Files
mercury/compiler/call_gen.m
Zoltan Somogyi 9551640f55 Import only one compiler module per line. Sort the blocks of imports.
Estimated hours taken: 2
Branches: main

compiler/*.m:
	Import only one compiler module per line. Sort the blocks of imports.
	This makes it easier to merge in changes.

	In a couple of places, remove unnecessary imports.
2003-03-15 03:09:14 +00:00

795 lines
28 KiB
Mathematica

%---------------------------------------------------------------------------%
% Copyright (C) 1994-2003 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: call_gen.m
%
% Authors: conway, zs.
%
% This module provides predicates for generating procedure calls,
% including calls to higher-order pred variables.
%
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- module ll_backend__call_gen.
:- interface.
:- import_module backend_libs__code_model.
:- import_module hlds__hlds_goal.
:- import_module hlds__hlds_pred.
:- import_module ll_backend__code_info.
:- import_module ll_backend__llds.
:- import_module parse_tree__prog_data.
:- import_module list, assoc_list.
:- pred call_gen__generate_call(code_model::in, pred_id::in, proc_id::in,
list(prog_var)::in, hlds_goal_info::in, code_tree::out,
code_info::in, code_info::out) is det.
:- pred call_gen__generate_generic_call(code_model::in, generic_call::in,
list(prog_var)::in, list(mode)::in, determinism::in,
hlds_goal_info::in, code_tree::out, code_info::in, code_info::out)
is det.
:- pred call_gen__generate_builtin(code_model::in, pred_id::in, proc_id::in,
list(prog_var)::in, code_tree::out, code_info::in, code_info::out)
is det.
:- pred call_gen__maybe_remove_aditi_state_args(generic_call::in,
list(prog_var)::in, list(type)::in, list(mode)::in,
list(prog_var)::out, list(type)::out, list(mode)::out) is det.
% call_gen__generic_call_info(CodeModel, GenericCall,
% CodeAddr, FirstImmediateInputReg).
:- pred call_gen__generic_call_info(code_model::in, generic_call::in,
code_addr::out, assoc_list(prog_var, arg_info)::out, int::out) is det.
:- pred call_gen__input_arg_locs(assoc_list(prog_var, arg_info)::in,
assoc_list(prog_var, arg_loc)::out) is det.
:- pred call_gen__output_arg_locs(assoc_list(prog_var, arg_info)::in,
assoc_list(prog_var, arg_loc)::out) is det.
%---------------------------------------------------------------------------%
:- implementation.
:- import_module aditi_backend__rl.
:- import_module backend_libs__builtin_ops.
:- import_module check_hlds__mode_util.
:- import_module check_hlds__polymorphism.
:- import_module check_hlds__type_util.
:- import_module check_hlds__unify_proc.
:- import_module hlds__hlds_data.
:- import_module hlds__hlds_llds.
:- import_module hlds__hlds_module.
:- import_module hlds__instmap.
:- import_module libs__globals.
:- import_module libs__options.
:- import_module libs__tree.
:- import_module ll_backend__arg_info.
:- import_module ll_backend__code_util.
:- import_module ll_backend__trace.
:- import_module bool, int, string, map, set, std_util, require, varset.
%---------------------------------------------------------------------------%
call_gen__generate_call(CodeModel, PredId, ProcId, ArgVars, GoalInfo, Code) -->
% Find out which arguments are input and which are output.
code_info__get_pred_proc_arginfo(PredId, ProcId, ArgInfo),
{ assoc_list__from_corresponding_lists(ArgVars, ArgInfo, ArgsInfos) },
% Save the necessary vars on the stack and move the input args
% to their registers.
code_info__setup_call(GoalInfo, ArgsInfos, LiveVals, SetupCode),
call_gen__kill_dead_input_vars(ArgsInfos, GoalInfo, NonLiveOutputs),
% Figure out what the call model is.
call_gen__prepare_for_call(CodeModel, CallModel, TraceCode),
% Make the call.
