Files
mercury/browser/declarative_execution.m
Zoltan Somogyi 91501d2453 This diff is the first step in implementing trace events.
Estimated hours taken: 12
Branches: main

This diff is the first step in implementing trace events. It introduces the
representation of trace event goals into both the parse tree and HLDS
representations, and updates most compiler passes to handle them.
Changes to the code generator and to the runtime system, user-level
documentation and test cases will come later.

library/ops.m:
	Add "event" as an operator.

mdbcomp/program_representation.m:
	Extend the representation of goals to include events.

browser/declarative_execution.m:
	Allow the reconstruction from bytecode of event goals.

browser/declarative_tree.m:
	Extend the algorithm for following terms to their sources to allow
	it to traverse events (which never generate any values).

compiler/prog_item.m:
compiler/hlds_goal.m:
	Extend the parse tree and the HLDS representations to include event
	goals.

compiler/prog_io_goal.m:
	Convert the term representation of events to the parse tree
	representation.

compiler/add_clause.m:
	Convert the parse tree representation of events to the HLDS
	representation.

compiler/prog_event.m:
	Add this new module to contain the compiler's database of event types.

compiler/notes/compiler_design.html:
	Mention the new module.

compiler/parse_tree.m:
	Include the new module.

compiler/prog_rep.m:
	Generate the extended bytecode for event goals.

compiler/mercury_to_mercury.m:
	Output event goals.

compiler/typecheck.m:
	Typecheck event goals. The types of the arguments of each event type
	is given by the database in prog_event.m.

compiler/typecheck_errors.m:
	Add a predicate for reporting unknown events.

compiler/modecheck_call.m:
	Add a predicate to modecheck event goals. The modes of the arguments
	are also given by the database in prog_event.m.

compiler/modes.m:
	Call the new predicate in modecheck_call.m for event goals.

	Some predicates in this module took a boolean flag, tested many times
	at runtime, to control whether an exact match was required or not.
	However, the choice was fixed at all call sites except one. I have
	split each predicate into two, one for each value of the boolean flag,
	both for clarity of code and for slightly improved speed.

compiler/ml_call_gen.m:
	Ignore event goals, since the MLDS backend doesn't support debugging.

compiler/call_gen.m:
	Document the fact that event goals *should* be handled here.

compiler/build_mode_constraints.m:
compiler/deep_profiling.m:
compiler/exception_analysis.m:
compiler/goal_util.m:
compiler/hlds_out.m:
compiler/hlds_pred.m:
compiler/intermod.m:
compiler/mercury_to_mercury.m:
compiler/mlds_to_c.m:
compiler/mode_constraints.m:
compiler/modecheck_unify.m:
compiler/module_qual.m:
compiler/prog_util.m:
compiler/purity.m:
compiler/simplify.m:
compiler/superhomogeneous.m:
compiler/tabling_analysis.m:
compiler/term_traversal.m:
compiler/trailing_analysis.m:
compiler/typecheck.m:
compiler/typecheck_errors.m:
compiler/unique_modes.m:
	Handle the new goal type. In most cases the new code should be
	functional, but in a few cases (e.g. constraint based mode analysis
	and deep profiling) it just aborts the compiler.
2006-09-05 06:21:37 +00:00

