Files
mercury/compiler/bytecode_gen.m
Zoltan Somogyi b56885be93 Fix a bug that caused bootchecks with --optimize-constructor-last-call to fail.
Estimated hours taken: 12
Branches: main

Fix a bug that caused bootchecks with --optimize-constructor-last-call to fail.

The problem was not in lco.m, but in follow_code.m. In some cases,
(specifically, the LCMC version of insert_2 in sparse_bitset.m),
follow_code.m moved an impure goal (store_at_ref) into the arms of an
if-then-else without marking those arms, or the if-then-else, as impure.
The next pass, simplify, then deleted the entire if-then-else, since it
had no outputs. (The store_at_ref that originally appeared after the
if-then-else was the only consumer of its only output.)

The fix is to get follow_code.m to make branched control structures such as
if-then-elses, as well as their arms, semipure or impure if a goal being moved
into them is semipure or impure, or if they came from an semipure or impure
conjunction.

Improve the optimization of the LCMC version of sparse_bitset.insert_2, which
had a foreign_proc invocation of bits_per_int in it: replace such invocations
with a unification of the bits_per_int constant if not cross compiling.

Add a new option, --optimize-constructor-last-call-null. When set, LCMC will
assign NULLs to the fields not yet filled in, to avoid any junk happens to be
there from being followed by the garbage collector's mark phase.

This diff also makes several other changes that helped me to track down
the bug above.

compiler/follow_code.m:
	Make the fix described above.

	Delete all the provisions for --prev-code; it won't be implemented.

	Don't export a predicate that is not now used anywhere else.

compiler/simplify.m:
	Make the optimization described above.

compiler/lco.m:
	Make sure that the LCMC specialized procedure is a predicate, not a
	function: having a function with the mode LCMC_insert_2(in, in) = in
	looks wrong.

	To avoid name collisions when a function and a predicate with the same
	name and arity have LCMC applied to them, include the predicate vs
	function status of the original procedure included in the name of the
	new procedure.

	Update the sym_name of calls to LCMC variants, not just the pred_id,
	because without that, the HLDS dump looks misleading.

compiler/pred_table.m:
	Don't have optimizations like LCMC insert new predicates at the front
	of the list of predicates. Maintain the list of predicates in the
	module as a two part list, to allow efficient addition of new pred_ids
	at the (logical) end without using O(N^2) algorithms. Having predicates
	in chronological order makes it easier to look at HLDS dumps and
	.c files.

compiler/hlds_module.m:
	Make module_info_predids return a module_info that is physically
	updated though logically unchanged.

compiler/options.m:
	Add --optimize-constructor-last-call-null.

	Make the options --dump-hlds-pred-id, --debug-opt-pred-id and
	--debug-opt-pred-name into accumulating options, to allow the user
	to specify more than one predicate to be dumped (e.g. insert_2 and
	its LCMC variant).

	Delete --prev-code.

doc/user_guide.texi:
	Document the changes in options.m.

compiler/code_info.m:
	Record the value of --optimize-constructor-last-call-null in the
	code_info, to avoid lookup at every cell construction.

compiler/unify_gen.m:
compiler/var_locn.m:
	When deciding whether a cell can be static or not, make sure that
	we never make static a cell that has some fields initialized with
	dummy zeros, to be filled in for real later.

compiler/hlds_out.m:
	For goals that are semipure or impure, note this fact. This info was
	lost when I changed the representation of impurity from markers to a
	field.

mdbcomp/prim_data.m:
	Rename some ambiguous function symbols.

compiler/intermod.m:
compiler/trans_opt.m:
	Rename the main predicates (and some function symbols) of these modules
	to avoid ambiguity and to make them more expressive.

compiler/llds.m:
	Don't print line numbers for foreign_code fragments if the user has
	specified --no-line-numbers.

compiler/make.dependencies.m:
compiler/mercury_to_mercury.m:
compiler/recompilation.usage.m:
	Don't use io.write to write out information to files we may need to
	parse again, because this is vulnerable to changes to the names of
	function symbols (e.g. the one to mdbcomp/prim_data.m).

	The compiler still contains some uses of io.write, but they are
	for debugging. I added an item to the todo list of the one exception,
	ilasm.m.

compiler/recompilation.m:
	Rename a misleading function symbol name.

compiler/parse_tree.m:
	Don't import recompilation.m here. It is not needed (all the components
	of parse_tree that need recompilation.m already import it themselves),
	and deleting the import avoids recompiling almost everything when
	recompilation.m changes.

compiler/*.m:
	Conform to the changes above.

compiler/*.m:
browser/*.m:
slice/*.m:
	Conform to the change to mdbcomp.

library/sparse_bitset.m:
	Use some better variable names.
2007-01-19 07:05:06 +00:00

