Files
mercury/compiler/reassign.m
Zoltan Somogyi 9551640f55 Import only one compiler module per line. Sort the blocks of imports.
Estimated hours taken: 2
Branches: main

compiler/*.m:
	Import only one compiler module per line. Sort the blocks of imports.
	This makes it easier to merge in changes.

	In a couple of places, remove unnecessary imports.
2003-03-15 03:09:14 +00:00

466 lines
16 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 2002-2003 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: reassign.m
%
% Author: zs.
%
% This module implements an LLDS->LLDS transformation that optimizes
% away assignments to locations that already hold the assigned value.
% It operates entirely within extended basic blocks.
%
% It is intended for instruction sequences such as the following extract
% from tree234__search:
%
% MR_r1 = MR_stackvar(3);
% MR_r2 = MR_stackvar(4);
% MR_r3 = MR_const_field(MR_mktag(1), MR_stackvar(1), (MR_Integer) 2);
% MR_r4 = MR_stackvar(2);
% MR_succip = (MR_Code *) MR_stackvar(5);
% if ((MR_tag(MR_r3) != MR_mktag((MR_Integer) 1))) {
% MR_GOTO_LABEL(mercury__x3__search_3_0_i1);
% }
% MR_stackvar(1) = MR_r3;
% MR_stackvar(2) = MR_r4;
% MR_stackvar(3) = MR_r1;
% MR_stackvar(4) = MR_r2;
% MR_r2 = MR_r4;
% MR_r3 = MR_const_field(MR_mktag(1), MR_r3, (MR_Integer) 0);
% MR_call_localret(...)
%
% The code before the if statement is part of the procedure epilogue; the code
% after it is the code from the initial part of the procedure that fulljump
% optimization replaces the self-tail-call with.
%
% The objective of this module is to remove assignments such as the assignments
% to stackvars 2, 3 and 4 above, in which the register assigned to the stackvar
% comes from the same stackvar in the first place.
%
% In general, for every assignment TargetLval = SourceRval, we record that
% TargetLval now contains SourceRval; if SourceRval is of the form
% lval(SourceLval), we also record that SourceLval now contains
% lval(TargetLval). Later on, if we find an assignment that assigns
% to an lval a value that it already holds, we remove the assignment.
% The removed assignment will either be a copy of the original assignment
% TargetLval = SourceRval, or its converse, SourceLval = lval(TargetLval).
% The mechanism that enables us to do this is a map that maps lvals
% (e.g. TargetLval) to its known contents (e.g. SourceRval).
%
% Of course, if any of the lvals occurring on the right hand side of an
% assignment change, we cannot remove a later copy of that assignment or
% of its converse. For example, we cannot remove the final assignment in
% the following code.
%
% MR_r3 = MR_stackvar(1);
% ...
% MR_stackvar(1) = MR_r2;
% ...
% MR_r3 = MR_stackvar(1);
%
% We handle this by keeping track of which lvals an entry in the known contents
% map depends on. If one of these lvals is updated, we invalidate the dependent
% entries in the known contents map (i.e. we delete them).
%
% The lvals on which TargetLval depends include any lvals occurring inside it.
% We cannot optimize away the second assignment to the field below because
% even though the two field references are the same syntactically, they refer
% to different memory locations due to the update of MR_r5 between them.
%
% MR_field(MR_mktag(1), MR_r5, 1) = r2;
% ...
% MR_incr_hp(MR_r5, 4);
% ...
% MR_field(MR_mktag(1), MR_r5, 1) = r2;
%
%
% The lvals on which TargetLval depends need not include TargetLval itself,
% since an assignment to TargetLval will in any case override the previous
% entry for TargetLval in the known contents map. This takes care of code
% sequences such as:
%
% MR_r3 = MR_stackvar(1);
% ...
% MR_r3 = MR_r2;
% ...
% MR_r3 = MR_stackvar(1);
%
% The optimization makes conservative assumptions in several places, meaning
% it clobbers entries in the known contents map whenever an instruction *could*
% affect the entry, even if it in fact doesn't. For example, we clobber the
% known contents map at calls, labels and ticket resets.
%-----------------------------------------------------------------------------%
:- module ll_backend__reassign.
:- interface.
:- import_module ll_backend__llds.
:- import_module list.
:- pred remove_reassign(list(instruction)::in, list(instruction)::out) is det.
:- implementation.
:- import_module ll_backend__code_util.
:- import_module std_util, set, map, require.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- type known_contents == map(lval, rval).
:- type dependent_lval_map == map(lval, set(lval)).
remove_reassign(Instrs0, Instrs) :-
remove_reassign_loop(Instrs0, map__init, map__init, [], RevInstrs),
list__reverse(RevInstrs, Instrs).
