Files
mercury/compiler/pd_util.m
Zoltan Somogyi 189b9215ae This diff implements stack slot optimization for the LLDS back end based on
Estimated hours taken: 400
Branches: main

This diff implements stack slot optimization for the LLDS back end based on
the idea that after a unification such as A = f(B, C, D), saving the
variable A on the stack indirectly also saves the values of B, C and D.

Figuring out what subset of {B,C,D} to access via A and what subset to access
via their own stack slots is a tricky optimization problem. The algorithm we
use to solve it is described in the paper "Using the heap to eliminate stack
accesses" by Zoltan Somogyi and Peter Stuckey, available in ~zs/rep/stackslot.
That paper also describes (and has examples of) the source-to-source
transformation that implements the optimization.

The optimization needs to know what variables are flushed at call sites
and at program points that establish resume points (e.g. entries to
disjunctions and if-then-elses). We already had code to compute this
information in live_vars.m, but this code was being invoked too late.
This diff modifies live_vars.m to allow it to be invoked both by the stack
slot optimization transformation and by the code generator, and allows its
function to be tailored to the requirements of each invocation.

The information computed by live_vars.m is specific to the LLDS back end,
since the MLDS back ends do not (yet) have the same control over stack
frame layout. We therefore store this information in a new back end specific
field in goal_infos. For uniformity, we make all the other existing back end
specific fields in goal_infos, as well as the similarly back end specific
store map field of goal_exprs, subfields of this new field. This happens
to significantly reduce the sizes of goal_infos.

To allow a more meaningful comparison of the gains produced by the new
optimization, do not save any variables across erroneous calls even if
the new optimization is not enabled.

compiler/stack_opt.m:
	New module containing the code that performs the transformation
	to optimize stack slot usage.

compiler/matching.m:
	New module containing an algorithm for maximal matching in bipartite
	graphs, specialized for the graphs needed by stack_opt.m.

compiler/mercury_compile.m:
	Invoke the new optimization if the options ask for it.

compiler/stack_alloc.m:
	New module containing code that is shared between the old,
	non-optimizing stack slot allocation system and the new, optimizing
	stack slot allocation system, and the code for actually allocating
	stack slots in the absence of optimization.

	Live_vars.m used to have two tasks: find out what variables need to be
	saved on the stack, and allocating those variables to stack slots.
	Live_vars.m now does only the first task; stack_alloc.m now does
	the second, using code that used to be in live_vars.m.

compiler/trace_params:
	Add a new function to test the trace level, which returns yes if we
	want to preserve the values of the input headvars.

compiler/notes/compiler_design.html:
	Document the new modules (as well as trace_params.m, which wasn't
	documented earlier).

compiler/live_vars.m:
	Delete the code that is now in stack_alloc.m and graph_colour.m.

	Separate out the kinds of stack uses due to nondeterminism: the stack
	slots used by nondet calls, and the stack slots used by resumption
	points, in order to allow the reuse of stack slots used by resumption
	points after execution has left their scope. This should allow the
	same stack slots to be used by different variables in the resumption
	point at the start of an else branch and nondet calls in the then
	branch, since the resumption point of the else branch is not in effect
	when the then branch is executed.

	If the new option --opt-no-return-calls is set, then say that we do not
	need to save any values across erroneous calls.

	Use type classes to allow the information generated by this module
	to be recorded in the way required by its invoker.

	Package up the data structures being passed around readonly into a
	single tuple.

compiler/store_alloc.m:
	Allow this module to be invoked by stack_opt.m without invoking the
	follow_vars transformation, since applying follow_vars before the form
	of the HLDS code is otherwise final can be a pessimization.

	Make the module_info a part of the record containing the readonly data
	passed around during the traversal.

compiler/common.m:
	Do not delete or move around unifications created by stack_opt.m.

compiler/call_gen.m:
compiler/code_info.m:
compiler/continuation_info.m:
compiler/var_locn.m:
	Allow the code generator to delete its last record of the location
	of a value when generating code to make an erroneous call, if the new
	--opt-no-return-calls option is set.

compiler/code_gen.m:
	Use a more useful algorithm to create the messages/comments that
	we put into incr_sp instructions, e.g. by distinguishing between
	predicates and functions. This is to allow the new scripts in the
	tool directory to gather statistics about the effect of the
	optimization on stack frame sizes.

library/exception.m:
	Make a hand-written incr_sp follow the new pattern.

compiler/arg_info.m:
	Add predicates to figure out the set of input, output and unused
	arguments of a procedure in several different circumstances.
	Previously, variants of these predicates were repeated in several
	places.

compiler/goal_util.m:
	Export some previously private utility predicates.

compiler/handle_options.m:
	Turn off stack slot optimizations when debugging, unless
	--trace-optimized is set.

	Add a new dump format useful for debugging --optimize-saved-vars.

compiler/hlds_llds.m:
	New module for handling all the stuff specific to the LLDS back end
	in HLDS goal_infos.

compiler/hlds_goal.m:
	Move all the relevant stuff into the new back end specific field
	in goal_infos.

compiler/notes/allocation.html:
	Update the documentation of store maps to reflect their movement
	into a subfield of goal_infos.

compiler/*.m:
	Minor changes to accomodate the placement of all back end specific
	information about goals from goal_exprs and individual fields of
	goal_infos into a new field in goal_infos that gathers together
	all back end specific information.

compiler/use_local_vars.m:
	Look for sequences in which several instructions use a fake register
	or stack slot as a base register pointing to a cell, and make those
	instructions use a local variable instead.

	Without this, a key assumption of the stack slot optimization,
	that accessing a field in a cell costs only one load or store
	instruction, would be much less likely to be true. (With this
	optimization, the assumption will be false only if the C compiler's
	code generator runs out of registers in a basic block, which for
	the code we generate should be unlikely even on x86s.)

compiler/options.m:
	Make the old option --optimize-saved-vars ask for both the old stack
	slot optimization (implemented by saved_vars.m) that only eliminates
	the storing of constants in stack slots, and the new optimization.

	Add two new options --optimize-saved-vars-{const,cell} to turn on
	the two optimizations separately.

	Add a bunch of options to specify the parameters of the new
	optimizations, both in stack_opt.m and use_local_vars.m. These are
	for implementors only; they are deliberately not documented.

	Add a new option, --opt-no-return-cells, that governs whether we avoid
	saving variables on the stack at calls that cannot return, either by
	succeeding or by failing. This is for implementors only, and thus
	deliberately documented only in comments. It is enabled by default.

compiler/optimize.m:
	Transmit the value of a new option to use_local_vars.m.

doc/user_guide.texi:
	Update the documentation of --optimize-saved-vars.

library/tree234.m:
	Undo a previous change of mine that effectively applied this
	optimization by hand. That change complicated the code, and now
	the compiler can do the optimization automatically.

tools/extract_incr_sp:
	A new script for extracting stack frame sizes and messages from
	stack increment operations in the C code for LLDS grades.

tools/frame_sizes:
	A new script that uses extract_incr_sp to extract information about
	stack frame sizes from the C files saved from a stage 2 directory
	by makebatch and summarizes the resulting information.

tools/avg_frame_size:
	A new script that computes average stack frame sizes from the files
	created by frame_sizes.

tools/compare_frame_sizes:
	A new script that compares the stack frame size information
	extracted from two different stage 2 directories by frame_sizes,
	reporting on both average stack frame sizes and on specific procedures
	that have different stack frame sizes in the two versions.
2002-03-28 03:44:41 +00:00

