Files
mercury/compiler/prog_util.m
Zoltan Somogyi 885fd4a387 Remove almost all dependencies by the modules of parse_tree.m on the modules
Estimated hours taken: 12
Branches: main

Remove almost all dependencies by the modules of parse_tree.m on the modules
of hlds.m. The only such dependencies remaining now are on type_util.m.

compiler/hlds_data.m:
compiler/prog_data.m:
	Move the cons_id type from hlds_data to prog_data, since several parts
	of the parse tree data structure depend on it (particularly insts).
	Remove the need to import HLDS modules in prog_data.m by making the
	cons_ids that refer to procedure ids refer to them via a new type
	that contains shrouded pred_ids and proc_ids. Since pred_ids and
	proc_ids are abstract types in hlds_data, add predicates to hlds_data
	to shroud and unshroud them.

	Also move some other types, e.g. mode_id and class_id, from hlds_data
	to prog_data.

compiler/hlds_data.m:
compiler/prog_util.m:
	Move predicates for manipulating cons_ids from hlds_data to prog_util.

compiler/inst.m:
compiler/prog_data.m:
	Move the contents of inst.m to prog_data.m, since that is where it
	belongs, and since doing so eliminates a circular dependency.
	The separation doesn't serve any purpose any more, since we don't
	need to import hlds_data.m anymore to get access to the cons_id type.

compiler/mode_util.m:
compiler/prog_mode.m:
compiler/parse_tree.m:
	Move the predicates in mode_util that don't depend on the HLDS to a new
	module prog_mode, which is part of parse_tree.m.

compiler/notes/compiler_design.m:
	Mention prog_mode.m, and delete the mention of inst.m.

compiler/mercury_to_mercury.m:
compiler/hlds_out.m:
	Move the predicates that depend on HLDS out of mercury_to_mercury.m
	to hlds_out.m. Export from mercury_to_mercury.m the predicates needed
	by the moved predicates.

compiler/hlds_out.m:
compiler/prog_out.m:
	Move predicates for printing parts of the parse tree out of hlds_out.m
	to prog_out.m, since mercury_to_mercury.m needs to use them.

compiler/purity.m:
compiler/prog_out.m:
	Move predicates for printing purities from purity.m, which is part
	of check_hlds.m, to prog_out.m, since mercury_to_mercury.m needs to use
	them.

compiler/passes_aux.m:
compiler/prog_out.m:
	Move some utility predicates (e.g. for printing progress messages) from
	passes_aux.m to prog_out.m, since some predicates in submodules of
	parse_tree.m need to use them.

compiler/foreign.m:
compiler/prog_data.m:
	Move some types from foreign.m to prog_data.m to allow the elimination
	of some dependencies on foreign.m from submodules of parse_tree.m.

compiler/*.m:
	Conform to the changes above, mostly by updating lists of imported
	modules and module qualifications. In some cases, also do some local
	cleanups such as converting predicate declarations to predmode syntax
	and fixing white space.
2004-06-14 04:17:03 +00:00

