mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-17 06:47:17 +00:00
Estimated hours taken: 6
Branches: main
In the presence of large amounts of unresolved overloading, the compiler could
consume unbounded amounts of space and time. This diff fixes this problem.
I tried to avoid having this fix lead to a slowdown; in fact, the last three
changes to typecheck_info.m lead to a slight speedup.
compiler/options.m:
doc/user_guide.texi:
Add a new option, --typecheck-ambiguity-error-limit. This gives the
number of type assignments that cause the typechecker to stop
processing further goals. No such facility existed before.
Add a new option, --typecheck-ambiguity-warn-limit. This gives the
number of type assignments that cause the typechecker to emit a
warning. This generalizes the previous hard-coded value in typecheck.m.
Move the definitions of some existing options to the right set of
options.
compiler/typecheck_info.m:
Add the values of the two new options as fields to the typecheck_info,
since we will want to look them up often.
Separate out the error_specs concerned with overloading from the other
error specs, since we want to be able to have an error about excessive
overloading to overwrite a warning about excessive overloading
generated earlier.
Fix a performance bug: the pred_markers were being looked up in the
pred_info each time they were asked for, even though they were also
available directly in a field.
Move the least frequently accessed fields of the typecheck_info
into a separate substructure, to reduce amount of allocation required.
Delete the get and set predicates for the most frequently used fields,
to avoid the overhead of cross-module calls. These fields are now
accessed via field access functions.
compiler/typecheck.m:
Don't typecheck goals if the number of type assignments exceeds
the error limit.
Conform to the changes in typecheck_info.m.
compiler/typecheck_errors.m:
Add a function to generate the new error message.
Conform to the changes in typecheck_info.m.
tests/invalid/ambiguous_overloading_error.{m,err_exp}:
Add this new test case. It is a copy of the existing test case
warnings/ambiguous_overloading, but with more overloading. Old
compilers consume so much memory on it that they eventually run out
and crash, but the new compiler generates an error message
and finishes quickly.
tests/invalid/Mmakefile:
Enable the new test case.
tests/warnings/ambiguous_overloading.exp:
Update the output of this test case to account for the fact that
the context of the warning is now that of the goal *after* the point
at which the number of type assignments exceeds 50, not the goal
*before* this point.
742 lines
32 KiB
Mathematica
742 lines
32 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% vim: ft=mercury ts=4 sw=4 et
|
|
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 2005-2007 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% File: typeclasses.m.
|
|
% Main author: mark (including code by fjh and dgj)
|
|
%
|
|
% The module implements context reduction, which is the part of type checking
|
|
% which implements the type class system.
|
|
%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module check_hlds.typeclasses.
|
|
:- interface.
|
|
|
|
:- import_module check_hlds.typecheck_info.
|
|
:- import_module hlds.
|
|
:- import_module hlds.hlds_data.
|
|
:- import_module hlds.hlds_pred.
|
|
:- import_module parse_tree.
|
|
:- import_module parse_tree.prog_data.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% perform_context_reduction(OrigTypeAssignSet, !Info) is true
|
|
% iff either
|
|
% (a) !:Info is the typecheck_info that results from performing
|
|
% context reduction on the type_assigns in !.Info, or
|
|
% (b) if there is no valid context reduction, then !:Info is !.Info
|
|
% with the type assign set replaced by OrigTypeAssignSet (see below).
|
|
%
|
|
% Context reduction is the process of eliminating redundant constraints
|
|
% from the constraints in the type_assign and adding the proof of the
|
|
% constraint's redundancy to the proofs in the same type_assign. There
|
|
% are three ways in which a constraint may be redundant:
|
|
%
|
|
% - if a constraint occurs in the pred/func declaration for this
|
|
% predicate or function, then it is redundant
|
|
% (in this case, the proof is trivial, so there is no need
|
|
% to record it in the proof map)
|
|
% - if a constraint is present in the set of constraints and all
|
|
% of the "superclass" constraints for the constraints are all
|
|
% present, then all the superclass constraints are eliminated
|
|
% - if there is an instance declaration that may be applied, the
|
|
% constraint is replaced by the constraints from that instance
|
|
% declaration
|
|
%
|
|
% In addition, context reduction removes repeated constraints.
|
|
%
|
|
% During context reduction we also try to "improve" the type binding
|
|
% in the given type_assign (that is, binding the type variables in
|
|
% such a way that the satisfiability of the constraints is not
|
|
% changed). This is done by applying improvement rules inside the
|
|
% fixpoint loop. The improvement rules are those which are induced
|
|
% by functional dependencies attached to typeclass declarations.
|
|
%
|
|
% If context reduction fails on a type_assign, that type_assign is
|
|
% removed from the type_assign_set. Context reduction fails if there is
|
|
% a constraint where the type of (at least) one of the arguments to
|
|
% the constraint has its top level functor bound, but there is no
|
|
% instance declaration for that type.
|
|
%
|
|
% If all type_assigns from the typecheck_info are rejected, than an
|
|
% appropriate error message is given, the type_assign_set is
|
|
% restored to the original one given by OrigTypeAssignSet,
|
|
% but without any typeclass constraints.
|
|
% The reason for this is to avoid reporting the same error at
|
|
% subsequent calls to perform_context_reduction.
