mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-15 13:55:07 +00:00
Estimated hours taken: 0.25 compiler/mlds.m: compiler/mlds_to_c.m: compiler/ml_unify_gen.m: compiler/ml_code_util.m: Rename mlds__int_type, mlds__float_type, etc. to mlds__native_int_type, mlds__native_float_type, etc., to make it clearer that these types are for the native MLDS types, which may be different from the MLDS types used to represent the correspondingly-named Mercury types.
1222 lines
40 KiB
Mathematica
1222 lines
40 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1999-2000 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% File: ml_code_util.m
|
|
% Main author: fjh
|
|
|
|
% This module is part of the MLDS code generator.
|
|
% It defines the ml_gen_info type and its access routines.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module ml_code_util.
|
|
:- interface.
|
|
|
|
:- import_module prog_data.
|
|
:- import_module hlds_module, hlds_pred.
|
|
:- import_module mlds.
|
|
:- import_module llds. % XXX for `code_model'.
|
|
|
|
:- import_module bool, int, list, map, std_util.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Various utility routines used for MLDS code generation.
|
|
%
|
|
|
|
% A convenient abbreviation.
|
|
%
|
|
:- type prog_type == prog_data__type.
|
|
|
|
% Generate an MLDS assignment statement.
|
|
:- func ml_gen_assign(mlds__lval, mlds__rval, prog_context) = mlds__statement.
|
|
|
|
% Generate a block statement, i.e. `{ <Decls>; <Statements>; }'.
|
|
% But if the block consists only of a single statement with no
|
|
% declarations, then just return that statement.
|
|
%
|
|
:- func ml_gen_block(mlds__defns, mlds__statements, prog_context) =
|
|
mlds__statement.
|
|
|
|
% ml_join_decls:
|
|
% Join two statement lists and their corresponding
|
|
% declaration lists in sequence.
|
|
%
|
|
% If the statements have no declarations in common,
|
|
% then their corresponding declaration lists will be
|
|
% concatenated together into a single list of declarations.
|
|
% But if they have any declarations in common, then we
|
|
% put each statement list and its declarations into
|
|
% a block, so that the declarations remain local to
|
|
% each statement list.
|
|
%
|
|
:- pred ml_join_decls(mlds__defns, mlds__statements,
|
|
mlds__defns, mlds__statements, prog_context,
|
|
mlds__defns, mlds__statements).
|
|
:- mode ml_join_decls(in, in, in, in, in, out, out) is det.
|
|
|
|
% ml_combine_conj:
|
|
% Given closures to generate code for two conjuncts,
|
|
% generate code for their conjunction.
|
|
|
|
:- type gen_pred == pred(mlds__defns, mlds__statements,
|
|
ml_gen_info, ml_gen_info).
|
|
:- inst gen_pred = (pred(out, out, in, out) is det).
|
|
|
|
:- pred ml_combine_conj(code_model, prog_context, gen_pred, gen_pred,
|
|
mlds__defns, mlds__statements, ml_gen_info, ml_gen_info).
|
|
:- mode ml_combine_conj(in, in, in(gen_pred), in(gen_pred),
|
|
out, out, in, out) is det.
|
|
|
|
% Given a function label and the statement which will comprise
|
|
% the function body for that function, generate an mlds__defn
|
|
% which defines that function.
|
|
%
|
|
:- pred ml_gen_nondet_label_func(ml_label_func, prog_context,
|
|
mlds__statement, mlds__defn, ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_nondet_label_func(in, in, in, out, in, out) is det.
|
|
|
|
% Given a function label, the function parameters, and the statement
|
|
% which will comprise the function body for that function,
|
|
% generate an mlds__defn which defines that function.
|
|
%
|
|
:- pred ml_gen_label_func(ml_label_func, mlds__func_params, prog_context,
|
|
mlds__statement, mlds__defn, ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_label_func(in, in, in, in, out, in, out) is det.
|
|
|
|
% Call error/1 with a "Sorry, not implemented" message.
|
|
%
|
|
:- pred sorry(string::in) is erroneous.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Routines for generating function declarations (i.e. mlds__func_params).
|
|
%
|
|
|
|
% Generate the function prototype for a given procedure.
|
|
%
|
|
:- func ml_gen_proc_params(module_info, pred_id, proc_id) = mlds__func_params.
|
|
|
|
% Generate the function prototype for a procedure with the
|
|
% given argument types, modes, and code model.
|
|
%
|
|
:- func ml_gen_params(module_info, list(string), list(prog_type),
|
|
list(mode), code_model) = mlds__func_params.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Routines for generating labels and entity names.
|
|
%
|
|
|
|
% Generate the mlds__entity_name for the entry point function
|
|
% corresponding to a given procedure.
|
|
%
|
|
:- func ml_gen_proc_label(module_info, pred_id, proc_id) = mlds__entity_name.
|
|
|
|
% Generate an mlds__entity_name for a continuation function
|
|
% with the given sequence number. The pred_id and proc_id
|
|
% specify the procedure that this continuation function
|
|
% is part of.
|
|
%
|
|
:- func ml_gen_nondet_label(module_info, pred_id, proc_id, ml_label_func)
|
|
= mlds__entity_name.
|
|
|
|
% Allocate a new function label and return an rval containing
|
|
% the function's address.
|
|
%
|
|
:- pred ml_gen_new_func_label(ml_label_func, mlds__rval,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_new_func_label(out, out, in, out) is det.
|
|
|
|
% Generate the mlds__pred_label and module name
|
|
% for a given procedure.
|
|
%
|
|
:- pred ml_gen_pred_label(module_info, pred_id, proc_id,
|
|
mlds__pred_label, mlds_module_name).
|
|
:- mode ml_gen_pred_label(in, in, in, out, out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Routines for dealing with variables
|
|
%
|
|
|
|
% Generate a list of the mlds__lvals corresponding to a
|
|
% given list of prog_vars.
|
|
%
|
|
:- pred ml_gen_var_list(list(prog_var), list(mlds__lval),
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_var_list(in, out, in, out) is det.
|
|
|
|
% Generate the mlds__lval corresponding to a given prog_var.
|
|
%
|
|
:- pred ml_gen_var(prog_var, mlds__lval, ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_var(in, out, in, out) is det.
|
|
|
|
% Lookup the types of a list of variables.
|
|
%
|
|
:- pred ml_variable_types(list(prog_var), list(prog_type),
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_variable_types(in, out, in, out) is det.
|
|
|
|
% Lookup the type of a variable.
|
|
%
|
|
:- pred ml_variable_type(prog_var, prog_type, ml_gen_info, ml_gen_info).
|
|
:- mode ml_variable_type(in, out, in, out) is det.
|
|
|
|
% Generate the MLDS variable names for a list of variables.
