map.det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(ProcTable, PredInfo0, PredInfo),
map.det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(PredTable, ModuleInfo0, ModuleInfo)
).
%-----------------------------------------------------------------------------%
% Given a goal, and the instmap on entry to that goal,
% find disjunctions that contain common subexpressions
% and hoist these out of the disjunction. At the moment
% we only look for cses that are deconstruction unifications.
%
:- pred detect_cse_in_goal(hlds_goal::in, hlds_goal::out,
cse_info::in, cse_info::out, instmap::in, bool::out) is det.
detect_cse_in_goal(Goal0, Goal, !CseInfo, InstMap0, Redo) :-
detect_cse_in_goal_update_instmap(Goal0, Goal, !CseInfo,
InstMap0, _InstMap, Redo).
% This version is the same as the above except that it returns
% the resulting instmap on exit from the goal, which is
% computed by applying the instmap delta specified in the
% goal's goalinfo.
%
:- pred detect_cse_in_goal_update_instmap(hlds_goal::in, hlds_goal::out,
cse_info::in, cse_info::out, instmap::in, instmap::out, bool::out) is det.
detect_cse_in_goal_update_instmap(Goal0, Goal, !CseInfo, InstMap0, InstMap,
Redo) :-
Goal0 = hlds_goal(GoalExpr0, GoalInfo),
detect_cse_in_goal_expr(GoalExpr0, GoalExpr, !CseInfo, GoalInfo,
InstMap0, Redo),
Goal = hlds_goal(GoalExpr, GoalInfo),
InstMapDelta = goal_info_get_instmap_delta(GoalInfo),
instmap.apply_instmap_delta(InstMap0, InstMapDelta, InstMap).
% Here we process each of the different sorts of goals.
%
:- pred detect_cse_in_goal_expr(hlds_goal_expr::in, hlds_goal_expr::out,
cse_info::in, cse_info::out, hlds_goal_info::in,
instmap::in, bool::out) is det.
detect_cse_in_goal_expr(GoalExpr0, GoalExpr, !CseInfo, GoalInfo, InstMap0,
Redo) :-
(
( GoalExpr0 = call_foreign_proc(_, _, _, _, _, _, _)
; GoalExpr0 = generic_call(_, _, _, _)
; GoalExpr0 = plain_call(_, _, _, _, _, _)
),
GoalExpr = GoalExpr0,
Redo = no
;
GoalExpr0 = unify(LHS, RHS0, Mode, Unify, UnifyContext),
(
RHS0 = rhs_lambda_goal(Purity, Groundness, PredOrFunc, EvalMethod,
NonLocalVars, Vars, Modes, Det, LambdaGoal0),
ModuleInfo = !.CseInfo ^ csei_module_info,
instmap.pre_lambda_update(ModuleInfo, Vars, Modes,
InstMap0, InstMap1),
detect_cse_in_goal(LambdaGoal0, LambdaGoal, !CseInfo,
InstMap1, Redo),
RHS = rhs_lambda_goal(Purity, Groundness, PredOrFunc, EvalMethod,
NonLocalVars, Vars, Modes, Det, LambdaGoal)
;
( RHS0 = rhs_var(_)
; RHS0 = rhs_functor(_, _, _)
),
RHS = RHS0,
Redo = no
),
GoalExpr = unify(LHS, RHS, Mode,Unify, UnifyContext)
;
GoalExpr0 = negation(SubGoal0),
detect_cse_in_goal(SubGoal0, SubGoal, !CseInfo, InstMap0, Redo),
GoalExpr = negation(SubGoal)
;
GoalExpr0 = scope(Reason, SubGoal0),
detect_cse_in_goal(SubGoal0, SubGoal, !CseInfo, InstMap0, Redo),
GoalExpr = scope(Reason, SubGoal)
;
GoalExpr0 = conj(ConjType, Goals0),
detect_cse_in_conj(Goals0, Goals, !CseInfo, ConjType, InstMap0, Redo),
GoalExpr = conj(ConjType, Goals)
;
GoalExpr0 = disj(Goals0),
(
Goals0 = [],
Redo = no,
GoalExpr = disj([])
;
Goals0 = [_ | _],
NonLocals = goal_info_get_nonlocals(GoalInfo),
set.to_sorted_list(NonLocals, NonLocalsList),
detect_cse_in_disj(NonLocalsList, Goals0, GoalInfo,
InstMap0, !CseInfo, Redo, GoalExpr)