|
|
%
|
|
:- pred perform_context_reduction(type_assign_set::in,
|
|
typecheck_info::in, typecheck_info::out) is det.
|
|
|
|
% Apply context reduction to the list of class constraints by applying
|
|
% the instance rules or superclass rules, building up proofs for
|
|
% redundant constraints.
|
|
%
|
|
:- pred reduce_context_by_rule_application(class_table::in, instance_table::in,
|
|
head_type_params::in, tsubst::in, tsubst::out, tvarset::in, tvarset::out,
|
|
constraint_proof_map::in, constraint_proof_map::out,
|
|
constraint_map::in, constraint_map::out,
|
|
hlds_constraints::in, hlds_constraints::out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module check_hlds.type_util.
|
|
:- import_module check_hlds.typecheck_errors.
|
|
:- import_module hlds.hlds_module.
|
|
:- import_module parse_tree.prog_type.
|
|
:- import_module parse_tree.prog_type_subst.
|
|
|
|
:- import_module bool.
|
|
:- import_module int.
|
|
:- import_module list.
|
|
:- import_module map.
|
|
:- import_module multi_map.
|
|
:- import_module set.
|
|
:- import_module svmap.
|
|
:- import_module term.
|
|
:- import_module varset.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
perform_context_reduction(OrigTypeAssignSet, !Info) :-
|
|
trace [io(!IO)] (
|
|
type_checkpoint("before context reduction", !.Info, !IO)
|
|
),
|
|
TypeAssignSet0 = tc_info_type_assign_set(!.Info),
|
|
ModuleInfo = tc_info_module_info(!.Info),
|
|
module_info_get_class_table(ModuleInfo, ClassTable),
|
|
module_info_get_instance_table(ModuleInfo, InstanceTable),
|
|
list.filter_map(
|
|
reduce_type_assign_context(ClassTable, InstanceTable),
|
|
TypeAssignSet0, TypeAssignSet),
|
|
(
|
|
% Check that this context reduction hasn't eliminated
|
|
% all the type assignments.
|
|
TypeAssignSet0 = [_ | _],
|
|
TypeAssignSet = []
|
|
->
|
|
Spec = report_unsatisfiable_constraints(!.Info, TypeAssignSet0),
|
|
typecheck_info_add_error(Spec, !Info),
|
|
DeleteConstraints = (pred(TA0::in, TA::out) is det :-
|
|
% Make a new hlds_constraints structure for the type assign,
|
|
% with the same assumed constraints but all unproven constraints
|
|
% deleted.
|
|
type_assign_get_typeclass_constraints(TA0, Constraints0),
|
|
type_assign_get_typevarset(TA0, TVarSet),
|
|
make_hlds_constraints(ClassTable, TVarSet, [],
|
|
Constraints0 ^ assumed, Constraints),
|
|
type_assign_set_typeclass_constraints(Constraints, TA0, TA)
|
|
),
|
|
list.map(DeleteConstraints, OrigTypeAssignSet, NewTypeAssignSet),
|
|
!:Info = !.Info ^ tc_info_type_assign_set := NewTypeAssignSet
|
|
;
|
|
!:Info = !.Info ^ tc_info_type_assign_set := TypeAssignSet
|
|
).
|
|
|
|
:- pred reduce_type_assign_context(class_table::in, instance_table::in,
|
|
type_assign::in, type_assign::out) is semidet.
|
|
|
|
reduce_type_assign_context(ClassTable, InstanceTable, !TypeAssign) :-
|
|
type_assign_get_head_type_params(!.TypeAssign, HeadTypeParams),
|
|
type_assign_get_type_bindings(!.TypeAssign, Bindings0),
|
|
type_assign_get_typeclass_constraints(!.TypeAssign, Constraints0),
|
|
type_assign_get_typevarset(!.TypeAssign, TVarSet0),
|
|
type_assign_get_constraint_proofs(!.TypeAssign, Proofs0),
|
|
type_assign_get_constraint_map(!.TypeAssign, ConstraintMap0),
|
|
|
|
typeclasses.reduce_context_by_rule_application(ClassTable, InstanceTable,
|
|
HeadTypeParams, Bindings0, Bindings, TVarSet0, TVarSet,
|
|
Proofs0, Proofs, ConstraintMap0, ConstraintMap,
|
|
Constraints0, Constraints),
|
|
check_satisfiability(Constraints ^ unproven, HeadTypeParams),
|
|
|
|
type_assign_set_type_bindings(Bindings, !TypeAssign),
|
|
type_assign_set_typeclass_constraints(Constraints, !TypeAssign),
|
|
type_assign_set_typevarset(TVarSet, !TypeAssign),
|
|
type_assign_set_constraint_proofs(Proofs, !TypeAssign),
|
|
type_assign_set_constraint_map(ConstraintMap, !TypeAssign).
|
|
|
|
reduce_context_by_rule_application(ClassTable, InstanceTable, HeadTypeParams,
|
|
!Bindings, !TVarSet, !Proofs, !ConstraintMap, !Constraints) :-
|
|
reduce_context_by_rule_application_2(ClassTable, InstanceTable,
|
|
HeadTypeParams, !Bindings, !TVarSet, !Proofs, !ConstraintMap,
|
|
!Constraints, !.Constraints ^ unproven, _).