|
|
%
|
|
:- func ml_gen_var_names(prog_varset, list(prog_var)) = list(mlds__var_name).
|
|
|
|
% Generate the MLDS variable name for a variable.
|
|
%
|
|
:- func ml_gen_var_name(prog_varset, prog_var) = mlds__var_name.
|
|
|
|
% Qualify the name of the specified variable
|
|
% with the current module name.
|
|
%
|
|
:- pred ml_qualify_var(mlds__var_name, mlds__lval,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_qualify_var(in, out, in, out) is det.
|
|
|
|
% Generate a declaration for an MLDS variable, given its HLDS type.
|
|
%
|
|
:- func ml_gen_var_decl(var_name, prog_type, mlds__context) = mlds__defn.
|
|
|
|
% Generate a declaration for an MLDS variable, given its MLDS type.
|
|
%
|
|
:- func ml_gen_mlds_var_decl(mlds__data_name, mlds__type, mlds__context) =
|
|
mlds__defn.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Routines for handling success and failure
|
|
%
|
|
|
|
% Generate code to succeed in the given code_model.
|
|
%
|
|
:- pred ml_gen_success(code_model, prog_context, mlds__statements,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_success(in, in, out, in, out) is det.
|
|
|
|
% Generate code to fail in the given code_model.
|
|
%
|
|
:- pred ml_gen_failure(code_model, prog_context, mlds__statements,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_failure(in, in, out, in, out) is det.
|
|
|
|
% Generate the declaration for the built-in `succeeded' flag.
|
|
% (`succeeded' is a boolean variable used to record
|
|
% the success or failure of model_semi procedures.)
|
|
%
|
|
:- func ml_gen_succeeded_var_decl(mlds__context) = mlds__defn.
|
|
|
|
% Return the lval for the `succeeded' flag.
|
|
% (`succeeded' is a boolean variable used to record
|
|
% the success or failure of model_semi procedures.)
|
|
%
|
|
:- pred ml_success_lval(mlds__lval, ml_gen_info, ml_gen_info).
|
|
:- mode ml_success_lval(out, in, out) is det.
|
|
|
|
% Return an rval which will test the value of the `succeeded' flag.
|
|
% (`succeeded' is a boolean variable used to record
|
|
% the success or failure of model_semi procedures.)
|
|
%
|
|
:- pred ml_gen_test_success(mlds__rval, ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_test_success(out, in, out) is det.
|
|
|
|
% Generate code to set the `succeeded' flag to the
|
|
% specified truth value.
|
|
%
|
|
:- pred ml_gen_set_success(mlds__rval, prog_context, mlds__statement,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_set_success(in, in, out, in, out) is det.
|
|
|
|
% Return rvals for the success continuation that was
|
|
% passed as the current function's argument(s).
|
|
% The success continuation consists of two parts, the
|
|
% `cont' argument, and the `cont_env' argument.
|
|
% The `cont' argument is a continuation function that
|
|
% will be called when a model_non goal succeeds.
|
|
% The `cont_env' argument is a pointer to the environment (set
|
|
% of local variables in the containing procedure) for the continuation
|
|
% function. (If we're using gcc nested function, the `cont_env'
|
|
% is not used.)
|
|
%
|
|
:- pred ml_initial_cont(success_cont, ml_gen_info, ml_gen_info).
|
|
:- mode ml_initial_cont(out, in, out) is det.
|
|
|
|
% Generate code to call the current success continuation.
|
|
% This is used for generating success when in a model_non context.
|
|
%
|
|
:- pred ml_gen_call_current_success_cont(prog_context, mlds__statement,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_call_current_success_cont(in, out, in, out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Routines for dealing with the environment pointer
|
|
% used for nested functions.
|
|
%
|
|
|
|
% Return an rval for a pointer to the current environment
|
|
% (the set of local variables in the containing procedure).
|
|
% Note that we generate this as a dangling reference.
|
|
% The ml_elim_nested pass will insert the declaration
|
|
% of the env_ptr variable.
|
|
:- pred ml_get_env_ptr(mlds__rval, ml_gen_info, ml_gen_info).
|
|
:- mode ml_get_env_ptr(out, in, out) is det.
|
|
|
|
% Return an rval for a pointer to the current environment
|
|
% (the set of local variables in the containing procedure).
|
|
:- pred ml_declare_env_ptr_arg(pair(mlds__entity_name, mlds__type),
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_declare_env_ptr_arg(out, in, out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% The `ml_gen_info' ADT.
|
|
%
|
|
|
|
%
|
|
% The `ml_gen_info' type holds information used during
|
|
% MLDS code generation for a given procedure.
|
|
%
|
|
:- type ml_gen_info.
|
|
|
|
% initialize the ml_gen_info, so that it is
|
|
% ready for generating code for the given procedure
|
|
:- func ml_gen_info_init(module_info, pred_id, proc_id) = ml_gen_info.
|
|
|
|
% accessor predicates; these just get the specified
|
|
% information from the ml_gen_info
|
|
|
|
:- pred ml_gen_info_get_module_info(ml_gen_info, module_info).
|
|
:- mode ml_gen_info_get_module_info(in, out) is det.
|
|
|
|
:- pred ml_gen_info_get_module_name(ml_gen_info, mercury_module_name).
|
|
:- mode ml_gen_info_get_module_name(in, out) is det.
|
|
|
|
:- pred ml_gen_info_get_pred_id(ml_gen_info, pred_id).
|
|
:- mode ml_gen_info_get_pred_id(in, out) is det.
|
|
|
|
:- pred ml_gen_info_get_proc_id(ml_gen_info, proc_id).
|
|
:- mode ml_gen_info_get_proc_id(in, out) is det.
|
|
|
|
:- pred ml_gen_info_get_varset(ml_gen_info, prog_varset).
|
|
:- mode ml_gen_info_get_varset(in, out) is det.
|
|
|
|
:- pred ml_gen_info_get_var_types(ml_gen_info, map(prog_var, prog_type)).
|
|
:- mode ml_gen_info_get_var_types(in, out) is det.
|
|
|
|
:- pred ml_gen_info_get_output_vars(ml_gen_info, list(prog_var)).
|
|
:- mode ml_gen_info_get_output_vars(in, out) is det.
|
|
|
|
:- pred ml_gen_info_use_gcc_nested_functions(bool, ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_info_use_gcc_nested_functions(out, in, out) is det.
|
|
|
|
% A number corresponding to an MLDS nested function which serves as a
|
|
% label (i.e. a continuation function).
|
|
:- type ml_label_func == mlds__func_sequence_num.
|
|
|
|
% Generate a new function label number.
|
|
% This is used to give unique names to the nested functions
|
|
% used when generating code for nondet procedures.