1214 lines
45 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1998-2002 University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File pd_util.m
% Main author: stayl.
%
% Utility predicates for deforestation and partial evaluation.
%
%-----------------------------------------------------------------------------%
:- module transform_hlds__pd_util.
:- interface.
:- import_module transform_hlds__pd_info, hlds__hlds_goal, hlds__hlds_module.
:- import_module hlds__hlds_pred, check_hlds__mode_errors.
:- import_module parse_tree__prog_data, check_hlds__simplify.
:- import_module (parse_tree__inst).
:- import_module bool, list, map, set, std_util.
% Pick out the pred_proc_ids of the calls in a list of atomic goals.
:- pred pd_util__goal_get_calls(hlds_goal::in,
list(pred_proc_id)::out) is det.
% Call constraint.m to transform a goal so that goals which
% can fail are executed as early as possible.
:- pred pd_util__propagate_constraints(hlds_goal::in, hlds_goal::out,
pd_info::pd_info_di, pd_info::pd_info_uo) is det.
% Apply simplify.m to the goal.
:- pred pd_util__simplify_goal(list(simplification)::in, hlds_goal::in,
hlds_goal::out, pd_info::pd_info_di,
pd_info::pd_info_uo) is det.
% Apply unique_modes.m to the goal.
:- pred pd_util__unique_modecheck_goal(hlds_goal::in, hlds_goal::out,
list(mode_error_info)::out, pd_info::pd_info_di,
pd_info::pd_info_uo) is det.
% Apply unique_modes.m to the goal.
:- pred pd_util__unique_modecheck_goal(set(prog_var)::in, hlds_goal::in,
hlds_goal::out, list(mode_error_info)::out,
pd_info::pd_info_di, pd_info::pd_info_uo) is det.
% Find out which arguments of the procedure are interesting
% for deforestation.
:- pred pd_util__get_branch_vars_proc(pred_proc_id::in, proc_info::in,
pd_arg_info::in, pd_arg_info::out,
module_info::in, module_info::out) is det.
% Find out which variables of the goal are interesting
% for deforestation.
:- pred pd_util__get_branch_vars_goal(hlds_goal::in,
maybe(pd_branch_info(prog_var))::out, pd_info::pd_info_di,
pd_info::pd_info_uo) is det.
% Recompute the non-locals of the goal.
:- pred pd_util__requantify_goal(hlds_goal::in, set(prog_var)::in,
hlds_goal::out, pd_info::pd_info_di, pd_info::pd_info_uo)
is det.
% Apply mode_util__recompute_instmap_delta to the goal.
:- pred pd_util__recompute_instmap_delta(hlds_goal::in, hlds_goal::out,
pd_info::pd_info_di, pd_info::pd_info_uo) is det.
% Convert from information about the argument positions to
% information about the argument variables.
:- pred pd_util__convert_branch_info(pd_branch_info(int)::in,
list(prog_var)::in, pd_branch_info(prog_var)::out) is det.
% inst_MSG(InstA, InstB, InstC):
% Take the most specific generalisation of two insts.
% The information in InstC is the minimum of the
% information in InstA and InstB. Where InstA and
% InstB specify a binding (free or bound), it must be
% the same in both.
% The uniqueness of the final inst is taken from InstB.
% The difference between inst_merge and inst_MSG is that the
% msg of `bound([functor, []])' and `bound([another_functor, []])'
% is `ground' rather than `bound([functor, another_functor])'.
% Also the msgs are not tabled, so the module_info is not
% threaded through.
% If an inst is "rounded off", it must not contain `any' insts
% and must be completely unique or completely non-unique.
% This is used in generalisation to avoid non-termination
% of deforestation - InstA is the inst in an old version,
% we are taking the msg with to avoid non-termination,
% InstB is the inst in the new version we want to create.
% It is always safe for inst_MSG to fail - this will just
% result in less optimization.
% Mode analysis should be run on the goal to
% check that this doesn't introduce mode errors, since
% the information that was removed may actually have been
% necessary for mode correctness.
:- pred inst_MSG(inst, inst, module_info, inst).
:- mode inst_MSG(in, in, in, out) is semidet.
% Produce an estimate of the size of an inst, based on the
% number of nodes in the inst. The inst is expanded down
% to the first repeat of an already expanded inst_name.
:- pred pd_util__inst_size(module_info::in, (inst)::in, int::out) is det.
:- pred pd_util__inst_list_size(module_info::in, list(inst)::in,
int::out) is det.
% pd_util__goals_match(ModuleInfo, OldGoal, OldArgs, OldArgTypes,
% NewGoal, NewArgTypes,
% OldToNewVarRenaming, OldToNewTypeSubst)
%
% Check the shape of the goals, and return a mapping from
% variables in the old goal to variables in the new and
% a substitution to apply to the types. This only
% attempts to match `simple' lists of goals, which contain
% only conj, some, not and atomic goals, since deforest.m
% only attempts to optimize those types of conjunctions.
:- pred pd_util__goals_match(module_info::in, hlds_goal::in, list(prog_var)::in,
list(type)::in, hlds_goal::in, vartypes::in,
map(prog_var, prog_var)::out, tsubst::out) is semidet.
% pd_util__can_reorder_goals(ModuleInfo, FullyStrict, Goal1, Goal2).
%
% Goals can be reordered if
% - the goals are independent
% - the goals are not impure
% - any possible change in termination behaviour is allowed
% according to the semantics options.
:- pred pd_util__can_reorder_goals(module_info::in, bool::in, hlds_goal::in,
hlds_goal::in) is semidet.
% pd_util__reordering_maintains_termination(FullyStrict, Goal1, Goal2)
%
% Succeeds if any possible change in termination behaviour from
% reordering the goals is allowed according to the semantics options.
% The information computed by termination analysis is used when
% making this decision.
:- pred pd_util__reordering_maintains_termination(module_info::in, bool::in,
hlds_goal::in, hlds_goal::in) is semidet.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module parse_tree__inst.
:- import_module hlds__goal_util, hlds__hlds_data, hlds__instmap.
:- import_module hlds__quantification, hlds__goal_form.
:- import_module check_hlds__purity, check_hlds__type_util.
:- import_module check_hlds__mode_info, check_hlds__unique_modes.
:- import_module check_hlds__mode_util, check_hlds__inst_util.
:- import_module check_hlds__inst_match, check_hlds__det_report.
:- import_module check_hlds__det_util, check_hlds__det_analysis.