|
|
|
|
:- pred reduce_context_by_rule_application_2(class_table::in,
|
|
instance_table::in, head_type_params::in,
|
|
tsubst::in, tsubst::out, tvarset::in, tvarset::out,
|
|
constraint_proof_map::in, constraint_proof_map::out,
|
|
constraint_map::in, constraint_map::out,
|
|
hlds_constraints::in, hlds_constraints::out,
|
|
list(hlds_constraint)::in, list(hlds_constraint)::out) is det.
|
|
|
|
reduce_context_by_rule_application_2(ClassTable, InstanceTable, HeadTypeParams,
|
|
!Bindings, !TVarSet, !Proofs, !ConstraintMap, !Constraints, !Seen) :-
|
|
apply_rec_subst_to_constraints(!.Bindings, !Constraints),
|
|
apply_improvement_rules(ClassTable, InstanceTable, HeadTypeParams,
|
|
!.Constraints, !TVarSet, !Bindings, AppliedImprovementRule),
|
|
|
|
% We want to make sure that any changes to the bindings are reflected
|
|
% in the constraints, so that the full effect of the improvement rules
|
|
% applies as soon as possible. We therefore apply the bindings to the
|
|
% constraints (but only if the bindings have actually changed since
|
|
% they were last applied).
|
|
(
|
|
AppliedImprovementRule = yes,
|
|
apply_rec_subst_to_constraints(!.Bindings, !Constraints)
|
|
;
|
|
AppliedImprovementRule = no
|
|
),
|
|
|
|
eliminate_assumed_constraints(!ConstraintMap, !Constraints,
|
|
EliminatedAssumed),
|
|
apply_instance_rules(ClassTable, InstanceTable, !TVarSet, !Proofs,
|
|
!ConstraintMap, !Seen, !Constraints, AppliedInstanceRule),
|
|
apply_class_rules(!Proofs, !ConstraintMap, !Constraints, AppliedClassRule),
|
|
(
|
|
AppliedImprovementRule = no,
|
|
EliminatedAssumed = no,
|
|
AppliedInstanceRule = no,
|
|
AppliedClassRule = no
|
|
->
|
|
% We have reached fixpoint.
|
|
sort_and_merge_dups(!Constraints)
|
|
;
|
|
reduce_context_by_rule_application_2(ClassTable, InstanceTable,
|
|
HeadTypeParams, !Bindings, !TVarSet, !Proofs, !ConstraintMap,
|
|
!Constraints, !Seen)
|
|
).
|
|
|
|
:- pred sort_and_merge_dups(hlds_constraints::in, hlds_constraints::out)
|
|
is det.
|
|
|
|
sort_and_merge_dups(!Constraints) :-
|
|
% Should we also sort and merge the other fields?
|
|
Unproven0 = !.Constraints ^ unproven,
|
|
list.sort(compare_hlds_constraints, Unproven0, Unproven1),
|
|
merge_adjacent_constraints(Unproven1, Unproven),
|
|
!:Constraints = !.Constraints ^ unproven := Unproven.
|
|
|
|
:- pred merge_adjacent_constraints(list(hlds_constraint)::in,
|
|
list(hlds_constraint)::out) is det.
|
|
|
|
merge_adjacent_constraints([], []).
|
|
merge_adjacent_constraints([C | Cs], Constraints) :-
|
|
merge_adjacent_constraints_2(C, Cs, Constraints).
|
|
|
|
:- pred merge_adjacent_constraints_2(hlds_constraint::in,
|
|
list(hlds_constraint)::in, list(hlds_constraint)::out) is det.
|
|
|
|
merge_adjacent_constraints_2(C0, [], [C0]).
|
|
merge_adjacent_constraints_2(C0, [C1 | Cs], Constraints) :-
|
|
( merge_constraints(C0, C1, C) ->
|
|
merge_adjacent_constraints_2(C, Cs, Constraints)
|
|
;
|
|
merge_adjacent_constraints_2(C1, Cs, Constraints0),
|
|
Constraints = [C0 | Constraints0]
|
|
).
|
|
|
|
% merge_constraints(A, B, C) succeeds if A and B represent equivalent
|
|
% constraints. In this case, C is the equivalent constraint with the
|
|
% list of ids being the union of the ids of A and B.
|
|
%
|
|
:- pred merge_constraints(hlds_constraint::in, hlds_constraint::in,
|
|
hlds_constraint::out) is semidet.
|
|
|
|
merge_constraints(constraint(IdsA, Name, Types), constraint(IdsB, Name, Types),
|
|
constraint(Ids, Name, Types)) :-
|
|
list.append(IdsA, IdsB, Ids0),
|
|
list.sort_and_remove_dups(Ids0, Ids).
|
|
|
|
:- pred apply_improvement_rules(class_table::in, instance_table::in,
|
|
head_type_params::in, hlds_constraints::in, tvarset::in, tvarset::out,
|
|
tsubst::in, tsubst::out, bool::out) is det.
|
|
|
|
apply_improvement_rules(ClassTable, InstanceTable, HeadTypeParams, Constraints,
|
|
!TVarSet, !Bindings, Changed) :-
|
|
% XXX Should we sort and merge the constraints here?
|
|
do_class_improvement(ClassTable, HeadTypeParams, Constraints, !Bindings,
|
|
Changed1),
|
|
% XXX Do we really need to modify the varset? See the comment above
|
|
% find_matching_instance_rule.