)
;
GoalExpr0 = switch(Var, CanFail, Cases0),
NonLocals = goal_info_get_nonlocals(GoalInfo),
set.to_sorted_list(NonLocals, NonLocalsList),
detect_cse_in_cases(NonLocalsList, Var, CanFail, Cases0, GoalInfo,
InstMap0, !CseInfo, Redo, GoalExpr)
;
GoalExpr0 = if_then_else(Vars, Cond0, Then0, Else0),
NonLocals = goal_info_get_nonlocals(GoalInfo),
set.to_sorted_list(NonLocals, NonLocalsList),
detect_cse_in_ite(NonLocalsList, Vars, Cond0, Then0, Else0, GoalInfo,
InstMap0, !CseInfo, Redo, GoalExpr)
;
GoalExpr0 = shorthand(ShortHand0),
(
ShortHand0 = atomic_goal(AtomicGoalType, Outer, Inner,
MaybeOutputVars, MainGoal0, OrElseGoals0),
detect_cse_in_goal(MainGoal0, MainGoal, !CseInfo, InstMap0, Redo1),
detect_cse_in_independent_goals(OrElseGoals0, OrElseGoals,
!CseInfo, InstMap0, Redo2),
ShortHand = atomic_goal(AtomicGoalType, Outer, Inner,
MaybeOutputVars, MainGoal, OrElseGoals),
bool.or(Redo1, Redo2, Redo)
;
ShortHand0 = bi_implication(_, _),
% These should have been expanded out by now.
unexpected(this_file, "detect_cse_in_goal_expr: bi_implication")
),
GoalExpr = shorthand(ShortHand)
).
%-----------------------------------------------------------------------------%
:- pred detect_cse_in_conj(list(hlds_goal)::in, list(hlds_goal)::out,
cse_info::in, cse_info::out, conj_type::in, instmap::in, bool::out) is det.
detect_cse_in_conj([], [], !CseInfo, _ConjType, _InstMap, no).
detect_cse_in_conj([Goal0 | Goals0], Goals, !CseInfo, ConjType, !.InstMap,
Redo) :-
detect_cse_in_goal_update_instmap(Goal0, Goal, !CseInfo, !InstMap, Redo1),
detect_cse_in_conj(Goals0, TailGoals, !CseInfo, ConjType, !.InstMap,
Redo2),
% Flatten any non-flat conjunctions we create.
(
Goal = hlds_goal(conj(InnerConjType, ConjGoals), _),
ConjType = InnerConjType
->
Goals = ConjGoals ++ TailGoals
;
Goals = [Goal | TailGoals]
),
bool.or(Redo1, Redo2, Redo).
%-----------------------------------------------------------------------------%
% These are the interesting bits - we've found a non-empty branched
% structure, and we've got a list of the non-local variables of that
% structure. Now for each non-local variable, we check whether each
% branch matches that variable against the same functor.
%
:- pred detect_cse_in_disj(list(prog_var)::in, list(hlds_goal)::in,
hlds_goal_info::in, instmap::in, cse_info::in,
cse_info::out, bool::out, hlds_goal_expr::out) is det.
detect_cse_in_disj([], Goals0, _, InstMap, !CseInfo, Redo, disj(Goals)) :-
detect_cse_in_independent_goals(Goals0, Goals, !CseInfo, InstMap, Redo).
detect_cse_in_disj([Var | Vars], Goals0, GoalInfo0, InstMap0,
!CseInfo, Redo, GoalExpr) :-
(
instmap.lookup_var(InstMap0, Var, VarInst0),
ModuleInfo = !.CseInfo ^ csei_module_info,
% XXX We only need inst_is_bound, but leave this as it is until
% mode analysis can handle aliasing between free variables.
inst_is_ground_or_any(ModuleInfo, VarInst0),
common_deconstruct(Goals0, Var, !CseInfo, Unify,
FirstOldNew, LaterOldNew, Goals)
->
maybe_update_existential_data_structures(Unify,
FirstOldNew, LaterOldNew, !CseInfo),
GoalExpr = conj(plain_conj,
[Unify, hlds_goal(disj(Goals), GoalInfo0)]),
Redo = yes
;
detect_cse_in_disj(Vars, Goals0, GoalInfo0, InstMap0,
!CseInfo, Redo, GoalExpr)
).
