Files
mercury/compiler/lp_rational.m
Julien Fischer 5f589e98fb Various cleanups for the modules in the compiler directory.
Estimated hours taken: 4
Branches: main

Various cleanups for the modules in the compiler directory.  The are
no changes to algorithms except the replacement of some if-then-elses
that would naturally be switches with switches and the replacement of
most of the calls to error/1.

compiler/*.m:
	Convert calls to error/1 to calls to unexpected/2 or sorry/2 as
	appropriate throughout most or the compiler.

	Fix inaccurate assertion failure messages, e.g. identifying the
	assertion failure as taking place in the wrong module.

	Add :- end_module declarations.

	Fix formatting problems and bring the positioning of comments
	into line with our current coding standards.

	Fix some overlong lines.

	Convert some more modules to 4-space indentation.  Fix some spots
	where previous conversions to 4-space indentation have stuffed
	the formatting of the code up.

	Fix a bunch of typos in comments.

	Use state variables in more places; use library predicates
	from the sv* modules where appropriate.

	Delete unnecessary and duplicate module imports.

	Misc. other small cleanups.
2005-11-17 15:57:34 +00:00

2392 lines
82 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1997-2002, 2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% file: lp_rational.m
% main authors: conway, juliensf, vjteag.
%
% This module contains code for creating and manipulating systems of rational
% linear arithmetic constraints. It provides the following operations:
%
% * optimization (using the simplex method)
%
% * projection (using Fourier elimination).
%
% * an entailment test (using the above linear optimizer.)
%
%-----------------------------------------------------------------------------%
:- module libs.lp_rational.
:- interface.
:- import_module libs.rat.
:- import_module io.
:- import_module list.
:- import_module map.
:- import_module set.
:- import_module std_util.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
%
% Linear constraints over Q^n.
%
:- type constant == rat.
:- type coefficient == rat.
:- type lp_var == var.
:- type lp_vars == list(lp_var).
:- type lp_varset == varset.
:- type lp_term == pair(lp_var, coefficient).
:- type lp_terms == list(lp_term).
% Create a term with a coefficient of 1.
% For use with ho functions.
%
:- func lp_rational.lp_term(lp_var) = lp_term.
:- type operator ---> (=<) ; (=) ; (>=).
% A primitive linear arithmetic constraint.
%
:- type constraint.
% A conjunction of primitive constraints.
%
:- type constraints == list(constraint).
% Create a constraint from the given components.
%
:- func lp_rational.constraint(lp_terms, operator, constant) = constraint.
% Create a constraint from the given components.
% Throws an exception if the resulting constraint is trivially false.
%
:- func lp_rational.non_false_constraint(lp_terms, operator, constant)
= constraint.
% Deconstruct the given constraint.
%
:- pred lp_rational.constraint(constraint::in, lp_terms::out, operator::out,
constant::out) is det.
% As above but throws an exception if the constraint is false.
%
:- pred lp_rational.non_false_constraint(constraint::in, lp_terms::out,
operator::out, constant::out) is det.
% Succeeds iff the given constraint contains a single variable and
% that variable is constrained to be a nonnegative value.
%
:- pred lp_rational.nonneg_constr(constraint::in) is semidet.
% Create a constraint that constrains the argument
% have a non-negative value.
%
:- func lp_rational.make_nonneg_constr(lp_var) = constraint.
% Create a constraint that equates two variables.
%
:- func lp_rational.make_vars_eq_constraint(lp_var, lp_var) = constraint.
% Create constraints of the form:
%
% Var = Constant or Var >= Constant
%
% These functions are useful with higher-order code.
%
:- func lp_rational.make_var_const_eq_constraint(lp_var, rat) = constraint.
:- func lp_rational.make_var_const_gte_constraint(lp_var, rat) = constraint.
% Create a constraint that is trivially false.
%
:- func lp_rational.false_constraint = constraint.
% Create a constraint that is trivially true.
%
:- func lp_rational.true_constraint = constraint.
% Succeeds if the constraint is trivially false.
%
:- pred lp_rational.is_false(constraint::in) is semidet.
% Succeeds if the constraint is trivially true.
%
:- pred lp_rational.is_true(constraint::in) is semidet.
% Takes a list of constraints and looks for equality constraints
% that may be implicit in any inequalities.
%
% NOTE: this is only a syntactic check so it may miss
% some equalities that are implicit in the system.
%
:- pred lp_rational.restore_equalities(constraints::in, constraints::out)
is det.
% This checks if a constraint is entailed by all the others
% in the set. If it is then it is removed from the set.
%
% NOTE: this can be very slow - also due to the order in which
% the constraints are processed it may not produce a minimal
% set.
%
% Fails if the system of constraints is inconsistent.
%
:- pred remove_some_entailed_constraints(lp_varset::in, constraints::in,
constraints::out) is semidet.
% Succeeds iff the given system of constraints is inconsistent.
%
:- pred lp_rational.inconsistent(lp_varset::in, constraints::in) is semidet.
% Remove those constraints from the system whose redundancy can be
% trivially detected.
%
% NOTE: the resulting system of constraints may not be minimal.
%
:- func lp_rational.simplify_constraints(constraints) = constraints.
% substitute_vars(VarsA, VarsB, Constraints0) = Constraints.
% Perform variable substitution on the given system of constriants
% based upon the mapping that is implicit between the corresponding
% elements of the variable lists `VarsA' and `VarsB'.
%
% If length(VarsA) \= length(VarsB) then an exception is thrown.
%
:- func lp_rational.substitute_vars(lp_vars, lp_vars, constraints)
= constraints.
:- func lp_rational.substitute_vars(map(lp_var, lp_var), constraints)
= constraints.
% Make the values of all the variables in the set zero.
%
:- func lp_rational.set_vars_to_zero(set(lp_var), constraints) = constraints.
%-----------------------------------------------------------------------------%
%
% Bounding boxes and other approximations.
%
% Approximate the solution space of a set of constraints using
% a bounding box. If the system is inconsistent then the resulting
% system will also be inconsistent.
%
:- func lp_rational.bounding_box(lp_varset, constraints) = constraints.
% Create non-negativity constraints for all of the variables
% in list of constraints except for the variables specified
% in the argument.
%
:- func lp_rational.nonneg_box(lp_vars, constraints) = constraints.
%-----------------------------------------------------------------------------%
%
% Linear solver.
%
:- type objective == lp_terms.
:- type direction ---> max ; min.
:- type lp_result
---> unbounded
; inconsistent
; satisfiable(rat, map(lp_var, rat)).
% satisfiable(ObjVal, MapFromObjVarsToVals)
% Maximize (or minimize - depending on `direction') `objective'
% subject to the given constraints. The variables in the objective
% and the constraints *must* be from the given `lp_varset'. This
% is passed to the solver so that it can allocate fresh variables
% as required.
%
% The result is `unbounded' if the objective is not bounded by
% the constraints, `inconsistent' if the given constraints are
% inconsistent, or `satisfiable/2' otherwise.
%
:- func lp_rational.solve(constraints, direction, objective, lp_varset)
= lp_result.
%-----------------------------------------------------------------------------%
%
% Projection.
%
:- type projection_result
---> ok(constraints) % projection succeeded.
; inconsistent % matrix was inconsistent.
; aborted. % ran out of time/space and backed out.
% project(Constraints0, Vars, Varset) = Result:
% Takes a list of constraints, `Constraints0', and eliminates the
% variables in the list `Vars' using Fourier elimination.
%
% Returns `ok(Constraints)' if `Constraints' is the projection
% of `Constraints0' over `Vars'. Returns `inconsistent' if
% `Constraints0' is inconsistent. Returns `aborted' if the
% intermediate matrices grow too large while performing Fourier
% elimination.
%
% NOTE: this does not always detect that a constraint
% set is inconsistent, so callers to this procedure may need
% to do a consistency check on the result if they require
% the resulting system of constraints to be consistent.
%
:- func lp_rational.project(lp_vars, lp_varset, constraints)
= projection_result.
:- pred lp_rational.project(lp_vars::in, lp_varset::in, constraints::in,
projection_result::out) is det.
% project(Vars, Varset, maybe(MaxMatrixSize), Matrix, Result).
% Same as above but if the size of the matrix ever exceeds
% `MaxMatrixSize' we back out of the computation.
%
:- pred lp_rational.project(lp_vars::in, lp_varset::in, maybe(int)::in,
constraints::in, projection_result::out) is det.
%-----------------------------------------------------------------------------%
%
% Entailment.
%
:- type entailment_result
---> entailed
; not_entailed
; inconsistent.
% entailed(Varset, Cs, C).
% Determines if the constraint `C' is implied by the set of
% constraints `Cs'. Uses the simplex method to find the point `P'
% satisfying `Cs' which maximizes (if `C' contains '=<') or
% minimizes (if `C' contains '>=') a function parallel to `C'.
% Returns `entailed' if `P' satisfies `C', `not_entailed' if it does
% not and `inconsistent' if `Cs' is not a consistent system of
% constraints.
%
% This assumes that all variables are non-negative.
%
:- func lp_rational.entailed(lp_varset, constraints, constraint) =
entailment_result.
% entailed(Varset, Cs, C).
% As above but fails if `C' is not implied by `Cs' and
% throws an exception if `Cs' is inconsistent.
%
:- pred lp_rational.entailed(lp_varset::in, constraints::in,
constraint::in) is semidet.
%-----------------------------------------------------------------------------%
%
% Stuff for intermodule optimization.
%
% A function that converts an lp_var into a string.
%
:- type output_var == (func(lp_var) = string).
% Write out the constraints in a form we can read in using the
% term parser from the standard library.
%
:- pred lp_rational.output_constraints(output_var::in, constraints::in,
io::di, io::uo) is det.
%-----------------------------------------------------------------------------%
%
% Debugging predicates.
%
% Print out the constraints using the names in the varset. If the
% variable has no name it will be given the name Temp<n>, where <n>
% is the variable number.
%
:- pred lp_rational.write_constraints(constraints::in, lp_varset::in, io::di,
io::uo) is det.
% Return the set of variables that are present in a list of constraints.
%
% XXX This shouldn't be exported but it's currently needed by the
% workaround for the problem with head variables in term_constr_fixpoint.m
%
:- func get_vars_from_constraints(constraints) = set(lp_var).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module libs.compiler_util.
:- import_module assoc_list.
:- import_module bool.
:- import_module exception.
:- import_module int.
:- import_module string.
:- import_module svmap.
:- import_module svset.
%-----------------------------------------------------------------------------%
%
% Constraints
%
% The following properties should hold for each constraint:
% - there is one instance of each variable in the term list.