code_info__get_module_info(ModuleInfo),
code_info__make_entry_label(ModuleInfo, PredId, ProcId, yes, Address),
code_info__get_next_label(ReturnLabel),
{ call_gen__call_comment(CodeModel, CallComment) },
{ goal_info_get_context(GoalInfo, Context) },
{ goal_info_get_goal_path(GoalInfo, GoalPath) },
{ CallCode = node([
livevals(LiveVals)
- "",
call(Address, label(ReturnLabel), ReturnLiveLvalues, Context,
GoalPath, CallModel)
- CallComment,
label(ReturnLabel)
- "continuation label"
]) },
% Figure out what variables will be live at the return point,
% and where, for use in the accurate garbage collector, and
% in the debugger.
code_info__get_instmap(InstMap),
{ goal_info_get_instmap_delta(GoalInfo, InstMapDelta) },
{ instmap__apply_instmap_delta(InstMap, InstMapDelta, ReturnInstMap) },
% Update the code generator state to reflect the situation
% after the call.
call_gen__handle_return(ArgsInfos, GoalInfo, NonLiveOutputs,
ReturnInstMap, ReturnLiveLvalues),
% If the call can fail, generate code to check for and
% handle the failure.
call_gen__handle_failure(CodeModel, GoalInfo, FailHandlingCode),
{ Code =
tree(SetupCode,
tree(TraceCode,
tree(CallCode,
FailHandlingCode)))
}.
%---------------------------------------------------------------------------%
%
% For a generic_call,
% we split the arguments into inputs and outputs, put the inputs
% in the locations expected by mercury__do_call_closure in
% runtime/mercury_ho_call.c, generate the call to that code,
% and pick up the outputs from the locations that we know
% the runtime system leaves them in.
%
call_gen__generate_generic_call(_OuterCodeModel, GenericCall, Args0,
Modes0, Det, GoalInfo, Code) -->
list__map_foldl(code_info__variable_type, Args0, Types0),
{ call_gen__maybe_remove_aditi_state_args(GenericCall,
Args0, Types0, Modes0, Args, Types, Modes) },
{ determinism_to_code_model(Det, CodeModel) },
{ call_gen__generic_call_info(CodeModel, GenericCall,
CodeAddr, SpecifierArgInfos, FirstImmInput) },
{ CodeModel = model_semi ->
FirstOutput = 2
;
FirstOutput = 1
},
code_info__get_module_info(ModuleInfo),
{ arg_info__compute_in_and_out_vars(ModuleInfo, Args, Modes, Types,
InVars, OutVars) },
{ call_gen__give_vars_consecutive_arg_infos(InVars, FirstImmInput,
top_in, InVarArgInfos) },
{ call_gen__give_vars_consecutive_arg_infos(OutVars, FirstOutput,
top_out, OutArgsInfos) },
{ list__append(SpecifierArgInfos, InVarArgInfos, InArgInfos) },
{ list__append(InArgInfos, OutArgsInfos, ArgInfos) },
% Save the necessary vars on the stack and move the input args
% defined by variables to their registers.
code_info__setup_call(GoalInfo, ArgInfos, LiveVals0, SetupCode),
call_gen__kill_dead_input_vars(ArgInfos, GoalInfo, NonLiveOutputs),
% Move the input args not defined by variables to their
% registers. Setting up these arguments last results in
% slightly more efficient code, since we can use their
% registers when placing the variables.
call_gen__generic_call_nonvar_setup(GenericCall, InVars, OutVars,
NonVarCode),
{ call_gen__extra_livevals(FirstImmInput, ExtraLiveVals) },
{ set__insert_list(LiveVals0, ExtraLiveVals, LiveVals) },
call_gen__prepare_for_call(CodeModel, CallModel, TraceCode),
% Make the call.
code_info__get_next_label(ReturnLabel),
{ goal_info_get_context(GoalInfo, Context) },
{ goal_info_get_goal_path(GoalInfo, GoalPath) },
{ CallCode = node([
livevals(LiveVals)
- "",
call(CodeAddr, label(ReturnLabel), ReturnLiveLvalues,
Context, GoalPath, CallModel)
- "Setup and call",
label(ReturnLabel)
- "Continuation label"
]) },
% Figure out what variables will be live at the return point,
% and where, for use in the accurate garbage collector, and
% in the debugger.