:- pred detect_cse_in_independent_goals(
list(hlds_goal)::in, list(hlds_goal)::out,
cse_info::in, cse_info::out, instmap::in, bool::out) is det.
detect_cse_in_independent_goals([], [], !CseInfo, _, no).
detect_cse_in_independent_goals([Goal0 | Goals0], [Goal | Goals], !CseInfo,
InstMap0, Redo) :-
detect_cse_in_goal(Goal0, Goal, !CseInfo, InstMap0, Redo1),
detect_cse_in_independent_goals(Goals0, Goals, !CseInfo, InstMap0, Redo2),
bool.or(Redo1, Redo2, Redo).
:- pred detect_cse_in_cases(list(prog_var)::in, prog_var::in, can_fail::in,
list(case)::in, hlds_goal_info::in, instmap::in,
cse_info::in, cse_info::out, bool::out, hlds_goal_expr::out) is det.
detect_cse_in_cases([], SwitchVar, CanFail, Cases0, _GoalInfo, InstMap0,
!CseInfo, Redo, switch(SwitchVar, CanFail, Cases)) :-
detect_cse_in_cases_arms(Cases0, Cases, !CseInfo, InstMap0, Redo).
detect_cse_in_cases([Var | Vars], SwitchVar, CanFail, Cases0, GoalInfo,
InstMap0, !CseInfo, Redo, GoalExpr) :-
(
Var \= SwitchVar,
instmap.lookup_var(InstMap0, Var, VarInst0),
ModuleInfo = !.CseInfo ^ csei_module_info,
% XXX We only need inst_is_bound, but leave this as it is until
% mode analysis can handle aliasing between free variables.
inst_is_ground_or_any(ModuleInfo, VarInst0),
common_deconstruct_cases(Cases0, Var, !CseInfo,
Unify, FirstOldNew, LaterOldNew, Cases)
->
maybe_update_existential_data_structures(Unify,
FirstOldNew, LaterOldNew, !CseInfo),
GoalExpr = conj(plain_conj,
[Unify, hlds_goal(switch(SwitchVar, CanFail, Cases), GoalInfo)]),
Redo = yes
;
detect_cse_in_cases(Vars, SwitchVar, CanFail, Cases0, GoalInfo,
InstMap0, !CseInfo, Redo, GoalExpr)
).
:- pred detect_cse_in_cases_arms(list(case)::in, list(case)::out,
cse_info::in, cse_info::out, instmap::in, bool::out) is det.
detect_cse_in_cases_arms([], [], !CseInfo, _, no).
detect_cse_in_cases_arms([Case0 | Cases0], [Case | Cases], !CseInfo, InstMap0,
Redo) :-
Case0 = case(MainConsId, OtherConsIds, Goal0),
detect_cse_in_goal(Goal0, Goal, !CseInfo, InstMap0, Redo1),
Case = case(MainConsId, OtherConsIds, Goal),
detect_cse_in_cases_arms(Cases0, Cases, !CseInfo, InstMap0, Redo2),
bool.or(Redo1, Redo2, Redo).