922 lines
34 KiB
Mathematica

%---------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%---------------------------------------------------------------------------%
% Copyright (C) 1996-2007 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: bytecode_gen.m.
% Author: zs.
%
% This module generates bytecode, which is intended to be used by a
% (not yet implemented) bytecode interpreter/debugger.
%
%---------------------------------------------------------------------------%
:- module bytecode_backend.bytecode_gen.
:- interface.
:- import_module bytecode_backend.bytecode.
:- import_module hlds.
:- import_module hlds.hlds_module.
:- import_module io.
:- import_module list.
%---------------------------------------------------------------------------%
:- pred gen_module(module_info::in, module_info::out, list(byte_code)::out,
io::di, io::uo) is det.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
% We make use of some stuff from the LLDS back-end, in particular the stuff
% relating to the argument passing convention in arg_info.m and call_gen.m.
% The intent here is to use the same argument passing convention as for
% the LLDS, to allow interoperability between code compiled to bytecode
% and code compiled to machine code.
%
% XXX It might be nice to move the argument passing related stuff
% in call_gen.m that we use here into arg_info.m, and to then rework
% arg_info.m so that it didn't depend on the LLDS.
:- import_module backend_libs.
:- import_module backend_libs.builtin_ops.
:- import_module check_hlds. % for type_util and mode_util
:- import_module check_hlds.mode_util.
:- import_module check_hlds.type_util.
:- import_module hlds.arg_info.
:- import_module hlds.code_model.
:- import_module hlds.goal_util.
:- import_module hlds.hlds_code_util.
:- import_module hlds.hlds_data.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_pred.
:- import_module hlds.passes_aux.
:- import_module libs.
:- import_module libs.compiler_util.
:- import_module libs.tree.
:- import_module ll_backend. % bytecode_gen uses ll_backend__call_gen.m
:- import_module ll_backend.call_gen. % XXX for arg passing convention
:- import_module mdbcomp.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_type.
:- import_module assoc_list.
:- import_module counter.
:- import_module deconstruct.
:- import_module int.
:- import_module list.
:- import_module map.
:- import_module pair.
:- import_module set.
:- import_module string.
:- import_module term.
:- import_module varset.
%---------------------------------------------------------------------------%
gen_module(!ModuleInfo, Code, !IO) :-
module_info_predids(PredIds, !ModuleInfo),
gen_preds(PredIds, !.ModuleInfo, CodeTree, !IO),
tree.flatten(CodeTree, CodeList),
list.condense(CodeList, Code).
:- pred gen_preds(list(pred_id)::in, module_info::in, byte_tree::out,
io::di, io::uo) is det.
gen_preds([], _ModuleInfo, empty, !IO).
gen_preds([PredId | PredIds], ModuleInfo, Code, !IO) :-
module_info_preds(ModuleInfo, PredTable),
map.lookup(PredTable, PredId, PredInfo),
ProcIds = pred_info_non_imported_procids(PredInfo),
(
ProcIds = [],
PredCode = empty
;
ProcIds = [_ | _],
gen_pred(PredId, ProcIds, PredInfo, ModuleInfo, ProcsCode, !IO),
PredName = predicate_name(ModuleInfo, PredId),
list.length(ProcIds, ProcsCount),
Arity = pred_info_orig_arity(PredInfo),
get_is_func(PredInfo, IsFunc),
EnterCode = node([byte_enter_pred(PredName, Arity, IsFunc,
ProcsCount)]),
EndofCode = node([byte_endof_pred]),
PredCode = tree_list([EnterCode, ProcsCode, EndofCode])
),
gen_preds(PredIds, ModuleInfo, OtherCode, !IO),
Code = tree(PredCode, OtherCode).
:- pred gen_pred(pred_id::in, list(proc_id)::in, pred_info::in,
module_info::in, byte_tree::out, io::di, io::uo) is det.
gen_pred(_PredId, [], _PredInfo, _ModuleInfo, empty, !IO).
gen_pred(PredId, [ProcId | ProcIds], PredInfo, ModuleInfo, Code, !IO) :-
write_proc_progress_message("% Generating bytecode for ",
PredId, ProcId, ModuleInfo, !IO),
gen_proc(ProcId, PredInfo, ModuleInfo, ProcCode),
gen_pred(PredId, ProcIds, PredInfo, ModuleInfo, ProcsCode, !IO),
Code = tree(ProcCode, ProcsCode).
:- pred gen_proc(proc_id::in, pred_info::in,
module_info::in, byte_tree::out) is det.
gen_proc(ProcId, PredInfo, ModuleInfo, Code) :-
pred_info_get_procedures(PredInfo, ProcTable),