1888 lines
67 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1999-2006 The University of Melbourne.
% This file may only be copied under the terms of the GNU Library General
% Public License - see the file COPYING.LIB in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: declarative_execution.m.
% Author: Mark Brown.
%
% This module defines a Mercury representation of Mercury program execution,
% the annotated trace. This structure is described in papers/decl_debug. The
% declarative debugging infrastructure in the trace directory builds an
% annotated trace, using predicates exported from this module. Once built,
% the structure is passed to the front end (in browser/declarative_debugger.m)
% where it is analysed to produce a bug diagnosis.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module mdb.declarative_execution.
:- interface.
:- import_module mdb.term_rep.
:- import_module mdbcomp.prim_data.
:- import_module mdbcomp.program_representation.
:- import_module mdbcomp.rtti_access.
:- import_module bool.
:- import_module io.
:- import_module list.
:- import_module maybe.
%-----------------------------------------------------------------------------%
% This type represents a port in the annotated trace.
% The type R is the type of references to other nodes in the store.
%
% If this type is modified, the procedures below which
% do destructive update on values of this type may also
% need to be modified.
%
:- type trace_node(R)
---> node_call(
call_preceding :: R,
% Preceding event.
call_last_interface :: R,
% Last EXIT, REDO, FAIL or
% EXCP event.
call_atom_args :: list(trace_atom_arg),
% Atom that was called.
call_seq :: sequence_number,
% Call sequence number.
call_event :: event_number,
% Trace event number.
call_at_max_depth :: maybe(implicit_tree_info),
% Yes if the node is the root of an
% implicitly represented tree. Some
% information about the implicit tree
% is also stored.
call_return_label :: maybe(label_layout),
% The return label, if there is one.
call_label :: label_layout,
call_io_seq_num :: int,
% The I/O action sequence number at the
% time of the call.
call_suspicion :: suspicion_accumulator
% The value of the suspicion
% accumulator at the time of
% the call.
)
; node_exit(
exit_preceding :: R,
% Preceding event.
exit_call :: R,
% CALL event.
exit_prev_redo :: R,
% Previous REDO event, if any.
exit_atom_args :: list(trace_atom_arg),
% Atom in its final state.
exit_event :: event_number,
% Trace event number.
exit_label :: label_layout,
exit_io_seq_num :: int,
% The I/O action sequence number at the
% time of the exit.
exit_suspicion :: suspicion_accumulator
% The value of the suspicion accumulator
% at the time of the exit.
)
; node_redo(
redo_preceding :: R,
% Preceding event.
redo_exit :: R,
% EXIT event.
redo_event :: event_number,
% REDO event number.
redo_label :: label_layout,
redo_suspicion :: suspicion_accumulator
% The value of the suspicion accumulator
% at the time of the redo.
)
; node_fail(
fail_preceding :: R,
% Preceding event.
fail_call :: R,
% CALL event.
fail_redo :: R,
% Previous REDO event, if any.
fail_event :: event_number,
% Trace event number.
fail_label :: label_layout,
fail_suspicion :: suspicion_accumulator
% The value of the suspicion accumulator
% at the time of the fail.
)
; node_excp(
excp_preceding :: R,
% Preceding event.
excp_call :: R, % Call event.
excp_redo :: R,
% Previous redo, if any.
excp_value :: term_rep,
% Exception thrown.
excp_event :: event_number,
% Trace event number.
excp_label :: label_layout,
excp_suspicion :: suspicion_accumulator
% The value of the suspicion accumulator
% at the time of the excp.
)
; node_switch(
switch_preceding :: R,
% Preceding event.
switch_label :: label_layout
)
; node_first_disj(
first_disj_preceding:: R,
% Preceding event.
first_disj_label :: label_layout
)
; node_later_disj(
later_disj_preceding:: R,
% Preceding event.
later_disj_label :: label_layout,
later_disj_first :: R
% Event of the first DISJ.
)
; node_cond(
cond_preceding :: R,
% Preceding event.
cond_label :: label_layout,
cond_status :: goal_status
% Whether we have reached a THEN or ELSE
% event.
)
; node_then(
then_preceding :: R,
% Preceding event.
then_cond :: R,
% COND event.
then_label :: label_layout
)
; node_else(
else_preceding :: R,
% Preceding event.
else_cond :: R,
% COND event.
else_label :: label_layout
)
; node_neg(
neg_preceding :: R,
% Preceding event.
neg_label :: label_layout,
% Path for this event.
neg_status :: goal_status
% Whether we have reached
% a NEGS or NEGF event.
)
; node_neg_succ(
neg_succ_preceding :: R,
% Preceding event.
neg_succ_enter :: R,
% NEGE event.
neg_succ_label :: label_layout
)
; node_neg_fail(
neg_fail_preceding :: R,
% Preceding event.
neg_fail_enter :: R,
% NEGE event.
neg_fail_label :: label_layout
).
:- type trace_atom_arg
---> arg_info(
prog_visible :: bool,
prog_vis_headvar_num :: int,
% N, if this is the Nth
% programmer visible headvar
% (as opposed to a variable
% created by the compiler).
arg_value :: maybe(term_rep)
).
:- type trace_atom
---> atom(
proc_layout :: proc_layout,
% Info about the
% procedure like its name and module
% and whether it is a function or a
% predicate.
atom_args :: list(trace_atom_arg)
% The arguments, including the
% compiler-generated ones.
% XXX This representation can't handle
% partially instantiated data structures.
).
:- type implicit_tree_info
---> implicit_tree_info(
% The maximum depth to which the implicit subtree
% can be materialized, so that its weight will be less than
% or equal to the desired subtree weight.
ideal_depth :: int
).
:- func get_trace_exit_atom(trace_node(R)) = trace_atom.
:- mode get_trace_exit_atom(in(trace_node_exit)) = out is det.
:- mode get_trace_exit_atom(in) = out is semidet.
:- func get_trace_call_atom(trace_node(R)) = trace_atom.
:- mode get_trace_call_atom(in(trace_node_call)) = out is det.
:- mode get_trace_call_atom(in) = out is semidet.
% get_pred_attributes(ProcLabel, Module, Name, Arity, PredOrFunc).
% Return the predicate/function attributes common to both UCI and
% regular predicates/functions.
%
:- pred get_pred_attributes(proc_label::in, module_name::out, string::out,
int::out, pred_or_func::out) is det.
:- pred call_node_maybe_proc_rep(trace_node(R)::in(trace_node_call),
maybe(proc_rep)::out) is det.
%-----------------------------------------------------------------------------%
% If the following type is modified, some of the macros in
% trace/mercury_trace_declarative.h may need to be updated.
%
:- type goal_status
---> succeeded
; failed
; undecided.
:- type sequence_number == int.
:- type event_number == int.
:- type suspicion_accumulator == int.
% Members of this typeclass represent an entire annotated
% trace. The second parameter is the type of references
% to trace nodes, and the first parameter is the type of
% a "store": an abstract mapping from references to the
% nodes they refer to.
%
% By convention, we use the names S and R for type variables
% which are constrained by annotated_trace. We also use
% these names in type declarations where it is *intended* that
% the type variables be constrained by annotated_trace.
%
% (Compare with the similar conventions for mercury_edt/2.)
%
:- typeclass annotated_trace(S, R) where [
% Dereference the identifier. This fails if the
% identifier does not refer to any trace_node (ie.
% it is a NULL pointer).
%
pred trace_node_from_id(S::in, R::in, trace_node(R)::out) is semidet
].
% Given any node in an annotated trace, find the most recent
% node in the same contour (ie. the last node which has not been
% backtracked over, skipping negations, failed conditions, the
% bodies of calls, and alternative disjuncts). Throw an exception
% if there is no such node (ie. if we are at the start of a
% negation, call, or failed condition).
%
% In some cases the contour may reach a dead end. This can
% happen if, for example, a DISJ node is not present because
% it is beyond the depth bound or in a module that is not traced;
% "stepping left" will arrive at a FAIL, REDO or NEGF node. Since
% it is not possible to follow the original contour in these