|
|
:- pred ml_gen_info_new_func_label(ml_label_func, ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_info_new_func_label(out, in, out) is det.
|
|
|
|
% Generate a new commit label number.
|
|
% This is used to give unique names to the labels
|
|
% used when generating code for commits.
|
|
:- type commit_sequence_num == int.
|
|
:- pred ml_gen_info_new_commit_label(commit_sequence_num,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_info_new_commit_label(out, in, out) is det.
|
|
|
|
%
|
|
% A success continuation specifies the (rval for the variable
|
|
% holding the address of the) function that a nondet procedure
|
|
% should call if it succeeds, and possible also the
|
|
% (rval for the variable holding) the environment pointer
|
|
% for that function.
|
|
%
|
|
:- type success_cont
|
|
---> success_cont(
|
|
mlds__rval, % function pointer
|
|
mlds__rval % environment pointer
|
|
% note that if we're using nested
|
|
% functions then the environment
|
|
% pointer will not be used
|
|
).
|
|
|
|
%
|
|
% The ml_gen_info contains a stack of success continuations.
|
|
% The following routines provide access to that stack.
|
|
%
|
|
|
|
:- pred ml_gen_info_push_success_cont(success_cont,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_info_push_success_cont(in, in, out) is det.
|
|
|
|
:- pred ml_gen_info_pop_success_cont(ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_info_pop_success_cont(in, out) is det.
|
|
|
|
:- pred ml_gen_info_current_success_cont(success_cont,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_info_current_success_cont(out, in, out) is det.
|
|
|
|
%
|
|
% The ml_gen_info contains a list of extra definitions
|
|
% of functions or global constants which should be inserted
|
|
% before the definition of the function for the current procedure.
|
|
% This is used for the definitions of the wrapper functions needed
|
|
% for closures. When generating code for a procedure that creates
|
|
% a closure, we insert the definition of the wrapper function used
|
|
% for that closure into this list.
|
|
%
|
|
|
|
% Insert an extra definition at the start of the list of extra
|
|
% definitions.
|
|
:- pred ml_gen_info_add_extra_defn(mlds__defn,
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_info_add_extra_defn(in, in, out) is det.
|
|
|
|
% Get the list of extra definitions.
|
|
:- pred ml_gen_info_get_extra_defns(ml_gen_info, mlds__defns).
|
|
:- mode ml_gen_info_get_extra_defns(in, out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module prog_util, type_util, mode_util, special_pred.
|
|
:- import_module code_util. % XXX for `code_util__compiler_generated'.
|
|
:- import_module globals, options.
|
|
|
|
:- import_module stack, string, require, term, varset.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for various utility routines
|
|
%
|
|
|
|
% Generate an MLDS assignment statement.
|
|
ml_gen_assign(Lval, Rval, Context) = MLDS_Statement :-
|
|
Assign = assign(Lval, Rval),
|
|
MLDS_Stmt = atomic(Assign),
|
|
MLDS_Statement = mlds__statement(MLDS_Stmt,
|
|
mlds__make_context(Context)).
|
|
|
|
% Generate a block statement, i.e. `{ <Decls>; <Statements>; }'.
|
|
% But if the block consists only of a single statement with no
|
|
% declarations, then just return that statement.
|
|
%
|
|
ml_gen_block(VarDecls, Statements, Context) =
|
|
(if VarDecls = [], Statements = [SingleStatement] then
|
|
SingleStatement
|
|
else
|
|
mlds__statement(block(VarDecls, Statements),
|
|
mlds__make_context(Context))
|
|
).
|
|
|
|
% ml_join_decls:
|
|
% Join two statement lists and their corresponding
|
|
% declaration lists in sequence.
|
|
%
|
|
% If the statements have no declarations in common,
|
|
% then their corresponding declaration lists will be
|
|
% concatenated together into a single list of declarations.
|
|
% But if they have any declarations in common, then we
|
|
% put each statement list and its declarations into
|
|
% a block, so that the declarations remain local to
|
|
% each statement list.
|
|
%
|
|
ml_join_decls(FirstDecls, FirstStatements, RestDecls, RestStatements, Context,
|
|
MLDS_Decls, MLDS_Statements) :-
|
|
(
|
|
list__member(mlds__defn(Name, _, _, _), FirstDecls),
|
|
list__member(mlds__defn(Name, _, _, _), RestDecls)
|
|
->
|
|
First = ml_gen_block(FirstDecls, FirstStatements, Context),
|
|
Rest = ml_gen_block(RestDecls, RestStatements, Context),
|
|
MLDS_Decls = [],
|
|
MLDS_Statements = [First, Rest]
|
|
;
|
|
MLDS_Decls = list__append(FirstDecls, RestDecls),
|
|
MLDS_Statements = list__append(FirstStatements, RestStatements)
|
|
).
|
|
|
|
% ml_combine_conj:
|
|
% Given closures to generate code for two conjuncts,
|
|
% generate code for their conjunction.
|
|
%
|
|
ml_combine_conj(FirstCodeModel, Context, DoGenFirst, DoGenRest,
|
|
MLDS_Decls, MLDS_Statements) -->
|
|
(
|
|
% model_det goal:
|
|
% <First, Rest>
|
|
% ===>
|
|
% <do First>
|
|
% <Rest>
|
|
%
|
|
{ FirstCodeModel = model_det },
|
|
DoGenFirst(FirstDecls, FirstStatements),
|
|
DoGenRest(RestDecls, RestStatements),
|
|
{ ml_join_decls(FirstDecls, FirstStatements,
|
|
RestDecls, RestStatements, Context,
|
|
MLDS_Decls, MLDS_Statements) }
|
|
;
|
|
% model_semi goal:
|
|
% <Goal, Goals>
|
|
% ===>
|
|
% {
|
|
% bool succeeded;
|
|
%
|
|
% <succeeded = Goal>;
|
|
% if (succeeded) {
|
|
% <Goals>;
|
|
% }
|
|
% }
|
|
{ FirstCodeModel = model_semi },
|
|
DoGenFirst(FirstDecls, FirstStatements),
|
|
ml_gen_test_success(Succeeded),
|
|
DoGenRest(RestDecls, RestStatements),
|
|
{ IfBody = ml_gen_block(RestDecls, RestStatements, Context) },
|
|
{ IfStmt = if_then_else(Succeeded, IfBody, no) },
|
|
{ IfStatement = mlds__statement(IfStmt,
|
|
mlds__make_context(Context)) },
|
|
{ MLDS_Decls = FirstDecls },
|
|
{ MLDS_Statements = list__append(FirstStatements,
|
|
[IfStatement]) }
|
|
;
|
|
% model_non goal:
|
|
% <First, Rest>
|
|
% ===>
|
|
% {
|
|
% succ_func() {
|
|
% <Rest && SUCCEED()>;
|
|
% }
|
|
%
|
|
% <First && succ_func()>;
|
|
% }
|
|
%
|
|
% XXX this leads to deep nesting for long conjunctions;
|
|
% we should avoid that.
