Files
mercury/compiler/exception_analysis.m
Zoltan Somogyi 8b8b3b7d3f Replace the some() HLDS goal with a more general scope() goal, which can be
Estimated hours taken: 12
Branches: main

Replace the some() HLDS goal with a more general scope() goal, which can be
used not just for existential quantification but also for other purposes.

The main such purposes are new goal types that allow the programmer
to annotate arbitrary goals, and not just whole procedure bodies, with the
equivalents of promise_pure/promise_semipure and promise_only_solution:

	promise_pure ( <impure/semipure goal> )
	promise_semipure ( <impure goal> )

	promise_equivalent_solutions [OutVar1, OutVar2] (
		<cc_multi/cc_nondet goal that computed OutVar1 & OutVar2>
	)

Both are intended to be helpful in writing constraint solvers, as well as in
other situations.

doc/reference_manual.texi:
	Document the new constructs.

library/ops.m:
	Add the keywords of the new constructs to the list of operators.
	Since they work similarly to the "some" operator, they have the same
	precedence.

compiler/hlds_goal.m:
	Replace the some(Vars, SubGoal) HLDS construct, with its optional
	keep_this_commit attribute, with the new scope(Reason, SubGoal)
	construct. The Reason argument may say that this scope is an
	existential quantification, but it can also say that it represents
	a purity promise, the introduction of a single-solution context
	with promise_equivalent_solutions, or a decision by a compiler pass.

	It can also say that the scope represents a set of goals that all arise
	from the unraveling of a unification between a variable and a ground
	term. This was intended to speed up mode checking by significantly
	reducing the number of delays and wakeups, but the cost of the scopes
	themselves turned out to be bigger than the gain in modechecking speed.

	Update the goal_path_step type to refer to scope goals instead of just
	existential quantification.

compiler/prog_data.m:
	Add new function symbols to the type we use to represent goals in items
	to stand for the new Mercury constructs.

compiler/prog_io_goal.m:
	Add code to read in the new language constructs.

compiler/prog_io_util.m:
	Add a utility predicate for use by the new code in prog_io_goal.m.

compiler/make_hlds.m:
	Convert the item representation of the new constructs to the HLDS
	representation.

	Document how the from_ground_term scope reason would work, but do not
	enable the code.

compiler/purity.m:
	When checking the purity of goals, respect the new promise_pure and
	promise_semipure scopes. Generate warnings if such scopes are
	redundant.

compiler/det_analysis.m:
	Make the insides of promise_equivalent_solutions goals single solution
	contexts.

compiler/det_report.m:
	Provide mechanisms for reporting inappropriate usage of
	promise_equivalent_solutions goals.

compiler/instmap.m:
	Add a utility predicate for use by one of the modules above.

compiler/deep_profiling.m:
	Use one of the new scope reasons to prevent simplify from optimizing
	away commits of goals that have been made impure, instead of the old
	keep_this_commit goal feature.

compiler/modes.m:
	Handle from_ground_term scopes when present; for now, they won't be
	present, since make_hlds isn't creating them.

compiler/options.m:
	Add two new compiler options, for use by implementors only, to allow
	finer control over the amount of output one gets with --debug-modes.
	(I used them when debugging the performance of the from_ground_term
	scope reason.) The options are --debug-modes-minimal and
	--debug-modes-verbose.

compiler/handle_options.m:
	Make the options that are meaningful only in the presence of
	--debug-modes imply --debug-modes, since this allows more convenient
	(shorter) invocations.

compiler/mode_debug.m:
	Respect the new options when deciding how much data to print
	when debugging of the mode checking process is enabled.

compiler/switch_detect.m:
	Rename a predicate to make it differ from another predicate by more
	than just its arity.

compiler/passes_aux.m:
	Bring this module up to date with our current style guidelines,
	by using state variable syntax where appropriate.

compiler/*.m:
	Minor changes to conform to the change in the HLDS and/or parse tree
	goal type.

mdbcomp/program_representation.m:
	Rename the some goal to the scope goal, and the same for path steps,
	to keep them in sync with the HLDS.

browser/declarative_tree.m:
	Conform to the change in goal representations.