map.lookup(ProcTable, ProcId, ProcInfo),
proc_info_get_goal(ProcInfo, Goal),
proc_info_get_vartypes(ProcInfo, VarTypes),
proc_info_get_varset(ProcInfo, VarSet),
proc_info_interface_determinism(ProcInfo, Detism),
determinism_to_code_model(Detism, CodeModel),
goal_util.goal_vars(Goal, GoalVars),
proc_info_get_headvars(ProcInfo, ArgVars),
set.insert_list(GoalVars, ArgVars, Vars),
set.to_sorted_list(Vars, VarList),
map.init(VarMap0),
create_varmap(VarList, VarSet, VarTypes, 0, VarMap0, VarMap, VarInfos),
init_byte_info(ModuleInfo, VarMap, VarTypes, ByteInfo0),
get_next_label(ZeroLabel, ByteInfo0, ByteInfo1),
proc_info_arg_info(ProcInfo, ArgInfo),
assoc_list.from_corresponding_lists(ArgVars, ArgInfo, Args),
call_gen.input_arg_locs(Args, InputArgs),
gen_pickups(InputArgs, ByteInfo, PickupCode),
call_gen.output_arg_locs(Args, OutputArgs),
gen_places(OutputArgs, ByteInfo, PlaceCode),
% If semideterministic, reserve temp slot 0 for the return value
( CodeModel = model_semi ->
get_next_temp(_FrameTemp, ByteInfo1, ByteInfo2)
;
ByteInfo2 = ByteInfo1
),
gen_goal(Goal, ByteInfo2, ByteInfo3, GoalCode),
get_next_label(EndLabel, ByteInfo3, ByteInfo),
get_counts(ByteInfo, LabelCount, TempCount),
ZeroLabelCode = node([byte_label(ZeroLabel)]),
BodyTree = tree_list([PickupCode, ZeroLabelCode, GoalCode, PlaceCode]),
tree.flatten(BodyTree, BodyList),
list.condense(BodyList, BodyCode0),
( list.member(byte_not_supported, BodyCode0) ->
BodyCode = node([byte_not_supported])
;
BodyCode = node(BodyCode0)
),
proc_id_to_int(ProcId, ProcInt),
EnterCode = node([byte_enter_proc(ProcInt, Detism, LabelCount, EndLabel,
TempCount, VarInfos)]),
( CodeModel = model_semi ->
EndofCode = node([byte_semidet_succeed, byte_label(EndLabel),
byte_endof_proc])
;
EndofCode = node([byte_label(EndLabel), byte_endof_proc])
),
Code = tree_list([EnterCode, BodyCode, EndofCode]).
%---------------------------------------------------------------------------%
:- pred gen_goal(hlds_goal::in, byte_info::in, byte_info::out,
byte_tree::out) is det.
gen_goal(hlds_goal(GoalExpr, GoalInfo), !ByteInfo, Code) :-
gen_goal_expr(GoalExpr, GoalInfo, !ByteInfo, GoalCode),
goal_info_get_context(GoalInfo, Context),
term.context_line(Context, Line),
Code = tree(node([byte_context(Line)]), GoalCode).
:- pred gen_goal_expr(hlds_goal_expr::in, hlds_goal_info::in,
byte_info::in, byte_info::out, byte_tree::out) is det.
gen_goal_expr(GoalExpr, GoalInfo, !ByteInfo, Code) :-
(
GoalExpr = generic_call(GenericCallType,
ArgVars, ArgModes, Detism),
( GenericCallType = higher_order(PredVar, _, _, _) ->
gen_higher_order_call(PredVar, ArgVars, ArgModes, Detism,
!.ByteInfo, Code)
;
% XXX
% string.append_list([
% "bytecode for ", GenericCallFunctor, " calls"], Msg),
% sorry(this_file, Msg)
functor(GenericCallType, canonicalize, _GenericCallFunctor, _),
Code = node([byte_not_supported])
)
;
GoalExpr = plain_call(PredId, ProcId, ArgVars, BuiltinState, _, _),
( BuiltinState = not_builtin ->
goal_info_get_determinism(GoalInfo, Detism),
gen_call(PredId, ProcId, ArgVars, Detism, !.ByteInfo, Code)
;
gen_builtin(PredId, ProcId, ArgVars, !.ByteInfo, Code)
)
;
GoalExpr = unify(Var, RHS, _Mode, Unification, _),
gen_unify(Unification, Var, RHS, !.ByteInfo, Code)
;
GoalExpr = negation(Goal),
gen_goal(Goal, !ByteInfo, SomeCode),
get_next_label(EndLabel, !ByteInfo),
get_next_temp(FrameTemp, !ByteInfo),
EnterCode = node([byte_enter_negation(FrameTemp, EndLabel)]),
EndofCode = node([byte_endof_negation_goal(FrameTemp),
byte_label(EndLabel), byte_endof_negation]),
Code = tree_list([EnterCode, SomeCode, EndofCode])
;
GoalExpr = scope(_, InnerGoal),
gen_goal(InnerGoal, !ByteInfo, InnerCode),
goal_info_get_determinism(GoalInfo, OuterDetism),
InnerGoal = hlds_goal(_, InnerGoalInfo),
goal_info_get_determinism(InnerGoalInfo, InnerDetism),
determinism_to_code_model(OuterDetism, OuterCodeModel),
determinism_to_code_model(InnerDetism, InnerCodeModel),
( InnerCodeModel = OuterCodeModel ->
Code = InnerCode
;
get_next_temp(Temp, !ByteInfo),
EnterCode = node([byte_enter_commit(Temp)]),
EndofCode = node([byte_endof_commit(Temp)]),
Code = tree_list([EnterCode, InnerCode, EndofCode])
)
;
GoalExpr = conj(plain_conj, GoalList),
gen_conj(GoalList, !ByteInfo, Code)
;
GoalExpr = conj(parallel_conj, _GoalList),
sorry(this_file, "bytecode_gen of parallel conjunction")