714 lines
27 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2001, 2003-2004 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% main author: fjh
% various utility predicates acting on the parse tree data
% structure defined in prog_data.m.
:- module parse_tree__prog_util.
:- interface.
:- import_module parse_tree__prog_data.
:- import_module std_util, list, varset, term.
%-----------------------------------------------------------------------------%
% Returns the name of the module containing public builtins;
% originally this was "mercury_builtin", but it later became
% just "builtin", and it may eventually be renamed "std:builtin".
% This module is automatically imported, as if via `import_module'.
:- pred mercury_public_builtin_module(sym_name::out) is det.
:- func mercury_public_builtin_module = sym_name.
% Returns the name of the module containing private builtins;
% traditionally this was "mercury_builtin", but it later became
% "private_builtin", and it may eventually be renamed
% "std:private_builtin".
% This module is automatically imported, as if via `use_module'.
:- pred mercury_private_builtin_module(sym_name::out) is det.
:- func mercury_private_builtin_module = sym_name.
% Returns the name of the module containing builtins for tabling;
% originally these were in "private_builtin", but they
% may soon be moved into a separate module.
% This module is automatically imported iff tabling is enabled.
:- pred mercury_table_builtin_module(sym_name::out) is det.
:- func mercury_table_builtin_module = sym_name.
% Returns the name of the module containing the builtins for
% deep profiling.
% This module is automatically imported iff deep profiling is
% enabled.
:- pred mercury_profiling_builtin_module(sym_name::out) is det.
:- func mercury_profiling_builtin_module = sym_name.
% Returns the name of the module containing the builtins for
% term size profiling.
% This module is automatically imported iff term size profiling is
% enabled.
:- pred mercury_term_size_prof_builtin_module(sym_name::out) is det.
:- func mercury_term_size_prof_builtin_module = sym_name.
% Returns the name of the module containing the public builtins
% used by the Aditi transaction interface, currently "aditi".
% This module is not automatically imported (XXX should it be?).
:- pred aditi_public_builtin_module(sym_name::out) is det.
:- func aditi_public_builtin_module = sym_name.
% Returns the name of the module containing the private builtins
% used by the Aditi transaction interface, currently
% "aditi_private_builtin".
% This module is automatically imported iff the Aditi interface
% is enabled.
:- pred aditi_private_builtin_module(sym_name::out) is det.
:- func aditi_private_builtin_module = sym_name.
% Succeeds iff the specified module is one of the
% builtin modules listed above which are automatically imported.
:- pred any_mercury_builtin_module(sym_name::in) is semidet.
%-----------------------------------------------------------------------------%
% Given a symbol name, return its unqualified name.
:- pred unqualify_name(sym_name::in, string::out) is det.
% sym_name_get_module_name(SymName, DefaultModName, ModName):
% Given a symbol name, return the module qualifier(s).
% If the symbol is unqualified, then return the specified default
% module name.
%
:- pred sym_name_get_module_name(sym_name::in, module_name::in,
module_name::out) is det.
% string_to_sym_name(String, Separator, SymName):
% Convert a string, possibly prefixed with
% module qualifiers (separated by Separator),
% into a symbol name.
%
:- pred string_to_sym_name(string::in, string::in, sym_name::out) is det.
% match_sym_name(PartialSymName, CompleteSymName):
% succeeds iff there is some sequence of module qualifiers
% which when prefixed to PartialSymName gives CompleteSymName.
%
:- pred match_sym_name(sym_name::in, sym_name::in) is semidet.
% remove_sym_name_prefix(SymName0, Prefix, SymName)
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName0 has the given prefix
% and the unqualified part of SymName is the unqualified
% part of SymName0 with the prefix removed
:- pred remove_sym_name_prefix(sym_name, string, sym_name).
:- mode remove_sym_name_prefix(in, in, out) is semidet.
:- mode remove_sym_name_prefix(out, in, in) is det.
% remove_sym_name_suffix(SymName0, Suffix, SymName)
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName0 has the given suffix
% and the unqualified part of SymName is the unqualified
% part of SymName0 with the suffix removed
:- pred remove_sym_name_suffix(sym_name::in, string::in, sym_name::out)
is semidet.
% add_sym_name_suffix(SymName0, Suffix, SymName)
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName is the unqualified
% part of SymName0 with the suffix added