:- pred detect_cse_in_ite(list(prog_var)::in, list(prog_var)::in,
hlds_goal::in, hlds_goal::in, hlds_goal::in, hlds_goal_info::in,
instmap::in, cse_info::in, cse_info::out, bool::out,
hlds_goal_expr::out) is det.
detect_cse_in_ite([], IfVars, Cond0, Then0, Else0, _, InstMap, !CseInfo,
Redo, if_then_else(IfVars, Cond, Then, Else)) :-
detect_cse_in_ite_arms(Cond0, Cond, Then0, Then, Else0, Else, !CseInfo,
InstMap, Redo).
detect_cse_in_ite([Var | Vars], IfVars, Cond0, Then0, Else0, GoalInfo,
InstMap, !CseInfo, Redo, GoalExpr) :-
(
ModuleInfo = !.CseInfo ^ csei_module_info,
instmap.lookup_var(InstMap, Var, VarInst0),
% XXX We only need inst_is_bound, but leave this as it is until
% mode analysis can handle aliasing between free variables.
inst_is_ground_or_any(ModuleInfo, VarInst0),
common_deconstruct([Then0, Else0], Var, !CseInfo,
Unify, FirstOldNew, LaterOldNew, Goals),
Goals = [Then, Else]
->
maybe_update_existential_data_structures(Unify,
FirstOldNew, LaterOldNew, !CseInfo),
IfGoal = hlds_goal(if_then_else(IfVars, Cond0, Then, Else), GoalInfo),
GoalExpr = conj(plain_conj, [Unify, IfGoal]),
Redo = yes
;
detect_cse_in_ite(Vars, IfVars, Cond0, Then0, Else0, GoalInfo,
InstMap, !CseInfo, Redo, GoalExpr)
).
:- pred detect_cse_in_ite_arms(hlds_goal::in, hlds_goal::out,
hlds_goal::in, hlds_goal::out, hlds_goal::in, hlds_goal::out,
cse_info::in, cse_info::out, instmap::in, bool::out) is det.
detect_cse_in_ite_arms(Cond0, Cond, Then0, Then, Else0, Else, !CseInfo,
InstMap0, Redo) :-
detect_cse_in_goal_update_instmap(Cond0, Cond, !CseInfo,
InstMap0, InstMap1, Redo1),
detect_cse_in_goal(Then0, Then, !CseInfo, InstMap1, Redo2),
detect_cse_in_goal(Else0, Else, !CseInfo, InstMap0, Redo3),
bool.or(Redo1, Redo2, Redo12),
bool.or(Redo12, Redo3, Redo).
%-----------------------------------------------------------------------------%
% common_deconstruct(Goals0, Var, !CseInfo, Unify, Goals):
% input vars:
% Goals0 is a list of parallel goals in a branched structure
% (disjunction, if-then-else, or switch).
% Var is the variable we are looking for a common deconstruction on.
% !.CseInfo contains the original varset and type map.
% output vars:
% !:CseInfo has a varset and a type map reflecting the new variables
% we have introduced.
% Goals is the modified version of Goals0 after the common deconstruction
% has been hoisted out, with the new variables as the functor arguments.
% Unify is the unification that was hoisted out.
%
:- pred common_deconstruct(list(hlds_goal)::in, prog_var::in, cse_info::in,
cse_info::out, hlds_goal::out, assoc_list(prog_var)::out,
list(assoc_list(prog_var))::out, list(hlds_goal)::out) is semidet.
common_deconstruct(Goals0, Var, !CseInfo, Unify, FirstOldNew, LaterOldNew,
Goals) :-
common_deconstruct_2(Goals0, Var, before_candidate,
have_candidate(Unify, FirstOldNew, LaterOldNew), !CseInfo, Goals),
LaterOldNew = [_ | _].
:- pred common_deconstruct_2(list(hlds_goal)::in, prog_var::in,
cse_state::in, cse_state::out, cse_info::in, cse_info::out,
list(hlds_goal)::out) is semidet.
common_deconstruct_2([], _Var, !CseState, !CseInfo, []).
common_deconstruct_2([Goal0 | Goals0], Var, !CseState, !CseInfo,
[Goal | Goals]) :-
find_bind_var(Var, find_bind_var_for_cse_in_deconstruct, Goal0, Goal,
!CseState, !CseInfo, did_find_deconstruct),
!.CseState = have_candidate(_, _, _),
common_deconstruct_2(Goals0, Var, !CseState, !CseInfo, Goals).