code_info__get_instmap(InstMap),
{ goal_info_get_instmap_delta(GoalInfo, InstMapDelta) },
{ instmap__apply_instmap_delta(InstMap, InstMapDelta, ReturnInstMap) },
% Update the code generator state to reflect the situation
% after the call.
call_gen__handle_return(OutArgsInfos, GoalInfo, NonLiveOutputs,
ReturnInstMap, ReturnLiveLvalues),
% If the call can fail, generate code to check for and
% handle the failure.
call_gen__handle_failure(CodeModel, GoalInfo, FailHandlingCode),
{ Code =
tree(SetupCode,
tree(NonVarCode,
tree(TraceCode,
tree(CallCode,
FailHandlingCode))))
}.
call_gen__maybe_remove_aditi_state_args(GenericCall, Args0, Types0, Modes0,
Args, Types, Modes) :-
( GenericCall = aditi_builtin(aditi_tuple_insert_delete(_, _), _) ->
% Remove the `aditi__state' argument and its type-info from
% the tuple to insert or delete. This must be done after
% mode analysis (so that removal of the `aditi__state' does
% not stuff up the argument numbers in error messages).
% Here is as good a place as any.
get_state_args_det(Types0, TupleTypes, _, _),
call_gen__remove_tuple_state_arg(TupleTypes, Args0, Args),
call_gen__remove_tuple_state_arg(TupleTypes, Types0, Types),
call_gen__remove_tuple_state_arg(TupleTypes, Modes0, Modes)
;
Args = Args0,
Types = Types0,
Modes = Modes0
).
:- pred call_gen__remove_tuple_state_arg(list(type)::in, list(T)::in,
list(T)::out) is det.
call_gen__remove_tuple_state_arg(TupleTypes, Args0, Args) :-
get_state_args_det(Args0, OtherArgs0, State0Arg, StateArg),
assoc_list__from_corresponding_lists(TupleTypes, OtherArgs0,
TypesAndArgs0),
list__filter(
(pred((Type - _)::in) is semidet :-
\+ type_is_aditi_state(Type),
\+ (
polymorphism__type_info_type(Type, TheType),
type_is_aditi_state(TheType)
)
), TypesAndArgs0, TypesAndArgs),
assoc_list__values(TypesAndArgs, OtherArgs),
list__append(OtherArgs, [State0Arg, StateArg], Args).
%---------------------------------------------------------------------------%
% The registers before the first input argument are all live.
:- pred call_gen__extra_livevals(int::in, list(lval)::out) is det.
call_gen__extra_livevals(FirstInput, ExtraLiveVals) :-
call_gen__extra_livevals(1, FirstInput, ExtraLiveVals).
:- pred call_gen__extra_livevals(int::in, int::in, list(lval)::out) is det.
call_gen__extra_livevals(Reg, FirstInput, ExtraLiveVals) :-
( Reg < FirstInput ->
ExtraLiveVals = [reg(r, Reg) | ExtraLiveVals1],
NextReg is Reg + 1,
call_gen__extra_livevals(NextReg, FirstInput, ExtraLiveVals1)
;
ExtraLiveVals = []
).
call_gen__generic_call_info(_, higher_order(PredVar, _, _, _),
do_call_closure, [PredVar - arg_info(1, top_in)], 4).
call_gen__generic_call_info(_, class_method(TCVar, _, _, _),
do_call_class_method, [TCVar - arg_info(1, top_in)], 5).
call_gen__generic_call_info(CodeModel, aditi_builtin(aditi_call(_,_,_,_),_),
CodeAddr, [], 5) :-
( CodeModel = model_det, CodeAddr = do_det_aditi_call
; CodeModel = model_semi, CodeAddr = do_semidet_aditi_call
; CodeModel = model_non, CodeAddr = do_nondet_aditi_call
).
call_gen__generic_call_info(CodeModel,
aditi_builtin(aditi_tuple_insert_delete(InsertDelete, _), _),
CodeAddr, [], 5) :-
( InsertDelete = insert, CodeAddr = do_aditi_insert
; InsertDelete = delete, CodeAddr = do_aditi_delete
),
require(unify(CodeModel, model_det),
"aditi_insert/delete not model_det").
call_gen__generic_call_info(CodeModel,
aditi_builtin(
aditi_insert_delete_modify(InsertDelMod, _, _), _),
CodeAddr, [], FirstReg) :-
call_gen__aditi_insert_delete_modify_info(InsertDelMod,
CodeAddr, FirstReg),
require(unify(CodeModel, model_det),
"aditi_insert_delete_modify not model_det").