:- pred add_sym_name_suffix(sym_name::in, string::in, sym_name::out) is det.
% insert_module_qualifier(ModuleName, SymName0, SymName):
% prepend the specified ModuleName onto the module
% qualifiers in SymName0, giving SymName.
:- pred insert_module_qualifier(string::in, sym_name::in, sym_name::out)
is det.
% Given a possible module qualified sym_name and a list of
% argument types and a context, construct a term. This is
% used to construct types.
:- pred construct_qualified_term(sym_name::in, list(term(T))::in,
term(T)::out) is det.
:- pred construct_qualified_term(sym_name::in, list(term(T))::in,
prog_context::in, term(T)::out) is det.
% Given a sym_name return the top level qualifier of that name.
:- func outermost_qualifier(sym_name) = string.
%-----------------------------------------------------------------------------%
% adjust_func_arity(PredOrFunc, FuncArity, PredArity).
%
% We internally store the arity as the length of the argument
% list including the return value, which is one more than the
% arity of the function reported in error messages.
:- pred adjust_func_arity(pred_or_func, int, int).
:- mode adjust_func_arity(in, in, out) is det.
:- mode adjust_func_arity(in, out, in) is det.
%-----------------------------------------------------------------------------%
% make_pred_name_with_context(ModuleName, Prefix, PredOrFunc, PredName,
% Line, Counter, SymName).
%
% Create a predicate name with context, e.g. for introduced
% lambda or deforestation predicates.
:- pred make_pred_name(module_name::in, string::in, maybe(pred_or_func)::in,
string::in, new_pred_id::in, sym_name::out) is det.
% make_pred_name_with_context(ModuleName, Prefix, PredOrFunc, PredName,
% Line, Counter, SymName).
%
% Create a predicate name with context, e.g. for introduced
% lambda or deforestation predicates.
:- pred make_pred_name_with_context(module_name::in, string::in,
pred_or_func::in, string::in, int::in, int::in, sym_name::out) is det.
:- type new_pred_id
---> counter(int, int) % Line number, Counter
; type_subst(tvarset, type_subst)
; unused_args(list(int)).
%-----------------------------------------------------------------------------%
% A pred declaration may contains just types, as in
% :- pred list__append(list(T), list(T), list(T)).
% or it may contain both types and modes, as in
% :- pred list__append(list(T)::in, list(T)::in,
% list(T)::output).
%
% This predicate takes the argument list of a pred declaration,
% splits it into two separate lists for the types and (if present)
% the modes.
:- type maybe_modes == maybe(list(mode)).
:- pred split_types_and_modes(list(type_and_mode)::in, list(type)::out,
maybe_modes::out) is det.
:- pred split_type_and_mode(type_and_mode::in, (type)::out, maybe(mode)::out)
is det.
%-----------------------------------------------------------------------------%
% Perform a substitution on a goal.
:- pred prog_util__rename_in_goal(prog_var::in, prog_var::in,
goal::in, goal::out) is det.
%-----------------------------------------------------------------------------%
% Various predicates for accessing the cons_id type.
% Given a cons_id and a list of argument terms, convert it into a
% term. Fails if the cons_id is a pred_const, or type_ctor_info_const.
:- pred cons_id_and_args_to_term(cons_id::in, list(term(T))::in, term(T)::out)
is semidet.
% Get the arity of a cons_id, aborting on pred_const and
% type_ctor_info_const.
:- func cons_id_arity(cons_id) = arity.
% Get the arity of a cons_id. Return a `no' on those cons_ids
% where cons_id_arity/2 would normally abort.
:- func cons_id_maybe_arity(cons_id) = maybe(arity).
% The reverse conversion - make a cons_id for a functor.
% Given a const and an arity for the functor, create a cons_id.
:- func make_functor_cons_id(const, arity) = cons_id.
% Another way of making a cons_id from a functor.
% Given the name, argument types, and type_ctor of a functor,
% create a cons_id for that functor.
:- func make_cons_id(sym_name, list(constructor_arg), type_ctor) = cons_id.
% Another way of making a cons_id from a functor.
% Given the name, argument types, and type_ctor of a functor,
% create a cons_id for that functor.
%
% Differs from make_cons_id in that (a) it requires the sym_name
% to be already module qualified, which means that it does not
% need the module qualification of the type, (b) it can compute the
% arity from any list of the right length.
:- func make_cons_id_from_qualified_sym_name(sym_name, list(_)) = cons_id.
%-----------------------------------------------------------------------------%
% make_n_fresh_vars(Name, N, VarSet0, Vars, VarSet):
% `Vars' is a list of `N' fresh variables allocated from
% `VarSet0'. The variables will be named "<Name>1", "<Name>2",