% - the terms are sorted in increasing order by variable.
% - the terms should be normalized so that the leading term
% has a coefficient of +/-1 (unless all terms have a coefficient
% of zero - in which case the term list is empty).
% - variables with coefficient zero are *not* included in the list
% of terms.
:- type constraint
---> lte(lp_terms, constant) % sumof(Terms) =< Constant
; eq(lp_terms, constant) % sumof(Terms) = Constant
; gte(lp_terms, constant). % sumof(Terms) >= Constant
%-----------------------------------------------------------------------------%
%
% Procedures for constructing/deconstructing constraints.
%
lp_term(Var) = Var - one.
constraint([], (=<), Const) = lte([], Const).
constraint([], (=), Const) = eq([], Const).
constraint([], (>=), Const) = lte([], -Const).
constraint(Terms0 @ [_|_], (=<), Const0) = Constraint :-
Terms1 = sum_like_terms(Terms0),
normalize_terms_and_const(yes, Terms1, Const0, Terms, Const),
Constraint = lte(Terms, Const).
constraint(Terms0 @ [_|_], (=) , Const0) = Constraint :-
Terms1 = sum_like_terms(Terms0),
normalize_terms_and_const(no, Terms1, Const0, Terms, Const),
Constraint = eq(Terms, Const).
constraint(Terms0 @ [_|_], (>=), Const0) = Constraint :-
Terms1 = sum_like_terms(Terms0),
normalize_terms_and_const(yes, Terms1, Const0, Terms, Const),
Constraint = lte(negate_lp_terms(Terms), -Const).
% This is for internal use only - it builds a constraint out
% of the parts but does *not* attempt to perform any
% standardization. It is intended for use in operations
% such as normalization.
%
:- func unchecked_constraint(lp_terms, operator, constant) = constraint.
unchecked_constraint(Terms, (=<), Constant) = lte(Terms, Constant).
unchecked_constraint(Terms, (=), Constant) = eq(Terms, Constant).
unchecked_constraint(Terms, (>=), Constant) = gte(Terms, Constant).
:- func sum_like_terms(lp_terms) = lp_terms.
sum_like_terms(Terms) = map.to_assoc_list(lp_terms_to_map(Terms)).
% Convert an association list of lp_vars and coefficients to a
% map of the same. If there are duplicate keys in the list make
% sure that eventual value in the map is the sum of the two
% coefficients. Also if a coefficient is (or ends up being) zero
% make sure that the variable doesn't end up in the resulting map.
%
:- func lp_terms_to_map(assoc_list(lp_var, coefficient)) =
map(lp_var, coefficient).
lp_terms_to_map(Terms) = Map :-
list.foldl(lp_terms_to_map_2, Terms, map.init, Map).
:- pred lp_terms_to_map_2(pair(lp_var, coefficient)::in,
map(lp_var, coefficient)::in, map(lp_var, coefficient)::out) is det.
lp_terms_to_map_2(Var - Coeff0, !Map) :-
( MapCoeff = !.Map ^ elem(Var) ->
Coeff = MapCoeff + Coeff0,
( if Coeff = zero
then svmap.delete(Var, !Map)
else svmap.set(Var, Coeff, !Map)
)
;
( if Coeff0 \= zero
then svmap.set(Var, Coeff0, !Map)
else true
)
).
non_false_constraint(Terms, Op, Constant) = Constraint :-
Constraint = constraint(Terms, Op, Constant),
( if is_false(Constraint)
then unexpected(this_file,
"non_false_constraints/3: false constraint.")
else true
).
constraint(lte(Terms, Constant), Terms, (=<), Constant).
constraint(eq(Terms, Constant), Terms, (=), Constant).
constraint(gte(Terms, Constant), Terms, (>=), Constant).
non_false_constraint(Constraint, Terms, Operator, Constant) :-
( if is_false(Constraint)
then unexpected(this_file,
"non_false_constraint/4: false_constraint.")
else true
),
(
Constraint = lte(Terms, Constant),
Operator = (=<)
;
Constraint = eq(Terms, Constant),
Operator = (=)
;
Constraint = gte(_, _),
unexpected(this_file, "non_false_constraint/4: gte encountered.")
).
:- func lp_terms(constraint) = lp_terms.
lp_terms(lte(Terms, _)) = Terms.
lp_terms(eq(Terms, _)) = Terms.
lp_terms(gte(Terms, _)) = Terms.
:- func constant(constraint) = constant.
constant(lte(_, Constant)) = Constant.
constant(eq(_, Constant)) = Constant.
constant(gte(_, Constant)) = Constant.
:- func operator(constraint) = operator.
operator(lte(_, _)) = (=<).
operator(eq(_, _)) = (=).
operator(gte(_,_)) = unexpected(this_file, "operator/1: gte.").
:- func negate_operator(operator) = operator.
negate_operator((=<)) = (>=).
negate_operator((=)) = (=).
negate_operator((>=)) = (=<).
nonneg_constr(lte([_ - (-rat.one)], rat.zero)).
nonneg_constr(gte(_, _)) :-
unexpected(this_file, "nonneg_constr/1: gte.").
make_nonneg_constr(Var) = constraint([Var - (-rat.one)], (=<), rat.zero).
make_vars_eq_constraint(Var1, Var2) =
constraint([Var1 - rat.one, Var2 - (-rat.one)], (=), rat.zero).
make_var_const_eq_constraint(Var, Constant) =
constraint([Var - rat.one], (=), Constant).
make_var_const_gte_constraint(Var, Constant) =
constraint([Var - rat.one], (>=), Constant).
true_constraint = eq([], rat.zero).
false_constraint = eq([], rat.one).
is_false(gte([], Const)) :- Const > rat.zero.
is_false(lte([], Const)) :- Const < rat.zero.
is_false(eq([], Const)) :- Const \= rat.zero.
is_true(gte([], Const)) :- Const =< rat.zero.
is_true(lte([], Const)) :- Const >= rat.zero.
is_true(eq([], Const)) :- Const = rat.zero.
% Put each constraint in the list in standard form (see below).
%
:- func lp_rational.standardize_constraints(constraints) = constraints.
standardize_constraints(Constraints) =
list.map(standardize_constraint, Constraints).
% Put a constraint into standard form. Every constraint
% has its terms list in increasing order of variable name
% and then multiplied so that the absolute value of the leading
% coefficient is one. (>=) is converted to (=<) by multiplying
% through by negative one. (=) constraints should have an
% initial coefficient of (positive) 1.
%
:- func lp_rational.standardize_constraint(constraint) = constraint.
standardize_constraint(gte(Terms0, Const0)) = Constraint :-
normalize_terms_and_const(yes, Terms0, Const0, Terms, Const),
Constraint = lte(negate_lp_terms(Terms), -Const).
standardize_constraint(eq(Terms0, Const0)) = eq(Terms, Const) :-
normalize_terms_and_const(no, Terms0, Const0, Terms, Const).
standardize_constraint(lte(Terms0, Const0)) = lte(Terms, Const) :-
normalize_terms_and_const(yes, Terms0, Const0, Terms, Const).
% Sort the list of terms in ascending order by variable
% and then multiply through so that the first term has a
% coefficient of one or negative one. If the first argument
% is `yes' then we multiply through by the reciprocal of the
% absolute value of the coefficient, otherwise we multiply through
% by the reciprocal of the value.
%
:- pred normalize_terms_and_const(bool::in, lp_terms::in, constant::in,
lp_terms::out, constant::out) is det.
normalize_terms_and_const(AbsVal, !.Terms, !.Const, !:Terms, !:Const) :-
CompareTerms = (func(VarA - _, VarB - _) = Result :-
compare(Result, VarA, VarB)
),
!:Terms = list.sort(CompareTerms, !.Terms),
( if !.Terms = [_ - Coefficient0 | _]
then
(
AbsVal = yes,
Coefficient = rat.abs(Coefficient0)
;
AbsVal = no,
Coefficient = Coefficient0
),
( if Coefficient = rat.zero
then unexpected(this_file,
"normalize_term_and_const/5: zero coefficient.")
else true
),
DivideBy = (func(Var - Coeff) = Var - (Coeff / Coefficient)),
!:Terms = list.map(DivideBy, !.Terms),
!:Const = !.Const / Coefficient
else true
).
% Succeeds iff the constraint is implied by the
% assumption that all variables are non-negative *and* the constraint
% is not one used to force non-negativity of the variables.
%
:- pred obvious_constraint(constraint::in) is semidet.
obvious_constraint(lte(Terms, Constant)) :-
Constant >= rat.zero,
list.length(Terms) >= 2,
all [Term] list.member(Term, Terms) => snd(Term) < zero.
obvious_constraint(gte(Terms, Constant)) :-
Constant =< rat.zero,
list.length(Terms) >= 2,
all [Term] list.member(Term, Terms) => snd(Term) > zero.
inconsistent(Vars, Constraints @ [Constraint | _]) :-
(
is_false(Constraint)
;
(
Constraint = lte([Term | _], _)
;
Constraint = eq([Term | _] , _)
;
Constraint = gte([Term | _], _)
),
DummyObjective = [Term],
Result = lp_rational.solve(Constraints, max, DummyObjective, Vars),
Result = inconsistent
).
simplify_constraints(Constraints) = remove_weaker(remove_trivial(Constraints)).
:- func remove_trivial(constraints) = constraints.
remove_trivial([]) = [].
remove_trivial([Constraint | Constraints]) = Result :-
( is_false(Constraint) ->
Result = [ false_constraint ]
;
Result0 = remove_trivial(Constraints),
( Result0 = [C], is_false(C) ->
Result = Result0
;
% Remove the constraint if it is trivially true or the result
% of all the variables being non-negative.
( ( is_true(Constraint) ; obvious_constraint(Constraint) ) ->
Result = Result0
;
Result = [ Constraint | Result0 ]
)
)
).
:- func remove_weaker(constraints) = constraints.
remove_weaker([]) = [].
remove_weaker([C | Cs0]) = Result :-
list.foldl2(remove_weaker_2(C), Cs0, [], Cs, yes, Keep),
Result0 = remove_weaker(Cs),
(
Keep = yes,
Result = [C | Result0]
;
Keep = no,
Result = Result0
).
:- pred remove_weaker_2(constraint::in, constraint::in, constraints::in,
constraints::out, bool::in, bool::out) is det.
remove_weaker_2(A, B, !Acc, !Keep) :-
( is_stronger(A, B) -> true
; is_stronger(B, A) -> list.cons(B, !Acc), !:Keep = no
; list.cons(B, !Acc)
).