;
GoalExpr = disj(GoalList),
(
GoalList = [],
Code = node([byte_fail])
;
GoalList = [_ | _],
get_next_label(EndLabel, !ByteInfo),
gen_disj(GoalList, EndLabel, !ByteInfo, DisjCode),
EnterCode = node([byte_enter_disjunction(EndLabel)]),
EndofCode = node([byte_endof_disjunction, byte_label(EndLabel)]),
Code = tree_list([EnterCode, DisjCode, EndofCode])
)
;
GoalExpr = switch(Var, _, CasesList),
get_next_label(EndLabel, !ByteInfo),
gen_switch(CasesList, Var, EndLabel, !ByteInfo, SwitchCode),
map_var(!.ByteInfo, Var, ByteVar),
EnterCode = node([byte_enter_switch(ByteVar, EndLabel)]),
EndofCode = node([byte_endof_switch, byte_label(EndLabel)]),
Code = tree_list([EnterCode, SwitchCode, EndofCode])
;
GoalExpr = if_then_else(_Vars, Cond, Then, Else),
get_next_label(EndLabel, !ByteInfo),
get_next_label(ElseLabel, !ByteInfo),
get_next_temp(FrameTemp, !ByteInfo),
gen_goal(Cond, !ByteInfo, CondCode),
gen_goal(Then, !ByteInfo, ThenCode),
gen_goal(Else, !ByteInfo, ElseCode),
EnterIfCode = node([byte_enter_if(ElseLabel, EndLabel, FrameTemp)]),
EnterThenCode = node([byte_enter_then(FrameTemp)]),
EndofThenCode = node([byte_endof_then(EndLabel), byte_label(ElseLabel),
byte_enter_else(FrameTemp)]),
EndofIfCode = node([byte_endof_if, byte_label(EndLabel)]),
Code = tree_list([EnterIfCode, CondCode, EnterThenCode, ThenCode,
EndofThenCode, ElseCode, EndofIfCode])
;
GoalExpr = call_foreign_proc(_, _, _, _, _, _, _),
Code = node([byte_not_supported])
;
GoalExpr = shorthand(_),
% these should have been expanded out by now
unexpected(this_file, "goal_expr: unexpected shorthand")
).
%---------------------------------------------------------------------------%
:- pred gen_places(list(pair(prog_var, arg_loc))::in,
byte_info::in, byte_tree::out) is det.
gen_places([], _, empty).
gen_places([Var - Loc | OutputArgs], ByteInfo, Code) :-
gen_places(OutputArgs, ByteInfo, OtherCode),
map_var(ByteInfo, Var, ByteVar),
Code = tree(node([byte_place_arg(byte_reg_r, Loc, ByteVar)]), OtherCode).
:- pred gen_pickups(list(pair(prog_var, arg_loc))::in,
byte_info::in, byte_tree::out) is det.
gen_pickups([], _, empty).
gen_pickups([Var - Loc | OutputArgs], ByteInfo, Code) :-
gen_pickups(OutputArgs, ByteInfo, OtherCode),
map_var(ByteInfo, Var, ByteVar),
Code = tree(node([byte_pickup_arg(byte_reg_r, Loc, ByteVar)]), OtherCode).
%---------------------------------------------------------------------------%
% Generate bytecode for a higher order call.
%
:- pred gen_higher_order_call(prog_var::in, list(prog_var)::in,
list(mer_mode)::in, determinism::in, byte_info::in, byte_tree::out) is det.
gen_higher_order_call(PredVar, ArgVars, ArgModes, Detism, ByteInfo, Code) :-
determinism_to_code_model(Detism, CodeModel),
get_module_info(ByteInfo, ModuleInfo),
list.map(get_var_type(ByteInfo), ArgVars, ArgTypes),
make_arg_infos(ArgTypes, ArgModes, CodeModel, ModuleInfo, ArgInfo),
assoc_list.from_corresponding_lists(ArgVars, ArgInfo, ArgVarsInfos),
arg_info.partition_args(ArgVarsInfos, InVars, OutVars),
list.length(InVars, NInVars),
list.length(OutVars, NOutVars),
call_gen.input_arg_locs(ArgVarsInfos, InputArgs),
gen_places(InputArgs, ByteInfo, PlaceArgs),
call_gen.output_arg_locs(ArgVarsInfos, OutputArgs),
gen_pickups(OutputArgs, ByteInfo, PickupArgs),
map_var(ByteInfo, PredVar, BytePredVar),
Call = node([byte_higher_order_call(BytePredVar, NInVars, NOutVars,
Detism)]),
( CodeModel = model_semi ->
Check = node([byte_semidet_success_check])
;
Check = empty
),
Code = tree(PlaceArgs, tree(Call, tree(Check, PickupArgs))).
% Generate bytecode for an ordinary call.
%
:- pred gen_call(pred_id::in, proc_id::in, list(prog_var)::in,
determinism::in, byte_info::in, byte_tree::out) is det.
gen_call(PredId, ProcId, ArgVars, Detism, ByteInfo, Code) :-
get_module_info(ByteInfo, ModuleInfo),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo),
proc_info_arg_info(ProcInfo, ArgInfo),
assoc_list.from_corresponding_lists(ArgVars, ArgInfo, ArgVarsInfos),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
get_is_func(PredInfo, IsFunc),
call_gen.input_arg_locs(ArgVarsInfos, InputArgs),
gen_places(InputArgs, ByteInfo, PlaceArgs),
call_gen.output_arg_locs(ArgVarsInfos, OutputArgs),
gen_pickups(OutputArgs, ByteInfo, PickupArgs),
predicate_id(ModuleInfo, PredId, ModuleName, PredName, Arity),
proc_id_to_int(ProcId, ProcInt),