tests/hard_coded/promise_equivalent_solutions_test.{m,exp}:
	A new test case to test the handling of the
	promise_equivalent_solutions construct.

tests/hard_coded/Mmakefile:
	Enable the new test.

tests/hard_coded/purity/promise_pure_test.{m,exp}:
	A new test case to test the handling of the promise_pure and
	promise_semipure constructs.

tests/hard_coded/purity/Mmakefile:
	Enable the new test.

tests/invalid/promise_equivalent_solutions.{m,err_exp}:
	A new test case to test the error messages for improper use of the
	promise_pure and promise_semipure constructs.

tests/invalid/Mmakefile:
	Enable the new test.
2005-03-24 05:34:41 +00:00

705 lines
25 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 2004-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File : exception_analysis.m
% Author : juliensf
%
% This module performs an exception tracing analysis. The aim is to
% annotate the HLDS with information about whether each procedure
% might or will not throw an exception.
%
% This information can be useful to the compiler when applying
% certain types of optimization.
%
% After running the analysis the exception behaviour of each procedure
% is one of:
%
% (1) will_not_throw_exception
% (2) may_throw_an_exception
% (3) conditional
%
% (1) guarantees that, for all inputs, the procedure will not throw an
% exception.
%
% (2) means that a call to that procedure might result in an exception
% being thrown for at least some inputs.
%
% We distinguish between two kinds of exception. Those that
% are ultimately a result of a call to exception.throw/1, which
% we refer to as "user exceptions" and those that result from a
% unification or comparison where one of the types involved has
% a user-defined equality/comparison predicate that throws
% an exception. We refer to the latter kind, as "type exceptions".
%
% This means that for some polymorphic procedures we cannot
% say what will happen until we know the values of the type variables.
% And so we have ...
%
% (3) means that the exception status of the procedure is dependent upon the
% values of some higher-order variables, or the values of some type
% variables or both. This means that we cannot say anything definite
% about the procedure but for calls to the procedure where have the
% necessary information we can say what will happen.
%
% In the event that we cannot determine the exception status we just assume
% the worst and mark the procedure as maybe throwing a user exception.
%
% For procedures that are defined using the FFI we currently assume that if a
% procedure will not make calls back to Mercury then it cannot throw
% a Mercury exception; if it does make calls to Mercury then it might
% throw an exception.
%
% NOTE: Some backends, e.g the Java backend, use exceptions in the target
% language for various things but we're not interested in that here.
%
% TODO:
% - higher order stuff
% - annotations for foreign_procs
% - use intermodule-analysis framework
% - check what user-defined equality and comparison preds
% actually do rather than assuming that they always
% may throw exceptions.
% - handle existential and solver types - currently we just
% assume that any call to unify or compare for these types
% might result in an exception being thrown.
%
% XXX We need to be a bit careful with transformations like tabling that
% might add calls to exception.throw - at the moment this isn't a problem
% because exception analysis takes place after the tabling transformation.
%
%----------------------------------------------------------------------------%
:- module transform_hlds.exception_analysis.
:- interface.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module io.
% Perform the exception analysis on a module.
%
:- pred exception_analysis.process_module(module_info::in, module_info::out,
io::di, io::uo) is det.
% Write out the exception pragmas for this module.
%
:- pred exception_analysis.write_pragma_exceptions(module_info::in,
exception_info::in, pred_id::in, io::di, io::uo) is det.
%----------------------------------------------------------------------------%