:- pred is_stronger(constraint::in, constraint::in) is semidet.
is_stronger(eq(Terms, Const), gte(Terms, Const)).
is_stronger(eq(Terms, Const), lte(Terms, Const)).
is_stronger(eq(Terms, Const), gte(negate_lp_terms(Terms), -Const)).
is_stronger(eq(Terms, Const), lte(negate_lp_terms(Terms), -Const)).
is_stronger(lte([Var - (-one)], ConstA), lte([Var - (-one)], ConstB)) :-
ConstA =< zero, ConstA =< ConstB.
is_stronger(eq(Terms, ConstA), lte(negate_lp_terms(Terms), ConstB)) :-
ConstA >= (-one) * ConstB.
is_stronger(lte(Terms, ConstA), lte(Terms, ConstB)) :-
ConstB =< zero, ConstA =< ConstB.
substitute_vars(Old, New, Constraints0) = Constraints :-
SubstMap = map.from_corresponding_lists(Old, New),
Constraints = list.map(substitute_vars_2(SubstMap), Constraints0).
substitute_vars(SubstMap, Constraints0) = Constraints :-
Constraints = list.map(substitute_vars_2(SubstMap), Constraints0).
:- func substitute_vars_2(map(lp_var, lp_var), constraint) = constraint.
substitute_vars_2(SubstMap, lte(Terms0, Const)) = Result :-
Terms = list.map(substitute_term(SubstMap), Terms0),
Result = lte(sum_like_terms(Terms), Const).
substitute_vars_2(SubstMap, eq(Terms0, Const)) = Result :-
Terms = list.map(substitute_term(SubstMap), Terms0),
Result = eq(sum_like_terms(Terms), Const).
substitute_vars_2(_, gte(_, _)) =
unexpected(this_file, "substitute_vars_2/2: gte.").
:- func substitute_term(map(lp_var, lp_var), lp_term) = lp_term.
substitute_term(SubstMap, Var - Coeff) = SubstMap ^ det_elem(Var) - Coeff.
lp_rational.set_vars_to_zero(Vars, Constraints) =
list.map(set_vars_to_zero_2(Vars), Constraints).
:- func set_vars_to_zero_2(set(lp_var), constraint) = constraint.
set_vars_to_zero_2(Vars, lte(Terms0, Const)) = lte(Terms, Const) :-
Terms = set_terms_to_zero(Vars, Terms0).
set_vars_to_zero_2(Vars, eq(Terms0, Const)) = eq(Terms, Const) :-
Terms = set_terms_to_zero(Vars, Terms0).
set_vars_to_zero_2(Vars, gte(Terms0, Const)) = gte(Terms, Const) :-
Terms = set_terms_to_zero(Vars, Terms0).
:- func set_terms_to_zero(set(lp_var), lp_terms) = lp_terms.
set_terms_to_zero(Vars, Terms0) = Terms :-
IsNonZero = (pred(Term::in) is semidet :-
Term = Var - _Coeff,
not set.member(Var, Vars)
),
Terms = list.filter(IsNonZero, Terms0).
%-----------------------------------------------------------------------------%
%
% Bounding boxes and other weaker approximations of the convex union.
%
bounding_box(Varset, Constraints) = BoundingBox :-
Vars = set.to_sorted_list(get_vars_from_constraints(Constraints)),
BoundingBox = list.foldl((func(Var, Constrs0) = Constrs :-
Result = lp_rational.project([Var], Varset, Constrs0),
(
Result = inconsistent,
Constrs = [false_constraint]
;
% If we needed to abort this computation
% we will just approximate the whole lot
% by `true'.
Result = aborted,
Constrs = []
;
Result = ok(Constrs)
)
), Vars, Constraints).
nonneg_box(VarsToIgnore, Constraints) = NonNegConstraints :-
Vars0 = get_vars_from_constraints(Constraints),
MakeConstr = (pred(Var::in, !.C::in, !:C::out) is det :-
( list.member(Var, VarsToIgnore) ->
true
;
list.cons(make_nonneg_constr(Var), !C)
)
),
set.fold(MakeConstr, Vars0, [], NonNegConstraints).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% Linear solver.
%
% XXX Most of this came from lp.m. We should try to remove a lot of
% nondeterminism here.
:- type lp_info
---> lp(
varset :: lp_varset,
slack_vars :: lp_vars, % - slack variables.
art_vars :: lp_vars % - artificial variables.
).
lp_rational.solve(Constraints, Direction, Objective, Varset) = Result :-
Info0 = lp_info_init(Varset),
solve_2(Constraints, Direction, Objective, Result, Info0, _).
% solve_2(Eqns, Dir, Obj, Res, LPInfo0, LPInfo) takes a list
% of inequalities `Eqns', a direction for optimization `Dir', an
% objective function `Obj' and an lp_info structure `LPInfo0'.
% See inline comments for details on the algorithm.
%
:- pred solve_2(constraints::in, direction::in, objective::in,
lp_result::out, lp_info::in, lp_info::out) is det.
solve_2(!.Constraints, Direction, !.Objective, Result, !LPInfo) :-
%
% Simplify the inequalities and convert them to standard form by
% introducing slack/artificial variables.
%
Obj = !.Objective,
lp_standardize_constraints(!Constraints, !LPInfo),
%
% If we are maximizing the objective function then we need
% to negate all the coefficients in the objective.
%
(
Direction = max,
ObjTerms = negate_constraint(eq(!.Objective, zero)),
!:Objective = lp_terms(ObjTerms)
;
Direction = min
),
Rows = list.length(!.Constraints),
Vars = collect_vars(!.Constraints, Obj),
VarList = set.to_sorted_list(Vars),
Columns = list.length(VarList),
VarNums = number_vars(VarList, 0),
ArtVars = !.LPInfo ^ art_vars,
Tableau0 = init_tableau(Rows, Columns, VarNums),
insert_constraints(!.Constraints, 1, Columns, VarNums,
Tableau0, Tableau),
(
ArtVars = [_|_],
% There are one or more artificial variables, so we use
% the two-phase method for solving the system.
Result0 = two_phase(Obj, !.Objective, ArtVars, VarNums, Tableau)
;
ArtVars = [],
Result0 = one_phase(Obj, !.Objective, VarNums, Tableau)
),
(
Direction = max,
Result = Result0
;
Direction = min,
(
Result0 = unbounded,
Result = Result0
;
Result0 = inconsistent,
Result = Result0
;
Result0 = satisfiable(NOptVal, OptCoffs),
OptVal = -NOptVal,
Result = satisfiable(OptVal, OptCoffs)
)
).
%-----------------------------------------------------------------------------%
:- func one_phase(lp_terms, lp_terms, map(lp_var, int), tableau) = lp_result.
one_phase(Obj0, Obj, VarNums, !.Tableau) = Result :-
insert_terms(Obj, 0, VarNums, !Tableau),
get_vars_from_terms(Obj0, set.init, ObjVars0),
ObjVars = set.to_sorted_list(ObjVars0),
optimize(ObjVars, Result, !.Tableau, _).
%-----------------------------------------------------------------------------%
:- func two_phase(lp_terms, lp_terms, lp_vars, map(lp_var, int), tableau)
= lp_result.
two_phase(Obj0, Obj, ArtVars, VarNums, !.Tableau) = Result :-
%
% Phase 1: minimize the sum of the artificial variables.
%
ArtObj = list.map(lp_term, ArtVars),
insert_terms(ArtObj, 0, VarNums, !Tableau),
ensure_zero_obj_coeffs(ArtVars, !Tableau),
optimize(ArtVars, Result0, !Tableau),
(
Result0 = unbounded,
Result = unbounded
;
Result0 = inconsistent,
Result = inconsistent
;
Result0 = satisfiable(Val, _ArtRes),
( if Val \= zero
then Result = inconsistent
else
fix_basis_and_rem_cols(ArtVars, !.Tableau, Tableau1),
%
% Phase 2:
% Insert the real objective, zero the objective
% coefficients of the basis variables and optimize
% the objective.
%
insert_terms(Obj, 0, VarNums, Tableau1, Tableau2),
BasisVars = get_basis_vars(Tableau2),
ensure_zero_obj_coeffs(BasisVars, Tableau2, Tableau3),
get_vars_from_terms(Obj0, set.init, ObjVars0),
ObjVars = set.to_sorted_list(ObjVars0),
optimize(ObjVars, Result, Tableau3, _)
)
).
%-----------------------------------------------------------------------------%
:- pred lp_standardize_constraints(constraints::in, constraints::out,
lp_info::in, lp_info::out) is det.
lp_standardize_constraints(!Constraints, !LPInfo) :-
list.map_foldl(lp_standardize_constraint, !Constraints, !LPInfo).
% standardize_constraint performs the following operations on a
% constraint:
% - ensures the constant is >= 0
% (multiplying by -1 if necessary)
% - introduces slack and artificial variables
%
:- pred lp_standardize_constraint(constraint::in, constraint::out,
lp_info::in, lp_info::out) is det.
lp_standardize_constraint(Constr0 @ lte(Coeffs, Const), Constr, !LPInfo) :-
( Const < zero ->
Constr1 = negate_constraint(Constr0),
lp_standardize_constraint(Constr1, Constr, !LPInfo)
;
new_slack_var(Var, !LPInfo),
Constr = lte([Var - one | Coeffs], Const)
).
lp_standardize_constraint(Eqn0 @ eq(Coeffs, Const), Eqn, !LPInfo) :-
( Const < zero ->
Eqn1 = negate_constraint(Eqn0),
lp_standardize_constraint(Eqn1, Eqn, !LPInfo)
;
new_art_var(Var, !LPInfo),
Eqn = lte([Var - one | Coeffs], Const)
).
lp_standardize_constraint(Eqn0 @ gte(Coeffs, Const), Eqn, !LPInfo) :-
( Const < zero ->
Eqn1 = negate_constraint(Eqn0),
lp_standardize_constraint(Eqn1, Eqn, !LPInfo)
;
new_slack_var(SVar, !LPInfo),
new_art_var(AVar, !LPInfo),
Eqn = gte([AVar - one, SVar - (-one) | Coeffs], Const)
).
:- func negate_constraint(constraint) = constraint.
negate_constraint(lte(Terms, Const)) = gte(negate_lp_terms(Terms), -Const).
negate_constraint(eq(Terms, Const)) = eq(negate_lp_terms(Terms), -Const).
negate_constraint(gte(Terms, Const)) = lte(negate_lp_terms(Terms), -Const).
:- func negate_lp_terms(lp_terms) = lp_terms.
negate_lp_terms(Terms) = assoc_list.map_values((func(_, X) = (-X)), Terms).