%-----------------------------------------------------------------------------%
:- pred common_deconstruct_cases(list(case)::in, prog_var::in,
cse_info::in, cse_info::out, hlds_goal::out, assoc_list(prog_var)::out,
list(assoc_list(prog_var))::out, list(case)::out) is semidet.
common_deconstruct_cases(Cases0, Var, !CseInfo, Unify,
FirstOldNew, LaterOldNew, Cases) :-
common_deconstruct_cases_2(Cases0, Var, before_candidate,
have_candidate(Unify, FirstOldNew, LaterOldNew), !CseInfo, Cases),
LaterOldNew = [_ | _].
:- pred common_deconstruct_cases_2(list(case)::in, prog_var::in,
cse_state::in, cse_state::out, cse_info::in, cse_info::out,
list(case)::out) is semidet.
common_deconstruct_cases_2([], _Var, !CseState, !CseInfo, []).
common_deconstruct_cases_2([Case0 | Cases0], Var, !CseState, !CseInfo,
[Case | Cases]) :-
Case0 = case(MainConsId, OtherConsIds, Goal0),
find_bind_var(Var, find_bind_var_for_cse_in_deconstruct, Goal0, Goal,
!CseState, !CseInfo, did_find_deconstruct),
Case = case(MainConsId, OtherConsIds, Goal),
!.CseState = have_candidate(_, _, _),
common_deconstruct_cases_2(Cases0, Var, !CseState, !CseInfo, Cases).
%-----------------------------------------------------------------------------%
% This data structure represents the state of the search for
% deconstructions in all the branches of a branched control structure
% that deconstruct a given variable with the same functor.
% Initially, we don't know what unification we will hoist out, so the
% state is before_candidate. When we find a unification we want to
% hoist out, this fixes the functor, and the state is have_candidate.
% If we find that some branches unify that variable with some other
% functor, we have multiple_candidates, which means that we don't hoist
% out any of them. (Although our caller may try again with another
% variable.)
%
% The goal field contains the unification we are proposing to put
% before the branched control structure. The first_old_new field
% gives the mapping from argument variables in the old unification
% in the first branch to the freshly created variables in the goal
% being hoisted before the branched control structure. The
% later_old_new field contains the same information for the second
% and later branches.
:- type cse_state
---> before_candidate
; have_candidate(
goal :: hlds_goal,
first_old_new :: assoc_list(prog_var),
later_old_new :: list(assoc_list(prog_var))
)
; multiple_candidates.
:- pred find_bind_var_for_cse_in_deconstruct(prog_var::in, hlds_goal::in,
list(hlds_goal)::out, cse_state::in, cse_state::out,
cse_info::in, cse_info::out) is det.
find_bind_var_for_cse_in_deconstruct(Var, Goal0, Goals,
!CseState, !CseInfo) :-
(
!.CseState = before_candidate,
construct_common_unify(Var, Goal0, !CseInfo, OldNewVars,
HoistedGoal, Goals),
!:CseState = have_candidate(HoistedGoal, OldNewVars, [])
;
!.CseState = have_candidate(HoistedGoal,
FirstOldNewVars, LaterOldNewVars0),
Goal0 = hlds_goal(_, GoalInfo),
Context = goal_info_get_context(GoalInfo),
(
find_similar_deconstruct(HoistedGoal,
Goal0, Context, OldNewVars, Goals0)
->
Goals = Goals0,
LaterOldNewVars = [OldNewVars | LaterOldNewVars0],
!:CseState = have_candidate(HoistedGoal,
FirstOldNewVars, LaterOldNewVars)
;
Goals = [Goal0],
!:CseState = multiple_candidates
)
;
!.CseState = multiple_candidates,
Goals = [Goal0],
!:CseState = multiple_candidates
).