% circumstances, we follow the previous contour instead.
%
:- func step_left_in_contour(S, trace_node(R)) = R <= annotated_trace(S, R).
% Given any node in an annotated trace, find the most recent
% node in the same stratum (ie. the most recent node, skipping
% negations, failed conditions, and the bodies of calls).
% Throw an exception if there is no such node (ie. if we are at
% the start of a negation, call, or failed negation).
%
:- func step_in_stratum(S, trace_node(R)) = R <= annotated_trace(S, R).
% The following procedures also dereference the identifiers,
% but they give an error if the node is not of the expected type.
%
:- pred det_trace_node_from_id(S::in, R::in, trace_node(R)::out) is det
<= annotated_trace(S, R).
:- inst trace_node_call ---> node_call(ground, ground, ground, ground, ground,
ground, ground, ground, ground, ground).
:- pred call_node_from_id(S::in, R::in, trace_node(R)::out(trace_node_call))
is det <= annotated_trace(S, R).
:- inst trace_node_redo ---> node_redo(ground, ground, ground, ground, ground).
% maybe_redo_node_from_id/3 fails if the argument is a
% NULL reference.
%
:- pred maybe_redo_node_from_id(S::in, R::in,
trace_node(R)::out(trace_node_redo)) is semidet
<= annotated_trace(S, R).
:- inst trace_node_exit ---> node_exit(ground, ground, ground, ground,
ground, ground, ground, ground).
:- pred exit_node_from_id(S::in, R::in, trace_node(R)::out(trace_node_exit))
is det <= annotated_trace(S, R).
:- inst trace_node_cond ---> node_cond(ground, ground, ground).
:- pred cond_node_from_id(S::in, R::in, trace_node(R)::out(trace_node_cond))
is det <= annotated_trace(S, R).
:- inst trace_node_neg ---> node_neg(ground, ground, ground).
:- pred neg_node_from_id(S::in, R::in, trace_node(R)::out(trace_node_neg))
is det <= annotated_trace(S, R).
:- inst trace_node_first_disj ---> node_first_disj(ground, ground).
:- pred first_disj_node_from_id(S::in, R::in,
trace_node(R)::out(trace_node_first_disj)) is det
<= annotated_trace(S, R).
:- inst trace_node_disj
---> node_first_disj(ground, ground)
; node_later_disj(ground, ground, ground).
:- pred disj_node_from_id(S::in, R::in, trace_node(R)::out(trace_node_disj))
is det <= annotated_trace(S, R).
% Load an execution tree which was previously saved by
% the back end.
%
:- pred load_trace_node_map(io.input_stream::in, trace_node_map::out,
trace_node_key::out, io::di, io::uo) is det.
% Save an execution tree generated by the back end. It is
% first converted into a trace_node_map/trace_node_key pair.
%
:- pred save_trace_node_store(io.output_stream::in, trace_node_store::in,
trace_node_id::in, io::di, io::uo) is det.
%-----------------------------------------------------------------------------%
% This instance is used when the declarative debugger is in
% normal mode. Values of this instance are produced by the
% back end and passed directly to the front end.
%
:- type trace_node_store.
:- type trace_node_id.
:- instance annotated_trace(trace_node_store, trace_node_id).
% This instance is used when the declarative debugger is in
% test mode. Values of this instance are produced by copying
% values of the previous instance. Unlike the previous
% instance, values of this one can be fed through a stream.
%
:- type trace_node_map.
:- type trace_node_key.
:- instance annotated_trace(trace_node_map, trace_node_key).
%-----------------------------------------------------------------------------%
:- type which_headvars
---> all_headvars
; only_user_headvars.
:- pred maybe_filter_headvars(which_headvars::in, list(trace_atom_arg)::in,
list(trace_atom_arg)::out) is det.
:- func chosen_head_vars_presentation = which_headvars.
:- pred is_user_visible_arg(trace_atom_arg::in) is semidet.
:- pred select_arg_at_pos(arg_pos::in, list(trace_atom_arg)::in,
trace_atom_arg::out) is det.
:- pred absolute_arg_num(arg_pos::in, trace_atom::in, int::out) is det.
:- pred user_arg_num(arg_pos::in, trace_atom::in, int::out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module mdb.declarative_debugger.
:- import_module mdb.declarative_edt.
:- import_module exception.
:- import_module int.
:- import_module map.
:- import_module require.
:- import_module store.
:- import_module string.
:- import_module univ.
%-----------------------------------------------------------------------------%
get_pred_attributes(ProcId, Module, Name, Arity, PredOrFunc) :-
(
ProcId = ordinary_proc_label(Module, PredOrFunc, _, Name, Arity, _)
;
ProcId = special_proc_label(Module, SpecialId, _, _, _, _),
PredOrFunc = predicate,
Arity = get_special_pred_id_arity(SpecialId),
Name = get_special_pred_id_target_name(SpecialId)
).
%-----------------------------------------------------------------------------%
:- pragma promise_pure(call_node_maybe_proc_rep/2).
call_node_maybe_proc_rep(CallNode, MaybeProcRep) :-
Label = CallNode ^ call_label,
( call_node_bytecode_layout(Label, ProcLayout) ->
( semipure have_cached_proc_rep(ProcLayout, ProcRep) ->
MaybeProcRep = yes(ProcRep)
;
lookup_proc_bytecode(ProcLayout, ByteCode),
read_proc_rep(ByteCode, Label, ProcRep),
impure cache_proc_rep(ProcLayout, ProcRep),
MaybeProcRep = yes(ProcRep)
)
;
MaybeProcRep = no
).
:- pred call_node_bytecode_layout(label_layout::in, proc_layout::out)
is semidet.
% Default version for non-C backends.
call_node_bytecode_layout(_, _) :-
semidet_fail.
:- pragma foreign_proc("C",
call_node_bytecode_layout(CallLabelLayout::in, ProcLayout::out),
[will_not_call_mercury, thread_safe, promise_pure],
"
ProcLayout = CallLabelLayout->MR_sll_entry;
if (ProcLayout->MR_sle_body_bytes != NULL) {
#ifdef MR_DEBUG_PROC_REP
printf(""call_node_bytecode_layout: %p success\\n"", CallLabelLayout);
#endif
SUCCESS_INDICATOR = MR_TRUE;
} else {
#ifdef MR_DEBUG_PROC_REP
printf(""call_node_bytecode_layout: %p failure\\n"", CallLabelLayout);
#endif
SUCCESS_INDICATOR = MR_FALSE;
}
").
:- pred lookup_proc_bytecode(proc_layout::in, bytecode::out) is det.
% Default version for non-C backends.
lookup_proc_bytecode(_, dummy_bytecode).
:- pragma foreign_proc("C",
lookup_proc_bytecode(ProcLayout::in, ByteCode::out),
[will_not_call_mercury, thread_safe, promise_pure],
"
ByteCode = ProcLayout->MR_sle_body_bytes;
#ifdef MR_DEBUG_PROC_REP
printf(""lookup_proc_bytecode: %p %p\\n"", ProcLayout, ByteCode);
#endif
").
:- semipure pred have_cached_proc_rep(proc_layout::in, proc_rep::out)
is semidet.
% Default version for non-C backends.
have_cached_proc_rep(_, _) :-
semidet_fail.
:- pragma foreign_proc("C",
have_cached_proc_rep(ProcLayout::in, ProcRep::out),
[will_not_call_mercury, thread_safe, promise_semipure],
"
ProcRep = MR_lookup_proc_rep(ProcLayout);
if (ProcRep != 0) {
#ifdef MR_DEBUG_PROC_REP
printf(""have_cached_proc_rep: %p success\\n"",
ProcLayout);
#endif
SUCCESS_INDICATOR = MR_TRUE;
} else {
#ifdef MR_DEBUG_PROC_REP
printf(""have_cached_proc_rep: %p failure\\n"",
ProcLayout);
#endif
SUCCESS_INDICATOR = MR_FALSE;
}
").
:- impure pred cache_proc_rep(proc_layout::in, proc_rep::in) is det.
% Default version for non-C backends.
cache_proc_rep(_, _).
:- pragma foreign_proc("C",
cache_proc_rep(ProcLayout::in, ProcRep::in),
[will_not_call_mercury, thread_safe],
"
#ifdef MR_DEBUG_PROC_REP
printf(""cache_proc_rep: %p %x\\n"", ProcLayout, ProcRep);
#endif
MR_insert_proc_rep(ProcLayout, ProcRep);
").
%-----------------------------------------------------------------------------%
get_trace_exit_atom(node_exit(_, _, _, AtomArgs, _, Label, _, _)) = Atom :-
ProcLayout = get_proc_layout_from_label_layout(Label),
Atom = atom(ProcLayout, AtomArgs).
get_trace_call_atom(node_call(_, _, AtomArgs, _, _, _, _, Label, _, _))
= Atom :-
ProcLayout = get_proc_layout_from_label_layout(Label),
Atom = atom(ProcLayout, AtomArgs).
%-----------------------------------------------------------------------------%
step_left_in_contour(Store, node_exit(_, Call, _, _, _, _, _, _)) = Prec :-
call_node_from_id(Store, Call, CallNode),
Prec = CallNode ^ call_preceding.
step_left_in_contour(Store, node_excp(_, Call, _, _, _, _, _)) = Prec :-
call_node_from_id(Store, Call, CallNode),
Prec = CallNode ^ call_preceding.