|
|
do_instance_improvement(ClassTable, InstanceTable, HeadTypeParams,
|
|
Constraints, !TVarSet, !Bindings, Changed2),
|
|
Changed = bool.or(Changed1, Changed2).
|
|
|
|
:- pred do_class_improvement(class_table::in, head_type_params::in,
|
|
hlds_constraints::in, tsubst::in, tsubst::out, bool::out) is det.
|
|
|
|
do_class_improvement(ClassTable, HeadTypeParams, Constraints, !Bindings,
|
|
Changed) :-
|
|
Redundant = Constraints ^ redundant,
|
|
multi_map.keys(Redundant, ClassIds),
|
|
list.foldl2(
|
|
do_class_improvement_2(ClassTable, HeadTypeParams, Redundant),
|
|
ClassIds, !Bindings, no, Changed).
|
|
|
|
:- pred do_class_improvement_2(class_table::in, head_type_params::in,
|
|
redundant_constraints::in, class_id::in, tsubst::in, tsubst::out,
|
|
bool::in, bool::out) is det.
|
|
|
|
do_class_improvement_2(ClassTable, HeadTypeParams, RedundantConstraints,
|
|
ClassId, !Bindings, !Changed) :-
|
|
map.lookup(ClassTable, ClassId, ClassDefn),
|
|
FunDeps = ClassDefn ^ class_fundeps,
|
|
map.lookup(RedundantConstraints, ClassId, Constraints),
|
|
do_class_improvement_by_pairs(Constraints, FunDeps, HeadTypeParams,
|
|
!Bindings, !Changed).
|
|
|
|
:- pred has_class_id(class_id::in, hlds_constraint::in) is semidet.
|
|
|
|
has_class_id(class_id(Name, Arity), constraint(_, Name, Args)) :-
|
|
list.length(Args, Arity).
|
|
|
|
% Try to find an opportunity for improvement for each (unordered)
|
|
% pair of constraints from the list.
|
|
%
|
|
:- pred do_class_improvement_by_pairs(list(hlds_constraint)::in,
|
|
hlds_class_fundeps::in, head_type_params::in, tsubst::in, tsubst::out,
|
|
bool::in, bool::out) is det.
|
|
|
|
do_class_improvement_by_pairs([], _, _, !Bindings, !Changed).
|
|
do_class_improvement_by_pairs([Constraint | Constraints], FunDeps,
|
|
HeadTypeParams, !Bindings, !Changed) :-
|
|
do_class_improvement_by_pairs_2(Constraint, Constraints, FunDeps,
|
|
HeadTypeParams, !Bindings, !Changed),
|
|
do_class_improvement_by_pairs(Constraints, FunDeps, HeadTypeParams,
|
|
!Bindings, !Changed).
|
|
|
|
:- pred do_class_improvement_by_pairs_2(hlds_constraint::in,
|
|
list(hlds_constraint)::in, hlds_class_fundeps::in, head_type_params::in,
|
|
tsubst::in, tsubst::out, bool::in, bool::out) is det.
|
|
|
|
do_class_improvement_by_pairs_2(_, [], _, _, !Bindings, !Changed).
|
|
do_class_improvement_by_pairs_2(Constraint, [HeadConstraint | TailConstraints],
|
|
FunDeps, HeadTypeParams, !Bindings, !Changed) :-
|
|
do_class_improvement_pair(Constraint, HeadConstraint, FunDeps,
|
|
HeadTypeParams, !Bindings, !Changed),
|
|
do_class_improvement_by_pairs_2(Constraint, TailConstraints, FunDeps,
|
|
HeadTypeParams, !Bindings, !Changed).
|
|
|
|
% Try to find an opportunity for improvement for this pair of
|
|
% constraints, using each fundep in turn.
|
|
%
|
|
:- pred do_class_improvement_pair(hlds_constraint::in, hlds_constraint::in,
|
|
hlds_class_fundeps::in, head_type_params::in, tsubst::in, tsubst::out,
|
|
bool::in, bool::out) is det.
|
|
|
|
do_class_improvement_pair(_, _, [], _, !Bindings, !Changed).
|
|
do_class_improvement_pair(ConstraintA, ConstraintB, [FunDep | FunDeps],
|
|
HeadTypeParams, !Bindings, !Changed) :-
|
|
do_class_improvement_fundep(ConstraintA, ConstraintB, FunDep,
|
|
HeadTypeParams, !Bindings, !Changed),
|
|
do_class_improvement_pair(ConstraintA, ConstraintB, FunDeps,
|
|
HeadTypeParams, !Bindings, !Changed).
|
|
|
|
:- pred do_class_improvement_fundep(hlds_constraint::in, hlds_constraint::in,
|
|
hlds_class_fundep::in, head_type_params::in, tsubst::in, tsubst::out,
|
|
bool::in, bool::out) is det.
|
|
|
|
do_class_improvement_fundep(ConstraintA, ConstraintB, FunDep, HeadTypeParams,
|
|
!Bindings, !Changed) :-
|
|
ConstraintA = constraint(_, _, TypesA),
|
|
ConstraintB = constraint(_, _, TypesB),
|
|
FunDep = fundep(Domain, Range),
|
|
(
|
|
% We already know that the name/arity of the constraints match,
|
|
% since we have partitioned them already.