Call = node([byte_call(ModuleName, PredName, Arity, IsFunc, ProcInt)]),
determinism_to_code_model(Detism, CodeModel),
( CodeModel = model_semi ->
Check = node([byte_semidet_success_check])
;
Check = empty
),
Code = tree(PlaceArgs, tree(Call, tree(Check, PickupArgs))).
% Generate bytecode for a call to a builtin.
%
:- pred gen_builtin(pred_id::in, proc_id::in, list(prog_var)::in,
byte_info::in, byte_tree::out) is det.
gen_builtin(PredId, ProcId, Args, ByteInfo, Code) :-
get_module_info(ByteInfo, ModuleInfo),
ModuleName = predicate_module(ModuleInfo, PredId),
PredName = predicate_name(ModuleInfo, PredId),
(
builtin_ops.translate_builtin(ModuleName, PredName, ProcId,
Args, SimpleCode)
->
(
SimpleCode = test(Test),
map_test(ByteInfo, Test, Code)
;
SimpleCode = assign(Var, Expr),
map_assign(ByteInfo, Var, Expr, Code)
;
SimpleCode = ref_assign(_Var, _Expr),
unexpected(this_file, "ref_assign")
;
SimpleCode = noop(_DefinedVars),
Code = node([])
)
;
string.append("unknown builtin predicate ", PredName, Msg),
unexpected(this_file, Msg)
).
:- pred map_test(byte_info::in, simple_expr(prog_var)::in(simple_test_expr),
byte_tree::out) is det.
map_test(ByteInfo, TestExpr, Code) :-
(
TestExpr = binary(Binop, X, Y),
map_arg(ByteInfo, X, ByteX),
map_arg(ByteInfo, Y, ByteY),
Code = node([byte_builtin_bintest(Binop, ByteX, ByteY)])
;
TestExpr = unary(Unop, X),
map_arg(ByteInfo, X, ByteX),
Code = node([byte_builtin_untest(Unop, ByteX)])
).
:- pred map_assign(byte_info::in, prog_var::in,
simple_expr(prog_var)::in(simple_assign_expr), byte_tree::out) is det.
map_assign(ByteInfo, Var, Expr, Code) :-
(
Expr = binary(Binop, X, Y),
map_arg(ByteInfo, X, ByteX),
map_arg(ByteInfo, Y, ByteY),
map_var(ByteInfo, Var, ByteVar),
Code = node([byte_builtin_binop(Binop, ByteX, ByteY, ByteVar)])
;
Expr = unary(Unop, X),
map_arg(ByteInfo, X, ByteX),
map_var(ByteInfo, Var, ByteVar),
Code = node([byte_builtin_unop(Unop, ByteX, ByteVar)])
;
Expr = leaf(X),
map_var(ByteInfo, X, ByteX),
map_var(ByteInfo, Var, ByteVar),
Code = node([byte_assign(ByteVar, ByteX)])
).
:- pred map_arg(byte_info::in, simple_expr(prog_var)::in(simple_arg_expr),
byte_arg::out) is det.
map_arg(ByteInfo, Expr, ByteArg) :-
(
Expr = leaf(Var),
map_var(ByteInfo, Var, ByteVar),
ByteArg = byte_arg_var(ByteVar)
;
Expr = int_const(IntVal),
ByteArg = byte_arg_int_const(IntVal)
;
Expr = float_const(FloatVal),
ByteArg = byte_arg_float_const(FloatVal)
).
%---------------------------------------------------------------------------%
% Generate bytecode for a unification.
%
:- pred gen_unify(unification::in, prog_var::in, unify_rhs::in,
byte_info::in, byte_tree::out) is det.
gen_unify(construct(Var, ConsId, Args, UniModes, _, _, _), _, _,
ByteInfo, Code) :-
map_var(ByteInfo, Var, ByteVar),
map_vars(ByteInfo, Args, ByteArgs),
map_cons_id(ByteInfo, Var, ConsId, ByteConsId),
( ByteConsId = byte_pred_const(_, _, _, _, _) ->
Code = node([byte_construct(ByteVar, ByteConsId, ByteArgs)])
;
% Don't call map_uni_modes until after
% the pred_const test fails, since the arg-modes on
% unifications that create closures aren't like other arg-modes.
map_uni_modes(UniModes, Args, ByteInfo, Dirs),
( all_dirs_same(Dirs, to_var) ->
Code = node([byte_construct(ByteVar, ByteConsId, ByteArgs)])
;
assoc_list.from_corresponding_lists(ByteArgs, Dirs, Pairs),
Code = node([byte_complex_construct(ByteVar, ByteConsId, Pairs)])
)
).
gen_unify(deconstruct(Var, ConsId, Args, UniModes, _, _), _, _,
ByteInfo, Code) :-
map_var(ByteInfo, Var, ByteVar),
map_vars(ByteInfo, Args, ByteArgs),
map_cons_id(ByteInfo, Var, ConsId, ByteConsId),
map_uni_modes(UniModes, Args, ByteInfo, Dirs),
( all_dirs_same(Dirs, to_arg) ->
Code = node([byte_deconstruct(ByteVar, ByteConsId, ByteArgs)])
;
assoc_list.from_corresponding_lists(ByteArgs, Dirs, Pairs),
Code = node([byte_complex_deconstruct(ByteVar, ByteConsId, Pairs)])
).
gen_unify(assign(Target, Source), _, _, ByteInfo, Code) :-
map_var(ByteInfo, Target, ByteTarget),
map_var(ByteInfo, Source, ByteSource),
Code = node([byte_assign(ByteTarget, ByteSource)]).
gen_unify(simple_test(Var1, Var2), _, _, ByteInfo, Code) :-
map_var(ByteInfo, Var1, ByteVar1),
map_var(ByteInfo, Var2, ByteVar2),
get_var_type(ByteInfo, Var1, Var1Type),
get_var_type(ByteInfo, Var2, Var2Type),
(
type_to_ctor_and_args(Var1Type, TypeCtor1, _),