:- pred remove_reassign_loop(list(instruction)::in, known_contents::in,
dependent_lval_map::in, list(instruction)::in, list(instruction)::out)
is det.
remove_reassign_loop([], _, _, RevInstrs, RevInstrs).
remove_reassign_loop([Instr0 | Instrs0], KnownContentsMap0, DepLvalMap0,
RevInstrs0, RevInstrs) :-
Instr0 = Uinstr0 - _,
(
Uinstr0 = comment(_),
RevInstrs1 = [Instr0 | RevInstrs0],
KnownContentsMap = KnownContentsMap0,
DepLvalMap = DepLvalMap0
;
Uinstr0 = livevals(_),
RevInstrs1 = [Instr0 | RevInstrs0],
KnownContentsMap = KnownContentsMap0,
DepLvalMap = DepLvalMap0
;
Uinstr0 = block(_, _, _),
error("remove_reassign_loop: block")
;
Uinstr0 = assign(Target, Source),
(
map__search(KnownContentsMap0, Target, KnownContents),
KnownContents = Source
->
% By not including Instr0 in RevInstrs1,
% we are deleting Instr0.
RevInstrs1 = RevInstrs0,
KnownContentsMap = KnownContentsMap0,
DepLvalMap = DepLvalMap0
;
RevInstrs1 = [Instr0 | RevInstrs0],
clobber_dependents(Target,
KnownContentsMap0, KnownContentsMap1,
DepLvalMap0, DepLvalMap1),
(
% For Targets of the following form, the code
% generator ensures that the storage location
% referred to by Target can only be updated
% through the Target lval, and not through
% some other lval, unless one uses mem_addr to
% explicitly create an alias and mem_ref to
% access the memory location via that alias.
no_implicit_alias_target(Target)
->
record_known(Target, Source,
KnownContentsMap1, KnownContentsMap,
DepLvalMap1, DepLvalMap)
;
KnownContentsMap = KnownContentsMap1,
DepLvalMap = DepLvalMap1
)
)
;
Uinstr0 = call(_, _, _, _, _, _),
RevInstrs1 = [Instr0 | RevInstrs0],
% The call may clobber any lval.
KnownContentsMap = map__init,
DepLvalMap = map__init
;
Uinstr0 = mkframe(_, _),
RevInstrs1 = [Instr0 | RevInstrs0],
KnownContentsMap = map__init,
DepLvalMap = map__init
;
Uinstr0 = label(_),
RevInstrs1 = [Instr0 | RevInstrs0],
% We don't know what is stored where at the
% instructions that jump here.
KnownContentsMap = map__init,
DepLvalMap = map__init
;
Uinstr0 = goto(_),
RevInstrs1 = [Instr0 | RevInstrs0],
% The value of KnownContentsMap doesn't really matter
% since the next instruction (which must be a label)
% will reset it to empty anyway.
KnownContentsMap = map__init,
DepLvalMap = map__init
;
Uinstr0 = computed_goto(_, _),
RevInstrs1 = [Instr0 | RevInstrs0],
% The value of KnownContentsMap doesn't really matter
% since the next instruction (which must be a label)
% will reset it to empty anyway.
KnownContentsMap = map__init,
DepLvalMap = map__init
;
Uinstr0 = c_code(_, _),
RevInstrs1 = [Instr0 | RevInstrs0],
% The C code may clobber any lval.
KnownContentsMap = map__init,
DepLvalMap = map__init
;
Uinstr0 = if_val(_, _),
RevInstrs1 = [Instr0 | RevInstrs0],
KnownContentsMap = KnownContentsMap0,
DepLvalMap = DepLvalMap0
;
Uinstr0 = incr_hp(Target, _, _, _),
RevInstrs1 = [Instr0 | RevInstrs0],
clobber_dependents(Target,
KnownContentsMap0, KnownContentsMap1,
DepLvalMap0, DepLvalMap1),
clobber_dependents(hp, KnownContentsMap1, KnownContentsMap,
DepLvalMap1, DepLvalMap)
;
Uinstr0 = mark_hp(Target),
RevInstrs1 = [Instr0 | RevInstrs0],
clobber_dependents(Target, KnownContentsMap0, KnownContentsMap,
DepLvalMap0, DepLvalMap)
;
Uinstr0 = restore_hp(_),
RevInstrs1 = [Instr0 | RevInstrs0],
clobber_dependents(hp, KnownContentsMap0, KnownContentsMap,
DepLvalMap0, DepLvalMap)
;
Uinstr0 = free_heap(_),
RevInstrs1 = [Instr0 | RevInstrs0],
% There is no need to update KnownContentsMap since
% later code should never refer to the freed cell.