:- import_module transform_hlds__pd_cost, transform_hlds__pd_debug.
:- import_module transform_hlds__constraint, transform_hlds__unused_args.
:- import_module libs__options.
:- import_module assoc_list, int, require, set, term.
pd_util__goal_get_calls(Goal0, CalledPreds) :-
goal_to_conj_list(Goal0, GoalList),
GetCalls = lambda([Goal::in, CalledPred::out] is semidet, (
Goal = call(PredId, ProcId, _, _, _, _) - _,
CalledPred = proc(PredId, ProcId)
)),
list__filter_map(GetCalls, GoalList, CalledPreds).
%-----------------------------------------------------------------------------%
pd_util__propagate_constraints(Goal0, Goal) -->
pd_info_lookup_bool_option(local_constraint_propagation,
ConstraintProp),
( { ConstraintProp = yes } ->
pd_debug__message("%% Propagating constraints\n", []),
pd_debug__output_goal("before constraints\n", Goal0),
pd_info_get_module_info(ModuleInfo0),
pd_info_get_proc_info(ProcInfo0),
pd_info_get_instmap(InstMap),
{ proc_info_vartypes(ProcInfo0, VarTypes0) },
{ proc_info_varset(ProcInfo0, VarSet0) },
{ constraint_info_init(ModuleInfo0, VarTypes0,
VarSet0, InstMap, CInfo0) },
{ Goal0 = _ - GoalInfo0 },
{ goal_info_get_nonlocals(GoalInfo0, NonLocals) },
{ constraint__propagate_constraints_in_goal(Goal0, Goal1,
CInfo0, CInfo) },
{ constraint_info_deconstruct(CInfo, ModuleInfo,
VarTypes, VarSet, Changed) },
pd_info_set_module_info(ModuleInfo),
{ proc_info_set_vartypes(ProcInfo0, VarTypes, ProcInfo1) },
{ proc_info_set_varset(ProcInfo1, VarSet, ProcInfo) },
pd_info_set_proc_info(ProcInfo),
( { Changed = yes } ->
pd_debug__output_goal(
"after constraints, before recompute\n",
Goal1),
pd_util__requantify_goal(Goal1, NonLocals, Goal2),
pd_util__recompute_instmap_delta(Goal2, Goal3),
pd_util__rerun_det_analysis(Goal3, Goal4),
{ module_info_globals(ModuleInfo, Globals) },
{ simplify__find_simplifications(no,
Globals, Simplifications) },
pd_util__simplify_goal(Simplifications, Goal4, Goal)
;
{ Goal = Goal1 }
)
;
{ Goal = Goal0 }
).
%-----------------------------------------------------------------------------%
pd_util__simplify_goal(Simplifications, Goal0, Goal) -->
%
% Construct a simplify_info.
%
pd_info_get_module_info(ModuleInfo0),
{ module_info_globals(ModuleInfo0, Globals) },
pd_info_get_pred_proc_id(proc(PredId, ProcId)),
{ proc_info_vartypes(ProcInfo0, VarTypes0) },
{ det_info_init(ModuleInfo0, VarTypes0, PredId, ProcId,
Globals, DetInfo0) },
pd_info_get_instmap(InstMap0),
pd_info_get_proc_info(ProcInfo0),
{ proc_info_varset(ProcInfo0, VarSet0) },
{ proc_info_inst_varset(ProcInfo0, InstVarSet0) },
{ proc_info_typeinfo_varmap(ProcInfo0, TVarMap0) },
{ proc_info_typeclass_info_varmap(ProcInfo0, TCVarMap0) },
{ simplify_info_init(DetInfo0, Simplifications, InstMap0,
VarSet0, InstVarSet0, TVarMap0, TCVarMap0, SimplifyInfo0) },
{ simplify__process_goal(Goal0, Goal, SimplifyInfo0, SimplifyInfo) },
%
% Deconstruct the simplify_info.
%
{ simplify_info_get_module_info(SimplifyInfo, ModuleInfo) },
{ simplify_info_get_varset(SimplifyInfo, VarSet) },
{ simplify_info_get_var_types(SimplifyInfo, VarTypes) },
{ simplify_info_get_cost_delta(SimplifyInfo, CostDelta) },
{ simplify_info_get_type_info_varmap(SimplifyInfo, TVarMap) },
{ simplify_info_get_typeclass_info_varmap(SimplifyInfo, TCVarMap) },
pd_info_get_proc_info(ProcInfo1),
{ proc_info_set_varset(ProcInfo1, VarSet, ProcInfo2) },
{ proc_info_set_vartypes(ProcInfo2, VarTypes, ProcInfo3) },
{ proc_info_set_typeinfo_varmap(ProcInfo3, TVarMap, ProcInfo4) },
{ proc_info_set_typeclass_info_varmap(ProcInfo4, TCVarMap, ProcInfo) },
pd_info_set_proc_info(ProcInfo),
pd_info_incr_cost_delta(CostDelta),
pd_info_set_module_info(ModuleInfo).
%-----------------------------------------------------------------------------%
pd_util__unique_modecheck_goal(Goal0, Goal, Errors) -->
pd_util__get_goal_live_vars(Goal0, LiveVars),
pd_util__unique_modecheck_goal(LiveVars, Goal0, Goal, Errors).
pd_util__unique_modecheck_goal(LiveVars, Goal0, Goal, Errors) -->
%
% Construct a mode_info.
%
pd_info_get_pred_proc_id(PredProcId),
{ PredProcId = proc(PredId, ProcId) },
pd_info_get_module_info(ModuleInfo0),
pd_info_get_instmap(InstMap0),
{ term__context_init(Context) },
pd_info_get_io_state(IO0),
pd_info_get_pred_info(PredInfo0),
pd_info_get_proc_info(ProcInfo0),
{ module_info_set_pred_proc_info(ModuleInfo0, PredId, ProcId,
PredInfo0, ProcInfo0, ModuleInfo1) },
% If we perform generalisation, we shouldn't change any called
% procedures, since that could cause a less efficient version to
% be chosen.
{ MayChangeCalledProc = may_not_change_called_proc },
{ mode_info_init(IO0, ModuleInfo1, PredId, ProcId, Context,
LiveVars, InstMap0, check_unique_modes,
MayChangeCalledProc, ModeInfo0) },
{ unique_modes__check_goal(Goal0, Goal, ModeInfo0, ModeInfo1) },
pd_info_lookup_bool_option(debug_pd, Debug),
{ Debug = yes ->
report_mode_errors(ModeInfo1, ModeInfo)
;
ModeInfo = ModeInfo1
},
{ mode_info_get_errors(ModeInfo, Errors) },
%
% Deconstruct the mode_info.
%
{ mode_info_get_module_info(ModeInfo, ModuleInfo) },
{ mode_info_get_io_state(ModeInfo, IO) },
{ mode_info_get_varset(ModeInfo, VarSet) },
{ mode_info_get_var_types(ModeInfo, VarTypes) },
pd_info_set_module_info(ModuleInfo),
{ module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
PredInfo, ProcInfo1) },
pd_info_set_pred_info(PredInfo),
{ proc_info_set_varset(ProcInfo1, VarSet, ProcInfo2) },
{ proc_info_set_vartypes(ProcInfo2, VarTypes, ProcInfo) },
pd_info_set_proc_info(ProcInfo),
pd_info_set_io_state(IO).
% Work out which vars are live later in the computation based
% on which of the non-local variables are not clobbered by the goal.
:- pred pd_util__get_goal_live_vars(hlds_goal::in, set(prog_var)::out,
pd_info::pd_info_di, pd_info::pd_info_uo) is det.
pd_util__get_goal_live_vars(_ - GoalInfo, Vars) -->
pd_info_get_module_info(ModuleInfo),
{ goal_info_get_instmap_delta(GoalInfo, InstMapDelta) },
pd_info_get_instmap(InstMap),
{ goal_info_get_nonlocals(GoalInfo, NonLocals) },
{ set__to_sorted_list(NonLocals, NonLocalsList) },
{ set__init(Vars0) },
{ get_goal_live_vars_2(ModuleInfo, NonLocalsList, InstMap,
InstMapDelta, Vars0, Vars) }.
:- pred pd_util__get_goal_live_vars_2(module_info::in, list(prog_var)::in,