|
|
|
|
{ FirstCodeModel = model_non },
|
|
|
|
% generate the `succ_func'
|
|
ml_gen_new_func_label(RestFuncLabel, RestFuncLabelRval),
|
|
/* push nesting level */
|
|
DoGenRest(RestDecls, RestStatements),
|
|
{ RestStatement = ml_gen_block(RestDecls, RestStatements,
|
|
Context) },
|
|
/* pop nesting level */
|
|
ml_gen_nondet_label_func(RestFuncLabel, Context, RestStatement,
|
|
RestFunc),
|
|
|
|
ml_get_env_ptr(EnvPtrRval),
|
|
{ SuccessCont = success_cont(RestFuncLabelRval,
|
|
EnvPtrRval) },
|
|
ml_gen_info_push_success_cont(SuccessCont),
|
|
DoGenFirst(FirstDecls, FirstStatements),
|
|
ml_gen_info_pop_success_cont,
|
|
|
|
% it might be better to put the decls in the other order:
|
|
/* { MLDS_Decls = list__append(FirstDecls, [RestFunc]) }, */
|
|
{ MLDS_Decls = [RestFunc | FirstDecls] },
|
|
{ MLDS_Statements = FirstStatements }
|
|
).
|
|
|
|
% Given a function label and the statement which will comprise
|
|
% the function body for that function, generate an mlds__defn
|
|
% which defines that function.
|
|
%
|
|
ml_gen_nondet_label_func(FuncLabel, Context, Statement, Func) -->
|
|
ml_gen_info_use_gcc_nested_functions(UseNested),
|
|
( { UseNested = yes } ->
|
|
{ FuncParams = mlds__func_params([], []) }
|
|
;
|
|
ml_declare_env_ptr_arg(EnvPtrArg),
|
|
{ FuncParams = mlds__func_params([EnvPtrArg], []) }
|
|
),
|
|
ml_gen_label_func(FuncLabel, FuncParams, Context, Statement, Func).
|
|
|
|
% Given a function label, the function parameters, and the statement
|
|
% which will comprise the function body for that function,
|
|
% generate an mlds__defn which defines that function.
|
|
%
|
|
ml_gen_label_func(FuncLabel, FuncParams, Context, Statement, Func) -->
|
|
%
|
|
% compute the function name
|
|
%
|
|
=(Info),
|
|
{ ml_gen_info_get_module_info(Info, ModuleInfo) },
|
|
{ ml_gen_info_get_pred_id(Info, PredId) },
|
|
{ ml_gen_info_get_proc_id(Info, ProcId) },
|
|
{ FuncName = ml_gen_nondet_label(ModuleInfo, PredId, ProcId,
|
|
FuncLabel) },
|
|
|
|
%
|
|
% compute the function definition
|
|
%
|
|
{ DeclFlags = ml_gen_label_func_decl_flags },
|
|
{ MaybePredProcId = no },
|
|
{ FuncDefn = function(MaybePredProcId, FuncParams, yes(Statement)) },
|
|
{ Func = mlds__defn(FuncName, mlds__make_context(Context), DeclFlags,
|
|
FuncDefn) }.
|
|
|
|
% Return the declaration flags appropriate for a label func
|
|
% (a label func is a function used as a continuation
|
|
% when generating nondet code).
|
|
%
|
|
:- func ml_gen_label_func_decl_flags = mlds__decl_flags.
|
|
ml_gen_label_func_decl_flags = MLDS_DeclFlags :-
|
|
Access = private,
|
|
PerInstance = per_instance,
|
|
Virtuality = non_virtual,
|
|
Finality = overridable,
|
|
Constness = modifiable,
|
|
Abstractness = concrete,
|
|
MLDS_DeclFlags = init_decl_flags(Access, PerInstance,
|
|
Virtuality, Finality, Constness, Abstractness).
|
|
|
|
% Call error/1 with a "Sorry, not implemented" message.
|
|
%
|
|
sorry(What) :-
|
|
string__format("ml_code_gen.m: Sorry, not implemented: %s",
|
|
[s(What)], ErrorMessage),
|
|
error(ErrorMessage).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for generating function declarations (i.e. mlds__func_params).
|
|
%
|
|
|
|
% Generate the function prototype for a given procedure.
|
|
%
|
|
ml_gen_proc_params(ModuleInfo, PredId, ProcId) = FuncParams :-
|
|
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
|
|
PredInfo, ProcInfo),
|
|
proc_info_varset(ProcInfo, VarSet),
|
|
proc_info_headvars(ProcInfo, HeadVars),
|
|
pred_info_arg_types(PredInfo, HeadTypes),
|
|
proc_info_argmodes(ProcInfo, HeadModes),
|
|
proc_info_interface_code_model(ProcInfo, CodeModel),
|
|
HeadVarNames = ml_gen_var_names(VarSet, HeadVars),
|
|
FuncParams = ml_gen_params(ModuleInfo, HeadVarNames, HeadTypes,
|
|
HeadModes, CodeModel).
|
|
|
|
% Generate the function prototype for a procedure with the
|
|
% given argument types, modes, and code model.
|
|
%
|
|
ml_gen_params(ModuleInfo, HeadVarNames, HeadTypes, HeadModes, CodeModel) =
|
|
FuncParams :-
|
|
( CodeModel = model_semi ->
|
|
RetTypes = [mlds__native_bool_type]
|
|
;
|
|
RetTypes = []
|
|
),
|
|
ml_gen_arg_decls(ModuleInfo, HeadVarNames, HeadTypes, HeadModes,
|
|
FuncArgs0),
|
|
( CodeModel = model_non ->
|
|
ContType = mlds__cont_type,
|
|
ContName = data(var("cont")),
|
|
ContArg = ContName - ContType,
|
|
ContEnvType = mlds__generic_env_ptr_type,
|
|
ContEnvName = data(var("cont_env_ptr")),
|
|
ContEnvArg = ContEnvName - ContEnvType,
|
|
(
|
|
module_info_globals(ModuleInfo, Globals),
|
|
globals__lookup_bool_option(Globals,
|
|
gcc_nested_functions, yes)
|
|
->
|
|
FuncArgs = list__append(FuncArgs0, [ContArg])
|
|
;
|
|
FuncArgs = list__append(FuncArgs0,
|
|
[ContArg, ContEnvArg])
|
|
)
|
|
;
|
|
FuncArgs = FuncArgs0
|
|
),
|
|
FuncParams = mlds__func_params(FuncArgs, RetTypes).
|
|
|
|
% Given the argument variable names, and corresponding lists of their
|
|
% types and modes, generate the MLDS argument list declaration.