:- pred call_gen__aditi_insert_delete_modify_info(
aditi_insert_delete_modify::in, code_addr::out, int::out) is det.
call_gen__aditi_insert_delete_modify_info(bulk_insert,
do_aditi_bulk_insert, 3).
call_gen__aditi_insert_delete_modify_info(delete(filter), _, _) :-
error("Sorry, not yet implemented: aditi_delete(filter)").
call_gen__aditi_insert_delete_modify_info(delete(bulk),
do_aditi_bulk_delete, 3).
call_gen__aditi_insert_delete_modify_info(modify(filter), _, _) :-
error("Sorry, not yet implemented: aditi_modify(filter)").
call_gen__aditi_insert_delete_modify_info(modify(bulk),
do_aditi_bulk_modify, 3).
% Some of the values that generic call passes to the dispatch routine
% to specify what code is being indirectly called come from HLDS
% variables, while the others come from constants. The ones that come
% from variables (the closure for a higher order call, the
% typeclass_info for a method call) are set up together with the
% arguments being passed the indirectly called code, since with eager
% code generation this ensures that each target register is reserved
% for the variable destined for it. This is set up by
% call_gen__generic_call_info. call_gen__generic_call_nonvar_setup
% generates code to pass to the dispatch routine the parts of the
% indirectly called code's identifier that come from constants.
:- pred call_gen__generic_call_nonvar_setup(generic_call::in,
list(prog_var)::in, list(prog_var)::in, code_tree::out,
code_info::in, code_info::out) is det.
call_gen__generic_call_nonvar_setup(higher_order(_, _, _, _),
InVars, OutVars, Code) -->
code_info__clobber_regs([reg(r, 2), reg(r, 3)]),
{ list__length(InVars, NInVars) },
{ list__length(OutVars, NOutVars) },
{ Code = node([
assign(reg(r, 2), const(int_const(NInVars))) -
"Assign number of immediate input arguments",
assign(reg(r, 3), const(int_const(NOutVars))) -
"Assign number of output arguments"
]) }.
call_gen__generic_call_nonvar_setup(class_method(_, Method, _, _),
InVars, OutVars, Code) -->
code_info__clobber_regs([reg(r, 2), reg(r, 3), reg(r, 4)]),
{ list__length(InVars, NInVars) },
{ list__length(OutVars, NOutVars) },
{ Code = node([
assign(reg(r, 2), const(int_const(Method))) -
"Index of class method in typeclass info",
assign(reg(r, 3), const(int_const(NInVars))) -
"Assign number of immediate input arguments",
assign(reg(r, 4), const(int_const(NOutVars))) -
"Assign number of output arguments"
]) }.
call_gen__generic_call_nonvar_setup(aditi_builtin(Builtin, _),
InVars, OutVars, Code) -->
call_gen__aditi_builtin_setup(Builtin, InVars, OutVars, Code).
:- pred call_gen__aditi_builtin_setup(aditi_builtin::in,
list(prog_var)::in, list(prog_var)::in, code_tree::out,
code_info::in, code_info::out) is det.
call_gen__aditi_builtin_setup(
aditi_call(PredProcId, NumInputs, InputTypes, NumOutputs),
_, _, SetupCode) -->
code_info__get_module_info(ModuleInfo),
{ rl__get_entry_proc_name(ModuleInfo, PredProcId, ProcName) },
{ rl__proc_name_to_string(ProcName, ProcStr) },
{ rl__schema_to_string(ModuleInfo, InputTypes, InputSchema) },
code_info__clobber_regs([reg(r, 1), reg(r, 2), reg(r, 3), reg(r, 4)]),
{ SetupCode = node([
assign(reg(r, 1), const(string_const(ProcStr))) -
"Assign name of procedure to call",
assign(reg(r, 2), const(int_const(NumInputs))) -
"Assign number of input arguments",
assign(reg(r, 3), const(string_const(InputSchema))) -
"Assign schema of input arguments",
assign(reg(r, 4), const(int_const(NumOutputs))) -
"Assign number of output arguments"
]) }.