KnownContentsMap = KnownContentsMap0,
DepLvalMap = DepLvalMap0
;
Uinstr0 = store_ticket(Target),
RevInstrs1 = [Instr0 | RevInstrs0],
clobber_dependents(Target, KnownContentsMap0, KnownContentsMap,
DepLvalMap0, DepLvalMap)
;
Uinstr0 = reset_ticket(_, _),
RevInstrs1 = [Instr0 | RevInstrs0],
% The reset operation may modify any lval.
KnownContentsMap = map__init,
DepLvalMap = map__init
;
Uinstr0 = prune_ticket,
RevInstrs1 = [Instr0 | RevInstrs0],
KnownContentsMap = KnownContentsMap0,
DepLvalMap = DepLvalMap0
;
Uinstr0 = discard_ticket,
RevInstrs1 = [Instr0 | RevInstrs0],
KnownContentsMap = KnownContentsMap0,
DepLvalMap = DepLvalMap0
;
Uinstr0 = mark_ticket_stack(Target),
RevInstrs1 = [Instr0 | RevInstrs0],
clobber_dependents(Target, KnownContentsMap0, KnownContentsMap,
DepLvalMap0, DepLvalMap)
;
Uinstr0 = prune_tickets_to(_),
RevInstrs1 = [Instr0 | RevInstrs0],
KnownContentsMap = KnownContentsMap0,
DepLvalMap = DepLvalMap0
% ;
% Uinstr0 = discard_tickets_to(_),
% RevInstrs1 = [Instr0 | RevInstrs0],
% KnownContentsMap = KnownContentsMap0,
% DepLvalMap = DepLvalMap0
;
Uinstr0 = incr_sp(_, _),
RevInstrs1 = [Instr0 | RevInstrs0],
% All stackvars now refer to new locations.
% Rather than delete only stackvars from
% KnownContentsMap0, we delete everything.
KnownContentsMap = map__init,
DepLvalMap = map__init
;
Uinstr0 = decr_sp(_),
RevInstrs1 = [Instr0 | RevInstrs0],
% All stackvars now refer to new locations.
% Rather than delete only stackvars from
% KnownContentsMap0, we delete everything.
KnownContentsMap = map__init,
DepLvalMap = map__init
;
Uinstr0 = pragma_c(_, _, _, _, _, _, _, _),
RevInstrs1 = [Instr0 | RevInstrs0],
% The C code may clobber any lval.
KnownContentsMap = map__init,
DepLvalMap = map__init
;
Uinstr0 = init_sync_term(Target, _),
RevInstrs1 = [Instr0 | RevInstrs0],
clobber_dependents(Target, KnownContentsMap0, KnownContentsMap,
DepLvalMap0, DepLvalMap)
;
Uinstr0 = fork(_, _, _),
RevInstrs1 = [Instr0 | RevInstrs0],
% Both the parent and the child thread jump to labels
% specified by the fork instruction, so the value of
% KnownContentsMap doesn't really matter since the
% next instruction (which must be a label) will
% reset it to empty anyway.
KnownContentsMap = map__init,
DepLvalMap = map__init
;
Uinstr0 = join_and_terminate(_),
RevInstrs1 = [Instr0 | RevInstrs0],
% The value of KnownContentsMap doesn't really matter
% since this instruction terminates the execution of
% this thread.
KnownContentsMap = map__init,
DepLvalMap = map__init
;
Uinstr0 = join_and_continue(_, _),
RevInstrs1 = [Instr0 | RevInstrs0],
% Other threads may modify any lval.
KnownContentsMap = map__init,
DepLvalMap = map__init
),
remove_reassign_loop(Instrs0, KnownContentsMap, DepLvalMap,
RevInstrs1, RevInstrs).
% Succeed iff the lval cannot have an alias created for it without the use of
% a mem_ref lval or an instruction with embedded C code, both of which cause
% us to clobber the known contents map.
:- pred no_implicit_alias_target(lval::in) is semidet.
no_implicit_alias_target(temp(_, _)).
no_implicit_alias_target(reg(_, _)).
no_implicit_alias_target(stackvar(_)).
no_implicit_alias_target(framevar(_)).