instmap::in, instmap_delta::in,
set(prog_var)::in, set(prog_var)::out) is det.
pd_util__get_goal_live_vars_2(_, [], _, _, Vars, Vars).
pd_util__get_goal_live_vars_2(ModuleInfo, [NonLocal | NonLocals],
InstMap, InstMapDelta, Vars0, Vars) :-
( instmap_delta_search_var(InstMapDelta, NonLocal, FinalInst0) ->
FinalInst = FinalInst0
;
instmap__lookup_var(InstMap, NonLocal, FinalInst)
),
( inst_is_clobbered(ModuleInfo, FinalInst) ->
Vars1 = Vars0
;
set__insert(Vars0, NonLocal, Vars1)
),
pd_util__get_goal_live_vars_2(ModuleInfo, NonLocals,
InstMap, InstMapDelta, Vars1, Vars).
%-----------------------------------------------------------------------------%
:- pred pd_util__rerun_det_analysis(hlds_goal::in, hlds_goal::out,
pd_info::pd_info_di, pd_info::pd_info_uo) is det.
pd_util__rerun_det_analysis(Goal0, Goal) -->
{ Goal0 = _ - GoalInfo0 },
{ goal_info_get_determinism(GoalInfo0, Det) },
{ det_get_soln_context(Det, SolnContext) },
% det_infer_goal looks up the proc_info in the module_info
% for the vartypes, so we'd better stick them back in the
% module_info.
pd_info_get_pred_proc_id(proc(PredId, ProcId)),
pd_info_get_pred_info(PredInfo),
pd_info_get_proc_info(ProcInfo),
pd_info_get_module_info(ModuleInfo0),
{ module_info_set_pred_proc_info(ModuleInfo0, PredId, ProcId,
PredInfo, ProcInfo, ModuleInfo) },
pd_info_set_module_info(ModuleInfo),
{ module_info_globals(ModuleInfo, Globals) },
{ proc_info_vartypes(ProcInfo, VarTypes) },
{ det_info_init(ModuleInfo, VarTypes, PredId, ProcId,
Globals, DetInfo) },
pd_info_get_instmap(InstMap),
{ det_infer_goal(Goal0, InstMap, SolnContext, DetInfo,
Goal, _, Msgs) },
%
% Make sure there were no errors.
%
pd_info_get_io_state(IO0),
{ disable_det_warnings(OptionsToRestore, IO0, IO1) },
{ det_report_msgs(Msgs, ModuleInfo, _, ErrCnt, IO1, IO2) },
{ restore_det_warnings(OptionsToRestore, IO2, IO) },
pd_info_set_io_state(IO),
{ require(unify(ErrCnt, 0),
"pd_util__rerun_det_analysis: determinism errors") }.
%-----------------------------------------------------------------------------%
pd_util__convert_branch_info(ArgInfo, Args, VarInfo) :-
ArgInfo = pd_branch_info(ArgMap, LeftArgs, OpaqueArgs),
map__to_assoc_list(ArgMap, ArgList),
map__init(BranchVarMap0),
pd_util__convert_branch_info_2(ArgList, Args,
BranchVarMap0, BranchVarMap),
set__to_sorted_list(LeftArgs, LeftArgNos),
list__map(list__index1_det(Args), LeftArgNos, LeftVars0),
set__list_to_set(LeftVars0, LeftVars),
set__to_sorted_list(OpaqueArgs, OpaqueArgNos),
list__map(list__index1_det(Args), OpaqueArgNos, OpaqueVars0),
set__list_to_set(OpaqueVars0, OpaqueVars),
VarInfo = pd_branch_info(BranchVarMap, LeftVars, OpaqueVars).
:- pred pd_util__convert_branch_info_2(assoc_list(int, set(int))::in,
list(prog_var)::in, pd_var_info::in, pd_var_info::out) is det.
pd_util__convert_branch_info_2([], _, Info, Info).
pd_util__convert_branch_info_2([ArgNo - Branches | ArgInfos], Args,
Info0, Info) :-
list__index1_det(Args, ArgNo, Arg),
map__set(Info0, Arg, Branches, Info1),
pd_util__convert_branch_info_2(ArgInfos, Args, Info1, Info).
%-----------------------------------------------------------------------------%
:- type pd_var_info == branch_info_map(prog_var).
% Find out which arguments of the procedure are interesting
% for deforestation.
pd_util__get_branch_vars_proc(PredProcId, ProcInfo,
Info0, Info, ModuleInfo0, ModuleInfo) :-
proc_info_goal(ProcInfo, Goal),
proc_info_vartypes(ProcInfo, VarTypes),
instmap__init_reachable(InstMap0),
map__init(Vars0),
set__init(LeftVars0),
goal_to_conj_list(Goal, GoalList),
(
pd_util__get_branch_vars_goal_2(ModuleInfo0, GoalList, no,
VarTypes, InstMap0, LeftVars0, LeftVars, Vars0, Vars)
->
proc_info_headvars(ProcInfo, HeadVars),
map__init(ThisProcArgMap0),
set__init(ThisProcLeftArgs0),
pd_util__get_extra_info_headvars(HeadVars, 1, LeftVars, Vars,
ThisProcArgMap0, ThisProcArgMap1,
ThisProcLeftArgs0, ThisProcLeftArgs),
set__init(OpaqueArgs0),
BranchInfo0 = pd_branch_info(ThisProcArgMap1,
ThisProcLeftArgs, OpaqueArgs0),
map__set(Info0, PredProcId, BranchInfo0, Info1),
% Look for opportunities for deforestation in
% the sub-branches of the top-level goal.
pd_util__get_sub_branch_vars_goal(ModuleInfo0, Info1,
GoalList, VarTypes, InstMap0, Vars, AllVars, ModuleInfo),
pd_util__get_extra_info_headvars(HeadVars, 1, LeftVars0,
AllVars, ThisProcArgMap0, ThisProcArgMap,
ThisProcLeftArgs0, _),
proc_info_argmodes(ProcInfo, ArgModes),
pd_util__get_opaque_args(ModuleInfo, 1, ArgModes,
ThisProcArgMap, OpaqueArgs0, OpaqueArgs),
BranchInfo = pd_branch_info(ThisProcArgMap, ThisProcLeftArgs,
OpaqueArgs),
map__set(Info1, PredProcId, BranchInfo, Info)
;
ModuleInfo = ModuleInfo0,
Info = Info0
).
% Find output arguments about which we have no extra information,
% such as io__states. If a later goal in a conjunction depends
% on one of these, it is unlikely that the deforestation will
% be able to successfully fold to give a recursive definition.
:- pred pd_util__get_opaque_args(module_info::in, int::in, list(mode)::in,
branch_info_map(int)::in, set(int)::in, set(int)::out) is det.
pd_util__get_opaque_args(_, _, [], _, OpaqueArgs, OpaqueArgs).
pd_util__get_opaque_args(ModuleInfo, ArgNo, [ArgMode | ArgModes],
ExtraInfoArgs, OpaqueArgs0, OpaqueArgs) :-
(
mode_is_output(ModuleInfo, ArgMode),
\+ map__contains(ExtraInfoArgs, ArgNo)
->
set__insert(OpaqueArgs0, ArgNo, OpaqueArgs1)
;
OpaqueArgs1 = OpaqueArgs0
),
NextArg is ArgNo + 1,
pd_util__get_opaque_args(ModuleInfo, NextArg, ArgModes,
ExtraInfoArgs, OpaqueArgs1, OpaqueArgs).
% From the information about variables for which we have extra
% information in the branches, compute the argument numbers
% for which we have extra information.
:- pred pd_util__get_extra_info_headvars(list(prog_var)::in, int::in,
set(prog_var)::in, pd_var_info::in,
branch_info_map(int)::in, branch_info_map(int)::out,
set(int)::in, set(int)::out) is det.
pd_util__get_extra_info_headvars([], _, _, _, Args, Args, LeftArgs, LeftArgs).
pd_util__get_extra_info_headvars([HeadVar | HeadVars], ArgNo,
LeftVars, VarInfo, ThisProcArgs0, ThisProcArgs,
ThisProcLeftVars0, ThisProcLeftVars) :-
( map__search(VarInfo, HeadVar, ThisVarInfo) ->
map__det_insert(ThisProcArgs0, ArgNo,
ThisVarInfo, ThisProcArgs1)
;