call_gen__aditi_builtin_setup(
aditi_tuple_insert_delete(InsertOrDelete, PredId),
InputArgs, _, SetupCode) -->
code_info__clobber_regs([reg(r, 1), reg(r, 2), reg(r, 3), reg(r, 4)]),
call_gen__setup_base_relation_name(PredId, NameCode),
code_info__get_module_info(ModuleInfo),
{ module_info_pred_info(ModuleInfo, PredId, PredInfo) },
{ pred_info_arity(PredInfo, PredArity) },
% The `aditi__state' was removed.
{ TupleArity = PredArity - 1 },
{ ArityCode = node([
assign(reg(r, 2), const(int_const(TupleArity))) -
"Assign arity of relation to insert into"
]) },
(
{ InsertOrDelete = insert },
{ ProcCode = empty }
;
{ InsertOrDelete = delete },
%
% For now tuple deletions need to be done as bulk
% deletions. The API function to delete a single
% tuple only works if the relation being
% deleted from has an index.
%
call_gen__setup_update_proc_name(rl__get_delete_proc_name,
PredId, reg(r, 3), ProcNameCode),
%
% Work out the schema of the input relation of the
% deletion procedure
%
{ list__reverse(InputArgs, RevInputArgs) },
{
RevInputArgs = [_DiState | RevTupleArgs],
list__reverse(RevTupleArgs, TupleArgs0),
list__length(TupleArgs0, TupleArityTimes2),
% Remove the type-infos for the tuple arguments.
list__drop(TupleArityTimes2 // 2,
TupleArgs0, TupleArgs1)
->
TupleArgs = TupleArgs1
;
error(
"call_gen__aditi_builtin_setup: error in schema for aditi_delete")
},
list__map_foldl(code_info__variable_type,
TupleArgs, TupleTypes),
{ rl__schema_to_string(ModuleInfo, TupleTypes, InputSchema) },
{ ProcSchemaCode =
node([
assign(reg(r, 4),
const(string_const(InputSchema))) -
"Assign schema of tuple to insert/delete"
]) },
{ ProcCode = tree(ProcNameCode, ProcSchemaCode) }
),
{ SetupCode = tree(NameCode, tree(ArityCode, ProcCode)) }.
call_gen__aditi_builtin_setup(
aditi_insert_delete_modify(InsertDelMod, PredId, _),
_, _, SetupCode) -->
call_gen__aditi_insert_delete_modify_setup(InsertDelMod,
PredId, SetupCode).
:- pred call_gen__aditi_insert_delete_modify_setup(
aditi_insert_delete_modify::in, pred_id::in, code_tree::out,
code_info::in, code_info::out) is det.
call_gen__aditi_insert_delete_modify_setup(bulk_insert, PredId, SetupCode) -->
code_info__clobber_regs([reg(r, 1), reg(r, 2)]),
call_gen__setup_base_relation_name(PredId, RelNameCode),
call_gen__setup_update_proc_name(rl__get_insert_proc_name,
PredId, reg(r, 2), ProcNameCode),
{ SetupCode = tree(RelNameCode, ProcNameCode) }.
call_gen__aditi_insert_delete_modify_setup(delete(_), PredId, SetupCode) -->
code_info__clobber_regs([reg(r, 1), reg(r, 2)]),
call_gen__setup_base_relation_name(PredId, RelNameCode),
call_gen__setup_update_proc_name(rl__get_delete_proc_name,
PredId, reg(r, 2), ProcNameCode),
{ SetupCode = tree(RelNameCode, ProcNameCode) }.
call_gen__aditi_insert_delete_modify_setup(modify(_), PredId, SetupCode) -->
code_info__clobber_regs([reg(r, 1), reg(r, 2)]),
call_gen__setup_base_relation_name(PredId, RelNameCode),
call_gen__setup_update_proc_name(rl__get_modify_proc_name,
PredId, reg(r, 2), ProcNameCode),
{ SetupCode = tree(RelNameCode, ProcNameCode) }.