|
|
%
|
|
:- pred ml_gen_arg_decls(module_info, list(mlds__var_name), list(prog_type),
|
|
list(mode), mlds__arguments).
|
|
:- mode ml_gen_arg_decls(in, in, in, in, out) is det.
|
|
|
|
ml_gen_arg_decls(ModuleInfo, HeadVars, HeadTypes, HeadModes, FuncArgs) :-
|
|
(
|
|
HeadVars = [], HeadTypes = [], HeadModes = []
|
|
->
|
|
FuncArgs = []
|
|
;
|
|
HeadVars = [Var | Vars],
|
|
HeadTypes = [Type | Types],
|
|
HeadModes = [Mode | Modes]
|
|
->
|
|
ml_gen_arg_decls(ModuleInfo, Vars, Types, Modes, FuncArgs0),
|
|
% exclude types such as io__state, etc.
|
|
( type_util__is_dummy_argument_type(Type) ->
|
|
FuncArgs = FuncArgs0
|
|
;
|
|
ml_gen_arg_decl(ModuleInfo, Var, Type, Mode, FuncArg),
|
|
FuncArgs = [FuncArg | FuncArgs0]
|
|
)
|
|
;
|
|
error("ml_gen_arg_decls: length mismatch")
|
|
).
|
|
|
|
% Given an argument variable, and its type and mode,
|
|
% generate an MLDS argument declaration for it.
|
|
%
|
|
:- pred ml_gen_arg_decl(module_info, var_name, prog_type, mode,
|
|
pair(mlds__entity_name, mlds__type)).
|
|
:- mode ml_gen_arg_decl(in, in, in, in, out) is det.
|
|
|
|
ml_gen_arg_decl(ModuleInfo, Var, Type, Mode, FuncArg) :-
|
|
MLDS_Type = mercury_type_to_mlds_type(Type),
|
|
( \+ mode_to_arg_mode(ModuleInfo, Mode, Type, top_in) ->
|
|
MLDS_ArgType = mlds__ptr_type(MLDS_Type)
|
|
;
|
|
MLDS_ArgType = MLDS_Type
|
|
),
|
|
Name = data(var(Var)),
|
|
FuncArg = Name - MLDS_ArgType.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for generating mlds__entity_names.
|
|
%
|
|
|
|
% Generate the mlds__entity_name for the entry point function
|
|
% corresponding to a given procedure.
|
|
%
|
|
ml_gen_proc_label(ModuleInfo, PredId, ProcId) =
|
|
ml_gen_func_label(ModuleInfo, PredId, ProcId, no).
|
|
|
|
% Generate an mlds__entity_name for a continuation function
|
|
% with the given sequence number. The pred_id and proc_id
|
|
% specify the procedure that this continuation function
|
|
% is part of.
|
|
%
|
|
ml_gen_nondet_label(ModuleInfo, PredId, ProcId, SeqNum) =
|
|
ml_gen_func_label(ModuleInfo, PredId, ProcId, yes(SeqNum)).
|
|
|
|
:- func ml_gen_func_label(module_info, pred_id, proc_id,
|
|
maybe(ml_label_func)) = mlds__entity_name.
|
|
ml_gen_func_label(ModuleInfo, PredId, ProcId, MaybeSeqNum) = MLDS_Name :-
|
|
ml_gen_pred_label(ModuleInfo, PredId, ProcId, MLDS_PredLabel, _),
|
|
MLDS_Name = function(MLDS_PredLabel, ProcId, MaybeSeqNum, PredId).
|
|
|
|
% Allocate a new function label and return an rval containing
|
|
% the function's address.
|
|
%
|
|
ml_gen_new_func_label(FuncLabel, FuncLabelRval) -->
|
|
ml_gen_info_new_func_label(FuncLabel),
|
|
=(Info),
|
|
{ ml_gen_info_get_module_info(Info, ModuleInfo) },
|
|
{ ml_gen_info_get_pred_id(Info, PredId) },
|
|
{ ml_gen_info_get_proc_id(Info, ProcId) },
|
|
{ ml_gen_pred_label(ModuleInfo, PredId, ProcId,
|
|
PredLabel, PredModule) },
|
|
{ ProcLabel = qual(PredModule, PredLabel - ProcId) },
|
|
{ FuncLabelRval = const(code_addr_const(internal(ProcLabel,
|
|
FuncLabel))) }.
|
|
|
|
% Generate the mlds__pred_label and module name
|
|
% for a given procedure.
|
|
%
|
|
ml_gen_pred_label(ModuleInfo, PredId, ProcId, MLDS_PredLabel, MLDS_Module) :-
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
pred_info_module(PredInfo, PredModule),
|
|
pred_info_name(PredInfo, PredName),
|
|
module_info_name(ModuleInfo, ThisModule),
|
|
(
|
|
code_util__compiler_generated(PredInfo)
|
|
->
|
|
pred_info_arg_types(PredInfo, ArgTypes),
|
|
(
|
|
special_pred_get_type(PredName, ArgTypes, Type),
|
|
type_to_type_id(Type, TypeId, _),
|
|
% All type_ids here should be module qualified,
|
|
% since builtin types are handled separately in
|
|
% polymorphism.m.
|
|
TypeId = qualified(TypeModule, TypeName) - Arity
|
|
->
|
|
(
|
|
ThisModule \= TypeModule,
|
|
PredName = "__Unify__",
|
|
\+ hlds_pred__in_in_unification_proc_id(ProcId)
|
|
->
|
|
DeclaringModule = yes(TypeModule)
|
|
;
|
|
% the module declaring the type is the same as
|
|
% the module defining this special pred
|
|
DeclaringModule = no
|
|
),
|
|
MLDS_PredLabel = special_pred(PredName,
|
|
DeclaringModule, TypeName, Arity),
|
|
MLDS_Module = mercury_module_name_to_mlds(TypeModule)
|
|
;
|
|
string__append_list(["ml_gen_pred_label:\n",
|
|
"cannot make label for special pred `",
|
|
PredName, "'"], ErrorMessage),
|
|
error(ErrorMessage)
|
|
)
|
|
;
|
|
(
|
|
% Work out which module supplies the code for
|
|
% the predicate.
|
|
ThisModule \= PredModule,
|
|
\+ pred_info_is_imported(PredInfo)
|
|
->
|
|
% This predicate is a specialized version of
|
|
% a pred from a `.opt' file.