|
|
lists_match_on_elements(Domain, TypesA, TypesB),
|
|
\+ lists_match_on_elements(Range, TypesA, TypesB),
|
|
|
|
% The unification can fail if type parameters in the declaration
|
|
% would be bound by the improvement rule. This means that the
|
|
% declaration is not as specific as it could be, but that is not
|
|
% a problem for us.
|
|
unify_on_elements(Range, TypesA, TypesB, HeadTypeParams, !Bindings)
|
|
->
|
|
!:Changed = yes
|
|
;
|
|
true
|
|
).
|
|
|
|
:- pred do_instance_improvement(class_table::in, instance_table::in,
|
|
head_type_params::in, hlds_constraints::in, tvarset::in, tvarset::out,
|
|
tsubst::in, tsubst::out, bool::out) is det.
|
|
|
|
do_instance_improvement(ClassTable, InstanceTable, HeadTypeParams, Constraints,
|
|
!TVarSet, !Bindings, Changed) :-
|
|
RedundantConstraints = Constraints ^ redundant,
|
|
map.keys(RedundantConstraints, ClassIds),
|
|
list.foldl3(
|
|
do_instance_improvement_2(ClassTable, InstanceTable,
|
|
HeadTypeParams, RedundantConstraints),
|
|
ClassIds, !TVarSet, !Bindings, no, Changed).
|
|
|
|
:- pred do_instance_improvement_2(class_table::in, instance_table::in,
|
|
head_type_params::in, redundant_constraints::in, class_id::in,
|
|
tvarset::in, tvarset::out, tsubst::in, tsubst::out,
|
|
bool::in, bool::out) is det.
|
|
|
|
do_instance_improvement_2(ClassTable, InstanceTable, HeadTypeParams,
|
|
RedundantConstraints, ClassId, !TVarSet, !Bindings, !Changed) :-
|
|
map.lookup(ClassTable, ClassId, ClassDefn),
|
|
FunDeps = ClassDefn ^ class_fundeps,
|
|
map.lookup(InstanceTable, ClassId, InstanceDefns),
|
|
map.lookup(RedundantConstraints, ClassId, Constraints),
|
|
list.foldl3(
|
|
do_instance_improvement_3(Constraints, FunDeps, HeadTypeParams),
|
|
InstanceDefns, !TVarSet, !Bindings, !Changed).
|
|
|
|
:- pred do_instance_improvement_3(list(hlds_constraint)::in,
|
|
hlds_class_fundeps::in, head_type_params::in, hlds_instance_defn::in,
|
|
tvarset::in, tvarset::out, tsubst::in, tsubst::out,
|
|
bool::in, bool::out) is det.
|
|
|
|
do_instance_improvement_3(Constraints, FunDeps, HeadTypeParams, InstanceDefn,
|
|
!TVarSet, !Bindings, !Changed) :-
|
|
InstanceTVarSet = InstanceDefn ^ instance_tvarset,
|
|
InstanceTypes0 = InstanceDefn ^ instance_types,
|
|
tvarset_merge_renaming(!.TVarSet, InstanceTVarSet, NewTVarSet, Renaming),
|
|
apply_variable_renaming_to_type_list(Renaming, InstanceTypes0,
|
|
InstanceTypes),
|
|
list.foldl2(
|
|
do_instance_improvement_4(FunDeps, InstanceTypes, HeadTypeParams),
|
|
Constraints, !Bindings, no, Changed0),
|
|
(
|
|
Changed0 = yes,
|
|
!:TVarSet = NewTVarSet,
|
|
!:Changed = yes
|
|
;
|
|
Changed0 = no
|
|
).
|
|
|
|
:- pred do_instance_improvement_4(hlds_class_fundeps::in, list(mer_type)::in,
|
|
head_type_params::in, hlds_constraint::in, tsubst::in, tsubst::out,
|
|
bool::in, bool::out) is det.
|
|
|
|
do_instance_improvement_4(FunDeps, InstanceTypes, HeadTypeParams, Constraint,
|
|
!Bindings, !Changed) :-
|
|
list.foldl2(
|
|
do_instance_improvement_fundep(Constraint, InstanceTypes,
|
|
HeadTypeParams),
|
|
FunDeps, !Bindings, !Changed).
|
|
|
|
:- pred do_instance_improvement_fundep(hlds_constraint::in, list(mer_type)::in,
|
|
head_type_params::in, hlds_class_fundep::in, tsubst::in, tsubst::out,
|
|
bool::in, bool::out) is det.
|
|
|
|
do_instance_improvement_fundep(Constraint, InstanceTypes0, HeadTypeParams,
|
|
FunDep, !Bindings, !Changed) :-
|
|
Constraint = constraint(_, _, ConstraintTypes),
|
|
FunDep = fundep(Domain, Range),
|
|
(
|
|
% We already know that the name/arity of the constraints match,
|
|
% since we have partitioned them already.
|
|
subsumes_on_elements(Domain, InstanceTypes0, ConstraintTypes, Subst),
|
|
apply_rec_subst_to_type_list(Subst, InstanceTypes0, InstanceTypes),
|
|
|
|
% Improvement occurs iff the instance range types are not more
|
|
% general than the constraint range types. If they *are* more
|
|
% general, we stop here.