step_left_in_contour(_, node_switch(Prec, _)) = Prec.
step_left_in_contour(_, node_first_disj(Prec, _)) = Prec.
step_left_in_contour(Store, node_later_disj(_, _, FirstDisj)) = Prec :-
first_disj_node_from_id(Store, FirstDisj, node_first_disj(Prec, _)).
step_left_in_contour(_, node_cond(Prec, _, Status)) = Node :-
( Status = failed ->
throw(internal_error("step_left_in_contour", "failed COND node"))
;
Node = Prec
).
step_left_in_contour(_, node_then(Prec, _, _)) = Prec.
step_left_in_contour(Store, node_else(_, Cond, _)) = Prec :-
cond_node_from_id(Store, Cond, node_cond(Prec, _, _)).
step_left_in_contour(Store, node_neg_succ(_, Neg, _)) = Prec :-
neg_node_from_id(Store, Neg, node_neg(Prec, _, _)).
%
% The following cases are possibly at the left end of a contour,
% where we cannot step any further.
%
step_left_in_contour(_, node_call(_, _, _, _, _, _, _, _, _, _)) = _ :-
throw(internal_error("step_left_in_contour", "unexpected CALL node")).
step_left_in_contour(_, node_neg(Prec, _, Status)) = Next :-
( Status = undecided ->
% An exception must have been thrown inside the negation,
% so we don't consider it a separate context.
Next = Prec
;
throw(internal_error("step_left_in_contour", "unexpected NEGE node"))
).
%
% In the remaining cases we have reached a dead end, so we
% step to the previous contour instead.
%
step_left_in_contour(Store, Node) = Prec :-
Node = node_fail(_, _, _, _, _, _),
find_prev_contour(Store, Node, Prec).
step_left_in_contour(Store, Node) = Prec :-
Node = node_redo(_, _, _, _, _),
find_prev_contour(Store, Node, Prec).
step_left_in_contour(Store, Node) = Prec :-
Node = node_neg_fail(_, _, _),
find_prev_contour(Store, Node, Prec).
% Given any node which is not on a contour, find a node on
% the previous contour in the same stratum.
%
:- pred find_prev_contour(S, trace_node(R), R) <= annotated_trace(S, R).
:- mode find_prev_contour(in, in, out) is semidet.
:- mode find_prev_contour(in, in(trace_node_reverse), out) is det.
:- inst trace_node_reverse
---> node_fail(ground, ground, ground, ground, ground, ground)
; node_redo(ground, ground, ground, ground, ground)
; node_neg_fail(ground, ground, ground).
find_prev_contour(Store, node_fail(_, Call, _, _, _, _), OnContour) :-
call_node_from_id(Store, Call, CallNode),
OnContour = CallNode ^ call_preceding.
find_prev_contour(Store, node_redo(_, Exit, _, _, _), OnContour) :-
exit_node_from_id(Store, Exit, ExitNode),
OnContour = ExitNode ^ exit_preceding.
find_prev_contour(Store, node_neg_fail(_, Neg, _), OnContour) :-
neg_node_from_id(Store, Neg, node_neg(OnContour, _, _)).
%
% The following cases are at the left end of a contour,
% so there are no previous contours in the same stratum.
%
find_prev_contour(_, node_call(_, _, _, _, _, _, _, _, _, _), _) :-
throw(internal_error("find_prev_contour", "reached CALL node")).
find_prev_contour(_, node_cond(_, _, _), _) :-
throw(internal_error("find_prev_contour", "reached COND node")).
find_prev_contour(_, node_neg(_, _, _), _) :-
throw(internal_error("find_prev_contour", "reached NEGE node")).
step_in_stratum(Store, node_exit(_, Call, MaybeRedo, _, _, _, _, _)) =
step_over_redo_or_call(Store, Call, MaybeRedo).
step_in_stratum(Store, node_fail(_, Call, MaybeRedo, _, _, _)) =
step_over_redo_or_call(Store, Call, MaybeRedo).
step_in_stratum(Store, node_excp(_, Call, MaybeRedo, _, _, _, _)) =
step_over_redo_or_call(Store, Call, MaybeRedo).
step_in_stratum(Store, node_redo(_, Exit, _, _, _)) = Next :-
exit_node_from_id(Store, Exit, ExitNode),
Next = ExitNode ^ exit_preceding.
step_in_stratum(_, node_switch(Next, _)) = Next.
step_in_stratum(_, node_first_disj(Next, _)) = Next.
step_in_stratum(_, node_later_disj(Next, _, _)) = Next.
step_in_stratum(_, node_cond(Prec, _, Status)) = Next :-
( Status = failed ->
throw(internal_error("step_in_stratum", "failed COND node"))
;
Next = Prec
).
step_in_stratum(_, node_then(Next, _, _)) = Next.
step_in_stratum(Store, node_else(_, Cond, _)) = Next :-
cond_node_from_id(Store, Cond, node_cond(Next, _, _)).
step_in_stratum(Store, node_neg_succ(_, Neg, _)) = Next :-
neg_node_from_id(Store, Neg, node_neg(Next, _, _)).
step_in_stratum(Store, node_neg_fail(_, Neg, _)) = Next :-
neg_node_from_id(Store, Neg, node_neg(Next, _, _)).
%
% The following cases mark the boundary of the stratum,
% so we cannot step any further.
%
step_in_stratum(_, node_call(_, _, _, _, _, _, _, _, _, _)) = _ :-
throw(internal_error("step_in_stratum", "unexpected CALL node")).
step_in_stratum(_, node_neg(_, _, _)) = _ :-
throw(internal_error("step_in_stratum", "unexpected NEGE node")).
:- func step_over_redo_or_call(S, R, R) = R <= annotated_trace(S, R).
step_over_redo_or_call(Store, Call, MaybeRedo) = Next :-
( maybe_redo_node_from_id(Store, MaybeRedo, Redo) ->
Redo = node_redo(Next, _, _, _, _)
;
call_node_from_id(Store, Call, CallNode),
Next = CallNode ^ call_preceding
).
det_trace_node_from_id(Store, NodeId, Node) :-
( trace_node_from_id(Store, NodeId, Node0) ->
Node = Node0
;
throw(internal_error("det_trace_node_from_id", "NULL node id"))
).
call_node_from_id(Store, NodeId, Node) :-
(
trace_node_from_id(Store, NodeId, Node0),
Node0 = node_call(_, _, _, _, _, _, _, _, _, _)
->
Node = Node0
;
throw(internal_error("call_node_from_id", "not a CALL node"))
).
maybe_redo_node_from_id(Store, NodeId, Node) :-
trace_node_from_id(Store, NodeId, Node0),
(
Node0 = node_redo(_, _, _, _, _)
->
Node = Node0
;
throw(internal_error("maybe_redo_node_from_id",
"not a REDO node or NULL"))
).
exit_node_from_id(Store, NodeId, Node) :-
(
trace_node_from_id(Store, NodeId, Node0),
Node0 = node_exit(_, _, _, _, _, _, _, _)
->
Node = Node0
;
throw(internal_error("exit_node_from_id", "not an EXIT node"))
).
cond_node_from_id(Store, NodeId, Node) :-
(
trace_node_from_id(Store, NodeId, Node0),
Node0 = node_cond(_, _, _)
->
Node = Node0
;
throw(internal_error("cond_node_from_id", "not a COND node"))
).
neg_node_from_id(Store, NodeId, Node) :-
(
trace_node_from_id(Store, NodeId, Node0),
Node0 = node_neg(_, _, _)
->
Node = Node0
;
throw(internal_error("neg_node_from_id", "not a NEG node"))
).
first_disj_node_from_id(Store, NodeId, Node) :-
(
trace_node_from_id(Store, NodeId, Node0),
Node0 = node_first_disj(_, _)
->
Node = Node0
;
throw(internal_error("first_disj_node_from_id",
"not a first DISJ node"))
).
disj_node_from_id(Store, NodeId, Node) :-
(
trace_node_from_id(Store, NodeId, Node0),
( Node0 = node_first_disj(_, _)
; Node0 = node_later_disj(_, _, _)
)
->
Node = Node0
;
throw(internal_error("disj_node_from_id",
"not a DISJ node"))
).
%-----------------------------------------------------------------------------%
:- instance annotated_trace(trace_node_store, trace_node_id) where [
pred(trace_node_from_id/3) is search_trace_node_store
].
% The "map" is actually just an integer representing the version
% of the map. The empty map should be given the value 0, and
% each time the map is destructively modified (by C code), the
% value should be incremented.
%
:- type trace_node_store
---> store(int).
% The implementation of the identifiers is the same as what
% is identified. This fact is hidden, however, to force the
% abstract map to be explicitly used whenever a new node is
% accessed.
%
:- type trace_node_id
---> id(c_pointer).
:- pred search_trace_node_store(trace_node_store::in, trace_node_id::in,
trace_node(trace_node_id)::out) is semidet.
:- pragma foreign_proc("C",
search_trace_node_store(_Store::in, Id::in, Node::out),
[will_not_call_mercury, promise_pure, thread_safe],
"
Node = Id;
SUCCESS_INDICATOR = (Id != (MR_Word) NULL);
"
).
search_trace_node_store(_, _, _) :-
private_builtin.sorry("search_trace_node_store").
%
% Following are some predicates that are useful for
% manipulating the above instance in C code.
%
:- func call_node_get_last_interface(trace_node(trace_node_id))
= trace_node_id.
:- pragma foreign_export("C", call_node_get_last_interface(in) = out,
"MR_DD_call_node_get_last_interface").
call_node_get_last_interface(Call) = Last :-
( Call = node_call(_, Last0, _, _, _, _, _, _, _, _) ->
Last = Last0
;
throw(internal_error("call_node_get_last_interface",
"not a CALL node"))
).