:- pred construct_common_unify(prog_var::in, hlds_goal::in,
cse_info::in, cse_info::out, assoc_list(prog_var)::out,
hlds_goal::out, list(hlds_goal)::out) is det.
construct_common_unify(Var, hlds_goal(GoalExpr0, GoalInfo), !CseInfo,
OldNewVars, HoistedGoal, Replacements) :-
(
GoalExpr0 = unify(_, RHS, Umode, Unif0, Ucontext),
Unif0 = deconstruct(_, Consid, Args, Submodes, CanFail, CanCGC)
->
Unif = deconstruct(Var, Consid, Args, Submodes, CanFail, CanCGC),
(
RHS = rhs_functor(_, _, _),
GoalExpr1 = unify(Var, RHS, Umode, Unif, Ucontext)
;
( RHS = rhs_var(_)
; RHS = rhs_lambda_goal(_, _, _, _, _, _, _, _, _)
),
unexpected(this_file,
"non-functor unify in construct_common_unify")
),
Context = goal_info_get_context(GoalInfo),
create_parallel_subterms(Args, Context, Ucontext, !CseInfo,
OldNewVars, Replacements),
map.from_assoc_list(OldNewVars, Sub),
rename_some_vars_in_goal(Sub, hlds_goal(GoalExpr1, GoalInfo),
HoistedGoal)
;
unexpected(this_file, "non-unify goal in construct_common_unify")
).
:- pred create_parallel_subterms(list(prog_var)::in, prog_context::in,
unify_context::in, cse_info::in, cse_info::out,
assoc_list(prog_var)::out, list(hlds_goal)::out) is det.
create_parallel_subterms([], _, _, !CseInfo, [], []).
create_parallel_subterms([OFV | OFV0], Context, UnifyContext, !CseInfo,
OldNewVars, Replacements) :-
create_parallel_subterms(OFV0, Context, UnifyContext, !CseInfo,
OldNewVars1, Replacements1),
create_parallel_subterm(OFV, Context, UnifyContext, !CseInfo,
OldNewVars1, OldNewVars, Goal),
Replacements = [Goal | Replacements1].
:- pred create_parallel_subterm(prog_var::in, prog_context::in,
unify_context::in, cse_info::in, cse_info::out,
assoc_list(prog_var)::in, assoc_list(prog_var)::out,
hlds_goal::out) is det.
create_parallel_subterm(OFV, Context, UnifyContext, !CseInfo, !OldNewVar,
Goal) :-
VarSet0 = !.CseInfo ^ csei_varset,
VarTypes0 = !.CseInfo ^ csei_vartypes,
varset.new_var(VarSet0, NFV, VarSet),
map.lookup(VarTypes0, OFV, Type),
map.det_insert(VarTypes0, NFV, Type, VarTypes),
!:OldNewVar = [OFV - NFV | !.OldNewVar],
UnifyContext = unify_context(MainCtxt, SubCtxt),
% It is ok to create complicated unifications here, because we rerun
% mode analysis on the resulting goal. It would be nicer to generate
% the right assignment unification directly, but that would require keeping
% track of the inst of OFV.
create_pure_atomic_complicated_unification(OFV, rhs_var(NFV),
Context, MainCtxt, SubCtxt, Goal),
!:CseInfo = !.CseInfo ^ csei_varset := VarSet,
!:CseInfo = !.CseInfo ^ csei_vartypes := VarTypes.
%-----------------------------------------------------------------------------%
:- pred find_similar_deconstruct(hlds_goal::in, hlds_goal::in,
prog_context::in, assoc_list(prog_var)::out, list(hlds_goal)::out)
is semidet.
find_similar_deconstruct(HoistedUnifyGoal, OldUnifyGoal, Context,
OldHoistedVars, Replacements) :-
(
HoistedUnifyGoal = hlds_goal(unify(_, _, _, HoistedUnifyInfo, OC), _),
HoistedUnifyInfo = deconstruct(_, HoistedFunctor,
HoistedVars, _, _, _),
OldUnifyGoal = hlds_goal(unify(_, _, _, OldUnifyInfo, _NC), _),
OldUnifyInfo = deconstruct(_, OldFunctor, OldVars, _, _, _)
->
HoistedFunctor = OldFunctor,
list.length(HoistedVars, HoistedVarsCount),
list.length(OldVars, OldVarsCount),
HoistedVarsCount = OldVarsCount,
assoc_list.from_corresponding_lists(OldVars, HoistedVars,
OldHoistedVars),
pair_subterms(OldHoistedVars, Context, OC, Replacements)
;
unexpected(this_file,
"find_similar_deconstruct: non-deconstruct unify")
).