ThisProcArgs1 = ThisProcArgs0
),
( set__member(HeadVar, LeftVars) ->
set__insert(ThisProcLeftVars0, ArgNo, ThisProcLeftVars1)
;
ThisProcLeftVars1 = ThisProcLeftVars0
),
NextArgNo is ArgNo + 1,
pd_util__get_extra_info_headvars(HeadVars, NextArgNo,
LeftVars, VarInfo, ThisProcArgs1, ThisProcArgs,
ThisProcLeftVars1, ThisProcLeftVars).
%-----------------------------------------------------------------------------%
pd_util__get_branch_vars_goal(Goal, MaybeBranchInfo) -->
pd_info_get_module_info(ModuleInfo0),
pd_info_get_instmap(InstMap0),
pd_info_get_proc_arg_info(ProcArgInfo),
pd_info_get_proc_info(ProcInfo),
{ proc_info_vartypes(ProcInfo, VarTypes) },
{ set__init(LeftVars0) },
{ map__init(Vars0) },
(
{ pd_util__get_branch_vars_goal_2(ModuleInfo0, [Goal], no,
VarTypes, InstMap0, LeftVars0, LeftVars, Vars0, Vars1) }
->
{ pd_util__get_sub_branch_vars_goal(ModuleInfo0, ProcArgInfo,
[Goal], VarTypes, InstMap0, Vars1, Vars, ModuleInfo) },
pd_info_set_module_info(ModuleInfo),
% OpaqueVars is only filled in for calls.
{ set__init(OpaqueVars) },
{ MaybeBranchInfo = yes(
pd_branch_info(Vars, LeftVars, OpaqueVars)
) }
;
{ MaybeBranchInfo = no }
).
:- pred pd_util__get_branch_vars_goal_2(module_info::in, list(hlds_goal)::in,
bool::in, vartypes::in, instmap::in,
set(prog_var)::in, set(prog_var)::out,
pd_var_info::in, pd_var_info::out) is semidet.
pd_util__get_branch_vars_goal_2(_, [], yes, _, _, LeftVars, LeftVars, Vars, Vars).
pd_util__get_branch_vars_goal_2(ModuleInfo, [Goal | Goals], FoundBranch0,
VarTypes, InstMap0, LeftVars0, LeftVars, Vars0, Vars) :-
Goal = _ - GoalInfo,
goal_info_get_instmap_delta(GoalInfo, InstMapDelta),
instmap__apply_instmap_delta(InstMap0, InstMapDelta, InstMap),
( pd_util__get_branch_instmap_deltas(Goal, InstMapDeltas) ->
% Only look for goals with one top-level branched goal,
% since deforestation of goals with more than one is
% likely to be less productive.
FoundBranch0 = no,
pd_util__get_branch_vars(ModuleInfo, Goal,
InstMapDeltas, InstMap, 1, Vars0, Vars1),
pd_util__get_left_vars(Goal, LeftVars0, LeftVars1),
FoundBranch = yes
;
Goal = GoalExpr - _,
goal_is_atomic(GoalExpr),
FoundBranch = FoundBranch0,
Vars1 = Vars0,
LeftVars1 = LeftVars0
),
pd_util__get_branch_vars_goal_2(ModuleInfo, Goals, FoundBranch,
VarTypes, InstMap, LeftVars1, LeftVars, Vars1, Vars).
:- pred pd_util__get_branch_instmap_deltas(hlds_goal::in,
list(instmap_delta)::out) is semidet.
pd_util__get_branch_instmap_deltas(Goal, [CondDelta, ThenDelta, ElseDelta]) :-
Goal = if_then_else(_, _ - CondInfo, _ - ThenInfo,
_ - ElseInfo) - _,
goal_info_get_instmap_delta(CondInfo, CondDelta),
goal_info_get_instmap_delta(ThenInfo, ThenDelta),
goal_info_get_instmap_delta(ElseInfo, ElseDelta).
pd_util__get_branch_instmap_deltas(switch(_, _, Cases) - _,
InstMapDeltas) :-
GetCaseInstMapDelta =
lambda([Case::in, InstMapDelta::out] is det, (
Case = case(_, _ - CaseInfo),
goal_info_get_instmap_delta(CaseInfo, InstMapDelta)
)),
list__map(GetCaseInstMapDelta, Cases, InstMapDeltas).
pd_util__get_branch_instmap_deltas(disj(Disjuncts) - _, InstMapDeltas) :-
GetDisjunctInstMapDelta =
lambda([Disjunct::in, InstMapDelta::out] is det, (
Disjunct = _ - DisjInfo,
goal_info_get_instmap_delta(DisjInfo, InstMapDelta)
)),
list__map(GetDisjunctInstMapDelta, Disjuncts, InstMapDeltas).
% Get the variables for which we can do unfolding if the goals to
% the left supply the top-level functor. Eventually this should
% also check for if-then-elses with simple conditions.
:- pred pd_util__get_left_vars(hlds_goal::in,
set(prog_var)::in, set(prog_var)::out) is det.
pd_util__get_left_vars(Goal, Vars0, Vars) :-
( Goal = switch(Var, _, _) - _ ->
set__insert(Vars0, Var, Vars)
;
Vars = Vars0
).
:- pred pd_util__get_branch_vars(module_info::in, hlds_goal::in,
list(instmap_delta)::in, instmap::in, int::in,
pd_var_info::in, pd_var_info::out) is semidet.
pd_util__get_branch_vars(_, _, [], _, _, Extra, Extra).
pd_util__get_branch_vars(ModuleInfo, Goal, [InstMapDelta | InstMapDeltas],
InstMap, BranchNo, ExtraVars0, ExtraVars) :-
AddExtraInfoVars =
lambda([ChangedVar::in, Vars0::in, Vars::out] is det, (
(
instmap__lookup_var(InstMap, ChangedVar, VarInst),
instmap_delta_search_var(InstMapDelta,
ChangedVar, DeltaVarInst),
inst_is_bound_to_functors(ModuleInfo,
DeltaVarInst, [_]),
\+ inst_is_bound_to_functors(ModuleInfo,
VarInst, [_])
->
( map__search(Vars0, ChangedVar, Set0) ->
set__insert(Set0, BranchNo, Set)
;
set__singleton_set(Set, BranchNo)
),
map__set(Vars0, ChangedVar, Set, Vars)
;
Vars = Vars0
)
)),
instmap_delta_changed_vars(InstMapDelta, ChangedVars),
set__to_sorted_list(ChangedVars, ChangedVarsList),
list__foldl(AddExtraInfoVars, ChangedVarsList, ExtraVars0, ExtraVars1),
% We have extra information about a switched-on variable
% at the end of each branch.
( Goal = switch(SwitchVar, _, _) - _ ->
( map__search(ExtraVars1, SwitchVar, SwitchVarSet0) ->
set__insert(SwitchVarSet0, BranchNo, SwitchVarSet)
;
set__singleton_set(SwitchVarSet, BranchNo)
),
map__set(ExtraVars1, SwitchVar, SwitchVarSet, ExtraVars2)
;
ExtraVars2 = ExtraVars1
),
NextBranch is BranchNo + 1,
pd_util__get_branch_vars(ModuleInfo, Goal, InstMapDeltas, InstMap,
NextBranch, ExtraVars2, ExtraVars).
% Look at the goals in the branches for extra information.
:- pred pd_util__get_sub_branch_vars_goal(module_info::in, pd_arg_info::in,
list(hlds_goal)::in, vartypes::in, instmap::in,
branch_info_map(prog_var)::in, branch_info_map(prog_var)::out,
module_info::out) is det.
pd_util__get_sub_branch_vars_goal(Module, _, [], _, _, Vars, Vars, Module).
pd_util__get_sub_branch_vars_goal(ModuleInfo0, ProcArgInfo, [Goal | GoalList],
VarTypes, InstMap0, Vars0, SubVars, ModuleInfo) :-
Goal = GoalExpr - GoalInfo,
( GoalExpr = if_then_else(_, Cond, Then, Else) ->
Cond = _ - CondInfo,
goal_info_get_instmap_delta(CondInfo, CondDelta),
instmap__apply_instmap_delta(InstMap0, CondDelta, InstMap1),
goal_to_conj_list(Then, ThenList),
pd_util__examine_branch(ModuleInfo0, ProcArgInfo, 1, ThenList,
VarTypes, InstMap1, Vars0, Vars1),
goal_to_conj_list(Else, ElseList),
pd_util__examine_branch(ModuleInfo0, ProcArgInfo, 2, ElseList,
VarTypes, InstMap0, Vars1, Vars2),
ModuleInfo1 = ModuleInfo0
; GoalExpr = disj(Goals) ->