|
|
\+ subsumes_on_elements(Range, InstanceTypes, ConstraintTypes, _),
|
|
|
|
% The unification can fail if type parameters in the declaration
|
|
% would be bound by the improvement rule. This means that the
|
|
% declaration is not as specific as it could be, but that is not
|
|
% a problem for us.
|
|
unify_on_elements(Range, InstanceTypes, ConstraintTypes,
|
|
HeadTypeParams, !Bindings)
|
|
->
|
|
!:Changed = yes
|
|
;
|
|
true
|
|
).
|
|
|
|
% For each index in the set, check that the types in the corresponding
|
|
% positions in the lists are identical.
|
|
%
|
|
:- pred lists_match_on_elements(set(hlds_class_argpos)::in, list(mer_type)::in,
|
|
list(mer_type)::in) is semidet.
|
|
|
|
lists_match_on_elements(Elements, TypesA, TypesB) :-
|
|
RTypesA = restrict_list_elements(Elements, TypesA),
|
|
RTypesB = restrict_list_elements(Elements, TypesB),
|
|
RTypesA = RTypesB.
|
|
|
|
% For each index in the set, unify the types in the corresponding
|
|
% positions in the lists and add to the current bindings.
|
|
%
|
|
:- pred unify_on_elements(set(hlds_class_argpos)::in, list(mer_type)::in,
|
|
list(mer_type)::in, head_type_params::in, tsubst::in, tsubst::out)
|
|
is semidet.
|
|
|
|
unify_on_elements(Elements, TypesA, TypesB, HeadTypeParams, !Bindings) :-
|
|
RTypesA = restrict_list_elements(Elements, TypesA),
|
|
RTypesB = restrict_list_elements(Elements, TypesB),
|
|
type_unify_list(RTypesA, RTypesB, HeadTypeParams, !Bindings).
|
|
|
|
% Analogous to type_list_subsumes except that it only checks those
|
|
% elements of the list specified by the set of indices.
|
|
%
|
|
:- pred subsumes_on_elements(set(hlds_class_argpos)::in, list(mer_type)::in,
|
|
list(mer_type)::in, tsubst::out) is semidet.
|
|
|
|
subsumes_on_elements(Elements, TypesA, TypesB, Subst) :-
|
|
RTypesA = restrict_list_elements(Elements, TypesA),
|
|
RTypesB = restrict_list_elements(Elements, TypesB),
|
|
type_vars_list(RTypesB, RTypesBVars),
|
|
map.init(Subst0),
|
|
type_unify_list(RTypesA, RTypesB, RTypesBVars, Subst0, Subst).
|
|
|
|
:- pred eliminate_assumed_constraints(constraint_map::in, constraint_map::out,
|
|
hlds_constraints::in, hlds_constraints::out, bool::out) is det.
|
|
|
|
eliminate_assumed_constraints(!ConstraintMap, !Constraints, Changed) :-
|
|
!.Constraints = constraints(Unproven0, Assumed, Redundant, Ancestors),
|
|
eliminate_assumed_constraints_2(Assumed, !ConstraintMap,
|
|
Unproven0, Unproven, Changed),
|
|
!:Constraints = constraints(Unproven, Assumed, Redundant, Ancestors).
|
|
|
|
:- pred eliminate_assumed_constraints_2(list(hlds_constraint)::in,
|
|
constraint_map::in, constraint_map::out,
|
|
list(hlds_constraint)::in, list(hlds_constraint)::out,
|
|
bool::out) is det.
|
|
|
|
eliminate_assumed_constraints_2(_, !ConstraintMap, [], [], no).
|
|
eliminate_assumed_constraints_2(AssumedCs, !ConstraintMap, [C | Cs], NewCs,
|
|
Changed) :-
|
|
eliminate_assumed_constraints_2(AssumedCs, !ConstraintMap, Cs, NewCs0,
|
|
Changed0),
|
|
(
|
|
some [A] (
|
|
list.member(A, AssumedCs),
|
|
matching_constraints(A, C)
|
|
)
|
|
->
|
|
update_constraint_map(C, !ConstraintMap),
|
|
NewCs = NewCs0,
|
|
Changed = yes
|
|
;
|
|
NewCs = [C | NewCs0],
|
|
Changed = Changed0
|
|
).
|
|
|
|
:- pred apply_instance_rules(class_table::in, instance_table::in,
|
|
tvarset::in, tvarset::out,
|
|
constraint_proof_map::in, constraint_proof_map::out,
|
|
constraint_map::in, constraint_map::out,
|
|
list(hlds_constraint)::in, list(hlds_constraint)::out,
|
|
hlds_constraints::in, hlds_constraints::out, bool::out) is det.
|
|
|
|
apply_instance_rules(ClassTable, InstanceTable, !TVarSet, !Proofs,
|
|
!ConstraintMap, !Seen, !Constraints, Changed) :-
|
|
!.Constraints = constraints(Unproven0, Assumed, Redundant0, Ancestors),
|
|
apply_instance_rules_2(ClassTable, InstanceTable, !TVarSet, !Proofs,
|
|
!ConstraintMap, Redundant0, Redundant, !Seen,
|
|
Unproven0, Unproven, Changed),
|
|
!:Constraints = constraints(Unproven, Assumed, Redundant, Ancestors).