:- func add_var(map(lp_var, rat), lp_var, rat) = map(lp_var, rat).
add_var(Map0, Var, Coeff) = Map :-
Acc1 = ( if Acc0 = Map0 ^ elem(Var) then Acc0 else zero ),
Acc = Acc1 + Coeff,
Map = Map0 ^ elem(Var) := Acc.
%-----------------------------------------------------------------------------%
:- func collect_vars(constraints, objective) = set(lp_var).
collect_vars(Eqns, Obj) = Vars :-
GetVar = (pred(Var::out) is nondet :-
(
list.member(Eqn, Eqns),
Coeffs = lp_terms(Eqn),
list.member(Pair, Coeffs)
;
list.member(Pair, Obj)
),
Var = fst(Pair)
),
std_util.solutions(GetVar, VarList),
Vars = set.list_to_set(VarList).
:- type var_num_map == map(lp_var, int).
:- func number_vars(lp_vars, int) = var_num_map.
number_vars(Vars, N) = VarNum :-
number_vars_2(Vars, N, map.init, VarNum).
:- pred number_vars_2(lp_vars::in, int::in,
var_num_map::in, var_num_map::out) is det.
number_vars_2([], _, !VarNums).
number_vars_2([Var | Vars], N, !VarNums) :-
svmap.det_insert(Var, N, !VarNums),
number_vars_2(Vars, N + 1, !VarNums).
:- pred insert_constraints(constraints::in, int::in, int::in,
var_num_map::in, tableau::in, tableau::out) is det.
insert_constraints([], _, _, _, !Tableau).
insert_constraints([C | Cs], Row, ConstCol, VarNums, !Tableau) :-
insert_terms(lp_terms(C), Row, VarNums, !Tableau),
set_cell(Row, ConstCol, constant(C), !Tableau),
insert_constraints(Cs, Row + 1, ConstCol, VarNums, !Tableau).
:- pred insert_terms(lp_terms::in, int::in, var_num_map::in,
tableau::in, tableau::out) is det.
insert_terms([], _, _, !Tableau).
insert_terms([Var - Const | Coeffs], Row, VarNums, !Tableau) :-
Col = VarNums ^ det_elem(Var),
set_cell(Row, Col, Const, !Tableau),
insert_terms(Coeffs, Row, VarNums, !Tableau).
%-----------------------------------------------------------------------------%
:- pred optimize(lp_vars::in, lp_result::out, tableau::in, tableau::out)
is det.
optimize(ObjVars, Result, !Tableau) :-
simplex(Result0, !Tableau),
(
Result0 = no ,
Result = unbounded
;
Result0 = yes,
ObjVal = !.Tableau ^ elem(0, !.Tableau ^ cols),
ObjMap = extract_objective(ObjVars, !.Tableau),
Result = satisfiable(ObjVal, ObjMap)
).
:- func extract_objective(lp_vars, tableau) = map(lp_var, rat).
extract_objective(ObjVars, Tableau) = Objective :-
Objective = list.foldl(extract_obj_var(Tableau), ObjVars, map.init).
:- func extract_obj_var(tableau, lp_var, map(lp_var, rat))
= map(lp_var, rat).
extract_obj_var(Tableau, Var, Map0) = Map :-
extract_obj_var2(Tableau, Var, Val),
Map = Map0 ^ elem(Var) := Val.
:- pred extract_obj_var2(tableau::in, lp_var::in, rat::out) is det.
extract_obj_var2(Tableau, Var, Val) :-
Col = var_col(Tableau, Var),
GetCell = (pred(Val0::out) is nondet :-
all_rows(Tableau, Row),
one = Tableau ^ elem(Row, Col),
Val0 = Tableau ^ elem(Row, Tableau ^ cols)
),
std_util.solutions(GetCell, Solns),
( if Solns = [Val1] then Val = Val1 else Val = zero ).
:- pred simplex(bool::out, tableau::in, tableau::out) is det.
simplex(Result, !Tableau) :-
AllColumns = all_cols(!.Tableau),
MinAgg = (pred(Col::in, !.Min::in, !:Min::out) is det :-
(
!.Min = no,
MinVal = !.Tableau ^ elem(0, Col),
!:Min = ( if MinVal < zero then yes(Col - MinVal) else no )
;
!.Min = yes(_ - MinVal0),
CellVal = !.Tableau ^ elem(0, Col),
( if CellVal < MinVal0 then !:Min = yes(Col - CellVal) else true )
)
),
std_util.aggregate(AllColumns, MinAgg, no, MinResult),
(
MinResult = no,
Result = yes
;
MinResult = yes(Q - _Val),
AllRows = all_rows(!.Tableau),
MaxAgg = (pred(Row::in, !.Max::in, !:Max::out) is det :-
(
!.Max = no,
MaxVal = !.Tableau ^ elem(Row, Q),
( if MaxVal > zero
then
Col = !.Tableau ^ cols,
MVal = !.Tableau ^ elem(Row, Col),
( if MaxVal = zero
then unexpected(this_file,
"simplex/3: zero divisor.")
else true
),
CVal = MVal / MaxVal,
!:Max = yes(Row - CVal)
else
!:Max = no
)
;
!.Max = yes(_ - MaxVal0),
CellVal = !.Tableau ^ elem(Row, Q),
RHSC = rhs_col(!.Tableau),
MVal = !.Tableau ^ elem(Row, RHSC),
( if CellVal =< zero
then true % CellVal = 0 => multiple optimal sol'ns.
else
( if CellVal = zero
then unexpected(this_file,
"simplex/3: zero divisor.")
else true
),
MaxVal1 = MVal / CellVal,
( if MaxVal1 =< MaxVal0
then !:Max = yes(Row - MaxVal1)
else true
)
)
)
),
aggregate(AllRows, MaxAgg, no, MaxResult),
(
MaxResult = no,
Result = no
;
MaxResult = yes(P - _),
pivot(P, Q, !Tableau),
simplex(Result, !Tableau)
)
).
%-----------------------------------------------------------------------------%
:- pred ensure_zero_obj_coeffs(lp_vars::in, tableau::in, tableau::out) is det.
ensure_zero_obj_coeffs([], !Tableau).
ensure_zero_obj_coeffs([Var | Vars], !Tableau) :-
Col = var_col(!.Tableau, Var),
Val = !.Tableau ^ elem(0, Col),
( Val = zero ->
ensure_zero_obj_coeffs(Vars, !Tableau)
;
FindOne = (pred(P::out) is nondet :-
all_rows(!.Tableau, R),
ValF0 = !.Tableau ^ elem(R, Col),
ValF0 \= zero,
P = R - ValF0
),
std_util.solutions(FindOne, Ones),
(
Ones = [Row - Fac0 | _],
( if Fac0 = zero
then unexpected(this_file,
"ensure_zero_obj_coeffs/3: zero divisor.")
else true
),
Fac = -Val / Fac0,
row_op(Fac, Row, 0, !Tableau),
ensure_zero_obj_coeffs(Vars, !Tableau)
;
Ones = [],
unexpected(this_file, "ensure_zero_obj_coeffs/3: " ++
"problem with artificial variable.")
)
).
:- pred fix_basis_and_rem_cols(lp_vars::in, tableau::in, tableau::out) is det.
fix_basis_and_rem_cols([], !Tableau).
fix_basis_and_rem_cols([Var | Vars], !Tableau) :-
Col = var_col(!.Tableau, Var),
BasisAgg = (pred(R::in, Ones0::in, Ones::out) is det :-
Val = !.Tableau ^ elem(R, Col),
Ones = ( Val = zero -> Ones0 ; [Val - R | Ones0] )
),
aggregate(all_rows(!.Tableau), BasisAgg, [], Res),
(
Res = [one - Row]
->
PivGoal = (pred(Col1::out) is nondet :-
all_cols(!.Tableau, Col1),
Col \= Col1,
Zz = !.Tableau ^ elem(Row, Col1),
Zz \= zero
),
solutions(PivGoal, PivSolns),
(
PivSolns = [],
remove_col(Col, !Tableau),
remove_row(Row, !Tableau)
;
PivSolns = [Col2 | _],
pivot(Row, Col2, !Tableau),
remove_col(Col, !Tableau)
)
;
true
),
remove_col(Col, !Tableau),
fix_basis_and_rem_cols(Vars, !Tableau).
%-----------------------------------------------------------------------------%
:- type cell ---> cell(int, int).
:- pred pivot(int::in, int::in, tableau::in, tableau::out) is det.
pivot(P, Q, !Tableau) :-
Apq = !.Tableau ^ elem(P, Q),
MostCells = (pred(Cell::out) is nondet :-
all_rows0(!.Tableau, J),
J \= P,
all_cols0(!.Tableau, K),
K \= Q,
Cell = cell(J, K)
),
ScaleCell = (pred(Cell::in, T0::in, T::out) is det :-
Cell = cell(J, K),
Ajk = T0 ^ elem(J, K),
Ajq = T0 ^ elem(J, Q),
Apk = T0 ^ elem(P, K),
( if Apq = zero
then unexpected(this_file, "pivot/4 - ScaleCell: zero divisor.")
else true
),
T = T0 ^ elem(J, K) := Ajk - Apk * Ajq / Apq
),
std_util.aggregate(MostCells, ScaleCell, !Tableau),
QColumn = (pred(Cell::out) is nondet :-
all_rows0(!.Tableau, J),
Cell = cell(J, Q)
),
Zero = (pred(Cell::in, T0::in, T::out) is det :-
Cell = cell(J, K),
T = T0 ^ elem(J, K) := zero
),
std_util.aggregate(QColumn, Zero, !Tableau),
PRow = all_cols0(!.Tableau),
ScaleRow = (pred(K::in, T0::in, T::out) is det :-
Apk = T0 ^ elem(P, K),
( if Apq = zero
then unexpected(this_file, "pivot/4 - ScaleRow: zero divisor.")
else true
),
T = T0 ^ elem(P, K) := Apk / Apq
),
std_util.aggregate(PRow, ScaleRow, !Tableau),
set_cell(P, Q, one, !Tableau).
:- pred row_op(rat::in, int::in, int::in, tableau::in,
tableau::out) is det.
row_op(Scale, From, To, !Tableau) :-
AllCols = all_cols0(!.Tableau),
AddRow = (pred(Col::in, T0::in, T::out) is det :-
X = T0 ^ elem(From, Col),
Y = T0 ^ elem(To, Col),
Z = Y + (Scale * X),
T = T0 ^ elem(To, Col) := Z
),
aggregate(AllCols, AddRow, !Tableau).