:- pred pair_subterms(assoc_list(prog_var)::in, prog_context::in,
unify_context::in, list(hlds_goal)::out) is det.
pair_subterms([], _Context, _UnifyContext, []).
pair_subterms([OldVar - HoistedVar | OldHoistedVars], Context, UnifyContext,
Replacements) :-
pair_subterms(OldHoistedVars, Context, UnifyContext, Replacements1),
( OldVar = HoistedVar ->
Replacements = Replacements1
;
UnifyContext = unify_context(MainCtxt, SubCtxt),
% It is ok to create complicated unifications here, because we rerun
% mode analysis on the resulting goal. It would be nicer to generate
% the right assignment unification directly, but that would require
% keeping track of the inst of OldVar.
create_pure_atomic_complicated_unification(HoistedVar, rhs_var(OldVar),
Context, MainCtxt, SubCtxt, Goal),
Replacements = [Goal | Replacements1]
).
%-----------------------------------------------------------------------------%
% This section handles the case where the functor involved in the
% common subexpression contains existentially typed arguments,
% whether or not they are constrained to belong to a typeclass.
% In such cases, what the compiler used to consider several distinct
% types (the types of say the first the existentially typed argument
% in the deconstructions in the different branches) become one (in this
% case, the type of the first existentially typed argument in the
% hoisted out deconstruction). The prog_vars describing the types
% of the existentially typed arguments (i.e. containing their
% typeinfos) change as well, from being some of the variables in
% in the original deconstructions to being the corresponding variables
% in the hoisted out deconstruction.
%
% As an example, consider a disjunction such as
%
% (
% HeadVar.g2_2 = x:u(TypeClassInfo_for_v_8, V_4),
% ...
% ;
% HeadVar.g2_2 = x:u(TypeClassInfo_for_v_14, V_6)
% ...
% )
%
% The main part of cse_detection will replace this with
%
% HeadVar.g2_2 = x:u(V_17, V_16)
% (
% TypeClassInfo_for_v_8 = V_17,
% V_4 = V_16,
% ...
% ;
% TypeClassInfo_for_v_14 = V_17,
% V_6 = V_16,
% ...
% )
%
% However, this is not enough. Since TypeClassInfo_for_v_8 and
% TypeClassInfo_for_v_14 may (and probably will) be eliminated later,
% it is imperative that the data structures in the proc_info that refer
% to them be updated to eliminate references to those variables.
% Those data structures may originally contain something like this:
%
% type_info varmap:
% T_1 (number 1) -> typeclass_info(TypeClassInfo_for_v_8, 1)
% T_3 (number 3) -> typeclass_info(TypeClassInfo_for_v_14, 1)
% typeclass_info varmap:
% x:v(T_1) -> TypeClassInfo_for_v_8
% x:v(T_3) -> TypeClassInfo_for_v_14
% variable types map:
% V_4 (number 4) :: T_1
% V_6 (number 6) :: T_3
%
% They must be updated like this:
%
% type_info varmap:
% T_1 (number 1) -> typeclass_info(V_17, 1)
% typeclass_info varmap:
% x:v(T_1) -> V_17
% variable types map:
% V_4 (number 4) :: T_1
% V_6 (number 6) :: T_1
:- pred maybe_update_existential_data_structures(hlds_goal::in,
assoc_list(prog_var)::in, list(assoc_list(prog_var))::in,
cse_info::in, cse_info::out) is det.
maybe_update_existential_data_structures(Unify, FirstOldNew, LaterOldNew,
!CseInfo) :-
(
Unify = hlds_goal(unify(_, _, _, UnifyInfo, _), _),
UnifyInfo = deconstruct(Var, ConsId, _, _, _, _),
ModuleInfo = !.CseInfo ^ csei_module_info,
VarTypes = !.CseInfo ^ csei_vartypes,
map.lookup(VarTypes, Var, Type),
type_util.is_existq_cons(ModuleInfo, Type, ConsId)
->
update_existential_data_structures(FirstOldNew, LaterOldNew, !CseInfo)
;
true
).