:- func call_node_set_last_interface(trace_node(trace_node_id)::di,
trace_node_id::di) = (trace_node(trace_node_id)::out) is det.
:- pragma foreign_export("C", call_node_set_last_interface(di, di) = out,
"MR_DD_call_node_set_last_interface").
call_node_set_last_interface(Call0, Last) = Call :-
( Call0 = node_call(_, _, _, _, _, _, _, _, _, _) ->
Call1 = Call0
;
throw(internal_error("call_node_set_last_interface",
"not a CALL node"))
),
% The last interface is the second field, so we pass 1
% (since argument numbers start from 0).
%
set_trace_node_arg(Call1, 1, Last, Call).
:- func call_node_update_implicit_tree_info(trace_node(trace_node_id)::di,
int::di) = (trace_node(trace_node_id)::out) is det.
:- pragma foreign_export("C",
call_node_update_implicit_tree_info(di, di) = out,
"MR_DD_call_node_update_implicit_tree_info").
call_node_update_implicit_tree_info(Call0, IdealDepth) = Call :-
( Call0 = node_call(_, _, _, _, _, _, _, _, _, _) ->
Call1 = Call0
;
throw(internal_error("call_node_update_implicit_tree_info",
"not a CALL node"))
),
% call_at_max_depth is the sixth field, so we pass 5
% (since argument numbers start from 0).
%
set_trace_node_arg(Call1, 5, yes(implicit_tree_info(IdealDepth)), Call).
:- func get_implicit_tree_ideal_depth(trace_node(trace_node_id)) = int.
:- pragma foreign_export("C",
get_implicit_tree_ideal_depth(in) = out,
"MR_DD_get_implicit_tree_ideal_depth").
get_implicit_tree_ideal_depth(Call) = IdealDepth :-
( MaybeImplicitTreeInfo = Call ^ call_at_max_depth ->
(
MaybeImplicitTreeInfo = yes(implicit_tree_info(IdealDepth))
;
MaybeImplicitTreeInfo = no,
throw(internal_error("get_implicit_tree_max_depth",
"not at max depth"))
)
;
throw(internal_error("get_implicit_tree_max_depth", "not a CALL node"))
).
:- func cond_node_set_status(trace_node(trace_node_id)::di, goal_status::di)
= (trace_node(trace_node_id)::out) is det.
:- pragma foreign_export("C", cond_node_set_status(di, di) = out,
"MR_DD_cond_node_set_status").
cond_node_set_status(Cond0, Status) = Cond :-
( Cond0 = node_cond(_, _, _) ->
Cond1 = Cond0
;
throw(internal_error("cond_node_set_status", "not a COND node"))
),
% The goal status is the third field, so we pass 2
% (since argument numbers start from 0).
%
set_trace_node_arg(Cond1, 2, Status, Cond).
:- func neg_node_set_status(trace_node(trace_node_id)::di, goal_status::di)
= (trace_node(trace_node_id)::out) is det.
:- pragma foreign_export("C", neg_node_set_status(di, di) = out,
"MR_DD_neg_node_set_status").
neg_node_set_status(Neg0, Status) = Neg :-
( Neg0 = node_neg(_, _, _) ->
Neg1 = Neg0
;
throw(internal_error("neg_node_set_status", "not a NEGE node"))
),
% The goal status is the third field, so we pass 2
% (since argument numbers start from 0).
%
set_trace_node_arg(Neg1, 2, Status, Neg).
:- pred set_trace_node_arg(trace_node(trace_node_id)::di, int::in, T::di,
trace_node(trace_node_id)::out) is det.
set_trace_node_arg(Node0, FieldNum, Val, Node) :-
store.new(S0),
store.new_ref(Node0, Ref, S0, S1),
store.arg_ref(Ref, FieldNum, ArgRef, S1, S2),
store.set_ref_value(ArgRef, Val, S2, S),
store.extract_ref_value(S, Ref, Node).
:- func trace_node_port(trace_node(trace_node_id)) = trace_port.
:- pragma foreign_export("C", trace_node_port(in) = out,
"MR_DD_trace_node_port").
trace_node_port(node_call(_, _, _, _, _, _, _, _, _, _)) = call.
trace_node_port(node_exit(_, _, _, _, _, _, _, _)) = exit.
trace_node_port(node_redo(_, _, _, _, _)) = redo.
trace_node_port(node_fail(_, _, _, _, _, _)) = fail.
trace_node_port(node_excp(_, _, _, _, _, _, _)) = exception.
trace_node_port(node_switch(_, _)) = switch.
trace_node_port(node_first_disj(_, _)) = disj.
trace_node_port(node_later_disj(_, _, _)) = disj.
trace_node_port(node_cond(_, _, _)) = ite_cond.
trace_node_port(node_then(_, _, _)) = ite_then.
trace_node_port(node_else(_, _, _)) = ite_else.
trace_node_port(node_neg(_, _, _)) = neg_enter.
trace_node_port(node_neg_succ(_, _, _)) = neg_success.
trace_node_port(node_neg_fail(_, _, _)) = neg_failure.
:- func trace_node_path(trace_node(trace_node_id)) = goal_path_string.
:- pragma foreign_export("C", trace_node_path(in) = out,
"MR_DD_trace_node_path").
trace_node_path(Node) = Path :-
Label = get_trace_node_label(Node),
Path = get_goal_path_from_label_layout(Label).
:- func get_trace_node_label(trace_node(R)) = label_layout.
get_trace_node_label(node_call(_, _, _, _, _, _, _, Label, _, _)) = Label.
get_trace_node_label(node_exit(_, _, _, _, _, Label, _, _)) = Label.
get_trace_node_label(node_redo(_, _, _, Label, _)) = Label.
get_trace_node_label(node_fail(_, _, _, _, Label, _)) = Label.
get_trace_node_label(node_excp(_, _, _, _, _, Label, _)) = Label.
get_trace_node_label(node_switch(_, Label)) = Label.
get_trace_node_label(node_first_disj(_, Label)) = Label.
get_trace_node_label(node_later_disj(_, Label, _)) = Label.
get_trace_node_label(node_cond(_, Label, _)) = Label.
get_trace_node_label(node_then(_, _, Label)) = Label.
get_trace_node_label(node_else(_, _, Label)) = Label.
get_trace_node_label(node_neg(_, Label, _)) = Label.
get_trace_node_label(node_neg_succ(_, _, Label)) = Label.
get_trace_node_label(node_neg_fail(_, _, Label)) = Label.
:- pred trace_node_seqno(trace_node_store::in, trace_node(trace_node_id)::in,
sequence_number::out) is semidet.
:- pragma foreign_export("C", trace_node_seqno(in, in, out),
"MR_DD_trace_node_seqno").
trace_node_seqno(S, Node, SeqNo) :-
( SeqNo0 = Node ^ call_seq ->
SeqNo = SeqNo0
;
trace_node_call(S, Node, Call),
call_node_from_id(S, Call, CallNode),
SeqNo = CallNode ^ call_seq
).
:- pred trace_node_call(trace_node_store::in, trace_node(trace_node_id)::in,
trace_node_id::out) is semidet.
:- pragma foreign_export("C", trace_node_call(in, in, out),
"MR_DD_trace_node_call").
trace_node_call(_, node_exit(_, Call, _, _, _, _, _, _), Call).
trace_node_call(S, node_redo(_, Exit, _, _, _), Call) :-
exit_node_from_id(S, Exit, ExitNode),
Call = ExitNode ^ exit_call.
trace_node_call(_, node_fail(_, Call, _, _, _, _), Call).
trace_node_call(_, node_excp(_, Call, _, _, _, _, _), Call).
:- pred trace_node_first_disj(trace_node(trace_node_id)::in,
trace_node_id::out) is semidet.
:- pragma foreign_export("C", trace_node_first_disj(in, out),
"MR_DD_trace_node_first_disj").
trace_node_first_disj(node_first_disj(_, _), NULL) :-
null_trace_node_id(NULL).
trace_node_first_disj(node_later_disj(_, _, FirstDisj), FirstDisj).
% Export a version of this function to be called by C code
% in trace/mercury_trace_declarative.c.
%
:- func step_left_in_contour_store(trace_node_store, trace_node(trace_node_id))
= trace_node_id.
:- pragma foreign_export("C", step_left_in_contour_store(in, in) = out,
"MR_DD_step_left_in_contour").
step_left_in_contour_store(Store, Node) = step_left_in_contour(Store, Node).
% Export a version of this function to be called by C code
% in trace/declarative_debugger.c. If called with a node
% that is already on a contour, this function returns the
% same node. This saves the C code from having to perform
% that check itself.
%
:- func find_prev_contour_store(trace_node_store, trace_node_id)
= trace_node_id.
:- pragma foreign_export("C", find_prev_contour_store(in, in) = out,
"MR_DD_find_prev_contour").
find_prev_contour_store(Store, Id) = Prev :-
det_trace_node_from_id(Store, Id, Node),
( find_prev_contour(Store, Node, Prev0) ->
Prev = Prev0
;
Prev = Id
).
% Print a text representation of a trace node, useful
% for debugging purposes.
%
:- pred print_trace_node(io.output_stream::in, trace_node(trace_node_id)::in,
io::di, io::uo) is det.
:- pragma foreign_export("C", print_trace_node(in, in, di, uo),
"MR_DD_print_trace_node").
print_trace_node(OutStr, Node, !IO) :-
convert_node(Node, CNode),
io.write(OutStr, CNode, !IO).
%-----------------------------------------------------------------------------%
% Each node type has a Mercury function which constructs a node of
% that type. The functions are exported to C so that the back end
% can build an execution tree.
%
:- func construct_call_node(trace_node_id, list(trace_atom_arg),
sequence_number, event_number, bool, maybe(label_layout),