%-----------------------------------------------------------------------------%
% XXX We should try using arrays or version_arrays for the simplex tableau.
% (We should try this in lp.m as well).
:- type tableau
---> tableau(
rows :: int,
cols :: int,
var_nums :: map(lp_var, int),
shunned_rows :: list(int),
shunned_cols :: list(int),
cells :: map(pair(int), rat)
).
:- func init_tableau(int, int, map(lp_var, int)) = tableau.
init_tableau(Rows, Cols, VarNums) = Tableau :-
Tableau = tableau(Rows, Cols, VarNums, [], [], map.init).
:- func tableau ^ elem(int, int) = rat.
Tableau ^ elem(Row, Col) = get_cell(Tableau, Row, Col).
:- func tableau ^ elem(int, int) := rat = tableau.
Tableau0 ^ elem(Row, Col) := Cell = Tableau :-
set_cell(Row, Col, Cell, Tableau0, Tableau).
:- func get_cell(tableau, int, int) = rat.
get_cell(Tableau, Row, Col) = Cell :-
( if
(list.member(Row, Tableau ^ shunned_rows)
;list.member(Col, Tableau ^ shunned_cols))
then unexpected(this_file,
"get_cell/3: attempt to address shunned row/col.")
else true
),
( if Cell0 = Tableau ^ cells ^ elem(Row - Col)
then Cell = Cell0
else Cell = zero
).
:- pred set_cell(int::in, int::in, rat::in, tableau::in,
tableau::out) is det.
set_cell(J, K, R, Tableau0, Tableau) :-
Tableau0 = tableau(Rows, Cols, VarNums, SR, SC, Cells0),
( if (list.member(J, SR) ; list.member(K, SC))
then unexpected(this_file,
"set_cell/5: Attempt to write shunned row/col.")
else true
),
( if R = zero
then Cells = map.delete(Cells0, J - K)
else Cells = map.set(Cells0, J - K, R)
),
Tableau = tableau(Rows, Cols, VarNums, SR, SC, Cells).
% Returns the number of the RHS column in the tableau.
%
:- func rhs_col(tableau) = int.
rhs_col(Tableau) = Tableau ^ cols.
:- pred all_rows0(tableau::in, int::out) is nondet.
all_rows0(Tableau, Row) :-
between(0, Tableau ^ rows, Row),
not list.member(Row, Tableau ^ shunned_rows).
:- pred all_rows(tableau::in, int::out) is nondet.
all_rows(Tableau, Row) :-
between(1, Tableau ^ rows, Row),
not list.member(Row, Tableau ^ shunned_rows).
:- pred all_cols0(tableau::in, int::out) is nondet.
all_cols0(Tableau, Col) :-
between(0, Tableau ^ cols, Col),
not list.member(Col, Tableau ^ shunned_cols).
:- pred all_cols(tableau::in, int::out) is nondet.
all_cols(Tableau, Col) :-
Cols1 = Tableau ^ cols - 1,
between(0, Cols1, Col),
not list.member(Col, Tableau ^ shunned_cols).
:- func var_col(tableau, lp_var) = int.
var_col(Tableau, Var) = (Tableau ^ var_nums) ^ det_elem(Var).
:- pred remove_row(int::in, tableau::in, tableau::out) is det.
remove_row(Row, !Tableau) :-
SR = !.Tableau ^ shunned_rows,
!:Tableau = !.Tableau ^ shunned_rows := [Row | SR].
:- pred remove_col(int::in, tableau::in, tableau::out) is det.
remove_col(C, Tableau0, Tableau) :-
Tableau0 = tableau(Rows, Cols, VarNums, SR, SC, Cells),
Tableau = tableau(Rows, Cols, VarNums, SR, [C | SC], Cells).
:- func get_basis_vars(tableau) = lp_vars.
get_basis_vars(Tableau) = Vars :-
BasisCol = (pred(C::out) is nondet :-
all_cols(Tableau, C),
NonZeroGoal = (pred(P::out) is nondet :-
all_rows(Tableau, R),
Z = Tableau ^ elem(R, C),
Z \= zero,
P = R - Z
),
std_util.solutions(NonZeroGoal, Solns),
Solns = [_ - one]
),
std_util.solutions(BasisCol, Cols),
BasisVars = (pred(V::out) is nondet :-
list.member(Col, Cols),
map.member(Tableau ^ var_nums, V, Col)
),
std_util.solutions(BasisVars, Vars).
%-----------------------------------------------------------------------------%
:- func lp_info_init(lp_varset) = lp_info.
lp_info_init(Varset) = lp(Varset, [], []).
:- pred new_slack_var(lp_var::out, lp_info::in, lp_info::out) is det.
new_slack_var(Var, !LPInfo) :-
varset.new_var(!.LPInfo ^ varset, Var, Varset),
!:LPInfo = !.LPInfo ^ varset := Varset,
Vars = !.LPInfo ^ slack_vars,
!:LPInfo = !.LPInfo ^ slack_vars := [Var | Vars].
:- pred new_art_var(lp_var::out, lp_info::in, lp_info::out) is det.
new_art_var(Var, !LPInfo) :-
varset.new_var(!.LPInfo ^ varset, Var, Varset),
!:LPInfo = !.LPInfo ^ varset := Varset,
Vars = !.LPInfo ^ art_vars,
!:LPInfo = !.LPInfo ^ art_vars := [Var | Vars].
%-----------------------------------------------------------------------------%
:- pred between(int::in, int::in, int::out) is nondet.
between(Min, Max, I) :-
Min =< Max,
(
I = Min
;
between(Min + 1, Max, I)
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% Projection.
%
% The following code more or less follows the algorithm described in:
% Joxan Jaffar, Michael Maher, Peter Stuckey and Roland Yap.
% Projecting CLP(R) Constraints. New Generation Computing 11(3): 449-469.
% * Linear equations (Gaussian elimination)
% - substitutions need to be performed on the inequalities as well.
% * Linear inequalities (Fourier elimination)
% We next convert any remaining equations into opposing inequalities and
% then use Fourier elimination to try and eliminate any remaining target
% variables. The main problem here is ensuring that we don't get
% swamped by redundant constraints.
% The implementation here uses the extensions to FM elimination described by
% Cernikov as well as some other redundancy checks. Note that in general
% arbitrarily mixing redundancy elimination techniques with the Cernikov
% methods is unsound (See the above article for an example).
% In addition to Cernikov's methods and quasi-syntactic redundancy checks
% we also use a heuristic developed by Duffin to choose the order in
% which we eliminate variables (See below).
%
%-----------------------------------------------------------------------------%
:- type vector
---> vector(
label :: set(int),
% The vector's label is for redundancy checking
% during Fourier elimination - see below.
terms :: map(lp_var, coefficient),
% A map from each variable in the vector to its
% coefficient
const :: constant
).
:- type matrix == list(vector).
project(Vars, Varset, Constraints) = Result :-
project(Vars, Varset, no, Constraints, Result).
project(Vars, Varset, Constraints, Result) :-
project(Vars, Varset, no, Constraints, Result).
% For the first branch of this switch the `Constraints' may actually
% be an inconsistent system - we don't bother checking that here though.
% We instead delay that until we need to perform an entailment check.
%
project([], _, _, Constraints, ok(Constraints)).
project(!.Vars @ [_|_], Varset, MaybeThreshold, Constraints0, Result) :-
eliminate_equations(!Vars, Constraints0, EqlResult),
(
EqlResult = inconsistent,
Result = inconsistent
;
% Elimination of equations should not cause an abort since we always
% make the matrix smaller.
%
EqlResult = aborted,
unexpected(this_file, "project/5: abort from eliminate_equations.")
;
EqlResult = ok(Constraints1),
%
% Skip the call to fourier_elimination/6 if there are no variables to
% project - this avoids the transformation to vector form.
%
( !.Vars \= [] ->
Matrix0 = constraints_to_matrix(Constraints1),
fourier_elimination(!.Vars, Varset, MaybeThreshold, 0,
Matrix0, FourierResult),
(
FourierResult = yes(Matrix),
Constraints = matrix_to_constraints(Matrix),
Result = ok(Constraints)
;
FourierResult = no,
Result = aborted
)
;
% NOTE: the matrix `Constraints1' may actually be inconsistent
% here - we don't bother checking at this point because that
% would mean traversing the matrix, so we wait until the next
% operation that needs to traverse it anyway or until the
% next entailment check.
Result = ok(Constraints1)
)
).
%-----------------------------------------------------------------------------%
%
% Convert each constraint into `=<' form and give each an initial label
%
:- func constraints_to_matrix(constraints) = matrix.
constraints_to_matrix(Constraints) = Matrix :-
list.foldl2(fm_standardize, Constraints, 0, _, [], Matrix).
:- pred fm_standardize(constraint::in, int::in, int::out, matrix::in,
matrix::out) is det.
fm_standardize(lte(Terms0, Constant), !Labels, !Matrix) :-
Terms = lp_terms_to_map(Terms0),
make_label(Label, !Labels),
list.cons(vector(Label, Terms, Constant), !Matrix).
fm_standardize(eq(Terms, Constant), !Labels, !Matrix) :-
make_label(Label1, !Labels),
make_label(Label2, !Labels),
Vector1 = vector(Label1, lp_terms_to_map(Terms), Constant),
Vector2 = vector(Label2, lp_terms_to_map(negate_lp_terms(Terms)),
-Constant),
list.append([Vector1, Vector2], !Matrix).
fm_standardize(gte(Terms0, Constant), !Labels, !Matrix) :-
make_label(Label, !Labels),
Terms = lp_terms_to_map(negate_lp_terms(Terms0)),
list.cons(vector(Label, Terms, -Constant), !Matrix).
:- pred make_label(set(int)::out, int::in, int::out) is det.
make_label(Label, Labels, Labels + 1) :-
set.singleton_set(Label, Labels).
:- func matrix_to_constraints(matrix) = constraints.
matrix_to_constraints(Matrix) = list.map(vector_to_constraint, Matrix).
:- func vector_to_constraint(vector) = constraint.
vector_to_constraint(vector(_, Terms0, Constant0)) = Constraint :-
Terms1 = map.to_assoc_list(Terms0),
normalize_terms_and_const(yes, Terms1, Constant0, Terms, Constant),
Constraint = lte(Terms, Constant).
%-----------------------------------------------------------------------------%
%
% Predicates for eliminating equations from the constraints.
% (Gaussian elimination)
%
% Split the constraints into a set of inequalities and a set of
% equalities. For every variable in the set of target variables
% (ie. those we are eliminating), check if there is at least one
% equality that contains that variable. If so, then substitute the
% value of that variable into the other constraints. Return the set
% of target variables that do not occur in any equality.