pd_util__examine_branch_list(ModuleInfo0, ProcArgInfo,
1, Goals, VarTypes, InstMap0, Vars0, Vars2),
ModuleInfo1 = ModuleInfo0
; GoalExpr = switch(Var, _, Cases) ->
pd_util__examine_case_list(ModuleInfo0, ProcArgInfo, 1, Var,
Cases, VarTypes, InstMap0, Vars0, Vars2, ModuleInfo1)
;
ModuleInfo1 = ModuleInfo0,
Vars2 = Vars0
),
goal_info_get_instmap_delta(GoalInfo, InstMapDelta),
instmap__apply_instmap_delta(InstMap0, InstMapDelta, InstMap),
pd_util__get_sub_branch_vars_goal(ModuleInfo1, ProcArgInfo, GoalList,
VarTypes, InstMap, Vars2, SubVars, ModuleInfo).
:- pred pd_util__examine_branch_list(module_info::in, pd_arg_info::in, int::in,
list(hlds_goal)::in, vartypes::in, instmap::in,
branch_info_map(prog_var)::in, branch_info_map(prog_var)::out) is det.
pd_util__examine_branch_list(_, _, _, [], _, _, Vars, Vars).
pd_util__examine_branch_list(ModuleInfo, ProcArgInfo, BranchNo, [Goal | Goals],
VarTypes, InstMap, Vars0, Vars) :-
goal_to_conj_list(Goal, GoalList),
pd_util__examine_branch(ModuleInfo, ProcArgInfo, BranchNo, GoalList,
VarTypes, InstMap, Vars0, Vars1),
NextBranch is BranchNo + 1,
pd_util__examine_branch_list(ModuleInfo, ProcArgInfo, NextBranch,
Goals, VarTypes, InstMap, Vars1, Vars).
:- pred pd_util__examine_case_list(module_info::in, pd_arg_info::in, int::in,
prog_var::in, list(case)::in, vartypes::in, instmap::in,
branch_info_map(prog_var)::in,
branch_info_map(prog_var)::out, module_info::out) is det.
pd_util__examine_case_list(Module, _, _, _, [], _, _, Vars, Vars, Module).
pd_util__examine_case_list(ModuleInfo0, ProcArgInfo, BranchNo, Var,
[case(ConsId, Goal) | Goals], VarTypes, InstMap,
Vars0, Vars, ModuleInfo) :-
map__lookup(VarTypes, Var, Type),
instmap__bind_var_to_functor(Var, Type, ConsId, InstMap, InstMap1,
ModuleInfo0, ModuleInfo1),
goal_to_conj_list(Goal, GoalList),
pd_util__examine_branch(ModuleInfo1, ProcArgInfo, BranchNo, GoalList,
VarTypes, InstMap1, Vars0, Vars1),
NextBranch is BranchNo + 1,
pd_util__examine_case_list(ModuleInfo1, ProcArgInfo, NextBranch,
Var, Goals, VarTypes, InstMap, Vars1, Vars, ModuleInfo).
:- pred pd_util__examine_branch(module_info::in, pd_arg_info::in, int::in,
list(hlds_goal)::in, vartypes::in, instmap::in,
branch_info_map(prog_var)::in, branch_info_map(prog_var)::out)
is det.
pd_util__examine_branch(_, _, _, [], _, _, Vars, Vars).
pd_util__examine_branch(ModuleInfo, ProcArgInfo, BranchNo,
[Goal | Goals], VarTypes, InstMap, Vars0, Vars) :-
( Goal = call(PredId, ProcId, Args, _, _, _) - _ ->
(
map__search(ProcArgInfo, proc(PredId, ProcId),
ThisProcArgInfo)
->
pd_util__convert_branch_info(ThisProcArgInfo,
Args, BranchInfo),
BranchInfo = pd_branch_info(Vars1, _, _),
map__keys(Vars1, ExtraVars1),
combine_vars(Vars0, BranchNo, ExtraVars1, Vars3)
;
Vars3 = Vars0
)
;
set__init(LeftVars0),
map__init(Vars1),
pd_util__get_branch_vars_goal_2(ModuleInfo, [Goal], no,
VarTypes, InstMap, LeftVars0, _, Vars1, Vars2)
->
map__keys(Vars2, ExtraVars2),
combine_vars(Vars0, BranchNo, ExtraVars2, Vars3)
;
Vars3 = Vars0
),
Goal = _ - GoalInfo,
goal_info_get_instmap_delta(GoalInfo, InstMapDelta),
instmap__apply_instmap_delta(InstMap, InstMapDelta, InstMap1),
pd_util__examine_branch(ModuleInfo, ProcArgInfo, BranchNo,
Goals, VarTypes, InstMap1, Vars3, Vars).
:- pred combine_vars(branch_info_map(prog_var)::in, int::in, list(prog_var)::in,
branch_info_map(prog_var)::out) is det.
combine_vars(Vars, _, [], Vars).
combine_vars(Vars0, BranchNo, [ExtraVar | ExtraVars], Vars) :-
( map__search(Vars0, ExtraVar, Branches0) ->
set__insert(Branches0, BranchNo, Branches),
map__det_update(Vars0, ExtraVar, Branches, Vars1)
;
set__singleton_set(Branches, BranchNo),
map__det_insert(Vars0, ExtraVar, Branches, Vars1)
),
combine_vars(Vars1, BranchNo, ExtraVars, Vars).
%-----------------------------------------------------------------------------%
pd_util__requantify_goal(Goal0, NonLocals, Goal) -->
pd_info_get_proc_info(ProcInfo0),
{ proc_info_varset(ProcInfo0, VarSet0) },
{ proc_info_vartypes(ProcInfo0, VarTypes0) },
{ implicitly_quantify_goal(Goal0, VarSet0, VarTypes0, NonLocals,
Goal, VarSet, VarTypes, _) },
{ proc_info_set_varset(ProcInfo0, VarSet, ProcInfo1) },
{ proc_info_set_vartypes(ProcInfo1, VarTypes, ProcInfo) },
pd_info_set_proc_info(ProcInfo).
pd_util__recompute_instmap_delta(Goal0, Goal) -->
pd_info_get_module_info(ModuleInfo0),
pd_info_get_instmap(InstMap),
pd_info_get_proc_info(ProcInfo),
{ proc_info_vartypes(ProcInfo, VarTypes) },
{ proc_info_inst_varset(ProcInfo, InstVarSet) },
{ recompute_instmap_delta(yes, Goal0, Goal, VarTypes, InstVarSet,
InstMap, ModuleInfo0, ModuleInfo) },
pd_info_set_module_info(ModuleInfo).
%-----------------------------------------------------------------------------%
% inst_MSG(InstA, InstB, InstC):
% The information in InstC is the minimum of the
% information in InstA and InstB. Where InstA and
% InstB specify a binding (free or bound), it must be
% the same in both.
% Round off bindings to different constructors to ground.
% When in doubt, fail. This will only result in less
% optimization, not loss of correctness.
inst_MSG(InstA, InstB, ModuleInfo, Inst) :-
set__init(Expansions),
inst_MSG_1(InstA, InstB, Expansions, ModuleInfo, Inst).
:- type expansions == set(pair(inst)).
:- pred inst_MSG_1(inst, inst, expansions, module_info, inst).
:- mode inst_MSG_1(in, in, in, in, out) is semidet.
inst_MSG_1(InstA, InstB, Expansions, ModuleInfo, Inst) :-
( InstA = InstB ->
Inst = InstA
;
% We don't do recursive MSGs (we could,
% but it's probably not worth it).
\+ set__member(InstA - InstB, Expansions),
inst_expand(ModuleInfo, InstA, InstA2),
inst_expand(ModuleInfo, InstB, InstB2),
set__insert(Expansions, InstA - InstB, Expansions1),
( InstB2 = not_reached ->
Inst = InstA2
;
inst_MSG_2(InstA2, InstB2, Expansions1,
ModuleInfo, Inst)
)
).
:- pred inst_MSG_2(inst, inst, expansions, module_info, inst).
:- mode inst_MSG_2(in, in, in, in, out) is semidet.
inst_MSG_2(any(_), any(Uniq), _, _, any(Uniq)).
inst_MSG_2(free, free, _M, _, free).
inst_MSG_2(bound(_, ListA), bound(UniqB, ListB), Expansions,
ModuleInfo, Inst) :-
bound_inst_list_MSG(ListA, ListB, Expansions,
ModuleInfo, UniqB, ListB, Inst).
inst_MSG_2(bound(_, _), ground(UniqB, InfoB), _, _, ground(UniqB, InfoB)).