:- pred call_gen__setup_base_relation_name(pred_id::in,
code_tree::out, code_info::in, code_info::out) is det.
call_gen__setup_base_relation_name(PredId, SetupCode) -->
code_info__get_module_info(ModuleInfo),
{ rl__permanent_relation_name(ModuleInfo, PredId, ProcStr) },
{ SetupCode = node([
assign(reg(r, 1), const(string_const(ProcStr))) -
"Assign name of base relation"
]) }.
:- pred call_gen__setup_update_proc_name(
pred(module_info, pred_id, rl_proc_name),
pred_id, lval, code_tree, code_info, code_info).
:- mode call_gen__setup_update_proc_name(pred(in, in, out) is det,
in, in, out, in, out) is det.
call_gen__setup_update_proc_name(NamePred, PredId, Lval, ProcNameCode) -->
code_info__get_module_info(ModuleInfo),
{ NamePred(ModuleInfo, PredId, ProcName) },
{ rl__proc_name_to_string(ProcName, ProcNameStr) },
{ ProcNameCode =
node([
assign(Lval,
const(string_const(ProcNameStr))) -
"Assign name of update RL procedure"
])
}.
%---------------------------------------------------------------------------%
:- pred call_gen__prepare_for_call(code_model::in, call_model::out,
code_tree::out, code_info::in, code_info::out) is det.
call_gen__prepare_for_call(CodeModel, CallModel, TraceCode) -->
code_info__succip_is_used,
(
{ CodeModel = model_det },
{ CallModel = det }
;
{ CodeModel = model_semi },
{ CallModel = semidet }
;
{ CodeModel = model_non },
code_info__may_use_nondet_tailcall(TailCallStatus),
{ CallModel = nondet(TailCallStatus) },
code_info__set_resume_point_and_frame_to_unknown
),
trace__prepare_for_call(TraceCode).
:- pred call_gen__handle_failure(code_model::in, hlds_goal_info::in,
code_tree::out, code_info::in, code_info::out) is det.
call_gen__handle_failure(CodeModel, GoalInfo, FailHandlingCode) -->
( { CodeModel = model_semi } ->
{ goal_info_get_determinism(GoalInfo, Detism) },
( { Detism = failure } ->
code_info__generate_failure(FailHandlingCode)
;
code_info__get_next_label(ContLab),
{ FailTestCode = node([
if_val(lval(reg(r, 1)), label(ContLab))
- "test for success"
]) },
code_info__generate_failure(FailCode),
{ ContLabelCode = node([
label(ContLab)
- ""
]) },
{ FailHandlingCode =
tree(FailTestCode,
tree(FailCode,
ContLabelCode))
}
)
;
{ FailHandlingCode = empty }
).
:- pred call_gen__call_comment(code_model::in, string::out) is det.
call_gen__call_comment(model_det, "branch to det procedure").
call_gen__call_comment(model_semi, "branch to semidet procedure").
call_gen__call_comment(model_non, "branch to nondet procedure").
%---------------------------------------------------------------------------%
% After we have placed all the input variables in their registers,
% we will want to clear all the registers so we can start updating
% the code generator state to reflect their contents after the call.
% (In the case of higher order calls, we may place some constant
% input arguments in registers before clearing them.) The register
% clearing code complains if it is asked to dispose of the last copy
% of a still live variable, so before we clear the registers, we must
% make forward-dead all the variables that are in this goal's
% post-death set. However, a variable may be in this set even if it
% is not live before the call, if it is bound by the call. (This can
% happen when the caller ignores some of the output arguments of the
% called procedure.) We handle such variables not by making them
% forward-dead but by simply never making them forward-live in the
% first place.
% ArgsInfos should list all the output arguments of the call.
% It may contain the input arguments as well; kill_dead_input_vars
% and handle_return ignore them.