|
|
MaybeDeclaringModule = yes(PredModule)
|
|
;
|
|
% The predicate was declared in the same module
|
|
% that it is defined in
|
|
MaybeDeclaringModule = no
|
|
),
|
|
pred_info_get_is_pred_or_func(PredInfo, PredOrFunc),
|
|
pred_info_arity(PredInfo, Arity),
|
|
MLDS_PredLabel = pred(PredOrFunc, MaybeDeclaringModule,
|
|
PredName, Arity),
|
|
MLDS_Module = mercury_module_name_to_mlds(PredModule)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for dealing with variables
|
|
%
|
|
|
|
% Generate a list of the mlds__lvals corresponding to a
|
|
% given list of prog_vars.
|
|
%
|
|
ml_gen_var_list([], []) --> [].
|
|
ml_gen_var_list([Var | Vars], [Lval | Lvals]) -->
|
|
ml_gen_var(Var, Lval),
|
|
ml_gen_var_list(Vars, Lvals).
|
|
|
|
% Generate the mlds__lval corresponding to a given prog_var.
|
|
%
|
|
ml_gen_var(Var, Lval) -->
|
|
ml_variable_type(Var, Type),
|
|
( { type_util__is_dummy_argument_type(Type) } ->
|
|
%
|
|
% The variable won't have been declared, so
|
|
% we need to generate a dummy lval for this variable.
|
|
%
|
|
{ mercury_private_builtin_module(PrivateBuiltin) },
|
|
{ MLDS_Module = mercury_module_name_to_mlds(PrivateBuiltin) },
|
|
{ Lval = var(qual(MLDS_Module, "dummy_var")) }
|
|
;
|
|
=(MLDSGenInfo),
|
|
{ ml_gen_info_get_output_vars(MLDSGenInfo, OutputVars) },
|
|
{ ml_gen_info_get_varset(MLDSGenInfo, VarSet) },
|
|
{ ml_gen_info_get_module_name(MLDSGenInfo, ModuleName) },
|
|
{ MLDS_Module = mercury_module_name_to_mlds(ModuleName) },
|
|
{ VarName = ml_gen_var_name(VarSet, Var) },
|
|
{ VarLval = var(qual(MLDS_Module, VarName)) },
|
|
% output variables are passed by reference...
|
|
{ list__member(Var, OutputVars) ->
|
|
Lval = mem_ref(lval(VarLval))
|
|
;
|
|
Lval = VarLval
|
|
}
|
|
).
|
|
|
|
% Lookup the types of a list of variables.
|
|
%
|
|
ml_variable_types([], []) --> [].
|
|
ml_variable_types([Var | Vars], [Type | Types]) -->
|
|
ml_variable_type(Var, Type),
|
|
ml_variable_types(Vars, Types).
|
|
|
|
% Lookup the type of a variable.
|
|
%
|
|
ml_variable_type(Var, Type) -->
|
|
=(MLDSGenInfo),
|
|
{ ml_gen_info_get_var_types(MLDSGenInfo, VarTypes) },
|
|
{ map__lookup(VarTypes, Var, Type) }.
|
|
|
|
% Generate the MLDS variable names for a list of HLDS variables.
|
|
%
|
|
ml_gen_var_names(VarSet, Vars) = list__map(ml_gen_var_name(VarSet), Vars).
|
|
|
|
% Generate the MLDS variable name for an HLDS variable.
|
|
%
|
|
ml_gen_var_name(VarSet, Var) = UniqueVarName :-
|
|
varset__lookup_name(VarSet, Var, VarName),
|
|
term__var_to_int(Var, VarNumber),
|
|
string__format("%s_%d", [s(VarName), i(VarNumber)], UniqueVarName).
|
|
|
|
ml_qualify_var(VarName, QualifiedVarLval) -->
|
|
=(MLDSGenInfo),
|
|
{ ml_gen_info_get_module_name(MLDSGenInfo, ModuleName) },
|
|
{ MLDS_Module = mercury_module_name_to_mlds(ModuleName) },
|
|
{ QualifiedVarLval = var(qual(MLDS_Module, VarName)) }.
|
|
|
|
% Generate a declaration for an MLDS variable, given its HLDS type.
|
|
%
|
|
ml_gen_var_decl(VarName, Type, Context) =
|
|
ml_gen_mlds_var_decl(var(VarName), mercury_type_to_mlds_type(Type),
|
|
Context).
|
|
|
|
% Generate a declaration for an MLDS variable, given its MLDS type.
|
|
%
|
|
ml_gen_mlds_var_decl(DataName, MLDS_Type, Context) = MLDS_Defn :-
|
|
Name = data(DataName),
|
|
MaybeInitializer = no,
|
|
Defn = data(MLDS_Type, MaybeInitializer),
|
|
DeclFlags = ml_gen_var_decl_flags,
|
|
MLDS_Defn = mlds__defn(Name, Context, DeclFlags, Defn).
|
|
|
|
% Return the declaration flags appropriate for a local variable.
|
|
:- func ml_gen_var_decl_flags = mlds__decl_flags.
|
|
ml_gen_var_decl_flags = MLDS_DeclFlags :-
|
|
Access = public,
|
|
PerInstance = per_instance,
|
|
Virtuality = non_virtual,
|
|
Finality = overridable,
|
|
Constness = modifiable,
|
|
Abstractness = concrete,
|
|
MLDS_DeclFlags = init_decl_flags(Access, PerInstance,
|
|
Virtuality, Finality, Constness, Abstractness).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for handling success and failure
|
|
%
|
|
|
|
% Generate code to succeed in the given code_model.
|
|
%
|
|
ml_gen_success(model_det, _, MLDS_Statements) -->
|
|
%
|
|
% det succeed:
|
|
% <do true>
|
|
% ===>
|
|
% /* just fall through */
|
|
%
|
|
{ MLDS_Statements = [] }.
|
|
ml_gen_success(model_semi, Context, [SetSuccessTrue]) -->
|
|
%
|
|
% semidet succeed:
|
|
% <do true>
|
|
% ===>
|
|
% succeeded = TRUE;
|
|
%
|
|
ml_gen_set_success(const(true), Context, SetSuccessTrue).
|
|
ml_gen_success(model_non, Context, [CallCont]) -->
|
|
%
|
|
% nondet succeed:
|
|
% <true && SUCCEED()>
|
|
% ===>
|
|
% SUCCEED()
|
|
%
|
|
ml_gen_call_current_success_cont(Context, CallCont).
|
|
|
|
% Generate code to fail in the given code_model.
|
|
%
|
|
ml_gen_failure(model_det, _, _) -->
|
|
% this should never happen
|
|
{ error("ml_code_gen: `fail' has determinism `det'") }.
|
|
ml_gen_failure(model_semi, Context, [SetSuccessFalse]) -->
|
|
%
|
|
% semidet fail:
|
|
% <do fail>
|
|
% ===>
|
|
% succeeded = FALSE;
|
|
%
|
|
ml_gen_set_success(const(false), Context, SetSuccessFalse).