%----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds.mode_util.
:- import_module check_hlds.type_util.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_pred.
:- import_module hlds.make_hlds.
:- import_module hlds.passes_aux.
:- import_module hlds.special_pred.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module mdbcomp__prim_data.
:- import_module parse_tree.error_util.
:- import_module parse_tree.mercury_to_mercury.
:- import_module parse_tree.modules.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_out.
:- import_module parse_tree.prog_util.
:- import_module parse_tree.prog_type.
:- import_module transform_hlds.dependency_graph.
:- import_module bool.
:- import_module list.
:- import_module map.
:- import_module set.
:- import_module std_util.
:- import_module string.
:- import_module term.
:- import_module term_io.
:- import_module varset.
%----------------------------------------------------------------------------%
%
% Perform exception analysis on a module.
%
exception_analysis.process_module(!Module, !IO) :-
module_info_ensure_dependency_info(!Module),
module_info_dependency_info(!.Module, DepInfo),
hlds_dependency_info_get_dependency_ordering(DepInfo, SCCs),
list.foldl(process_scc, SCCs, !Module),
globals.io_lookup_bool_option(make_optimization_interface,
MakeOptInt, !IO),
( if MakeOptInt = yes
then exception_analysis.make_opt_int(!.Module, !IO)
else true
).
%----------------------------------------------------------------------------%
%
% Perform exception analysis on a SCC.
%
:- type scc == list(pred_proc_id).
:- type proc_results == list(proc_result).
:- type proc_result
---> proc_result(
ppid :: pred_proc_id,
status :: exception_status,
% Exception status of this procedure
% not counting any input from
% (mutually-)recursive inputs.
rec_calls :: type_status
% The collective type status of the
% types of the terms that are arguments
% of (mutually-)recursive calls.
).
:- pred process_scc(scc::in, module_info::in, module_info::out) is det.
process_scc(SCC, !Module) :-
ProcResults = check_procs_for_exceptions(SCC, !.Module),
%
% The `Results' above are the results of analysing each
% individual procedure in the SCC - we now have to combine
% them in a meaningful way.
%
Status = combine_individual_proc_results(ProcResults),
%
% Update the exception info. with information about this
% SCC.
%
module_info_exception_info(!.Module, ExceptionInfo0),
Update = (pred(PPId::in, Info0::in, Info::out) is det :-
Info = Info0 ^ elem(PPId) := Status
),
list.foldl(Update, SCC, ExceptionInfo0, ExceptionInfo),
module_info_set_exception_info(ExceptionInfo, !Module).
% Check each procedure in the SCC individually.
%
:- func check_procs_for_exceptions(scc, module_info) = proc_results.
check_procs_for_exceptions(SCC, Module) = Result :-
list.foldl(check_proc_for_exceptions(SCC, Module), SCC, [], Result).
% Examine how the procedures interact with other procedures that
% are mutually-recursive to them.
%
:- func combine_individual_proc_results(proc_results) = exception_status.
combine_individual_proc_results([]) = _ :-
unexpected(this_file, "Empty SCC during exception analysis.").
combine_individual_proc_results(ProcResults @ [_|_]) = SCC_Result :-
(
% If none of the procedures may throw an exception or
% are conditional then the SCC cannot throw an exception
% either.
all [ProcResult] list.member(ProcResult, ProcResults) =>
ProcResult ^ status = will_not_throw
->
SCC_Result = will_not_throw
;
% If none of the procedures may throw an exception but
% at least one of them is conditional then somewhere in
% the SCC there is a call to unify or compare that may
% rely on the types of the polymorphically typed
% arguments.
%
% We need to check that any recursive calls
% do not introduce types that might have user-defined
% equality or comparison predicate that throw
% exceptions.
all [EResult] list.member(EResult, ProcResults) =>
EResult ^ status \= may_throw(_),
some [CResult] (
list.member(CResult, ProcResults),
CResult ^ status = conditional
)
->
SCC_Result = handle_mixed_conditional_scc(ProcResults)
;
% If none of the procedures can throw a user_exception