label_layout, int, suspicion_accumulator) = trace_node(trace_node_id).
:- pragma foreign_export("C",
construct_call_node(in, in, in, in, in, in, in, in, in) = out,
"MR_DD_construct_call_node").
construct_call_node(Preceding, AtomArgs, SeqNo, EventNo, AtMaxDepth,
MaybeReturnLabel, Label, IoSeqNum, Suspicion) = Call :-
(
AtMaxDepth = no,
MaybeImplicitTreeInfo = no
;
AtMaxDepth = yes,
% The ideal depth of the implicit tree will be updated
% when the corresponding EXIT, FAIL or EXCP event occurs,
% so for now we just set it to 0.
MaybeImplicitTreeInfo = yes(implicit_tree_info(0))
),
null_trace_node_id(LastInterface),
Call = node_call(Preceding, LastInterface, AtomArgs, SeqNo, EventNo,
MaybeImplicitTreeInfo, MaybeReturnLabel, Label, IoSeqNum, Suspicion).
:- func make_yes_maybe_label(label_layout) = maybe(label_layout).
:- pragma foreign_export("C", make_yes_maybe_label(in) = out,
"MR_DD_make_yes_maybe_label").
make_yes_maybe_label(Label) = yes(Label).
:- func make_no_maybe_label = maybe(label_layout).
:- pragma foreign_export("C", make_no_maybe_label = out,
"MR_DD_make_no_maybe_label").
make_no_maybe_label = no.
:- func construct_exit_node(trace_node_id, trace_node_id, trace_node_id,
list(trace_atom_arg), event_number, label_layout, int,
suspicion_accumulator) = trace_node(trace_node_id).
:- pragma foreign_export("C",
construct_exit_node(in, in, in, in, in, in, in, in) = out,
"MR_DD_construct_exit_node").
construct_exit_node(Preceding, Call, MaybeRedo, AtomArgs, EventNo, Label,
IoSeqNum, Suspicion) =
node_exit(Preceding, Call, MaybeRedo, AtomArgs, EventNo, Label, IoSeqNum,
Suspicion).
:- func construct_redo_node(trace_node_id, trace_node_id, event_number,
label_layout, suspicion_accumulator) = trace_node(trace_node_id).
:- pragma foreign_export("C",
construct_redo_node(in, in, in, in, in) = out,
"MR_DD_construct_redo_node").
construct_redo_node(Preceding, Exit, Event, Label, Suspicion) =
node_redo(Preceding, Exit, Event, Label, Suspicion).
:- func construct_fail_node(trace_node_id, trace_node_id, trace_node_id,
event_number, label_layout, suspicion_accumulator)
= trace_node(trace_node_id).
:- pragma foreign_export("C",
construct_fail_node(in, in, in, in, in, in) = out,
"MR_DD_construct_fail_node").
construct_fail_node(Preceding, Call, Redo, EventNo, Label, Suspicion) =
node_fail(Preceding, Call, Redo, EventNo, Label, Suspicion).
:- pred construct_excp_node(trace_node_id::in, trace_node_id::in,
trace_node_id::in, univ::in, event_number::in, label_layout::in,
suspicion_accumulator::in, trace_node(trace_node_id)::out) is cc_multi.
:- pragma foreign_export("C",
construct_excp_node(in, in, in, in, in, in, in, out),
"MR_DD_construct_excp_node").
construct_excp_node(Preceding, Call, MaybeRedo, Exception, EventNo, Label,
Suspicion, Excp) :-
term_rep.univ_to_rep(Exception, ExceptionRep),
Excp = node_excp(Preceding, Call, MaybeRedo, ExceptionRep, EventNo, Label,
Suspicion).
:- func construct_switch_node(trace_node_id, label_layout)
= trace_node(trace_node_id).
:- pragma foreign_export("C",
construct_switch_node(in, in) = out,
"MR_DD_construct_switch_node").
construct_switch_node(Preceding, Label) = node_switch(Preceding, Label).
:- func construct_first_disj_node(trace_node_id, label_layout)
= trace_node(trace_node_id).
:- pragma foreign_export("C",
construct_first_disj_node(in, in) = out,
"MR_DD_construct_first_disj_node").
construct_first_disj_node(Preceding, Label) =
node_first_disj(Preceding, Label).
:- func construct_later_disj_node(trace_node_store, trace_node_id,
label_layout, trace_node_id) = trace_node(trace_node_id).
:- pragma foreign_export("C",
construct_later_disj_node(in, in, in, in) = out,
"MR_DD_construct_later_disj_node").
construct_later_disj_node(Store, Preceding, Label, PrevDisj)
= node_later_disj(Preceding, Label, FirstDisj) :-
disj_node_from_id(Store, PrevDisj, PrevDisjNode),
(
PrevDisjNode = node_first_disj(_, _),
FirstDisj = PrevDisj
;
PrevDisjNode = node_later_disj(_, _, FirstDisj)
).
:- func construct_cond_node(trace_node_id, label_layout)
= trace_node(trace_node_id).
:- pragma foreign_export("C",
construct_cond_node(in, in) = out,
"MR_DD_construct_cond_node").
construct_cond_node(Preceding, Label) = node_cond(Preceding, Label, undecided).
:- func construct_then_node(trace_node_id, trace_node_id, label_layout)
= trace_node(trace_node_id).
:- pragma foreign_export("C",
construct_then_node(in, in, in) = out,
"MR_DD_construct_then_node").
construct_then_node(Preceding, Cond, Label) =
node_then(Preceding, Cond, Label).
:- func construct_else_node(trace_node_id, trace_node_id, label_layout)
= trace_node(trace_node_id).
:- pragma foreign_export("C",
construct_else_node(in, in, in) = out,
"MR_DD_construct_else_node").
construct_else_node(Preceding, Cond, Label) =
node_else(Preceding, Cond, Label).
:- func construct_neg_node(trace_node_id, label_layout)
= trace_node(trace_node_id).
:- pragma foreign_export("C",
construct_neg_node(in, in) = out,
"MR_DD_construct_neg_node").
construct_neg_node(Preceding, Label) = node_neg(Preceding, Label, undecided).
:- func construct_neg_succ_node(trace_node_id, trace_node_id, label_layout)
= trace_node(trace_node_id).
:- pragma foreign_export("C",
construct_neg_succ_node(in, in, in) = out,
"MR_DD_construct_neg_succ_node").
construct_neg_succ_node(Preceding, Neg, Label) =
node_neg_succ(Preceding, Neg, Label).
:- func construct_neg_fail_node(trace_node_id, trace_node_id, label_layout)
= trace_node(trace_node_id).
:- pragma foreign_export("C",
construct_neg_fail_node(in, in, in) = out,
"MR_DD_construct_neg_fail_node").
construct_neg_fail_node(Preceding, Neg, Label) =
node_neg_fail(Preceding, Neg, Label).
:- pred null_trace_node_id(trace_node_id::out) is det.
:- pragma foreign_proc("C",
null_trace_node_id(Id::out),
[will_not_call_mercury, promise_pure, thread_safe],
"
Id = (MR_Word) NULL;
").
null_trace_node_id(_) :-
private_builtin.sorry("null_trace_node_id").
:- func init_trace_atom_args = list(trace_atom_arg).
:- pragma foreign_export("C", init_trace_atom_args = out,
"MR_DD_init_trace_atom_args").
init_trace_atom_args = [].
% add_trace_atom_arg_value(HldsNum, ProgVis, Val, !AtomArgs):
%
% Add the argument with value Val and HLDS number HldsNum to the beginning
% of a list of arguments for an atom. ProgVis is a C boolean, which is
% true iff variable HldsNum is a user visible variable.
%
:- pred add_trace_atom_arg_value(int::in, int::in, univ::in,
list(trace_atom_arg)::in, list(trace_atom_arg)::out) is cc_multi.
:- pragma foreign_export("C", add_trace_atom_arg_value(in, in, in, in, out),
"MR_DD_add_trace_atom_arg_value").
add_trace_atom_arg_value(HldsNum, ProgVis, Val, Args, [Arg | Args]) :-
term_rep.univ_to_rep(Val, Rep),
Arg = arg_info(c_bool_to_merc_bool(ProgVis), HldsNum, yes(Rep)).
% Like add_trace_atom_arg_value, except that the specified variable
% has no value (i.e. it is not bound).
%
:- pred add_trace_atom_arg_no_value(int::in, int::in,
list(trace_atom_arg)::in, list(trace_atom_arg)::out) is det.
:- pragma foreign_export("C", add_trace_atom_arg_no_value(in, in, in, out),
"MR_DD_add_trace_atom_arg_no_value").
add_trace_atom_arg_no_value(HldsNum, ProgVis, Args, [Arg | Args]) :-
Arg = arg_info(c_bool_to_merc_bool(ProgVis), HldsNum, no).
% This code converts a C bool (represented as int) to a Mercury bool.
%
:- func c_bool_to_merc_bool(int) = bool.
c_bool_to_merc_bool(ProgVis) =
( ProgVis = 0 ->
no
;
yes
).
% Create a temporary placeholder until the code MR_decl_make_atom
% can fill in all the argument slots.
%
:- func dummy_arg_info = trace_atom_arg.
dummy_arg_info = arg_info(no, -1, no).
%-----------------------------------------------------------------------------%
% The most important property of this instance is that it
% can be written to or read in from a stream easily. It
% is not as efficient to use as the earlier instance, though.
%
:- instance annotated_trace(trace_node_map, trace_node_key) where [
pred(trace_node_from_id/3) is search_trace_node_map
].
:- type trace_node_map
---> map(map(trace_node_key, trace_node(trace_node_key))).
% Values of this type are represented in the same way (in the
% underlying C code) as corresponding values of the other