:- pred clobber_dependents(lval::in, known_contents::in, known_contents::out,
dependent_lval_map::in, dependent_lval_map::out) is det.
clobber_dependents(Target, KnownContentsMap0, KnownContentsMap,
DepLvalMap0, DepLvalMap) :-
( map__search(DepLvalMap0, Target, DepLvals) ->
set__fold(clobber_dependent, DepLvals,
KnownContentsMap0, KnownContentsMap1),
map__delete(DepLvalMap0, Target, DepLvalMap1)
;
KnownContentsMap1 = KnownContentsMap0,
DepLvalMap1 = DepLvalMap0
),
% LLDS code can refer to arbitrary locations on the stack
% or in the heap with mem_ref lvals. Since we don't keep track
% of which locations have their addresses taken, on any
% assignment through a mem_ref lval we throw way the known
% contents map. This is a conservative approximation of the
% desired behaviour, which would invalidate only the entries
% of lvals that may be referred to via this mem_ref.
code_util__lvals_in_rval(lval(Target), SubLvals),
(
list__member(SubLval, SubLvals),
SubLval = mem_ref(_)
->
KnownContentsMap = map__init,
DepLvalMap = map__init
;
KnownContentsMap = KnownContentsMap1,
DepLvalMap = DepLvalMap1
).
:- pred clobber_dependent(lval::in, known_contents::in, known_contents::out)
is det.
clobber_dependent(Dependent, KnownContentsMap0, KnownContentsMap) :-
map__delete(KnownContentsMap0, Dependent, KnownContentsMap).
:- pred record_known(lval::in, rval::in,
known_contents::in, known_contents::out,
dependent_lval_map::in, dependent_lval_map::out) is det.
record_known(TargetLval, SourceRval, KnownContentsMap0, KnownContentsMap,
DepLvalMap0, DepLvalMap) :-
code_util__lvals_in_rval(SourceRval, SourceSubLvals),
( list__member(TargetLval, SourceSubLvals) ->
% The act of assigning to TargetLval has modified
% the value of SourceRval, so we can't eliminate
% any copy of this assignment or its converse.
KnownContentsMap = KnownContentsMap0,
DepLvalMap = DepLvalMap0
;
record_known_lval_rval(TargetLval, SourceRval,
KnownContentsMap0, KnownContentsMap1,
DepLvalMap0, DepLvalMap1),
( SourceRval = lval(SourceLval) ->
record_known_lval_rval(SourceLval, lval(TargetLval),
KnownContentsMap1, KnownContentsMap,
DepLvalMap1, DepLvalMap)
;
KnownContentsMap = KnownContentsMap1,
DepLvalMap = DepLvalMap1
)
).
:- pred record_known_lval_rval(lval::in, rval::in,
known_contents::in, known_contents::out,
dependent_lval_map::in, dependent_lval_map::out) is det.
record_known_lval_rval(TargetLval, SourceRval,
KnownContentsMap0, KnownContentsMap,
DepLvalMap0, DepLvalMap) :-
( map__search(KnownContentsMap0, TargetLval, OldRval) ->
% TargetLval no longer depends on the lvals in OldRval;
% it depends on the lvals in SourceRval instead. If any lvals
% occur in both, we delete TargetLval from their entries here
% and will add it back in a few lines later on.
%
% TargetLval still depends on the lvals inside it.
code_util__lvals_in_rval(OldRval, OldSubLvals),
list__foldl(make_not_dependent(TargetLval), OldSubLvals,
DepLvalMap0, DepLvalMap1)
;
DepLvalMap1 = DepLvalMap0
),
code_util__lvals_in_lval(TargetLval, TargetSubLvals),
code_util__lvals_in_rval(SourceRval, SourceSubLvals),
list__append(TargetSubLvals, SourceSubLvals, AllSubLvals),
list__foldl(make_dependent(TargetLval), AllSubLvals,
DepLvalMap1, DepLvalMap),
map__set(KnownContentsMap0, TargetLval, SourceRval,
KnownContentsMap).
:- pred make_not_dependent(lval::in, lval::in,
dependent_lval_map::in, dependent_lval_map::out) is det.
make_not_dependent(Target, SubLval, DepLvalMap0, DepLvalMap) :-
( map__search(DepLvalMap0, SubLval, DepLvals0) ->
set__delete(DepLvals0, Target, DepLvals),
map__det_update(DepLvalMap0, SubLval, DepLvals, DepLvalMap)
;
DepLvalMap = DepLvalMap0
).
:- pred make_dependent(lval::in, lval::in,
dependent_lval_map::in, dependent_lval_map::out) is det.
make_dependent(Target, SubLval, DepLvalMap0, DepLvalMap) :-
( map__search(DepLvalMap0, SubLval, DepLvals0) ->
set__insert(DepLvals0, Target, DepLvals),
map__det_update(DepLvalMap0, SubLval, DepLvals, DepLvalMap)
;
DepLvals = set__make_singleton_set(Target),
map__det_insert(DepLvalMap0, SubLval, DepLvals, DepLvalMap)
).