type_to_ctor_and_args(Var2Type, TypeCtor2, _)
->
( TypeCtor2 = TypeCtor1 ->
TypeCtor = TypeCtor1
; unexpected(this_file,
"simple_test between different types")
)
;
unexpected(this_file, "failed lookup of type id")
),
ByteInfo = byte_info(_, _, ModuleInfo, _, _),
TypeCategory = classify_type_ctor(ModuleInfo, TypeCtor),
(
TypeCategory = type_cat_int,
TestId = int_test
;
TypeCategory = type_cat_char,
TestId = char_test
;
TypeCategory = type_cat_string,
TestId = string_test
;
TypeCategory = type_cat_float,
TestId = float_test
;
TypeCategory = type_cat_dummy,
TestId = dummy_test
;
TypeCategory = type_cat_enum,
TestId = enum_test
;
TypeCategory = type_cat_higher_order,
unexpected(this_file, "higher_order_type in simple_test")
;
TypeCategory = type_cat_tuple,
unexpected(this_file, "tuple_type in simple_test")
;
TypeCategory = type_cat_user_ctor,
unexpected(this_file, "user_ctor_type in simple_test")
;
TypeCategory = type_cat_variable,
unexpected(this_file, "variable_type in simple_test")
;
TypeCategory = type_cat_void,
unexpected(this_file, "void_type in simple_test")
;
TypeCategory = type_cat_type_info,
unexpected(this_file, "type_info_type in simple_test")
;
TypeCategory = type_cat_type_ctor_info,
unexpected(this_file, "type_ctor_info_type in simple_test")
;
TypeCategory = type_cat_typeclass_info,
unexpected(this_file, "typeclass_info_type in simple_test")
;
TypeCategory = type_cat_base_typeclass_info,
unexpected(this_file, "base_typeclass_info_type in simple_test")
),
Code = node([byte_test(ByteVar1, ByteVar2, TestId)]).
gen_unify(complicated_unify(_,_,_), _Var, _RHS, _ByteInfo, _Code) :-
unexpected(this_file, "complicated unifications " ++
"should have been handled by polymorphism.m").
:- pred map_uni_modes(list(uni_mode)::in, list(prog_var)::in,
byte_info::in, list(byte_dir)::out) is det.
map_uni_modes([], [], _, []).
map_uni_modes([UniMode | UniModes], [Arg | Args], ByteInfo, [Dir | Dirs]) :-
UniMode = ((VarInitial - ArgInitial) -> (VarFinal - ArgFinal)),
get_module_info(ByteInfo, ModuleInfo),
get_var_type(ByteInfo, Arg, Type),
mode_to_arg_mode(ModuleInfo, (VarInitial -> VarFinal), Type, VarMode),
mode_to_arg_mode(ModuleInfo, (ArgInitial -> ArgFinal), Type, ArgMode),
(
VarMode = top_in,
ArgMode = top_out
->
Dir = to_arg
;
VarMode = top_out,
ArgMode = top_in
->
Dir = to_var
;
VarMode = top_unused,
ArgMode = top_unused
->
Dir = to_none
;
unexpected(this_file,
"invalid mode for (de)construct unification")
),
map_uni_modes(UniModes, Args, ByteInfo, Dirs).
map_uni_modes([], [_|_], _, _) :-
unexpected(this_file, "map_uni_modes: length mismatch").
map_uni_modes([_|_], [], _, _) :-
unexpected(this_file, "map_uni_modes: length mismatch").
:- pred all_dirs_same(list(byte_dir)::in, byte_dir::in)
is semidet.
all_dirs_same([], _).
all_dirs_same([Dir | Dirs], Dir) :-
all_dirs_same(Dirs, Dir).
%---------------------------------------------------------------------------%
% Generate bytecode for a conjunction
%
:- pred gen_conj(list(hlds_goal)::in, byte_info::in, byte_info::out,
byte_tree::out) is det.
gen_conj([], !ByteInfo, empty).
gen_conj([Goal | Goals], !ByteInfo, Code) :-
gen_goal(Goal, !ByteInfo, ThisCode),
gen_conj(Goals, !ByteInfo, OtherCode),
Code = tree(ThisCode, OtherCode).
%---------------------------------------------------------------------------%
% Generate bytecode for each disjunct of a disjunction.
%
:- pred gen_disj(list(hlds_goal)::in, int::in,
byte_info::in, byte_info::out, byte_tree::out) is det.
gen_disj([], _, _, _, _) :-
unexpected(this_file, "empty disjunction in disj").
gen_disj([Disjunct | Disjuncts], EndLabel, !ByteInfo, Code) :-
gen_goal(Disjunct, !ByteInfo, ThisCode),
(
Disjuncts = [],
EnterCode = node([byte_enter_disjunct(-1)]),
EndofCode = node([byte_endof_disjunct(EndLabel)]),
Code = tree_list([EnterCode, ThisCode, EndofCode])
;
Disjuncts = [_ | _],
gen_disj(Disjuncts, EndLabel, !ByteInfo, OtherCode),
get_next_label(NextLabel, !ByteInfo),
EnterCode = node([byte_enter_disjunct(NextLabel)]),
EndofCode = node([byte_endof_disjunct(EndLabel),
byte_label(NextLabel)]),
Code = tree_list([EnterCode, ThisCode, EndofCode, OtherCode])
).
%---------------------------------------------------------------------------%
% Generate bytecode for each arm of a switch.
%
:- pred gen_switch(list(case)::in, prog_var::in, int::in,