% instance.
%
:- type trace_node_key
---> key(int).
:- pred search_trace_node_map(trace_node_map::in, trace_node_key::in,
trace_node(trace_node_key)::out) is semidet.
search_trace_node_map(map(Map), Key, Node) :-
map.search(Map, Key, Node).
load_trace_node_map(Stream, Map, Key, !IO) :-
io.read(Stream, ResKey, !IO),
(
ResKey = ok(Key)
;
ResKey = eof,
throw(io_error("load_trace_node_map", "unexpected EOF"))
;
ResKey = error(Msg, _),
throw(io_error("load_trace_node_map", Msg))
),
io.read(Stream, ResMap, !IO),
(
ResMap = ok(Map)
;
ResMap = eof,
throw(io_error("load_trace_node_map", "unexpected EOF"))
;
ResMap = error(Msg, _),
throw(io_error("load_trace_node_map", Msg))
).
:- pragma foreign_export("C", save_trace_node_store(in, in, in, di, uo),
"MR_DD_save_trace").
save_trace_node_store(Stream, Store, NodeId, !IO) :-
map.init(Map0),
node_id_to_key(NodeId, Key),
node_map(Store, NodeId, map(Map0), Map),
io.write(Stream, Key, !IO),
io.write_string(Stream, ".\n", !IO),
io.write(Stream, Map, !IO),
io.write_string(Stream, ".\n", !IO).
:- pred node_map(trace_node_store::in, trace_node_id::in, trace_node_map::in,
trace_node_map::out) is det.
node_map(Store, NodeId, map(Map0), Map) :-
( search_trace_node_store(Store, NodeId, Node1) ->
node_id_to_key(NodeId, Key),
convert_node(Node1, Node2),
map.det_insert(Map0, Key, Node2, Map1),
Next = preceding_node(Node1),
node_map(Store, Next, map(Map1), Map)
;
Map = map(Map0)
).
:- pred node_id_to_key(trace_node_id::in, trace_node_key::out) is det.
:- pragma foreign_proc("C",
node_id_to_key(Id::in, Key::out),
[will_not_call_mercury, promise_pure, thread_safe],
"
Key = (MR_Integer) Id;
").
node_id_to_key(_, _) :-
private_builtin.sorry("node_id_to_key").
:- pred convert_node(trace_node(trace_node_id)::in,
trace_node(trace_node_key)::out) is det.
:- pragma foreign_proc("C",
convert_node(N1::in, N2::out),
[will_not_call_mercury, promise_pure, thread_safe],
"
N2 = N1;
").
convert_node(_, _) :-
private_builtin.sorry("convert_node").
% Given a node in an annotated trace, return a reference to
% the preceding node in the trace, or a NULL reference if
% it is the first.
%
:- func preceding_node(trace_node(T)) = T.
preceding_node(node_call(P, _, _, _, _, _, _, _, _, _)) = P.
preceding_node(node_exit(P, _, _, _, _, _, _, _)) = P.
preceding_node(node_redo(P, _, _, _, _)) = P.
preceding_node(node_fail(P, _, _, _, _, _)) = P.
preceding_node(node_excp(P, _, _, _, _, _, _)) = P.
preceding_node(node_switch(P, _)) = P.
preceding_node(node_first_disj(P, _)) = P.
preceding_node(node_later_disj(P, _, _)) = P.
preceding_node(node_cond(P, _, _)) = P.
preceding_node(node_then(P, _, _)) = P.
preceding_node(node_else(P, _, _)) = P.
preceding_node(node_neg(P, _, _)) = P.
preceding_node(node_neg_succ(P, _, _)) = P.
preceding_node(node_neg_fail(P, _, _)) = P.
%-----------------------------------------------------------------------------%
maybe_filter_headvars(Which, Args0, Args) :-
(
Which = all_headvars,
Args = Args0
;
Which = only_user_headvars,
Args = list.filter(is_user_visible_arg, Args0)
).
chosen_head_vars_presentation = only_user_headvars.
is_user_visible_arg(arg_info(yes, _, _)).
select_arg_at_pos(ArgPos, Args0, Arg) :-
(
ArgPos = user_head_var(N),
Which = only_user_headvars
;
ArgPos = any_head_var(N),
Which = all_headvars
;
ArgPos = any_head_var_from_back(M),
N = length(Args0) - M + 1,
Which = all_headvars
),
maybe_filter_headvars(Which, Args0, Args),
list.index1_det(Args, N, Arg).
absolute_arg_num(any_head_var(ArgNum), _, ArgNum).
absolute_arg_num(user_head_var(N), atom(_, Args), ArgNum) :-
head_var_num_to_arg_num(Args, N, 1, ArgNum).
absolute_arg_num(any_head_var_from_back(M), atom(_, Args), length(Args)-M+1).
user_arg_num(user_head_var(ArgNum), _, ArgNum).
user_arg_num(any_head_var(AnyArgNum), atom(_, Args), ArgNum) :-
arg_num_to_head_var_num(Args, AnyArgNum, 1, ArgNum).
user_arg_num(any_head_var_from_back(AnyArgNumFromBack), atom(_, Args),
ArgNum) :-
arg_num_to_head_var_num(Args,
list.length(Args) - AnyArgNumFromBack + 1, 1, ArgNum).
:- pred head_var_num_to_arg_num(list(trace_atom_arg)::in, int::in, int::in,
int::out) is det.
head_var_num_to_arg_num([], _, _, _) :-
throw(internal_error("head_var_num_to_arg_num",
"nonexistent head_var_num")).
head_var_num_to_arg_num([Arg | Args], SearchUserHeadVarNum, CurArgNum,
ArgNum) :-
Arg = arg_info(UserVis, _, _),
(
UserVis = no,
head_var_num_to_arg_num(Args, SearchUserHeadVarNum,
CurArgNum + 1, ArgNum)
;
UserVis = yes,
( SearchUserHeadVarNum = 1 ->
ArgNum = CurArgNum
;
head_var_num_to_arg_num(Args, SearchUserHeadVarNum - 1,
CurArgNum + 1, ArgNum)
)
).
:- pred arg_num_to_head_var_num(list(trace_atom_arg)::in, int::in, int::in,
int::out) is det.
arg_num_to_head_var_num([], _, _, _) :-
throw(internal_error("arg_num_to_head_var_num",
"nonexistent arg num")).
arg_num_to_head_var_num([Arg | Args], ArgNum, CurArgNum, UserArgNum) :-
Arg = arg_info(UserVis, _, _),
(
UserVis = no,
arg_num_to_head_var_num(Args, ArgNum - 1, CurArgNum,
UserArgNum)
;
UserVis = yes,
( ArgNum = 1 ->
UserArgNum = CurArgNum
;
arg_num_to_head_var_num(Args, ArgNum - 1,
CurArgNum + 1, UserArgNum)
)
).
%-----------------------------------------------------------------------------%
:- type bytecode ---> dummy_bytecode.
:- pragma foreign_type("C", bytecode, "const MR_uint_least8_t *",
[can_pass_as_mercury_type, stable]).
:- pragma foreign_type("Java", bytecode, "java.lang.Object", []). %stub only
:- pred read_proc_rep(bytecode::in, label_layout::in, proc_rep::out) is det.
:- pragma foreign_export("C", read_proc_rep(in, in, out),
"MR_DD_trace_read_rep").
read_proc_rep(Bytecode, Label, ProcRep) :-
some [!Pos] (
!:Pos = 0,
read_int32(Bytecode, !Pos, Limit),
read_var_num_rep(Bytecode, !Pos, VarNumRep),
read_string(Bytecode, Label, !Pos, FileName),
Info = read_proc_rep_info(Limit, FileName),
read_vars(VarNumRep, Bytecode, !Pos, HeadVars),
read_goal(VarNumRep, Bytecode, Label, !Pos, Info, Goal),
ProcRep = proc_rep(HeadVars, Goal),
require(unify(!.Pos, Limit), "read_proc_rep: limit mismatch")
).
:- type read_proc_rep_info
---> read_proc_rep_info(
limit :: int,
filename :: string
).
:- pred read_goal(var_num_rep::in, bytecode::in, label_layout::in, int::in,
int::out, read_proc_rep_info::in, goal_rep::out) is det.
read_goal(VarNumRep, Bytecode, Label, !Pos, Info, Goal) :-
read_byte(Bytecode, !Pos, GoalTypeByte),
( byte_to_goal_type(GoalTypeByte) = GoalType ->
(
GoalType = goal_conj,
read_goals(VarNumRep, Bytecode, Label, !Pos, Info, Goals),
Goal = conj_rep(Goals)
;
GoalType = goal_disj,
read_goals(VarNumRep, Bytecode, Label, !Pos, Info, Goals),
Goal = disj_rep(Goals)
;
GoalType = goal_neg,
read_goal(VarNumRep, Bytecode, Label, !Pos, Info, SubGoal),
Goal = negation_rep(SubGoal)
;
GoalType = goal_ite,
read_goal(VarNumRep, Bytecode, Label, !Pos, Info, Cond),
read_goal(VarNumRep, Bytecode, Label, !Pos, Info, Then),
read_goal(VarNumRep, Bytecode, Label, !Pos, Info, Else),
Goal = ite_rep(Cond, Then, Else)
;
GoalType = goal_switch,
read_goals(VarNumRep, Bytecode, Label, !Pos, Info, Goals),
Goal = switch_rep(Goals)
;
GoalType = goal_assign,
read_var(VarNumRep, Bytecode, !Pos, Target),
read_var(VarNumRep, Bytecode, !Pos, Source),
AtomicGoal = unify_assign_rep(Target, Source),
read_atomic_info(VarNumRep, Bytecode, Label, !Pos,
Info, AtomicGoal, Goal)
;
GoalType = goal_construct,
read_var(VarNumRep, Bytecode, !Pos, Var),
read_cons_id(Bytecode, Label, !Pos, ConsId),
read_vars(VarNumRep, Bytecode, !Pos, ArgVars),
AtomicGoal = unify_construct_rep(Var, ConsId, ArgVars),
read_atomic_info(VarNumRep, Bytecode, Label, !Pos,
Info, AtomicGoal, Goal)
;
GoalType = goal_deconstruct,
read_var(VarNumRep, Bytecode, !Pos, Var),
read_cons_id(Bytecode, Label, !Pos, ConsId),
read_vars(VarNumRep, Bytecode, !Pos, ArgVars),
AtomicGoal = unify_deconstruct_rep(Var, ConsId, ArgVars),
read_atomic_info(VarNumRep, Bytecode, Label, !Pos,
Info, AtomicGoal, Goal)
;
GoalType = goal_partial_construct,
read_var(VarNumRep, Bytecode, !Pos, Var),
read_cons_id(Bytecode, Label, !Pos, ConsId),
read_maybe_vars(VarNumRep, Bytecode, !Pos, MaybeVars),
AtomicGoal = partial_construct_rep(Var, ConsId, MaybeVars),