% but one or more can throw a type_exception then mark
% the SCC as maybe throwing a type_exception.
all [EResult] list.member(EResult, ProcResults) =>
EResult ^ status \= may_throw(user_exception),
some [TResult] (
list.member(TResult, ProcResults),
TResult ^ status = may_throw(type_exception)
)
->
SCC_Result = may_throw(type_exception)
;
SCC_Result = may_throw(user_exception)
).
%----------------------------------------------------------------------------%
%
% Process individual procedures.
%
:- pred check_proc_for_exceptions(scc::in, module_info::in,
pred_proc_id::in, proc_results::in, proc_results::out) is det.
check_proc_for_exceptions(SCC, Module, PPId, !Results) :-
module_info_pred_proc_info(Module, PPId, _, ProcInfo),
proc_info_goal(ProcInfo, Body),
proc_info_vartypes(ProcInfo, VarTypes),
Result0 = proc_result(PPId, will_not_throw, type_will_not_throw),
check_goal_for_exceptions(SCC, Module, VarTypes, Body, Result0, Result),
list.cons(Result, !Results).
:- pred check_goal_for_exceptions(scc::in, module_info::in, vartypes::in,
hlds_goal::in, proc_result::in, proc_result::out) is det.
check_goal_for_exceptions(SCC, Module, VarTypes, Goal - GoalInfo,
!Result) :-
( goal_info_get_determinism(GoalInfo, erroneous) ->
!:Result = !.Result ^ status := may_throw(user_exception)
;
check_goal_for_exceptions_2(SCC, Module, VarTypes, Goal,
!Result)
).
:- pred check_goal_for_exceptions_2(scc::in, module_info::in, vartypes::in,
hlds_goal_expr::in, proc_result::in, proc_result::out) is det.
check_goal_for_exceptions_2(_, _, _, unify(_, _, _, Kind, _), !Result) :-
( Kind = complicated_unify(_, _, _) ->
unexpected(this_file,
"complicated unify during exception analysis.")
;
true
).
check_goal_for_exceptions_2(SCC, Module, VarTypes,
call(CallPredId, CallProcId, CallArgs, _, _, _), !Result) :-
CallPPId = proc(CallPredId, CallProcId),
module_info_pred_info(Module, CallPredId, CallPredInfo),
(
% Handle (mutually-)recursive calls.
list.member(CallPPId, SCC)
->
Types = list.map((func(Var) = VarTypes ^ det_elem(Var)),
CallArgs),
TypeStatus = check_types(Module, Types),
combine_type_status(TypeStatus, !.Result ^ rec_calls,
NewTypeStatus),
!:Result = !.Result ^ rec_calls := NewTypeStatus
;
pred_info_is_builtin(CallPredInfo)
->
% Builtins won't throw exceptions.
true
;
% Handle unify and compare.
(
ModuleName = pred_info_module(CallPredInfo),
any_mercury_builtin_module(ModuleName),
Name = pred_info_name(CallPredInfo),
Arity = pred_info_orig_arity(CallPredInfo),
( SpecialPredId = compare
; SpecialPredId = unify ),
special_pred_name_arity(SpecialPredId, Name,
Arity)
;
pred_info_get_origin(CallPredInfo, Origin),
Origin = special_pred(SpecialPredId - _),
( SpecialPredId = compare
; SpecialPredId = unify
)
)
->
% For unification/comparison the exception status depends
% upon the the types of the arguments. In particular
% whether some component of that type has a user-defined
% equality/comparison predicate that throws an exception.
check_vars(Module, VarTypes, CallArgs, !Result)
;
check_nonrecursive_call(Module, VarTypes, CallPPId, CallArgs,
!Result)
).
check_goal_for_exceptions_2(_, _, _, generic_call(_,_,_,_), !Result) :-
!:Result = !.Result ^ status := may_throw(user_exception).
check_goal_for_exceptions_2(SCC, Module, VarTypes, not(Goal), !Result) :-
check_goal_for_exceptions(SCC, Module, VarTypes, Goal, !Result).
check_goal_for_exceptions_2(SCC, Module, VarTypes, scope(_, Goal), !Result) :-
check_goal_for_exceptions(SCC, Module, VarTypes, Goal, !Result).
check_goal_for_exceptions_2(_, _, _,
foreign_proc(Attributes, _, _, _, _, _), !Result) :-
( may_call_mercury(Attributes) = may_call_mercury ->
may_throw_exception(Attributes) = MayThrowException,
%
% We do not need to deal with erroneous predicates
% here because they will have already been processed.
%
( MayThrowException = default_exception_behaviour ->
!:Result = !.Result ^ status :=
may_throw(user_exception)
;
true
)
;
true
).
check_goal_for_exceptions_2(_, _, _, shorthand(_), _, _) :-
unexpected(this_file,
"shorthand goal encountered during exception analysis.").
check_goal_for_exceptions_2(SCC, Module, VarTypes, switch(_, _, Cases),