|
|
|
|
:- pred apply_instance_rules_2(class_table::in, instance_table::in,
|
|
tvarset::in, tvarset::out,
|
|
constraint_proof_map::in, constraint_proof_map::out,
|
|
constraint_map::in, constraint_map::out,
|
|
redundant_constraints::in, redundant_constraints::out,
|
|
list(hlds_constraint)::in, list(hlds_constraint)::out,
|
|
list(hlds_constraint)::in, list(hlds_constraint)::out, bool::out) is det.
|
|
|
|
apply_instance_rules_2(_, _, !TVarSet, !Proofs, !ConstraintMap, !Redundant,
|
|
!Seen, [], [], no).
|
|
apply_instance_rules_2(ClassTable, InstanceTable, !TVarSet, !Proofs,
|
|
!ConstraintMap, !Redundant, !Seen, [C | Cs], Constraints, Changed) :-
|
|
C = constraint(_, ClassName, Types),
|
|
list.length(Types, Arity),
|
|
map.lookup(InstanceTable, class_id(ClassName, Arity), Instances),
|
|
InitialTVarSet = !.TVarSet,
|
|
(
|
|
find_matching_instance_rule(Instances, C, !TVarSet, !Proofs,
|
|
NewConstraints0)
|
|
->
|
|
update_constraint_map(C, !ConstraintMap),
|
|
% Remove any constraints we've already seen.
|
|
% This ensures we don't get into an infinite loop.
|
|
list.filter(matches_no_constraint(!.Seen), NewConstraints0,
|
|
NewConstraints),
|
|
update_redundant_constraints(ClassTable, !.TVarSet,
|
|
NewConstraints, !Redundant),
|
|
% Put the new constraints at the front of the list.
|
|
!:Seen = NewConstraints ++ !.Seen,
|
|
Changed1 = yes
|
|
;
|
|
% Put the old constraint at the front of the list.
|
|
NewConstraints = [C],
|
|
!:TVarSet = InitialTVarSet,
|
|
Changed1 = no
|
|
),
|
|
apply_instance_rules_2(ClassTable, InstanceTable, !TVarSet, !Proofs,
|
|
!ConstraintMap, !Redundant, !Seen, Cs, TailConstraints, Changed2),
|
|
bool.or(Changed1, Changed2, Changed),
|
|
list.append(NewConstraints, TailConstraints, Constraints).
|
|
|
|
:- pred matches_no_constraint(list(hlds_constraint)::in, hlds_constraint::in)
|
|
is semidet.
|
|
|
|
matches_no_constraint(Seen, Constraint) :-
|
|
\+ ( some [S] (
|
|
list.member(S, Seen),
|
|
matching_constraints(S, Constraint)
|
|
)).
|
|
|
|
% We take the first matching instance rule that we can find; any
|
|
% overlapping instance declarations will have been caught earlier.
|
|
%
|
|
% This pred also catches tautological constraints since the
|
|
% NewConstraints will be [].
|
|
%
|
|
% XXX Surely we shouldn't need to rename the variables and return
|
|
% a new varset: this substitution should have been worked out before,
|
|
% as these varsets would already have been merged.
|
|
%
|
|
:- pred find_matching_instance_rule(list(hlds_instance_defn)::in,
|
|
hlds_constraint::in, tvarset::in, tvarset::out,
|
|
constraint_proof_map::in, constraint_proof_map::out,
|
|
list(hlds_constraint)::out) is semidet.
|
|
|
|
find_matching_instance_rule(Instances, Constraint, !TVarSet, !Proofs,
|
|
NewConstraints) :-
|
|
% Start a counter so we remember which instance decl we have used.
|
|
find_matching_instance_rule_2(Instances, 1, Constraint, !TVarSet,
|
|
!Proofs, NewConstraints).
|
|
|
|
:- pred find_matching_instance_rule_2(list(hlds_instance_defn)::in, int::in,
|
|
hlds_constraint::in, tvarset::in, tvarset::out,
|
|
constraint_proof_map::in, constraint_proof_map::out,
|
|
list(hlds_constraint)::out) is semidet.
|
|
|
|
find_matching_instance_rule_2([Instance | Instances], InstanceNum0, Constraint,
|
|
!TVarSet, !Proofs, NewConstraints) :-
|
|
Constraint = constraint(_Ids, _Name, Types),
|
|
ProgConstraints0 = Instance ^ instance_constraints,
|
|
InstanceTypes0 = Instance ^ instance_types,
|
|
InstanceTVarSet = Instance ^ instance_tvarset,
|
|
tvarset_merge_renaming(!.TVarSet, InstanceTVarSet, NewTVarSet, Renaming),
|
|
apply_variable_renaming_to_type_list(Renaming, InstanceTypes0,
|
|
InstanceTypes),
|
|
(
|
|
type_list_subsumes(InstanceTypes, Types, Subst)
|
|
->
|
|
!:TVarSet = NewTVarSet,
|
|
apply_variable_renaming_to_prog_constraint_list(Renaming,
|
|
ProgConstraints0, ProgConstraints1),
|
|
apply_rec_subst_to_prog_constraint_list(Subst,
|
|
ProgConstraints1, ProgConstraints),
|
|
init_hlds_constraint_list(ProgConstraints, NewConstraints),
|
|
|
|
NewProof = apply_instance(InstanceNum0),
|
|
retrieve_prog_constraint(Constraint, ProgConstraint),
|
|
map.set(!.Proofs, ProgConstraint, NewProof, !:Proofs)
|
|
;
|
|
InstanceNum = InstanceNum0 + 1,
|
|
find_matching_instance_rule_2(Instances, InstanceNum,
|
|
Constraint, !TVarSet, !Proofs, NewConstraints)
|
|
).