%
:- pred eliminate_equations(lp_vars::in, lp_vars::out, constraints::in,
projection_result::out) is det.
eliminate_equations(!Vars, Constraints0, Result) :-
Constraints = simplify_constraints(Constraints0),
list.filter((pred(eq(_, _)::in) is semidet), Constraints,
Equalities0, Inequalities0),
(
eliminate_equations_2(!Vars, Equalities0, Equalities,
Inequalities0, Inequalities)
->
Result = ok(Equalities ++ Inequalities)
;
Result = inconsistent
).
:- pred eliminate_equations_2(lp_vars::in, lp_vars::out,
constraints::in, constraints::out, constraints::in,
constraints::out) is semidet.
eliminate_equations_2([], [], !Equations, !Inequations).
eliminate_equations_2([Var | !.Vars], !:Vars, !Equations, !Inequations) :-
eliminate_equations_2(!Vars, !Equations, !Inequations),
( find_target_equality(Var, Target, !Equations) ->
substitute_variable(Target, Var, !Equations, !Inequations,
SuccessFlag),
(
SuccessFlag = no,
list.cons(Var, !Vars),
list.cons(Target, !Equations)
;
SuccessFlag = yes
)
;
list.cons(Var, !Vars)
).
% Find an equation that constrains a variable we are trying
% to eliminate.
%
:- pred find_target_equality(lp_var::in, constraint::out, constraints::in,
constraints::out) is semidet.
find_target_equality(Var, Target, Constraints0, Constraints) :-
Result = find_target_equality(Var, Constraints0),
Result = yes(Target - Constraints).
:- func find_target_equality(lp_var, constraints) =
maybe(pair(constraint, constraints)).
find_target_equality(Var, Eqns) = find_target_equality_2(Var, Eqns, []).
:- func find_target_equality_2(lp_var, constraints, constraints) =
maybe(pair(constraint, constraints)).
find_target_equality_2(_, [], _) = no.
find_target_equality_2(Var, [Eqn | Eqns], Acc) = MaybeTargetEqn :-
( if operator(Eqn) \= (=)
then unexpected(this_file,
"find_target_equality_2/3: inequality encountered.")
else true
),
Coeffs = lp_terms(Eqn),
( if list.member(Var - _, Coeffs)
then MaybeTargetEqn = yes(Eqn - (Acc ++ Eqns))
else MaybeTargetEqn = find_target_equality_2(Var, Eqns, [Eqn | Acc])
).
% Given a target equation of the form a1x1 + .. + aNxN = C and
% a target variable, say `x1', notionally rewrite the equation as:
%
% x1 = C - ... aN/a1 xN
%
% and then substitute that value for x1 in the supplied sets
% of equations and inequations.
%
:- pred substitute_variable(constraint::in, lp_var::in,
constraints::in, constraints::out, constraints::in, constraints::out,
bool::out) is semidet.
substitute_variable(Target0, Var, !Equations, !Inequations, Flag) :-
normalize_constraint(Var, Target0, Target),
constraint(Target, TargetCoeffs, Op, TargetConst),
( if Op \= (=)
then unexpected(this_file,
"substitute_variable/7: inequality encountered.")
else true
),
fix_coeff_and_const(Var, TargetCoeffs, TargetConst, Coeffs, Const),
substitute_into_constraints(Var, Coeffs, Const, !Equations, EqlFlag),
substitute_into_constraints(Var, Coeffs, Const, !Inequations, IneqlFlag),
Flag = bool.or(EqlFlag, IneqlFlag).
% Multiply the terms and constant except for the term containing
% the specified variable in preparation for making a substitution
% for that variable. Notionally this converts a constraint of the
% form:
% t + z + w = C ... C is a constant
%
% into:
%
% t = C - z - w
%
:- pred fix_coeff_and_const(lp_var::in, lp_terms::in, constant::in,
lp_terms::out, constant::out) is det.
fix_coeff_and_const(_, [], Const, [], -Const).
fix_coeff_and_const(Var, [Var1 - Coeff1 | Coeffs], Const0, FixedCoeffs,
Const) :-
fix_coeff_and_const(Var, Coeffs, Const0, FCoeffs0, Const),
FixedCoeffs = ( Var = Var1 -> FCoeffs0 ; [Var1 - (-Coeff1) | FCoeffs0]).
% The `Flag' argument is `yes' if one or more substitutions were made,
% `no' otherwise. substitute_into_constraints/7 fails if a false
% constraint is generated as a result of a substitution. This means
% that the original matrix was inconsistent.
%
:- pred substitute_into_constraints(lp_var::in, lp_terms::in,
constant::in, constraints::in, constraints::out, bool::out) is semidet.
substitute_into_constraints(_, _, _, [], [], no).
substitute_into_constraints(Var, Coeffs, Const, [Constr0 | Constrs0], Result,
Flag) :-
substitute_into_constraint(Var, Coeffs, Const, Constr0, Constr, Flag0),
not is_false(Constr),
substitute_into_constraints(Var, Coeffs, Const, Constrs0, Constrs,
Flag1),
Result = ( if is_true(Constr) then Constrs else [ Constr | Constrs ] ),
Flag = bool.or(Flag0, Flag1).
:- pred substitute_into_constraint(lp_var::in, lp_terms::in,
constant::in, constraint::in, constraint::out, bool::out) is det.
substitute_into_constraint(Var, SubCoeffs, SubConst, !Constraint, Flag) :-
normalize_constraint(Var, !Constraint),
constraint(!.Constraint, TargetCoeffs, Op, TargetConst),
( list.member(Var - one, TargetCoeffs) ->
FinalCoeffs0 = lp_terms_to_map(TargetCoeffs ++ SubCoeffs),
%
% Delete the target variable from both constraints.
%
FinalCoeffs1 = map.delete(FinalCoeffs0, Var),
FinalCoeffs = map.to_assoc_list(FinalCoeffs1),
FinalConst = TargetConst + SubConst,
!:Constraint = constraint(FinalCoeffs, Op, FinalConst),
Flag = yes
;
Flag = no
).
%-----------------------------------------------------------------------------%
%
% Fourier elimination.
%
% Will return `no' if it aborts otherwise `yes(Matrix)', where
% `Matrix' is the result of the projection.
%
:- pred fourier_elimination(lp_vars::in, lp_varset::in, maybe(int)::in,
int::in, matrix::in, maybe(matrix)::out) is det.
fourier_elimination([], _, _, _, Matrix, yes(Matrix)).
fourier_elimination(Vars @ [Var0 | Vars0], Varset, MaybeThreshold, !.Step,
Matrix0, Result) :-
%
% Use Duffin's heuristic to try and find a "nice" variable to eliminate.
%
% NOTE: the heuristic will fail if none of the variables being
% projected actually occur in the constraints. In that case
% we just pick the first one - it doesn't really matter since
% the projection will be trivial.
%
( if duffin_heuristic(Vars, Matrix0, TargetVar0, OtherVars0)
then Var = TargetVar0, OtherVars = OtherVars0
else Var = Var0, OtherVars = Vars0
),
separate_vectors(Matrix0, Var, PosMatrix, NegMatrix, ZeroMatrix,
SizeZeroMatrix),
%
% `Step' counts active Fourier eliminations only. An elimination is
% active if at least one constraint contains a term that has a
% non-zero coefficient for the variable being eliminated.
%
( PosMatrix \= [], NegMatrix \= [] ->
!:Step = !.Step + 1,
( list.foldl2(eliminate_var(!.Step, MaybeThreshold, NegMatrix),
PosMatrix, ZeroMatrix, ResultMatrix, SizeZeroMatrix, _)
->
NewMatrix = yes(ResultMatrix)
;
NewMatrix = no
)
;
NewMatrix = yes(ZeroMatrix)
),
( if NewMatrix = yes(Matrix)
then fourier_elimination(OtherVars, Varset, MaybeThreshold, !.Step,
Matrix, Result)
else Result = no
).
% separate_vectors(Matrix, Var, Positive, Negative, Zero, Num).
% `Positive' is a matrix containing those constraints of `Matrix' for
% which the coefficient of `Var' is positive. `Negative' similarly
% for those which the coefficient of `Var' is negative and `Zero'
% those for which the coefficient of `Var' is zero. `Num' is the
% number of constraints in `Zero'.
%
:- pred separate_vectors(matrix::in, lp_var::in, matrix::out, matrix::out,
matrix::out, int::out) is det.
separate_vectors(Matrix, Var, Pos, Neg, Zero, NumZeros) :-
list.foldl4(classify_vector(Var), Matrix, [], Pos, [], Neg, [], Zero,
0, NumZeros).
:- pred classify_vector(lp_var::in, vector::in, matrix::in,
matrix::out, matrix::in, matrix::out, matrix::in, matrix::out,
int::in, int::out) is det.
classify_vector(Var, Vector0, !Pos, !Neg, !Zero, !Num) :-
( Coefficient = Vector0 ^ terms ^ elem(Var) ->
Vector0 = vector(Label, Terms0, Const0),
normalize_vector(Var, Terms0, Const0, Terms, Const),
Vector1 = vector(Label, Terms, Const),
( if Coefficient > zero
then list.cons(Vector1, !Pos)
else list.cons(Vector1, !Neg)
)
;
list.cons(Vector0, !Zero),
!:Num = !.Num + 1
).
:- pred eliminate_var(int::in, maybe(int)::in, matrix::in,
vector::in, matrix::in, matrix::out, int::in, int::out) is semidet.
eliminate_var(Step, MaybeThreshold, NegMatrix, PosVector, !Zeros,
!ZerosSize) :-
list.foldl2(combine_vectors(Step, MaybeThreshold, PosVector),
NegMatrix, !Zeros, !ZerosSize).
:- pred combine_vectors(int::in, maybe(int)::in, vector::in,
vector::in, matrix::in, matrix::out, int::in, int::out) is semidet.
combine_vectors(Step, MaybeThreshold, vector(LabelPos, TermsPos, ConstPos),
vector(LabelNeg, TermsNeg, ConstNeg), !Zeros, !Num) :-
LabelNew = set.union(LabelPos, LabelNeg),
(
% If the cardinality of the label set is greater than `Step + 2'
% then the constraint we are trying to add is redundant.
set.count(LabelNew) < Step + 2
->
add_vectors(TermsPos, ConstPos, TermsNeg, ConstNeg, Coeffs,
Const),
New = vector(LabelNew, Coeffs, Const),
(
(
% Do not bother adding the new constraint
% if it is just `true'.
map.is_empty(Coeffs),
Const >= zero
;
list.member(Vec, !.Zeros),
quasi_syntactic_redundant(New, Vec)
)
->
% If the new constraint is `true' or is
% quasi-syntactic redundant with something
% already there.
true
;
% Remove anything in the matrix that is
% quasi-syntactic redundant w.r.t the new constraint.