!Result) :-
Goals = list.map((func(case(_, Goal)) = Goal), Cases),
check_goals_for_exceptions(SCC, Module, VarTypes, Goals, !Result).
check_goal_for_exceptions_2(SCC, Module, VarTypes,
if_then_else(_, If, Then, Else), !Result) :-
check_goals_for_exceptions(SCC, Module, VarTypes, [If, Then, Else],
!Result).
check_goal_for_exceptions_2(SCC, Module, VarTypes, disj(Goals), !Result) :-
check_goals_for_exceptions(SCC, Module, VarTypes, Goals, !Result).
check_goal_for_exceptions_2(SCC, Module, VarTypes, par_conj(Goals), !Result) :-
check_goals_for_exceptions(SCC, Module, VarTypes, Goals, !Result).
check_goal_for_exceptions_2(SCC, Module, VarTypes, conj(Goals), !Result) :-
check_goals_for_exceptions(SCC, Module, VarTypes, Goals, !Result).
:- pred check_goals_for_exceptions(scc::in, module_info::in, vartypes::in,
hlds_goals::in, proc_result::in, proc_result::out) is det.
check_goals_for_exceptions(_, _, _, [], !Result).
check_goals_for_exceptions(SCC, Module, VarTypes, [ Goal | Goals ], !Result) :-
check_goal_for_exceptions(SCC, Module, VarTypes, Goal, !Result),
%
% We can stop searching if we find a user exception. However if we
% find a type exception then we still need to check that there is
% not a user exception somewhere in the rest of the SCC.
%
( if !.Result ^ status = may_throw(user_exception)
then true
else check_goals_for_exceptions(SCC, Module, VarTypes, Goals,
!Result)
).
%----------------------------------------------------------------------------%
:- pred update_proc_result(exception_status::in, proc_result::in,
proc_result::out) is det.
update_proc_result(CurrentStatus, !Result) :-
OldStatus = !.Result ^ status,
NewStatus = combine_exception_status(CurrentStatus, OldStatus),
!:Result = !.Result ^ status := NewStatus.
:- func combine_exception_status(exception_status, exception_status)
= exception_status.
combine_exception_status(will_not_throw, Y) = Y.
combine_exception_status(X @ may_throw(user_exception), _) = X.
combine_exception_status(X @ may_throw(type_exception), will_not_throw) = X.
combine_exception_status(X @ may_throw(type_exception), conditional) = X.
combine_exception_status(may_throw(type_exception), Y @ may_throw(_)) = Y.
combine_exception_status(conditional, conditional) = conditional.
combine_exception_status(conditional, will_not_throw) = conditional.
combine_exception_status(conditional, Y @ may_throw(_)) = Y.
%----------------------------------------------------------------------------%
%
% Extra procedures for handling calls.
%
:- pred check_nonrecursive_call(module_info::in, vartypes::in,
pred_proc_id::in, prog_vars::in, proc_result::in,
proc_result::out) is det.
check_nonrecursive_call(Module, VarTypes, PPId, Args, !Result) :-
module_info_exception_info(Module, ExceptionInfo),
( map.search(ExceptionInfo, PPId, CalleeExceptionStatus) ->
(
CalleeExceptionStatus = will_not_throw
;
CalleeExceptionStatus = may_throw(ExceptionType),
update_proc_result(may_throw(ExceptionType), !Result)
;
CalleeExceptionStatus = conditional,
check_vars(Module, VarTypes, Args, !Result)
)
;
% If we do not have any information about the callee procedure
% then assume that it might throw an exception.
update_proc_result(may_throw(user_exception), !Result)
).
:- pred check_vars(module_info::in, vartypes::in, prog_vars::in,
proc_result::in, proc_result::out) is det.
check_vars(Module, VarTypes, Vars, !Result) :-
Types = list.map((func(Var) = VarTypes ^ det_elem(Var)), Vars),
TypeStatus = check_types(Module, Types),
(
TypeStatus = type_will_not_throw
;
TypeStatus = type_may_throw,
update_proc_result(may_throw(type_exception), !Result)
;
TypeStatus = type_conditional,
update_proc_result(conditional, !Result)
).
%----------------------------------------------------------------------------%
%
% Predicates for checking mixed SCCs.
%
% A "mixed SCC" is one where at least one of the procedures in the SCC is
% known not to throw an exception, at least one of them is conditional
% and none of them may throw an exception (of either sort).
%
% In order to determine the status of such a SCC we also need to take the