|
|
|
|
% To reduce a constraint using class declarations, we search the
|
|
% ancestors in the hlds_constraints to find a path from the inferred
|
|
% constraint to another (declared or inferred) constraint.
|
|
%
|
|
:- pred apply_class_rules(constraint_proof_map::in, constraint_proof_map::out,
|
|
constraint_map::in, constraint_map::out,
|
|
hlds_constraints::in, hlds_constraints::out, bool::out) is det.
|
|
|
|
apply_class_rules(!Proofs, !ConstraintMap, !Constraints, Changed) :-
|
|
!.Constraints = constraints(Unproven0, _, _, Ancestors),
|
|
apply_class_rules_2(Ancestors, !Proofs, !ConstraintMap,
|
|
Unproven0, Unproven, Changed),
|
|
!:Constraints = !.Constraints ^ unproven := Unproven.
|
|
|
|
:- pred apply_class_rules_2(ancestor_constraints::in,
|
|
constraint_proof_map::in, constraint_proof_map::out,
|
|
constraint_map::in, constraint_map::out,
|
|
list(hlds_constraint)::in, list(hlds_constraint)::out, bool::out) is det.
|
|
|
|
apply_class_rules_2(_, !Proofs, !ConstraintMap, [], [], no).
|
|
apply_class_rules_2(Ancestors, !Proofs, !ConstraintMap,
|
|
[Constraint0 | Constraints0], Constraints, Changed) :-
|
|
retrieve_prog_constraint(Constraint0, ProgConstraint0),
|
|
(
|
|
map.search(Ancestors, ProgConstraint0, Descendants)
|
|
->
|
|
update_constraint_map(Constraint0, !ConstraintMap),
|
|
add_superclass_proofs(ProgConstraint0, Descendants, !Proofs),
|
|
apply_class_rules_2(Ancestors, !Proofs, !ConstraintMap,
|
|
Constraints0, Constraints, _),
|
|
Changed = yes
|
|
;
|
|
apply_class_rules_2(Ancestors, !Proofs, !ConstraintMap,
|
|
Constraints0, TailConstraints, Changed),
|
|
Constraints = [Constraint0 | TailConstraints]
|
|
).
|
|
|
|
:- pred add_superclass_proofs(prog_constraint::in, list(prog_constraint)::in,
|
|
constraint_proof_map::in, constraint_proof_map::out) is det.
|
|
|
|
add_superclass_proofs(_, [], !Proofs).
|
|
add_superclass_proofs(Constraint, [Descendant | Descendants], !Proofs) :-
|
|
svmap.set(Constraint, superclass(Descendant), !Proofs),
|
|
add_superclass_proofs(Descendant, Descendants, !Proofs).
|
|
|
|
% check_satisfiability(Constraints, HeadTypeParams):
|
|
%
|
|
% Check that all of the constraints are satisfiable. Fail if any are
|
|
% definitely not satisfiable.
|
|
%
|
|
% We disallow ground constraints for which there are no matching instance
|
|
% rules, even though the module system means that it would make sense
|
|
% to allow them: even if there is no instance declaration visible
|
|
% in the current module, there may be one visible in the caller. The reason
|
|
% we disallow them is that in practice allowing this causes type inference
|
|
% to let too many errors slip through, with the error diagnosis being
|
|
% too far removed from the real cause of the error. Note that ground
|
|
% constraints *are* allowed if you declare them, since we removed declared
|
|
% constraints before checking satisfiability.
|
|
%
|
|
% Similarly, for constraints on head type params (universally quantified
|
|
% type vars in this pred's type decl, or existentially quantified type vars
|
|
% in type decls for callees), we know that the head type params can
|
|
% never get bound. This means that if the constraint wasn't an assumed
|
|
% constraint and can't be eliminated by instance rule or class rule
|
|
% application, then we can report an error now, rather than later.
|
|
% (For non-head-type-param type variables, we need to wait, in case
|
|
% the type variable gets bound to a type for which there is a valid
|
|
% instance declaration.)
|
|
%
|
|
% So a constraint is considered satisfiable iff it contains at least one
|
|
% type variable that is not in the head type params.
|
|
%
|
|
:- pred check_satisfiability(list(hlds_constraint)::in, head_type_params::in)
|
|
is semidet.
|
|
|
|
check_satisfiability(Constraints, HeadTypeParams) :-
|
|
all [Constraint] (
|
|
list.member(Constraint, Constraints)
|
|
=>
|
|
(
|
|
Constraint = constraint(_Ids, _ClassName, Types),
|
|
type_list_contains_var(Types, TVar),
|
|
not list.member(TVar, HeadTypeParams)
|
|
)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
:- end_module check_hlds.typeclasses.
|
|
%-----------------------------------------------------------------------------%
|