% fail here, since the increasing inst size could
% cause termination problems for deforestation.
inst_MSG_2(ground(_, _), bound(_UniqB, _ListB), _, _, _) :- fail.
inst_MSG_2(ground(_, _), ground(UniqB, InfoB), _, _, ground(UniqB, InfoB)).
inst_MSG_2(abstract_inst(Name, ArgsA), abstract_inst(Name, ArgsB),
Expansions, ModuleInfo, abstract_inst(Name, Args)) :-
inst_list_MSG(ArgsA, ArgsB, Expansions, ModuleInfo, Args).
inst_MSG_2(not_reached, Inst, _, _, Inst).
:- pred inst_list_MSG(list(inst), list(inst), expansions,
module_info, list(inst)).
:- mode inst_list_MSG(in, in, in, in, out) is semidet.
inst_list_MSG([], [], _, _ModuleInfo, []).
inst_list_MSG([ArgA | ArgsA], [ArgB | ArgsB], Expansions,
ModuleInfo, [Arg | Args]) :-
inst_MSG_1(ArgA, ArgB, Expansions, ModuleInfo, Arg),
inst_list_MSG(ArgsA, ArgsB, Expansions, ModuleInfo, Args).
% bound_inst_list_MSG(Xs, Ys, ModuleInfo, Zs):
% The two input lists Xs and Ys must already be sorted.
% If any of the functors in Xs are not in Ys or vice
% versa, the final inst is ground, unless either of the insts
% contains any or the insts are the insts are not uniformly
% unique (or non-unique), in which case we fail, since
% the msg operation could introduce mode errors.
% Otherwise, the take the msg of the argument insts.
:- pred bound_inst_list_MSG(list(bound_inst), list(bound_inst),
expansions, module_info, uniqueness, list(bound_inst), inst).
:- mode bound_inst_list_MSG(in, in, in, in, in, in, out) is semidet.
bound_inst_list_MSG(Xs, Ys, Expansions, ModuleInfo, Uniq, List, Inst) :-
(
Xs = [],
Ys = []
->
Inst = bound(Uniq, [])
;
Xs = [X | Xs1],
Ys = [Y | Ys1],
X = functor(ConsId, ArgsX),
Y = functor(ConsId, ArgsY)
->
inst_list_MSG(ArgsX, ArgsY, Expansions, ModuleInfo, Args),
Z = functor(ConsId, Args),
bound_inst_list_MSG(Xs1, Ys1, Expansions,
ModuleInfo, Uniq, List, Inst1),
( Inst1 = bound(Uniq, Zs) ->
Inst = bound(Uniq, [Z | Zs])
;
Inst = Inst1
)
;
% Check that it's OK to round off the uniqueness information.
(
Uniq = shared,
inst_is_ground(ModuleInfo, bound(shared, List)),
inst_is_not_partly_unique(ModuleInfo,
bound(shared, List))
;
Uniq = unique,
inst_is_unique(ModuleInfo, bound(unique, List))
),
\+ inst_contains_nonstandard_func_mode(bound(shared, List),
ModuleInfo),
Inst = ground(Uniq, none)
).
%-----------------------------------------------------------------------------%
pd_util__inst_size(ModuleInfo, Inst, Size) :-
set__init(Expansions),
pd_util__inst_size_2(ModuleInfo, Inst, Expansions, Size).
:- pred pd_util__inst_size_2(module_info::in, (inst)::in,
set(inst_name)::in, int::out) is det.
pd_util__inst_size_2(_, not_reached, _, 0).
pd_util__inst_size_2(_, any(_), _, 0).
pd_util__inst_size_2(_, free, _, 0).
pd_util__inst_size_2(_, free(_), _, 0).
pd_util__inst_size_2(_, ground(_, _), _, 0).
pd_util__inst_size_2(_, inst_var(_), _, 0).
pd_util__inst_size_2(ModuleInfo, constrained_inst_vars(_, Inst), Expansions,
Size) :-
pd_util__inst_size_2(ModuleInfo, Inst, Expansions, Size).
pd_util__inst_size_2(_, abstract_inst(_, _), _, 0).
pd_util__inst_size_2(ModuleInfo, defined_inst(InstName), Expansions0, Size) :-
( set__member(InstName, Expansions0) ->
Size = 1
;
set__insert(Expansions0, InstName, Expansions),
inst_lookup(ModuleInfo, InstName, Inst),
pd_util__inst_size_2(ModuleInfo, Inst, Expansions, Size)
).
pd_util__inst_size_2(ModuleInfo, bound(_, Functors), Expansions, Size) :-
pd_util__bound_inst_size(ModuleInfo, Functors, Expansions, 1, Size).
:- pred pd_util__bound_inst_size(module_info::in, list(bound_inst)::in,
set(inst_name)::in, int::in, int::out) is det.
pd_util__bound_inst_size(_, [], _, Size, Size).
pd_util__bound_inst_size(ModuleInfo, [functor(_, ArgInsts) | Insts],
Expansions, Size0, Size) :-
pd_util__inst_list_size(ModuleInfo, ArgInsts,
Expansions, Size0, Size1),
Size2 is Size1 + 1,
pd_util__bound_inst_size(ModuleInfo, Insts, Expansions, Size2, Size).
pd_util__inst_list_size(ModuleInfo, Insts, Size) :-
set__init(Expansions),
pd_util__inst_list_size(ModuleInfo, Insts, Expansions, 0, Size).
:- pred pd_util__inst_list_size(module_info::in, list(inst)::in,
set(inst_name)::in, int::in, int::out) is det.
pd_util__inst_list_size(_, [], _, Size, Size).
pd_util__inst_list_size(ModuleInfo, [Inst | Insts],
Expansions, Size0, Size) :-
pd_util__inst_size_2(ModuleInfo, Inst, Expansions, Size1),
Size2 is Size0 + Size1,
pd_util__inst_list_size(ModuleInfo, Insts, Expansions, Size2, Size).
%-----------------------------------------------------------------------------%
pd_util__goals_match(_ModuleInfo, OldGoal, OldArgs, OldArgTypes,
NewGoal, NewVarTypes, OldNewRenaming, TypeSubn) :-
goal_to_conj_list(OldGoal, OldGoalList),
goal_to_conj_list(NewGoal, NewGoalList),
map__init(OldNewRenaming0),
pd_util__goals_match_2(OldGoalList, NewGoalList,
OldNewRenaming0, OldNewRenaming),
%
% Check that the goal produces a superset of the outputs of the
% version we are searching for.
%
Search = lambda([K1::in, V1::out] is semidet,
map__search(OldNewRenaming, K1, V1)),
list__map(Search, OldArgs, NewArgs),
NewGoal = _ - NewGoalInfo,
goal_info_get_nonlocals(NewGoalInfo, NewNonLocals),
set__delete_list(NewNonLocals, NewArgs, UnmatchedNonLocals),
set__empty(UnmatchedNonLocals),
% Check that argument types of NewGoal are subsumed by
% those of OldGoal.
pd_util__collect_matching_arg_types(OldArgs, OldArgTypes,
OldNewRenaming, [], MatchingArgTypes),
map__apply_to_list(NewArgs, NewVarTypes, NewArgTypes),
type_list_subsumes(MatchingArgTypes, NewArgTypes, TypeSubn).
:- pred pd_util__collect_matching_arg_types(list(prog_var)::in, list(type)::in,
map(prog_var, prog_var)::in,
list(type)::in, list(type)::out) is det.
pd_util__collect_matching_arg_types([], [], _, Types0, Types) :-
list__reverse(Types0, Types).
pd_util__collect_matching_arg_types([_|_], [], _, _, _) :-
error("pd_util__collect_matching_arg_types").
pd_util__collect_matching_arg_types([], [_|_], _, _, _) :-
error("pd_util__collect_matching_arg_types").
pd_util__collect_matching_arg_types([Arg | Args], [Type | Types],
Renaming, MatchingTypes0, MatchingTypes) :-
( map__contains(Renaming, Arg) ->
MatchingTypes1 = [Type | MatchingTypes0]
;
MatchingTypes1 = MatchingTypes0
),
pd_util__collect_matching_arg_types(Args, Types,