% effect of the recursive calls into account. This is because calls to a
% conditional procedure from a procedure that is mutually recursive to it may
% introduce types that could cause a type_exception to be thrown.
%
% We currently assume that if these types are introduced
% somewhere in the SCC then they may be propagated around the entire
% SCC - hence if a part of the SCC is conditional we need to make
% sure other parts don't supply it with input whose types may have
% user-defined equality/comparison predicates.
%
% NOTE: It is possible to write rather contrived programs that can
% exhibit rather strange behaviour which is why all this is necessary.
:- func handle_mixed_conditional_scc(proc_results) = exception_status.
handle_mixed_conditional_scc(Results) =
(
all [TypeStatus] list.member(Result, Results) =>
Result ^ rec_calls \= type_may_throw
->
conditional
;
% Somewhere a type that causes an exception is being
% passed around the SCC via one or more of the recursive
% calls.
may_throw(type_exception)
).
%----------------------------------------------------------------------------%
%
% Stuff for processing types.
%
% This is used in the analysis of calls to polymorphic procedures.
%
% By saying a `type can throw an exception' we mean that an exception
% might be thrown as a result of a unification or comparison involving
% the type because it has a user-defined equality/comparison predicate
% that may throw an exception.
%
% XXX We don't actually need to examine all the types, just those
% that are potentially going to be involved in unification/comparisons.
% At the moment we don't keep track of that information so the current
% procedure is as follows:
%
% Examine the functor and then recursively examine the arguments.
% * If everything will not throw then the type will not throw
% * If at least one of the types may_throw then the type will throw
% * If at least one of the types is conditional and none of them throw then
% the type is conditional.
:- type type_status
---> type_will_not_throw
% This type does not have user-defined equality
% or comparison predicates.
% XXX (Or it has ones that are known not to throw
% exceptions).
; type_may_throw
% This type has a user-defined equality or comparison
% predicate that is known to throw an exception.
; type_conditional.
% This type is polymorphic. We cannot say anything about
% it until we know the values of the type-variables.
% Return the collective type status of a list of types.
%
:- func check_types(module_info, list((type))) = type_status.
check_types(Module, Types) = Status :-
list.foldl(check_type(Module), Types, type_will_not_throw, Status).
:- pred check_type(module_info::in, (type)::in, type_status::in,
type_status::out) is det.
check_type(Module, Type, !Status) :-
combine_type_status(check_type(Module, Type), !Status).
:- pred combine_type_status(type_status::in, type_status::in,
type_status::out) is det.
combine_type_status(type_will_not_throw, type_will_not_throw,
type_will_not_throw).
combine_type_status(type_will_not_throw, type_conditional, type_conditional).
combine_type_status(type_will_not_throw, type_may_throw, type_may_throw).
combine_type_status(type_conditional, type_will_not_throw, type_conditional).
combine_type_status(type_conditional, type_conditional, type_conditional).
combine_type_status(type_conditional, type_may_throw, type_may_throw).
combine_type_status(type_may_throw, _, type_may_throw).
% Return the type status of an individual type.
%
:- func check_type(module_info, (type)) = type_status.
check_type(Module, Type) = Status :-
(
( type_util.is_solver_type(Module, Type)
; type_util.is_existq_type(Module, Type))
->
% XXX At the moment we just assume that existential
% types and solver types result in a type exception
% being thrown.
Status = type_may_throw
;
TypeCategory = type_util.classify_type(Module, Type),
Status = check_type_2(Module, Type, TypeCategory)
).
:- func check_type_2(module_info, (type), type_category) = type_status.
check_type_2(_, _, int_type) = type_will_not_throw.
check_type_2(_, _, char_type) = type_will_not_throw.