:- pred call_gen__kill_dead_input_vars(assoc_list(prog_var, arg_info)::in,
hlds_goal_info::in, set(prog_var)::out,
code_info::in, code_info::out) is det.
call_gen__kill_dead_input_vars(ArgsInfos, GoalInfo, NonLiveOutputs) -->
code_info__get_forward_live_vars(Liveness),
{ call_gen__find_nonlive_outputs(ArgsInfos, Liveness,
set__init, NonLiveOutputs) },
{ goal_info_get_post_deaths(GoalInfo, PostDeaths) },
{ set__difference(PostDeaths, NonLiveOutputs, ImmediatePostDeaths) },
code_info__make_vars_forward_dead(ImmediatePostDeaths).
:- pred call_gen__handle_return(assoc_list(prog_var, arg_info)::in,
hlds_goal_info::in, set(prog_var)::in, instmap::in,
list(liveinfo)::out, code_info::in, code_info::out) is det.
call_gen__handle_return(ArgsInfos, GoalInfo, _NonLiveOutputs, ReturnInstMap,
ReturnLiveLvalues) -->
{ goal_info_get_instmap_delta(GoalInfo, InstMapDelta) },
{ instmap_delta_is_reachable(InstMapDelta) ->
OkToDeleteAny = no
;
OkToDeleteAny = yes
},
code_info__clear_all_registers(OkToDeleteAny),
code_info__get_forward_live_vars(Liveness),
call_gen__rebuild_registers(ArgsInfos, Liveness, OutputArgLocs),
code_info__generate_return_live_lvalues(OutputArgLocs, ReturnInstMap,
OkToDeleteAny, ReturnLiveLvalues).
:- pred call_gen__find_nonlive_outputs(assoc_list(prog_var, arg_info)::in,
set(prog_var)::in, set(prog_var)::in, set(prog_var)::out) is det.
call_gen__find_nonlive_outputs([], _, NonLiveOutputs, NonLiveOutputs).
call_gen__find_nonlive_outputs([Var - arg_info(_ArgLoc, Mode) | Args],
Liveness, NonLiveOutputs0, NonLiveOutputs) :-
( Mode = top_out ->
( set__member(Var, Liveness) ->
NonLiveOutputs1 = NonLiveOutputs0
;
set__insert(NonLiveOutputs0, Var, NonLiveOutputs1)
)
;
NonLiveOutputs1 = NonLiveOutputs0
),
call_gen__find_nonlive_outputs(Args, Liveness,
NonLiveOutputs1, NonLiveOutputs).
:- pred call_gen__rebuild_registers(assoc_list(prog_var, arg_info)::in,
set(prog_var)::in, assoc_list(prog_var, arg_loc)::out,
code_info::in, code_info::out) is det.
call_gen__rebuild_registers([], _, []) --> [].
call_gen__rebuild_registers([Var - arg_info(ArgLoc, Mode) | Args], Liveness,
OutputArgLocs) -->
call_gen__rebuild_registers(Args, Liveness, OutputArgLocs1),
(
{ Mode = top_out },
{ set__member(Var, Liveness) }
->
{ code_util__arg_loc_to_register(ArgLoc, Register) },
code_info__set_var_location(Var, Register),
{ OutputArgLocs = [Var - ArgLoc | OutputArgLocs1] }
;
{ OutputArgLocs = OutputArgLocs1 }
).
%---------------------------------------------------------------------------%
call_gen__generate_builtin(CodeModel, PredId, ProcId, Args, Code) -->
code_info__get_module_info(ModuleInfo),
{ predicate_module(ModuleInfo, PredId, ModuleName) },
{ predicate_name(ModuleInfo, PredId, PredName) },
{
builtin_ops__translate_builtin(ModuleName, PredName,
ProcId, Args, SimpleCode0)
->
SimpleCode = SimpleCode0
;
length(Args, Arity),
format("Unknown builtin predicate: %s/%d",
[s(PredName), i(Arity)], Msg),
error(Msg)
},
(
{ CodeModel = model_det },
(
{ SimpleCode = assign(Var, AssignExpr) }
->
( code_info__variable_is_forward_live(Var) ->
{ Rval = convert_simple_expr(AssignExpr) },
code_info__assign_expr_to_var(Var, Rval, Code)
;
{ Code = empty }
)
;
{ error("Malformed det builtin predicate") }
)
;
{ CodeModel = model_semi },
(
{ SimpleCode = test(TestExpr) }
->
call_gen__generate_simple_test(TestExpr, Rval,
ArgCode),
code_info__fail_if_rval_is_false(Rval, TestCode),
{ Code = tree(ArgCode, TestCode) }
;
{ error("Malformed semi builtin predicate") }
)
;
{ CodeModel = model_non },
{ error("Nondet builtin predicate") }
).