byte_info::in, byte_info::out, byte_tree::out) is det.
gen_switch([], _, _, !ByteInfo, empty).
gen_switch([case(ConsId, Goal) | Cases], Var, EndLabel,
!ByteInfo, Code) :-
map_cons_id(!.ByteInfo, Var, ConsId, ByteConsId),
gen_goal(Goal, !ByteInfo, ThisCode),
gen_switch(Cases, Var, EndLabel, !ByteInfo, OtherCode),
get_next_label(NextLabel, !ByteInfo),
EnterCode = node([byte_enter_switch_arm(ByteConsId, NextLabel)]),
EndofCode = node([byte_endof_switch_arm(EndLabel), byte_label(NextLabel)]),
Code = tree_list([EnterCode, ThisCode, EndofCode, OtherCode]).
%---------------------------------------------------------------------------%
:- pred map_cons_id(byte_info::in, prog_var::in, cons_id::in,
byte_cons_id::out) is det.
map_cons_id(ByteInfo, Var, ConsId, ByteConsId) :-
get_module_info(ByteInfo, ModuleInfo),
(
ConsId = cons(Functor, Arity),
get_var_type(ByteInfo, Var, Type),
(
% Everything other than characters and tuples should
% be module qualified.
Functor = unqualified(FunctorName),
\+ type_is_tuple(Type, _)
->
string.to_char_list(FunctorName, FunctorList),
( FunctorList = [Char] ->
ByteConsId = byte_char_const(Char)
;
unexpected(this_file, "map_cons_id: " ++
"unqualified cons_id is not a char_const")
)
;
(
Functor = unqualified(FunctorName),
ModuleName = unqualified("builtin")
;
Functor = qualified(ModuleName, FunctorName)
),
ConsTag = cons_id_to_tag(ConsId, Type, ModuleInfo),
map_cons_tag(ConsTag, ByteConsTag),
ByteConsId = byte_cons(ModuleName, FunctorName, Arity, ByteConsTag)
)
;
ConsId = int_const(IntVal),
ByteConsId = byte_int_const(IntVal)
;
ConsId = string_const(StringVal),
ByteConsId = byte_string_const(StringVal)
;
ConsId = float_const(FloatVal),
ByteConsId = byte_float_const(FloatVal)
;
ConsId = pred_const(ShroudedPredProcId, _EvalMethod),
proc(PredId, ProcId) = unshroud_pred_proc_id(ShroudedPredProcId),
predicate_id(ModuleInfo, PredId, ModuleName, PredName, Arity),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
get_is_func(PredInfo, IsFunc),
proc_id_to_int(ProcId, ProcInt),
ByteConsId = byte_pred_const(ModuleName, PredName, Arity, IsFunc,
ProcInt)
;
ConsId = type_ctor_info_const(ModuleName, TypeName, TypeArity),
ByteConsId = byte_type_ctor_info_const(ModuleName, TypeName, TypeArity)
;
ConsId = base_typeclass_info_const(ModuleName, ClassId, _, Instance),
ByteConsId = byte_base_typeclass_info_const(ModuleName, ClassId,
Instance)
;
ConsId = type_info_cell_constructor(_),
ByteConsId = byte_type_info_cell_constructor
;
ConsId = typeclass_info_cell_constructor,
ByteConsId = byte_typeclass_info_cell_constructor
;
ConsId = tabling_info_const(_),
sorry(this_file, "bytecode cannot implement tabling")
;
ConsId = table_io_decl(_),
sorry(this_file, "bytecode cannot implement table io decl")
;
ConsId = deep_profiling_proc_layout(_),
sorry(this_file, "bytecode cannot implement deep profiling")
).
:- pred map_cons_tag(cons_tag::in, byte_cons_tag::out) is det.
map_cons_tag(no_tag, byte_no_tag).
% `single_functor' is just an optimized version of `unshared_tag(0)'
% this optimization is not important for the bytecode
map_cons_tag(single_functor_tag, byte_unshared_tag(0)).
map_cons_tag(unshared_tag(Primary), byte_unshared_tag(Primary)).
map_cons_tag(shared_remote_tag(Primary, Secondary),
byte_shared_remote_tag(Primary, Secondary)).
map_cons_tag(shared_local_tag(Primary, Secondary),
byte_shared_local_tag(Primary, Secondary)).
map_cons_tag(string_tag(_), _) :-
unexpected(this_file, "string_tag cons tag " ++
"for non-string_constant cons id").
map_cons_tag(int_tag(IntVal), byte_enum_tag(IntVal)).
map_cons_tag(float_tag(_), _) :-
unexpected(this_file, "float_tag cons tag " ++
"for non-float_constant cons id").
map_cons_tag(pred_closure_tag(_, _, _), _) :-
unexpected(this_file, "pred_closure_tag cons tag " ++
"for non-pred_const cons id").
map_cons_tag(type_ctor_info_tag(_, _, _), _) :-
unexpected(this_file, "type_ctor_info_tag cons tag " ++
"for non-type_ctor_info_constant cons id").
map_cons_tag(base_typeclass_info_tag(_, _, _), _) :-
unexpected(this_file, "base_typeclass_info_tag cons tag " ++
"for non-base_typeclass_info_constant cons id").
map_cons_tag(tabling_info_tag(_, _), _) :-
unexpected(this_file, "tabling_info_tag cons tag " ++
"for non-tabling_info_constant cons id").
map_cons_tag(deep_profiling_proc_layout_tag(_, _), _) :-