%
filter_and_count(
(pred(Vec2::in) is semidet :-
not quasi_syntactic_redundant(Vec2, New)
),
!.Zeros, [], !:Zeros, 0, !:Num),
(
list.member(Vec, !.Zeros),
label_subsumed(New, Vec)
->
% Do not add the new constraint because it is label
% subsumed by something already in the matrix.
%
true
;
filter_and_count(
(pred(Vec2::in) is semidet :-
not label_subsumed(Vec2, New)
),
!.Zeros, [], !:Zeros, 0, !:Num),
list.cons(New, !Zeros),
!:Num = !.Num + 1
)
)
;
true
),
%
% Check that the size of the matrix does not exceed the threshold
% for aborting the projection.
%
not ( MaybeThreshold = yes(Threshold), !.Num > Threshold ).
%-----------------------------------------------------------------------------%
:- pred filter_and_count(pred(vector)::in(pred(in) is semidet),
matrix::in, matrix::in, matrix::out, int::in, int::out) is det.
filter_and_count(_, [], !Acc, !Count).
filter_and_count(P, [X | Xs], !Acc, !Count) :-
( if P(X)
then list.cons(X, !Acc), !:Count = !.Count + 1
else true
),
filter_and_count(P, Xs, !Acc, !Count).
%-----------------------------------------------------------------------------%
%
% Detection of quasi-syntactic redundancy.
%
% Succeeds if the first vector is quasi-syntactic redundant wrt to the
% second. That is c = c' + (0 < e), for e > 0.
%
:- pred quasi_syntactic_redundant(vector::in, vector::in) is semidet.
quasi_syntactic_redundant(VecA, VecB) :-
VecB ^ const < VecA ^ const,
all [Var] (
map.member(VecA ^ terms, Var, Coeff) <=>
map.member(VecB ^ terms, Var, Coeff)
).
%-----------------------------------------------------------------------------%
%
% Label subsumption.
%
% label_subsumed(A, B) : succeeds iff
% constraint A is label subsumed by constraint B.
%
:- pred label_subsumed(vector::in, vector::in) is semidet.
label_subsumed(VectorA, VectorB) :-
set.subset(VectorB ^ label, VectorA ^ label).
%-----------------------------------------------------------------------------%
%
% Duffin's heuristic.
%
% This attempts to find an order in which to eliminate variables such that
% the minimal number of redundant constraints are generated at each
% Fourier step. For each variable, x_h, to be eliminated, we
% calculate E(x_h) which is defined as follows:
%
% E(x_h) = p(x_h)q(x_h) + r(x_h) ... if p(x_h) + q(x_h) > 0
% E(x_h) = 0 ... if p(x_h) + q(x_h) = 0
%
% p, q, r are the number of positive, negative and zero coefficients
% of the variable x_h respectively in the system of constraints under
% consideration. E(x_h) is called the expansion number of x_h.
%
% We eliminate the variable that has minimal expansion number.
% For further details see:
% R.J. Duffin. On Fourier's Analysis of Linear Inequality Systems.
% Mathematical Programming Study 1, 71 - 95 (1974).
%-----------------------------------------------------------------------------%
% We only count the occurrences of positive and negative coefficients.
% We can work out the zero occurrences by subtracting the two
% previous totals from the total number of constraints.
%
:- type coeff_info
---> coeff_info(
pos :: int,
neg :: int
).
:- type cc_map == map(lp_var, coeff_info).
% Calculates the variable with the minimal expansion number and
% returns that variable. (Removes those variables that have an
% expansion number of zero, because there are no constraints on them
% anyway). Fails if it can't find such a variable, ie. none of the
% variables being eliminated actually occurs in the constraints.
%
:- pred duffin_heuristic(lp_vars::in, matrix::in, lp_var::out,
lp_vars::out) is semidet.
duffin_heuristic([Var], _, Var, []).
duffin_heuristic(Vars0 @ [_,_|_], Matrix, TargetVar, Vars) :-
VarsAndNums0 = generate_expansion_nums(Vars0, Matrix),
VarsAndNums1 = list.filter(relevant, VarsAndNums0),
VarsAndNums1 \= [],
TargetVar = find_max(VarsAndNums1),
Vars = collect_remaining_vars(VarsAndNums1, TargetVar).
:- func collect_remaining_vars(assoc_list(lp_var, int), lp_var) = lp_vars.
collect_remaining_vars([], _) = [].
collect_remaining_vars([Var - _ | Rest], TargetVar) = Result :-
( if Var = TargetVar
then Result = collect_remaining_vars(Rest, TargetVar)
else Result = [ Var | collect_remaining_vars(Rest, TargetVar) ]
).
:- func find_max(list(pair(lp_var, int))) = lp_var.
find_max([]) = unexpected(this_file, "find_max/2: empty list passed as arg.").
find_max([Var0 - ExpnNum0 | Vars]) = fst(find_max_2(Vars, Var0 - ExpnNum0)).
:- func find_max_2(assoc_list(lp_var, int), pair(lp_var, int)) =
pair(lp_var, int).
find_max_2([], Best) = Best.
find_max_2([Var1 - ExpnNum1 | Vars], Var0 - ExpnNum0) =
( if ExpnNum1 < ExpnNum0
then find_max_2(Vars, Var1 - ExpnNum1)
else find_max_2(Vars, Var0 - ExpnNum0)
).
:- pred relevant(pair(lp_var, int)::in) is semidet.
relevant(Var) :- Var \= _ - 0.
% Given a list of variables and a system of linear inequalities
% generate the expansion number for each of the variables in the
% list.
%
:- func generate_expansion_nums(lp_vars, matrix) = assoc_list(lp_var, int).
generate_expansion_nums(Vars0, Matrix) = ExpansionNums :-
Vars = list.sort_and_remove_dups(Vars0),
CoeffMap0 = init_cc_map(Vars),
CoeffMap = list.foldl(count_coeffs_in_vector, Matrix, CoeffMap0),
CoeffList = map.to_assoc_list(CoeffMap),
ConstrNum = list.length(Matrix),
ExpansionNums = list.map(make_expansion_num(ConstrNum), CoeffList).
:- func make_expansion_num(int, pair(lp_var, coeff_info)) = pair(lp_var, int).
make_expansion_num(ConstrNum, Var - coeff_info(Pos, Neg)) = Var - ExpnNum :-
PosAndNeg = Pos + Neg,
( if PosAndNeg = 0
then ExpnNum = 0
else ExpnNum = (Pos * Neg) + (ConstrNum - PosAndNeg)
).
:- func count_coeffs_in_vector(vector, cc_map) = cc_map.
count_coeffs_in_vector(Vector, Map0) = Map :-
CoeffList = map.to_assoc_list(Vector ^ terms),
list.foldl(count_coeff, CoeffList, Map0, Map).
:- pred count_coeff(lp_term::in, cc_map::in, cc_map::out) is det.
count_coeff(Var - Coeff, !Map) :-
( !.Map ^ elem(Var) = coeff_info(Pos0, Neg0) ->
( Coeff > zero ->
Pos = Pos0 + 1, Neg = Neg0
; Coeff < zero ->
Pos = Pos0, Neg = Neg0 + 1
;
unexpected(this_file,
"count_coeff/3: zero coefficient encountered.")
),
svmap.det_update(Var, coeff_info(Pos, Neg), !Map)
;
true
% If the variable in the term was not in the map then it is not
% one of the ones that is being eliminated.
).
:- func init_cc_map(lp_vars) = cc_map.
init_cc_map(Vars) = list.foldl(InitMap, Vars, map.init) :-
InitMap = (func(Var, Map) =
map.det_insert(Map, Var, coeff_info(0, 0))
).
%-----------------------------------------------------------------------------%
%
% Predicates for normalizing vectors and constraints.
%
% normalize_vector(Var, Terms0, Const0, Terms, Const).
% Multiply the given vector by a scalar appropraite to make the
% coefficient of the given variable in the vector one. Throws
% an exception if `Var' has a zero coefficient.
%
:- pred normalize_vector(lp_var::in, map(lp_var, coefficient)::in,
constant::in, map(lp_var, coefficient)::out, constant::out) is det.
normalize_vector(Var, !.Terms, !.Constant, !:Terms, !:Constant) :-
( Coefficient = !.Terms ^ elem(Var) ->
( if Coefficient = zero
then unexpected(this_file ,
"normalize_vector/5: zero coefficient in vector.")
else true
),
DivVal = rat.abs(Coefficient),
!:Terms = map.map_values((func(_, C) = C / DivVal), !.Terms),
!:Constant = !.Constant / DivVal
;
% In this case the the coefficient of the variable was zero
% (implicit in the fact that it is not in the map).
true
).
% Multiply the given constraint by a scaler appropriate to make the
% coefficient of the given variable in the constraint one. If the
% variable does not occur in the constraint then the constraint is
% unchanged. If the constraint is an inequality the sign may be
% changed. Throws an exception if the variable is found in the
% constraint and it has a coefficient of zero.
%
:- pred normalize_constraint(lp_var::in, constraint::in, constraint::out)
is det.
normalize_constraint(Var, Constraint0, Constraint) :-
lp_rational.constraint(Constraint0, Terms0, Op0, Constant0),
( assoc_list.search(Terms0, Var, Coefficient) ->
( if Coefficient = zero
then unexpected(this_file,
"normalize_constraint/3: zero coefficient constraint.")
else true
),
Terms = list.map((func(V - C) = V - (C / Coefficient)), Terms0),
Constant = Constant0 / Coefficient,
( if Coefficient < zero
then Op = negate_operator(Op0)
else Op = Op0
)
;
% In this case the the coefficient of the variable was zero
% (implicit in the fact that it is not in the list).
Terms = Terms0,
Op = Op0,
Constant = Constant0
),
Constraint = lp_rational.unchecked_constraint(Terms, Op, Constant).
:- pred add_vectors(map(lp_var, coefficient)::in, constant::in,
map(lp_var, coefficient)::in, constant::in,
map(lp_var, coefficient)::out, constant::out) is det.
add_vectors(TermsA, ConstA, TermsB, ConstB, Terms, ConstA + ConstB) :-
IsMapKey = (pred(Var::out) is nondet :-
map.member(TermsA, Var, _)
),
AddVal = (pred(Var::in, Coeffs0::in, Coeffs::out) is det :-
NumA = TermsA ^ det_elem(Var),
( if Coeffs0 ^ elem(Var) = Num1
then
( if NumA + Num1 = zero
then Coeffs = map.delete(Coeffs0, Var)
else Coeffs = map.det_update(Coeffs0, Var, NumA + Num1)
)
else Coeffs = map.det_insert(Coeffs0, Var, NumA)
)
),
aggregate(IsMapKey, AddVal, TermsB, Terms).