|
|
ml_gen_failure(model_non, _, MLDS_Statements) -->
|
|
%
|
|
% nondet fail:
|
|
% <fail && SUCCEED()>
|
|
% ===>
|
|
% /* just fall through */
|
|
%
|
|
{ MLDS_Statements = [] }.
|
|
|
|
% Generate the declaration for the built-in `succeeded' variable.
|
|
%
|
|
ml_gen_succeeded_var_decl(Context) =
|
|
ml_gen_mlds_var_decl(var("succeeded"), mlds__native_bool_type, Context).
|
|
|
|
% Return the lval for the `succeeded' flag.
|
|
% (`succeeded' is a boolean variable used to record
|
|
% the success or failure of model_semi procedures.)
|
|
%
|
|
ml_success_lval(SucceededLval) -->
|
|
=(MLDSGenInfo),
|
|
{ ml_gen_info_get_module_name(MLDSGenInfo, ModuleName) },
|
|
{ MLDS_Module = mercury_module_name_to_mlds(ModuleName) },
|
|
{ SucceededLval = var(qual(MLDS_Module, "succeeded")) }.
|
|
|
|
% Return an rval which will test the value of the `succeeded' flag.
|
|
% (`succeeded' is a boolean variable used to record
|
|
% the success or failure of model_semi procedures.)
|
|
%
|
|
ml_gen_test_success(SucceededRval) -->
|
|
ml_success_lval(SucceededLval),
|
|
{ SucceededRval = lval(SucceededLval) }.
|
|
|
|
% Generate code to set the `succeeded' flag to the
|
|
% specified truth value.
|
|
%
|
|
ml_gen_set_success(Value, Context, MLDS_Statement) -->
|
|
ml_success_lval(Succeeded),
|
|
{ Assign = assign(Succeeded, Value) },
|
|
{ MLDS_Stmt = atomic(Assign) },
|
|
{ MLDS_Statement = mlds__statement(MLDS_Stmt,
|
|
mlds__make_context(Context)) }.
|
|
|
|
% Return rvals for the success continuation that was
|
|
% passed as the current function's argument(s).
|
|
% The success continuation consists of two parts, the
|
|
% `cont' argument, and the `cont_env' argument.
|
|
% The `cont' argument is a continuation function that
|
|
% will be called when a model_non goal succeeds.
|
|
% The `cont_env' argument is a pointer to the environment (set
|
|
% of local variables in the containing procedure) for the continuation
|
|
% function. (If we're using gcc nested function, the `cont_env'
|
|
% is not used.)
|
|
%
|
|
ml_initial_cont(Cont) -->
|
|
=(MLDSGenInfo),
|
|
{ ml_gen_info_get_module_name(MLDSGenInfo, ModuleName) },
|
|
{ MLDS_Module = mercury_module_name_to_mlds(ModuleName) },
|
|
{ ContRval = lval(var(qual(MLDS_Module, "cont"))) },
|
|
{ ContEnvRval = lval(var(qual(MLDS_Module, "cont_env_ptr"))) },
|
|
{ Cont = success_cont(ContRval, ContEnvRval) }.
|
|
|
|
% Generate code to call the current success continuation.
|
|
% This is used for generating success when in a model_non context.
|
|
%
|
|
ml_gen_call_current_success_cont(Context, MLDS_Statement) -->
|
|
ml_gen_info_current_success_cont(SuccCont),
|
|
{ SuccCont = success_cont(FuncRval, EnvPtrRval) },
|
|
ml_gen_info_use_gcc_nested_functions(UseNestedFuncs),
|
|
( { UseNestedFuncs = yes } ->
|
|
{ ArgTypes = [] }
|
|
;
|
|
{ ArgTypes = [mlds__generic_env_ptr_type] }
|
|
),
|
|
{ RetTypes = [] },
|
|
{ Signature = mlds__func_signature(ArgTypes, RetTypes) },
|
|
{ ObjectRval = no },
|
|
( { UseNestedFuncs = yes } ->
|
|
{ ArgRvals = [] }
|
|
;
|
|
{ ArgRvals = [EnvPtrRval] }
|
|
),
|
|
{ RetLvals = [] },
|
|
{ CallOrTailcall = call },
|
|
{ MLDS_Stmt = call(Signature, FuncRval, ObjectRval, ArgRvals, RetLvals,
|
|
CallOrTailcall) },
|
|
{ MLDS_Statement = mlds__statement(MLDS_Stmt,
|
|
mlds__make_context(Context)) }.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Routines for dealing with the environment pointer
|
|
% used for nested functions.
|
|
%
|
|
|
|
% Return an rval for a pointer to the current environment
|
|
% (the set of local variables in the containing procedure).
|
|
% Note that we generate this as a dangling reference.
|
|
% The ml_elim_nested pass will insert the declaration
|
|
% of the env_ptr variable.
|
|
ml_get_env_ptr(EnvPtrRval) -->
|
|
=(MLDSGenInfo),
|
|
{ ml_gen_info_get_module_name(MLDSGenInfo, ModuleName) },
|
|
{ MLDS_Module = mercury_module_name_to_mlds(ModuleName) },
|
|
{ EnvPtrRval = lval(var(qual(MLDS_Module, "env_ptr"))) }.
|
|
|
|
% Return an rval for a pointer to the current environment
|
|
% (the set of local variables in the containing procedure).
|
|
ml_declare_env_ptr_arg(Name - mlds__generic_env_ptr_type) -->
|
|
{ Name = data(var("env_ptr_arg")) }.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% The definition of the `ml_gen_info' ADT.
|
|
%
|
|
|
|
%
|
|
% The `ml_gen_info' type holds information used during MLDS code generation
|
|
% for a given procedure.
|
|
%
|
|
% Only the `func_sequence_num', `commit_sequence_num', and
|
|
% `stack(success_cont)' fields are mutable; the others are set
|
|
% when the `ml_gen_info' is created and then never modified.
|
|
%
|
|
|
|
:- type ml_gen_info
|
|
---> ml_gen_info(
|
|
%
|
|
% these fields remain constant for each procedure
|
|
%
|
|
|
|
module_info,
|
|
pred_id,
|
|
proc_id,
|
|
prog_varset,
|
|
map(prog_var, prog_type),
|
|
list(prog_var), % output arguments
|
|
|
|
%
|
|
% these fields get updated as we traverse
|
|
% each procedure
|
|
%
|
|
|
|
mlds__func_sequence_num,
|
|
commit_sequence_num,
|
|
stack(success_cont),
|
|
% definitions of functions or global
|
|
% constants which should be inserted
|
|
% before the definition of the function
|
|
% for the current procedure
|
|
mlds__defns
|
|
).