unexpected(this_file, "deep_profiling_proc_layout_tag cons tag " ++
"for non-deep_profiling_proc_static cons id").
map_cons_tag(table_io_decl_tag(_, _), _) :-
unexpected(this_file, "table_io_decl_tag cons tag " ++
"for non-table_io_decl cons id").
map_cons_tag(reserved_address_tag(_), _) :-
% These should only be generated if the --num-reserved-addresses
% or --num-reserved-objects options are used.
sorry(this_file, "bytecode with --num-reserved-addresses " ++
"or --num-reserved-objects").
map_cons_tag(shared_with_reserved_addresses_tag(_, _), _) :-
% These should only be generated if the --num-reserved-addresses
% or --num-reserved-objects options are used.
sorry(this_file, "bytecode with --num-reserved-addresses " ++
"or --num-reserved-objects").
%---------------------------------------------------------------------------%
:- pred create_varmap(list(prog_var)::in, prog_varset::in,
vartypes::in, int::in, map(prog_var, byte_var)::in,
map(prog_var, byte_var)::out, list(byte_var_info)::out) is det.
create_varmap([], _, _, _, !VarMap, []).
create_varmap([Var | VarList], VarSet, VarTypes, N0, !VarMap, VarInfos) :-
map.det_insert(!.VarMap, Var, N0, !:VarMap),
N1 = N0 + 1,
varset.lookup_name(VarSet, Var, VarName),
map.lookup(VarTypes, Var, VarType),
create_varmap(VarList, VarSet, VarTypes, N1, !VarMap, VarInfosTail),
VarInfos = [var_info(VarName, VarType) | VarInfosTail].
%---------------------------------------------------------------------------%(
:- type byte_info
---> byte_info(
byteinfo_varmap :: map(prog_var, byte_var),
byteinfo_vartypes :: vartypes,
byteinfo_moduleinfo :: module_info,
byteinfo_label_counter :: counter,
byteinfo_temp_counter :: counter
).
:- pred init_byte_info(module_info::in, map(prog_var, byte_var)::in,
vartypes::in, byte_info::out) is det.
init_byte_info(ModuleInfo, VarMap, VarTypes, ByteInfo) :-
ByteInfo = byte_info(VarMap, VarTypes, ModuleInfo,
counter.init(0), counter.init(0)).
:- pred get_module_info(byte_info::in, module_info::out) is det.
get_module_info(ByteInfo, ByteInfo ^ byteinfo_moduleinfo).
:- pred map_vars(byte_info::in,
list(prog_var)::in, list(byte_var)::out) is det.
map_vars(ByteInfo, Vars, ByteVars) :-
map_vars_2(ByteInfo ^ byteinfo_varmap, Vars, ByteVars).
:- pred map_vars_2(map(prog_var, byte_var)::in,
list(prog_var)::in, list(byte_var)::out) is det.
map_vars_2(_VarMap, [], []).
map_vars_2(VarMap, [Var | Vars], [ByteVar | ByteVars]) :-
map.lookup(VarMap, Var, ByteVar),
map_vars_2(VarMap, Vars, ByteVars).
:- pred map_var(byte_info::in, prog_var::in,
byte_var::out) is det.
map_var(ByteInfo, Var, ByteVar) :-
map.lookup(ByteInfo ^ byteinfo_varmap, Var, ByteVar).
:- pred get_var_type(byte_info::in, prog_var::in,
mer_type::out) is det.
get_var_type(ByteInfo, Var, Type) :-
map.lookup(ByteInfo ^ byteinfo_vartypes, Var, Type).
:- pred get_next_label(int::out, byte_info::in, byte_info::out)
is det.
get_next_label(Label, !ByteInfo) :-
LabelCounter0 = !.ByteInfo ^ byteinfo_label_counter,
counter.allocate(Label, LabelCounter0, LabelCounter),
!:ByteInfo = !.ByteInfo ^ byteinfo_label_counter := LabelCounter.
:- pred get_next_temp(int::out, byte_info::in, byte_info::out)
is det.
get_next_temp(Temp, !ByteInfo) :-
TempCounter0 = !.ByteInfo ^ byteinfo_temp_counter,
counter.allocate(Temp, TempCounter0, TempCounter),
!:ByteInfo = !.ByteInfo ^ byteinfo_temp_counter := TempCounter.
:- pred get_counts(byte_info::in, int::out, int::out) is det.
get_counts(ByteInfo0, Label, Temp) :-
LabelCounter0 = ByteInfo0 ^ byteinfo_label_counter,
counter.allocate(Label, LabelCounter0, _LabelCounter),
TempCounter0 = ByteInfo0 ^ byteinfo_temp_counter,
counter.allocate(Temp, TempCounter0, _TempCounter).
%---------------------------------------------------------------------------%
:- pred get_is_func(pred_info::in, byte_is_func::out) is det.
get_is_func(PredInfo, IsFunc) :-
PredOrFunc = pred_info_is_pred_or_func(PredInfo),
(
PredOrFunc = pf_predicate,
IsFunc = 0
;
PredOrFunc = pf_function,
IsFunc = 1
).
%---------------------------------------------------------------------------%
:- func this_file = string.
this_file = "bytecode_gen.m".
%---------------------------------------------------------------------------%
:- end_module bytecode_gen.
%---------------------------------------------------------------------------%