%-----------------------------------------------------------------------------%
%
% Redundancy checking using the linear solver
%
% Check if each constraint in the set is entailed by all the others.
% XXX It would be preferable not to use this as it can be very slow.
%
remove_some_entailed_constraints(Varset, Constraints0, Constraints) :-
remove_some_entailed_constraints_2(Varset, Constraints0, [],
Constraints).
:- pred remove_some_entailed_constraints_2(lp_varset::in, constraints::in,
constraints::in, constraints::out) is semidet.
remove_some_entailed_constraints_2(_, [], !Constraints).
remove_some_entailed_constraints_2(_, [ E ], !Constraints) :-
list.cons(E, !Constraints).
remove_some_entailed_constraints_2(Varset, [E, X | Es], !Constraints) :-
( obvious_constraint(E) ->
true
;
RestOfMatrix = [ X | Es ] ++ !.Constraints,
Result = entailed(Varset, RestOfMatrix, E),
(
Result = entailed
;
Result = not_entailed,
list.cons(E, !Constraints)
;
Result = inconsistent,
fail
)
),
remove_some_entailed_constraints_2(Varset, [X | Es], !Constraints).
%-----------------------------------------------------------------------------%
restore_equalities([], []).
restore_equalities([E0 | Es0], [E | Es]) :-
( if check_for_equalities(E0, Es0, [], E1, Es1)
then E = E1, Es2 = Es1
else Es2 = Es0, E = E0
),
restore_equalities(Es2, Es).
:- pred check_for_equalities(constraint::in, constraints::in, constraints::in,
constraint::out, constraints::out) is semidet.
check_for_equalities(Eqn0, [Eqn | Eqns], SoFar, NewEqn, NewEqnSet) :-
(
opposing_inequalities(Eqn0 @ lte(Coeffs, Constant), Eqn)
->
NewEqn = standardize_constraint(eq(Coeffs, Constant)),
NewEqnSet = SoFar ++ Eqns
;
check_for_equalities(Eqn0, Eqns, [Eqn | SoFar], NewEqn, NewEqnSet)
).
% Checks if a pair of constraints are inequalities of the form:
%
% -ax1 - ax2 - ... - axN =< -C
% ax1 + ax2 + ... + axN =< C
%
% These can be converted into the equality:
%
% ax1 + ... + axN = C
%
% NOTE: we don't check for gte constraints because these should
% have been transformed away when we converted to standard form.
%
:- pred opposing_inequalities(constraint::in, constraint::in) is semidet.
opposing_inequalities(lte(TermsA, Const), lte(TermsB, -Const)) :-
TermsB = list.map((func(V - X) = V - (-X)), TermsA).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% Entailment test
%
entailed(Varset, Constraints, lte(Objective, Constant)) = Result :-
SolverResult = lp_rational.solve(Constraints, max, Objective, Varset),
(
SolverResult = satisfiable(MaxVal, _),
Result = ( if MaxVal =< Constant then entailed else not_entailed )
;
SolverResult = unbounded,
Result = not_entailed
;
SolverResult = inconsistent,
Result = inconsistent
).
entailed(Varset, Constraints, eq(Objective, Constant)) = Result :-
Result0 = entailed(Varset, Constraints, lte(Objective, Constant)),
( Result0 = entailed ->
Result = entailed(Varset, Constraints, gte(Objective, Constant))
;
Result0 = Result
).
entailed(Varset, Constraints, gte(Objective, Constant)) = Result :-
SolverResult = lp_rational.solve(Constraints, min, Objective, Varset),
(
SolverResult = satisfiable(MinVal, _),
Result = ( if MinVal >= Constant then entailed else not_entailed )
;
SolverResult = unbounded,
Result = not_entailed
;
SolverResult = inconsistent,
Result = inconsistent
).
entailed(Varset, Constraints, Constraint) :-
Result = entailed(Varset, Constraints, Constraint),
(
Result = entailed
;
Result = inconsistent,
unexpected(this_file, "entailed/3: inconsistent constraint set.")
;
Result = not_entailed,
fail
).
%-----------------------------------------------------------------------------%
get_vars_from_constraints(Constraints) = Vars :-
list.foldl(get_vars_from_constraint, Constraints, set.init, Vars).
:- pred get_vars_from_constraint(constraint::in, set(lp_var)::in,
set(lp_var)::out) is det.
get_vars_from_constraint(Constraint, !SetVar) :-
get_vars_from_terms(lp_terms(Constraint), !SetVar).
:- pred get_vars_from_terms(lp_terms::in, set(lp_var)::in, set(lp_var)::out)
is det.
get_vars_from_terms([], !SetVar).
get_vars_from_terms([Var - _ | Coeffs], !SetVar) :-
svset.insert(Var, !SetVar),
get_vars_from_terms(Coeffs, !SetVar).
%-----------------------------------------------------------------------------%
%
% Printing constraints.
%
% Write out a term - outputs the empty string if the term
% has a coefficient of zero.
%
:- pred write_term(lp_varset::in, lp_term::in, io::di, io::uo) is det.
write_term(Varset, Var - Coefficient, !IO) :-
( if Coefficient > zero
then io.write_char('+', !IO)
else io.write_char('-', !IO)
),
io.write_string(" (", !IO),
Num = abs(numer(Coefficient)),
io.write_string(int_to_string(Num), !IO),
( if denom(Coefficient) \= 1
then io.format("/%s", [s(int_to_string(denom(Coefficient)))], !IO)
else true
),
io.write_char(')', !IO),
io.write_string(varset.lookup_name(Varset, Var), !IO).
%-----------------------------------------------------------------------------%
%
% Debugging predicates for writing out constraints.
%
write_constraints(Constraints, Varset, !IO) :-
list.foldl(write_constraint(Varset), Constraints, !IO).
:- pred write_constraint(lp_varset::in, constraint::in, io::di, io::uo) is det.
write_constraint(Varset, Constr, !IO) :-
constraint(Constr, Coeffs, Operator, Constant),
io.write_char('\t', !IO),
list.foldl(write_constr_term(Varset), Coeffs, !IO),
io.format("%s %s\n", [s(operator_to_string(Operator)),
s(rat.to_string(Constant))], !IO).
:- pred write_constr_term(lp_varset::in, lp_term::in, io::di, io::uo) is det.
write_constr_term(Varset, Var - Coeff, !IO) :-
VarName = varset.lookup_name(Varset, Var),
io.format("%s%s ", [s(rat.to_string(Coeff)), s(VarName)], !IO).
:- func operator_to_string(operator) = string.
operator_to_string((=<)) = "=<".
operator_to_string((=) ) = "=".
operator_to_string((>=)) = ">=".
:- pred write_vars(varset::in, lp_vars::in, io::di, io::uo) is det.
write_vars(Varset, Vars, !IO) :-
io.write_string("[ ", !IO),
write_vars_2(Varset, Vars, !IO),
io.write_string(" ]", !IO).
:- pred write_vars_2(lp_varset::in, lp_vars::in, io::di, io::uo) is det.
write_vars_2(_, [], !IO).
write_vars_2(Varset, [V | Vs], !IO) :-
io.write_string(var_to_string(Varset, V), !IO),
( if Vs = [] then true else io.write_string(", ", !IO)),
write_vars_2(Varset, Vs, !IO).
:- func var_to_string(lp_varset, lp_var) = string.
var_to_string(Varset, Var) = varset.lookup_name(Varset, Var, "Unnamed").
% Write out the matrix used during fourier elimination. If
% `Labels' is `yes' then write out the label for each vector
% as well.
%
:- pred write_matrix(lp_varset::in, bool::in, matrix::in, io::di, io::uo)
is det.
write_matrix(Varset, Labels, Matrix, !IO) :-
io.write_list(Matrix, "\n", write_vector(Varset, Labels), !IO).
:- pred write_vector(lp_varset::in, bool::in, vector::in, io::di,
io::uo) is det.
write_vector(Varset, _WriteLabels, vector(_Label, Terms0, Constant), !IO) :-
Terms = map.to_assoc_list(Terms0),
list.foldl(write_constr_term(Varset), Terms, !IO),
io.write_string(" (=<) ", !IO),
io.write_string(rat.to_string(Constant), !IO).
%-----------------------------------------------------------------------------%
%
% Intermodule optimization stuff.
%
% The following predicates write out constraints in a form that is useful
% for (transitive) intermodule optimization.
output_constraints(OutputVar, Constraints, !IO) :-
io.write_char('[', !IO),
io.write_list(Constraints, ", ", output_constraint(OutputVar), !IO),
io.write_char(']', !IO).
:- pred output_constraint(output_var::in, constraint::in,
io::di, io::uo) is det.
output_constraint(OutputVar, lte(Terms, Constant), !IO) :-
io.write_string("le(", !IO),
output_constraint_2(OutputVar, Terms, Constant, !IO).
output_constraint(OutputVar, eq(Terms, Constant), !IO) :-
io.write_string("eq(", !IO),
output_constraint_2(OutputVar, Terms, Constant, !IO).
output_constraint(_, gte(_,_), _, _) :-
unexpected(this_file, "output_constraint/3: gte encountered.").
:- pred output_constraint_2(output_var::in, lp_terms::in,
constant::in, io::di, io::uo) is det.
output_constraint_2(OutputVar, Terms, Constant, !IO) :-
output_terms(OutputVar, Terms, !IO),
io.write_string(", ", !IO),
rat.write_rat(Constant, !IO),
io.write_char(')', !IO).
:- pred output_terms(output_var::in, lp_terms::in, io::di, io::uo)
is det.
output_terms(OutputVar, Terms, !IO) :-
io.write_char('[', !IO),
io.write_list(Terms, ", ", output_term(OutputVar), !IO),
io.write_char(']', !IO).
:- pred output_term(output_var::in, lp_term::in, io::di, io::uo)
is det.
output_term(OutputVar, Var - Coefficient, !IO) :-
io.format("term(%s, ", [s(OutputVar(Var))], !IO),
rat.write_rat(Coefficient, !IO),
io.write_char(')', !IO).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "lp_rational.m".
%-----------------------------------------------------------------------------%
:- end_module libs.lp_rational.
%-----------------------------------------------------------------------------%