check_type_2(_, _, str_type) = type_will_not_throw.
check_type_2(_, _, float_type) = type_will_not_throw.
check_type_2(_, _, higher_order_type) = type_will_not_throw.
check_type_2(_, _, type_info_type) = type_will_not_throw.
check_type_2(_, _, type_ctor_info_type) = type_will_not_throw.
check_type_2(_, _, typeclass_info_type) = type_will_not_throw.
check_type_2(_, _, base_typeclass_info_type) = type_will_not_throw.
check_type_2(_, _, void_type) = type_will_not_throw.
check_type_2(_, _, variable_type) = type_conditional.
check_type_2(Module, Type, tuple_type) = check_user_type(Module, Type).
check_type_2(Module, Type, enum_type) = check_user_type(Module, Type).
check_type_2(Module, Type, user_ctor_type) = check_user_type(Module, Type).
:- func check_user_type(module_info, (type)) = type_status.
check_user_type(Module, Type) = Status :-
( type_to_ctor_and_args(Type, _TypeCtor, Args) ->
(
type_has_user_defined_equality_pred(Module, Type,
_UnifyCompare)
->
% XXX We can do better than this by examining
% what these preds actually do. Something
% similar needs to be sorted out for termination
% analysis as well, so we'll wait until that is
% done.
Status = type_may_throw
;
Status = check_types(Module, Args)
)
;
unexpected(this_file, "Unable to get ctor and args.")
).
%----------------------------------------------------------------------------%
%
% Stuff for intermodule optimization.
%
:- pred exception_analysis.make_opt_int(module_info::in, io::di, io::uo) is det.
exception_analysis.make_opt_int(Module, !IO) :-
module_info_name(Module, ModuleName),
module_name_to_file_name(ModuleName, ".opt.tmp", no, OptFileName, !IO),
globals.io_lookup_bool_option(verbose, Verbose, !IO),
maybe_write_string(Verbose,
"% Appending exceptions pragmas to `", !IO),
maybe_write_string(Verbose, OptFileName, !IO),
maybe_write_string(Verbose, "'...", !IO),
maybe_flush_output(Verbose, !IO),
io.open_append(OptFileName, OptFileRes, !IO),
(
OptFileRes = ok(OptFile),
io.set_output_stream(OptFile, OldStream, !IO),
module_info_exception_info(Module, ExceptionInfo),
module_info_predids(Module, PredIds),
list.foldl(write_pragma_exceptions(Module, ExceptionInfo),
PredIds, !IO),
io.set_output_stream(OldStream, _, !IO),
io.close_output(OptFile, !IO),
maybe_write_string(Verbose, " done.\n", !IO)
;
OptFileRes = error(IOError),
maybe_write_string(Verbose, " failed!\n", !IO),
io.error_message(IOError, IOErrorMessage),
io.write_strings(["Error opening file `",
OptFileName, "' for output: ", IOErrorMessage], !IO),
io.set_exit_status(1, !IO)
).
write_pragma_exceptions(Module, ExceptionInfo, PredId, !IO) :-
module_info_pred_info(Module, PredId, PredInfo),
pred_info_import_status(PredInfo, ImportStatus),
(
( ImportStatus = exported
; ImportStatus = opt_exported
),
not is_unify_or_compare_pred(PredInfo),
module_info_type_spec_info(Module, TypeSpecInfo),
TypeSpecInfo = type_spec_info(_, TypeSpecForcePreds, _, _),
not set.member(PredId, TypeSpecForcePreds),
%
% XXX Writing out pragmas for the automatically
% generated class instance methods causes the
% compiler to abort when it reads them back in.
%
pred_info_get_markers(PredInfo, Markers),
not check_marker(Markers, class_instance_method),
not check_marker(Markers, named_class_instance_method)
->
ModuleName = pred_info_module(PredInfo),
Name = pred_info_name(PredInfo),
Arity = pred_info_orig_arity(PredInfo),
PredOrFunc = pred_info_is_pred_or_func(PredInfo),
ProcIds = pred_info_procids(PredInfo),
%
% XXX The termination analyser outputs pragmas even if
% it doesn't have any information - should we be doing
% this?
%
list.foldl((pred(ProcId::in, !.IO::di, !:IO::uo) is det :-
proc_id_to_int(ProcId, ModeNum),
(
map.search(ExceptionInfo, proc(PredId, ProcId),
Status)
->
mercury_output_pragma_exceptions(PredOrFunc,
qualified(ModuleName, Name), Arity,
ModeNum, Status, !IO)
;
true
)), ProcIds, !IO)
;
true
).
%----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "exception_analysis.m".
%----------------------------------------------------------------------------%
:- end_module exception_analysis.
%----------------------------------------------------------------------------%