:- pred update_existential_data_structures(
assoc_list(prog_var)::in, list(assoc_list(prog_var))::in,
cse_info::in, cse_info::out) is det.
update_existential_data_structures(FirstOldNew, LaterOldNews, !CseInfo) :-
list.condense(LaterOldNews, LaterOldNew),
map.from_assoc_list(FirstOldNew, FirstOldNewMap),
map.from_assoc_list(LaterOldNew, LaterOldNewMap),
RttiVarMaps0 = !.CseInfo ^ csei_rtti_varmaps,
VarTypes0 = !.CseInfo ^ csei_vartypes,
% Build a map for all locations in the rtti_varmaps that are changed
% by the application of FirstOldNewMap. The keys of this map are the
% new locations, and the values are the tvars (from the first branch)
% that have had their locations moved.
rtti_varmaps_tvars(RttiVarMaps0, TvarsList),
list.foldl(find_type_info_locn_tvar_map(RttiVarMaps0, FirstOldNewMap),
TvarsList, map.init, NewTvarMap),
% Traverse TVarsList again, this time looking for locations in later
% branches that merge with locations in the first branch. When we find one,
% add a type substitution which represents the type variables that were
% merged.
list.foldl(find_merged_tvars(RttiVarMaps0, LaterOldNewMap, NewTvarMap),
TvarsList, map.init, Renaming),
% Apply the full old->new map and the type substitution to the
% rtti_varmaps, and apply the type substitution to the vartypes.
list.append(FirstOldNew, LaterOldNew, OldNew),
map.from_assoc_list(OldNew, OldNewMap),
apply_substitutions_to_rtti_varmaps(Renaming, map.init, OldNewMap,
RttiVarMaps0, RttiVarMaps),
map.map_values(apply_tvar_rename(Renaming), VarTypes0, VarTypes),
!:CseInfo = !.CseInfo ^ csei_rtti_varmaps := RttiVarMaps,
!:CseInfo = !.CseInfo ^ csei_vartypes := VarTypes.
:- pred apply_tvar_rename(tvar_renaming::in, prog_var::in,
mer_type::in, mer_type::out) is det.
apply_tvar_rename(Renaming, _Var, Type0, Type) :-
apply_variable_renaming_to_type(Renaming, Type0, Type).
:- pred find_type_info_locn_tvar_map(rtti_varmaps::in,
map(prog_var, prog_var)::in, tvar::in,
map(type_info_locn, tvar)::in, map(type_info_locn, tvar)::out) is det.
find_type_info_locn_tvar_map(RttiVarMaps, FirstOldNewMap, Tvar, !NewTvarMap) :-
rtti_lookup_type_info_locn(RttiVarMaps, Tvar, TypeInfoLocn0),
type_info_locn_var(TypeInfoLocn0, Old),
( map.search(FirstOldNewMap, Old, New) ->
type_info_locn_set_var(New, TypeInfoLocn0, TypeInfoLocn),
svmap.det_insert(TypeInfoLocn, Tvar, !NewTvarMap)
;
true
).
:- pred find_merged_tvars(rtti_varmaps::in, map(prog_var, prog_var)::in,
map(type_info_locn, tvar)::in, tvar::in,
tvar_renaming::in, tvar_renaming::out) is det.
find_merged_tvars(RttiVarMaps, LaterOldNewMap, NewTvarMap, Tvar, !Renaming) :-
rtti_lookup_type_info_locn(RttiVarMaps, Tvar, TypeInfoLocn0),
type_info_locn_var(TypeInfoLocn0, Old),
( map.search(LaterOldNewMap, Old, New) ->
type_info_locn_set_var(New, TypeInfoLocn0, TypeInfoLocn),
map.lookup(NewTvarMap, TypeInfoLocn, NewTvar),
( NewTvar = Tvar ->
true
;
svmap.det_insert(Tvar, NewTvar, !Renaming)
)
;
true
).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "cse_detection.m".
%-----------------------------------------------------------------------------%
:- end_module cse_detection.
%-----------------------------------------------------------------------------%