|
|
|
|
ml_gen_info_init(ModuleInfo, PredId, ProcId) = MLDSGenInfo :-
|
|
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
|
|
_PredInfo, ProcInfo),
|
|
proc_info_headvars(ProcInfo, HeadVars),
|
|
proc_info_varset(ProcInfo, VarSet),
|
|
proc_info_vartypes(ProcInfo, VarTypes),
|
|
proc_info_argmodes(ProcInfo, HeadModes),
|
|
OutputVars = select_output_vars(ModuleInfo, HeadVars, HeadModes,
|
|
VarTypes),
|
|
FuncLabelCounter = 0,
|
|
CommitLabelCounter = 0,
|
|
stack__init(SuccContStack),
|
|
ExtraDefns = [],
|
|
MLDSGenInfo = ml_gen_info(
|
|
ModuleInfo,
|
|
PredId,
|
|
ProcId,
|
|
VarSet,
|
|
VarTypes,
|
|
OutputVars,
|
|
FuncLabelCounter,
|
|
CommitLabelCounter,
|
|
SuccContStack,
|
|
ExtraDefns
|
|
).
|
|
|
|
ml_gen_info_get_module_info(ml_gen_info(ModuleInfo, _, _, _, _, _, _, _, _, _),
|
|
ModuleInfo).
|
|
|
|
ml_gen_info_get_module_name(MLDSGenInfo, ModuleName) :-
|
|
ml_gen_info_get_module_info(MLDSGenInfo, ModuleInfo),
|
|
module_info_name(ModuleInfo, ModuleName).
|
|
|
|
ml_gen_info_get_pred_id(ml_gen_info(_, PredId, _, _, _, _, _, _, _, _), PredId).
|
|
|
|
ml_gen_info_get_proc_id(ml_gen_info(_, _, ProcId, _, _, _, _, _, _, _), ProcId).
|
|
|
|
ml_gen_info_get_varset(ml_gen_info(_, _, _, VarSet, _, _, _, _, _, _), VarSet).
|
|
|
|
ml_gen_info_get_var_types(ml_gen_info(_, _, _, _, VarTypes, _, _, _, _, _),
|
|
VarTypes).
|
|
|
|
ml_gen_info_get_output_vars(ml_gen_info(_, _, _, _, _, OutputVars, _, _, _, _),
|
|
OutputVars).
|
|
|
|
ml_gen_info_use_gcc_nested_functions(UseNestedFuncs) -->
|
|
=(Info),
|
|
{ ml_gen_info_get_module_info(Info, ModuleInfo) },
|
|
{ module_info_globals(ModuleInfo, Globals) },
|
|
{ globals__lookup_bool_option(Globals, gcc_nested_functions,
|
|
UseNestedFuncs) }.
|
|
|
|
ml_gen_info_new_func_label(Label,
|
|
ml_gen_info(A, B, C, D, E, F, Label0, H, I, J),
|
|
ml_gen_info(A, B, C, D, E, F, Label, H, I, J)) :-
|
|
Label is Label0 + 1.
|
|
|
|
ml_gen_info_new_commit_label(CommitLabel,
|
|
ml_gen_info(A, B, C, D, E, F, G, CommitLabel0, I, J),
|
|
ml_gen_info(A, B, C, D, E, F, G, CommitLabel, I, J)) :-
|
|
CommitLabel is CommitLabel0 + 1.
|
|
|
|
/******
|
|
:- pred ml_gen_info_get_success_cont_stack(ml_gen_info,
|
|
stack(success_cont)).
|
|
:- mode ml_gen_info_get_success_cont_stack(in, out) is det.
|
|
|
|
ml_gen_info_get_success_cont_stack(
|
|
ml_gen_info(_, _, _, _, _, _, _, _, SuccContStack, _), SuccContStack).
|
|
|
|
:- pred ml_gen_info_set_success_cont_stack(stack(success_cont),
|
|
ml_gen_info, ml_gen_info).
|
|
:- mode ml_gen_info_set_success_cont_stack(in, in, out) is det.
|
|
|
|
ml_gen_info_set_success_cont_stack(SuccContStack,
|
|
ml_gen_info(A, B, C, D, E, F, G, H, _, J),
|
|
ml_gen_info(A, B, C, D, E, F, G, H, SuccContStack, J)).
|
|
********/
|
|
|
|
ml_gen_info_push_success_cont(SuccCont,
|
|
ml_gen_info(A, B, C, D, E, F, G, H, Stack0, J),
|
|
ml_gen_info(A, B, C, D, E, F, G, H, Stack, J)) :-
|
|
stack__push(Stack0, SuccCont, Stack).
|
|
|
|
ml_gen_info_pop_success_cont(
|
|
ml_gen_info(A, B, C, D, E, F, G, H, Stack0, J),
|
|
ml_gen_info(A, B, C, D, E, F, G, H, Stack, J)) :-
|
|
stack__pop_det(Stack0, _SuccCont, Stack).
|
|
|
|
ml_gen_info_current_success_cont(SuccCont,
|
|
ml_gen_info(A, B, C, D, E, F, G, H, Stack, J),
|
|
ml_gen_info(A, B, C, D, E, F, G, H, Stack, J)) :-
|
|
stack__top_det(Stack, SuccCont).
|
|
|
|
ml_gen_info_add_extra_defn(ExtraDefn,
|
|
ml_gen_info(A, B, C, D, E, F, G, H, I, ExtraDefns0),
|
|
ml_gen_info(A, B, C, D, E, F, G, H, I, ExtraDefns)) :-
|
|
ExtraDefns = [ExtraDefn | ExtraDefns0].
|
|
|
|
ml_gen_info_get_extra_defns(ml_gen_info(_, _, _, _, _, _, _, _, _, ExtraDefns),
|
|
ExtraDefns).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Given a list of variables and their corresponding modes,
|
|
% return a list containing only those variables which have
|
|
% an output mode.
|
|
%
|
|
:- func select_output_vars(module_info, list(prog_var), list(mode),
|
|
map(prog_var, prog_type)) = list(prog_var).
|
|
|
|
select_output_vars(ModuleInfo, HeadVars, HeadModes, VarTypes) = OutputVars :-
|
|
( HeadVars = [], HeadModes = [] ->
|
|
OutputVars = []
|
|
; HeadVars = [Var|Vars], HeadModes = [Mode|Modes] ->
|
|
map__lookup(VarTypes, Var, Type),
|
|
( \+ mode_to_arg_mode(ModuleInfo, Mode, Type, top_in) ->
|
|
OutputVars1 = select_output_vars(ModuleInfo,
|
|
Vars, Modes, VarTypes),
|
|
OutputVars = [Var | OutputVars1]
|
|
;
|
|
OutputVars = select_output_vars(ModuleInfo,
|
|
Vars, Modes, VarTypes)
|
|
)
|
|
;
|
|
error("select_output_vars: length mismatch")
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|