read_atomic_info(VarNumRep, Bytecode, Label, !Pos,
Info, AtomicGoal, Goal)
;
GoalType = goal_partial_deconstruct,
read_var(VarNumRep, Bytecode, !Pos, Var),
read_cons_id(Bytecode, Label, !Pos, ConsId),
read_maybe_vars(VarNumRep, Bytecode, !Pos, MaybeVars),
AtomicGoal = partial_deconstruct_rep(Var, ConsId, MaybeVars),
read_atomic_info(VarNumRep, Bytecode, Label, !Pos,
Info, AtomicGoal, Goal)
;
GoalType = goal_simple_test,
read_var(VarNumRep, Bytecode, !Pos, Var1),
read_var(VarNumRep, Bytecode, !Pos, Var2),
AtomicGoal = unify_simple_test_rep(Var1, Var2),
read_atomic_info(VarNumRep, Bytecode, Label, !Pos,
Info, AtomicGoal, Goal)
;
GoalType = goal_scope,
read_byte(Bytecode, !Pos, MaybeCutByte),
( MaybeCutByte = 0 ->
MaybeCut = no_cut
; MaybeCutByte = 1 ->
MaybeCut = cut
;
error("read_goal: bad maybe_cut")
),
read_goal(VarNumRep, Bytecode, Label, !Pos, Info, SubGoal),
Goal = scope_rep(SubGoal, MaybeCut)
;
GoalType = goal_ho_call,
read_var(VarNumRep, Bytecode, !Pos, Var),
read_vars(VarNumRep, Bytecode, !Pos, Args),
AtomicGoal = higher_order_call_rep(Var, Args),
read_atomic_info(VarNumRep, Bytecode, Label, !Pos,
Info, AtomicGoal, Goal)
;
GoalType = goal_method_call,
read_var(VarNumRep, Bytecode, !Pos, Var),
read_method_num(Bytecode, !Pos, MethodNum),
read_vars(VarNumRep, Bytecode, !Pos, Args),
AtomicGoal = method_call_rep(Var, MethodNum, Args),
read_atomic_info(VarNumRep, Bytecode, Label, !Pos,
Info, AtomicGoal, Goal)
;
GoalType = goal_cast,
read_var(VarNumRep, Bytecode, !Pos, OutputVar),
read_var(VarNumRep, Bytecode, !Pos, InputVar),
AtomicGoal = cast_rep(OutputVar, InputVar),
read_atomic_info(VarNumRep, Bytecode, Label, !Pos,
Info, AtomicGoal, Goal)
;
GoalType = goal_plain_call,
read_string(Bytecode, Label, !Pos, ModuleName),
read_string(Bytecode, Label, !Pos, PredName),
read_vars(VarNumRep, Bytecode, !Pos, Args),
AtomicGoal = plain_call_rep(ModuleName, PredName, Args),
read_atomic_info(VarNumRep, Bytecode, Label, !Pos,
Info, AtomicGoal, Goal)
;
GoalType = goal_builtin_call,
read_string(Bytecode, Label, !Pos, ModuleName),
read_string(Bytecode, Label, !Pos, PredName),
read_vars(VarNumRep, Bytecode, !Pos, Args),
AtomicGoal = builtin_call_rep(ModuleName, PredName, Args),
read_atomic_info(VarNumRep, Bytecode, Label, !Pos,
Info, AtomicGoal, Goal)
;
GoalType = goal_event_call,
read_string(Bytecode, Label, !Pos, EventName),
read_vars(VarNumRep, Bytecode, !Pos, Args),
AtomicGoal = event_call_rep(EventName, Args),
read_atomic_info(VarNumRep, Bytecode, Label, !Pos,
Info, AtomicGoal, Goal)
;
GoalType = goal_foreign,
read_vars(VarNumRep, Bytecode, !Pos, Args),
AtomicGoal = pragma_foreign_code_rep(Args),
read_atomic_info(VarNumRep, Bytecode, Label, !Pos,
Info, AtomicGoal, Goal)
)
;
error("read_goal: invalid goal type")
).
:- pred read_atomic_info(var_num_rep::in, bytecode::in, label_layout::in,
int::in, int::out, read_proc_rep_info::in, atomic_goal_rep::in,
goal_rep::out) is det.
read_atomic_info(VarNumRep, Bytecode, Label, !Pos, Info, AtomicGoal, Goal) :-
read_byte(Bytecode, !Pos, DetismByte),
( determinism_representation(DetismPrime, DetismByte) ->
Detism = DetismPrime
;
error("read_atomic_info: bad detism")
),
read_string(Bytecode, Label, !Pos, FileName0),
( FileName0 = "" ->
FileName = Info ^ filename
;
FileName = FileName0
),
read_lineno(Bytecode, !Pos, LineNo),
read_vars(VarNumRep, Bytecode, !Pos, BoundVars),
Goal = atomic_goal_rep(Detism, FileName, LineNo, BoundVars, AtomicGoal).
:- pred read_goals(var_num_rep::in, bytecode::in, label_layout::in, int::in,
int::out, read_proc_rep_info::in, list(goal_rep)::out) is det.
read_goals(VarNumRep, Bytecode, Label, !Pos, Info, Goals) :-
read_length(Bytecode, !Pos, Len),
read_goals_2(VarNumRep, Bytecode, Label, !Pos, Info, Len, Goals).
:- pred read_goals_2(var_num_rep::in, bytecode::in, label_layout::in, int::in,
int::out, read_proc_rep_info::in, int::in, list(goal_rep)::out) is det.
read_goals_2(VarNumRep, Bytecode, Label, !Pos, Info, N, Goals) :-
( N > 0 ->
read_goal(VarNumRep, Bytecode, Label, !Pos, Info, Head),
read_goals_2(VarNumRep, Bytecode, Label, !Pos, Info, N - 1, Tail),
Goals = [Head | Tail]
;
Goals = []
).
:- pred read_vars(var_num_rep::in, bytecode::in, int::in, int::out,
list(var_rep)::out) is det.
read_vars(VarNumRep, Bytecode, !Pos, Vars) :-
read_length(Bytecode, !Pos, Len),
read_vars_2(VarNumRep, Bytecode, Len, !Pos, Vars).
:- pred read_vars_2(var_num_rep::in, bytecode::in, int::in, int::in, int::out,
list(var_rep)::out) is det.
read_vars_2(VarNumRep, Bytecode, N, !Pos, Vars) :-
( N > 0 ->
read_var(VarNumRep, Bytecode, !Pos, Head),
read_vars_2(VarNumRep, Bytecode, N - 1, !Pos, Tail),
Vars = [Head | Tail]
;
Vars = []
).
:- pred read_maybe_vars(var_num_rep::in, bytecode::in, int::in, int::out,
list(maybe(var_rep))::out) is det.
read_maybe_vars(VarNumRep, Bytecode, !Pos, MaybeVars) :-
read_length(Bytecode, !Pos, Len),
read_maybe_vars_2(VarNumRep, Bytecode, Len, !Pos, MaybeVars).
:- pred read_maybe_vars_2(var_num_rep::in, bytecode::in, int::in, int::in,
int::out, list(maybe(var_rep))::out) is det.
read_maybe_vars_2(VarNumRep, Bytecode, N, !Pos, MaybeVars) :-
( N > 0 ->
read_byte(Bytecode, !Pos, YesOrNo),
( YesOrNo = 1 ->
read_var(VarNumRep, Bytecode, !Pos, Head),
MaybeHead = yes(Head)
; YesOrNo = 0 ->
MaybeHead = no
; throw(internal_error("read_maybe_vars_2",
"invalid yes or no flag"))
),
read_maybe_vars_2(VarNumRep, Bytecode, N - 1, !Pos, Tail),
MaybeVars = [MaybeHead | Tail]
;
MaybeVars = []
).
:- pred read_var(var_num_rep::in, bytecode::in, int::in, int::out,
var_rep::out) is det.
read_var(VarNumRep, Bytecode, !Pos, Var) :-
(
VarNumRep = byte,
read_byte(Bytecode, !Pos, Var)
;
VarNumRep = short,
read_short(Bytecode, !Pos, Var)
).
:- pred read_length(bytecode::in, int::in, int::out, var_rep::out) is det.
read_length(Bytecode, !Pos, Len) :-
read_short(Bytecode, !Pos, Len).
:- pred read_lineno(bytecode::in, int::in, int::out, var_rep::out) is det.
read_lineno(Bytecode, !Pos, LineNo) :-
read_short(Bytecode, !Pos, LineNo).
:- pred read_method_num(bytecode::in, int::in, int::out, var_rep::out) is det.
read_method_num(Bytecode, !Pos, MethodNum) :-
read_short(Bytecode, !Pos, MethodNum).
:- pred read_cons_id(bytecode::in, label_layout::in, int::in, int::out,
cons_id_rep::out) is det.
read_cons_id(Bytecode, Label, !Pos, ConsId) :-
read_string(Bytecode, Label, !Pos, ConsId).
%-----------------------------------------------------------------------------%
:- pred read_byte(bytecode::in, int::in, int::out, int::out) is det.
:- pragma foreign_proc("C",
read_byte(Bytecode::in, Pos0::in, Pos::out, Value::out),
[will_not_call_mercury, thread_safe, promise_pure],
"
Value = Bytecode[Pos0];
Pos = Pos0 + 1;
").
:- pred read_short(bytecode::in, int::in, int::out, int::out) is det.
:- pragma foreign_proc("C",
read_short(Bytecode::in, Pos0::in, Pos::out, Value::out),
[will_not_call_mercury, thread_safe, promise_pure],
"
Value = (Bytecode[Pos0] << 8) + Bytecode[Pos0+1];
Pos = Pos0 + 2;
").
:- pred read_int32(bytecode::in, int::in, int::out, int::out) is det.
:- pragma foreign_proc("C",
read_int32(Bytecode::in, Pos0::in, Pos::out, Value::out),
[will_not_call_mercury, thread_safe, promise_pure],
"
Value = (Bytecode[Pos0] << 24) + (Bytecode[Pos0+1] << 16) +
(Bytecode[Pos0+2] << 8) + Bytecode[Pos0+3];
Pos = Pos0 + 4;
").
:- pred read_string(bytecode::in, label_layout::in, int::in, int::out,
string::out) is det.
:- pragma foreign_proc("C",
read_string(Bytecode::in, Label::in, Pos0::in, Pos::out, Value::out),
[will_not_call_mercury, thread_safe, promise_pure],
"
int offset;
const char *str;
offset = (Bytecode[Pos0] << 24) + (Bytecode[Pos0+1] << 16) +
(Bytecode[Pos0+2] << 8) + Bytecode[Pos0+3];
Pos = Pos0 + 4;
str = Label->MR_sll_entry->MR_sle_module_layout->MR_ml_string_table
+ offset;
MR_make_aligned_string(Value, str);
").
:- pred read_var_num_rep(bytecode::in, int::in, int::out, var_num_rep::out)
is det.
read_var_num_rep(Bytecode, !Pos, VarNumRep) :-
read_byte(Bytecode, !Pos, Byte),
( var_num_rep_byte(VarNumRep0, Byte) ->
VarNumRep = VarNumRep0
;
error("read_var_num_rep: unknown var_num_rep")
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%