:- func convert_simple_expr(simple_expr(prog_var)) = rval.
convert_simple_expr(leaf(Var)) = var(Var).
convert_simple_expr(int_const(Int)) = const(int_const(Int)).
convert_simple_expr(float_const(Float)) = const(float_const(Float)).
convert_simple_expr(unary(UnOp, Expr)) =
unop(UnOp, convert_simple_expr(Expr)).
convert_simple_expr(binary(BinOp, Expr1, Expr2)) =
binop(BinOp, convert_simple_expr(Expr1), convert_simple_expr(Expr2)).
:- pred call_gen__generate_simple_test(
simple_expr(prog_var)::in(simple_test_expr), rval::out,
code_tree::out, code_info::in, code_info::out) is det.
call_gen__generate_simple_test(TestExpr, Rval, ArgCode) -->
(
{ TestExpr = binary(BinOp, X0, Y0) },
{ X1 = convert_simple_expr(X0) },
{ Y1 = convert_simple_expr(Y0) },
call_gen__generate_builtin_arg(X1, X, CodeX),
call_gen__generate_builtin_arg(Y1, Y, CodeY),
{ Rval = binop(BinOp, X, Y) },
{ ArgCode = tree(CodeX, CodeY) }
;
{ TestExpr = unary(UnOp, X0) },
{ X1 = convert_simple_expr(X0) },
call_gen__generate_builtin_arg(X1, X, ArgCode),
{ Rval = unop(UnOp, X) }
).
:- pred call_gen__generate_builtin_arg(rval::in, rval::out, code_tree::out,
code_info::in, code_info::out) is det.
call_gen__generate_builtin_arg(Rval0, Rval, Code) -->
( { Rval0 = var(Var) } ->
code_info__produce_variable(Var, Code, Rval)
;
{ Rval = Rval0 },
{ Code = empty }
).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
call_gen__input_arg_locs([], []).
call_gen__input_arg_locs([Var - arg_info(Loc, Mode) | Args], Vs) :-
call_gen__input_arg_locs(Args, Vs0),
( Mode = top_in ->
Vs = [Var - Loc | Vs0]
;
Vs = Vs0
).
call_gen__output_arg_locs([], []).
call_gen__output_arg_locs([Var - arg_info(Loc, Mode) | Args], Vs) :-
call_gen__output_arg_locs(Args, Vs0),
( Mode = top_out ->
Vs = [Var - Loc | Vs0]
;
Vs = Vs0
).
%---------------------------------------------------------------------------%
:- pred call_gen__generate_call_vn_livevals(list(arg_loc)::in,
set(prog_var)::in, code_tree::out,
code_info::in, code_info::out) is det.
call_gen__generate_call_vn_livevals(InputArgLocs, OutputArgs, Code) -->
code_info__generate_call_vn_livevals(InputArgLocs, OutputArgs,
LiveVals),
{ Code = node([
livevals(LiveVals) - ""
]) }.
%---------------------------------------------------------------------------%
:- pred call_gen__give_vars_consecutive_arg_infos(list(prog_var)::in, int::in,
arg_mode::in, assoc_list(prog_var, arg_info)::out) is det.
call_gen__give_vars_consecutive_arg_infos([], _N, _M, []).
call_gen__give_vars_consecutive_arg_infos([Var | Vars], N0, ArgMode,
[Var - ArgInfo | ArgInfos]) :-
ArgInfo = arg_info(N0, ArgMode),
N1 = N0 + 1,
call_gen__give_vars_consecutive_arg_infos(Vars, N1, ArgMode, ArgInfos).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%