Renaming, MatchingTypes1, MatchingTypes).
% Check that the shape of the goals matches, and that there
% is a mapping from the variables in the old goal to the
% variables in the new goal.
:- pred pd_util__goals_match_2(list(hlds_goal)::in,
list(hlds_goal)::in, map(prog_var, prog_var)::in,
map(prog_var, prog_var)::out) is semidet.
pd_util__goals_match_2([], [], R, R).
pd_util__goals_match_2([OldGoal | OldGoals], [NewGoal | NewGoals],
ONRenaming0, ONRenaming) :-
(
(
OldGoal = unify(_, _, _, OldUnification, _) - _,
NewGoal = unify(_, _, _, NewUnification, _) - _,
(
OldUnification = simple_test(OldVar1, OldVar2),
NewUnification = simple_test(NewVar1, NewVar2),
OldArgs = [OldVar1, OldVar2],
NewArgs = [NewVar1, NewVar2]
;
OldUnification = assign(OldVar1, OldVar2),
NewUnification = assign(NewVar1, NewVar2),
OldArgs = [OldVar1, OldVar2],
NewArgs = [NewVar1, NewVar2]
;
OldUnification = construct(OldVar, ConsId,
OldArgs1, _, _, _, _),
NewUnification = construct(NewVar, ConsId,
NewArgs1, _, _, _, _),
OldArgs = [OldVar | OldArgs1],
NewArgs = [NewVar | NewArgs1]
;
OldUnification = deconstruct(OldVar, ConsId,
OldArgs1, _, _, _),
NewUnification = deconstruct(NewVar, ConsId,
NewArgs1, _, _, _),
OldArgs = [OldVar | OldArgs1],
NewArgs = [NewVar | NewArgs1]
)
;
OldGoal = call(PredId, ProcId, OldArgs, _, _, _) - _,
NewGoal = call(PredId, ProcId, NewArgs, _, _, _) - _
;
% We don't need to check the modes here -
% if the goals match and the insts of the argument
% variables match, the modes of the call must
% be the same.
OldGoal = generic_call(OldGenericCall, OldArgs1,
_, Det) - _,
NewGoal = generic_call(NewGenericCall, NewArgs1,
_, Det) - _,
match_generic_call(OldGenericCall, NewGenericCall),
goal_util__generic_call_vars(OldGenericCall,
OldArgs0),
goal_util__generic_call_vars(NewGenericCall,
NewArgs0),
list__append(OldArgs0, OldArgs1, OldArgs),
list__append(NewArgs0, NewArgs1, NewArgs)
)
->
assoc_list__from_corresponding_lists(OldArgs,
NewArgs, ONArgsList),
MapInsert =
lambda([KeyValue::in, Map0::in, Map::out] is semidet, (
KeyValue = Key - Value,
( map__search(Map0, Key, Value0) ->
Value = Value0,
Map = Map0
;
map__det_insert(Map0, Key, Value, Map)
)
)),
list__foldl(MapInsert, ONArgsList, ONRenaming0, ONRenaming1)
;
(
OldGoal = not(OldSubGoal) - _,
NewGoal = not(NewSubGoal) - _
;
OldGoal = some(_, _, OldSubGoal) - _,
NewGoal = some(_, _, NewSubGoal) - _
)
->
goal_to_conj_list(OldSubGoal, OldSubGoalList),
goal_to_conj_list(NewSubGoal, NewSubGoalList),
pd_util__goals_match_2(OldSubGoalList, NewSubGoalList,
ONRenaming0, ONRenaming1)
;
fail
),
pd_util__goals_match_2(OldGoals, NewGoals,
ONRenaming1, ONRenaming).
% Check that two `generic_call' goals are equivalent.
:- pred match_generic_call(generic_call::in, generic_call::in) is semidet.
match_generic_call(higher_order(_, PredOrFunc, Arity),
higher_order(_, PredOrFunc, Arity)).
match_generic_call(class_method(_, MethodNum, ClassId, CallId),
class_method(_, MethodNum, ClassId, CallId)).
match_generic_call(aditi_builtin(Builtin1, CallId),
aditi_builtin(Builtin2, CallId)) :-
match_aditi_builtin(Builtin1, Builtin2).
% Check that two `aditi_builtin' goals are equivalent.
:- pred match_aditi_builtin(aditi_builtin::in, aditi_builtin::in) is semidet.
% The other fields are all implied by the pred_proc_id.
match_aditi_builtin(aditi_call(PredProcId, _, _, _),
aditi_call(PredProcId, _, _, _)).
match_aditi_builtin(aditi_tuple_insert_delete(InsertDelete, PredId),
aditi_tuple_insert_delete(InsertDelete, PredId)).
% The syntax used does not change the result of the call.
match_aditi_builtin(aditi_insert_delete_modify(Op, PredId, _),
aditi_insert_delete_modify(Op, PredId, _)).
%-----------------------------------------------------------------------------%
pd_util__can_reorder_goals(ModuleInfo, FullyStrict, EarlierGoal, LaterGoal) :-
EarlierGoal = _ - EarlierGoalInfo,
LaterGoal = _ - LaterGoalInfo,
goal_info_get_determinism(EarlierGoalInfo, EarlierDetism),
goal_info_get_determinism(LaterGoalInfo, LaterDetism),
% Check that the reordering would not violate determinism
% correctness by moving a goal out of a single solution context
% by placing a goal which can fail after it.
(
determinism_components(EarlierDetism, can_fail, _)
=>
\+ determinism_components(LaterDetism, _, at_most_many_cc)
),
% Impure goals cannot be reordered.
\+ goal_info_is_impure(EarlierGoalInfo),
\+ goal_info_is_impure(LaterGoalInfo),
pd_util__reordering_maintains_termination(ModuleInfo, FullyStrict,
EarlierGoal, LaterGoal),
%
% Don't reorder the goals if the later goal depends
% on the outputs of the current goal.
%
\+ goal_depends_on_goal(EarlierGoal, LaterGoal),
%
% Don't reorder the goals if the later goal changes the
% instantiatedness of any of the non-locals of the earlier
% goal. This is necessary if the later goal clobbers any
% of the non-locals of the earlier goal, and avoids rerunning
% full mode analysis in other cases.
%
\+ goal_depends_on_goal(LaterGoal, EarlierGoal).
:- pred goal_depends_on_goal(hlds_goal::in, hlds_goal::in) is semidet.
goal_depends_on_goal(_ - GoalInfo1, _ - GoalInfo2) :-
goal_info_get_instmap_delta(GoalInfo1, InstmapDelta1),
instmap_delta_changed_vars(InstmapDelta1, ChangedVars1),
goal_info_get_nonlocals(GoalInfo2, NonLocals2),
set__intersect(ChangedVars1, NonLocals2, Intersection),
\+ set__empty(Intersection).
pd_util__reordering_maintains_termination(ModuleInfo, FullyStrict,
EarlierGoal, LaterGoal) :-
EarlierGoal = _ - EarlierGoalInfo,
LaterGoal = _ - LaterGoalInfo,
goal_info_get_determinism(EarlierGoalInfo, EarlierDetism),
determinism_components(EarlierDetism, EarlierCanFail, _),
goal_info_get_determinism(LaterGoalInfo, LaterDetism),
determinism_components(LaterDetism, LaterCanFail, _),
% If --fully-strict was specified, don't convert
% (can_loop, can_fail) into (can_fail, can_loop).
(
FullyStrict = yes,
\+ goal_cannot_loop(ModuleInfo, EarlierGoal)
->
LaterCanFail = cannot_fail
;
true
),
% Don't convert (can_fail, can_loop) into
% (can_loop, can_fail), since this could worsen
% the termination properties of the program.
( EarlierCanFail = can_fail ->
goal_cannot_loop(ModuleInfo, LaterGoal)
;
true
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%