% "<Name>3", and so on, where <Name> is the value of `Name'.
% `VarSet' is the resulting varset.
:- pred make_n_fresh_vars(string::in, int::in, list(var(T))::out,
varset(T)::in, varset(T)::out) is det.
% given the list of predicate arguments for a predicate that
% is really a function, split that list into the function arguments
% and the function return type.
:- pred pred_args_to_func_args(list(T)::in, list(T)::out, T::out) is det.
% Get the last two arguments from the list, failing if there
% aren't at least two arguments.
:- pred get_state_args(list(T)::in, list(T)::out, T::out, T::out) is semidet.
% Get the last two arguments from the list, aborting if there
% aren't at least two arguments.
:- pred get_state_args_det(list(T)::in, list(T)::out, T::out, T::out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module parse_tree__mercury_to_mercury.
:- import_module bool, require, string, int, map, varset.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% We may eventually want to put the standard library into a package "std":
% mercury_public_builtin_module = qualified(unqualified("std"), "builtin").
% mercury_private_builtin_module(M) =
% qualified(unqualified("std"), "private_builtin"))).
mercury_public_builtin_module = unqualified("builtin").
mercury_public_builtin_module(mercury_public_builtin_module).
mercury_private_builtin_module = unqualified("private_builtin").
mercury_private_builtin_module(mercury_private_builtin_module).
mercury_table_builtin_module = unqualified("table_builtin").
mercury_table_builtin_module(mercury_table_builtin_module).
mercury_profiling_builtin_module = unqualified("profiling_builtin").
mercury_profiling_builtin_module(mercury_profiling_builtin_module).
mercury_term_size_prof_builtin_module = unqualified("term_size_prof_builtin").
mercury_term_size_prof_builtin_module(mercury_term_size_prof_builtin_module).
aditi_public_builtin_module = unqualified("aditi").
aditi_public_builtin_module(aditi_public_builtin_module).
aditi_private_builtin_module = unqualified("aditi_private_builtin").
aditi_private_builtin_module(aditi_private_builtin_module).
any_mercury_builtin_module(Module) :-
( mercury_public_builtin_module(Module)
; mercury_private_builtin_module(Module)
; mercury_table_builtin_module(Module)
; mercury_profiling_builtin_module(Module)
; mercury_term_size_prof_builtin_module(Module)
; aditi_private_builtin_module(Module)
).
unqualify_name(unqualified(PredName), PredName).
unqualify_name(qualified(_ModuleName, PredName), PredName).
sym_name_get_module_name(unqualified(_), ModuleName, ModuleName).
sym_name_get_module_name(qualified(ModuleName, _PredName), _, ModuleName).
construct_qualified_term(qualified(Module, Name), Args, Context, Term) :-
construct_qualified_term(Module, [], Context, ModuleTerm),
UnqualifiedTerm = term__functor(term__atom(Name), Args, Context),
Term = term__functor(term__atom("."),
[ModuleTerm, UnqualifiedTerm], Context).
construct_qualified_term(unqualified(Name), Args, Context, Term) :-
Term = term__functor(term__atom(Name), Args, Context).
construct_qualified_term(SymName, Args, Term) :-
term__context_init(Context),
construct_qualified_term(SymName, Args, Context, Term).
outermost_qualifier(unqualified(Name)) = Name.
outermost_qualifier(qualified(Module, _Name)) = outermost_qualifier(Module).
%-----------------------------------------------------------------------------%
adjust_func_arity(predicate, Arity, Arity).
adjust_func_arity(function, Arity - 1, Arity).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
split_types_and_modes(TypesAndModes, Types, MaybeModes) :-
split_types_and_modes_2(TypesAndModes, yes, Types, Modes, Result),
( Result = yes ->
MaybeModes = yes(Modes)
;
MaybeModes = no
).
:- pred split_types_and_modes_2(list(type_and_mode)::in, bool::in,
list(type)::out, list(mode)::out, bool::out) is det.
% T = type, M = mode, TM = combined type and mode
split_types_and_modes_2([], Result, [], [], Result).
split_types_and_modes_2([TM|TMs], Result0, [T|Ts], [M|Ms], Result) :-
split_type_and_mode(TM, Result0, T, M, Result1),
split_types_and_modes_2(TMs, Result1, Ts, Ms, Result).
% if a pred declaration specifies modes for some but
% not all of the arguments, then the modes are ignored
% - should this be an error instead?
% trd: this should never happen because prog_io.m will detect
% these cases
:- pred split_type_and_mode(type_and_mode::in, bool::in,
(type)::out, (mode)::out, bool::out) is det.
split_type_and_mode(type_only(T), _, T, (free -> free), no).
split_type_and_mode(type_and_mode(T,M), R, T, M, R).
split_type_and_mode(type_only(T), T, no).
split_type_and_mode(type_and_mode(T,M), T, yes(M)).
%-----------------------------------------------------------------------------%
prog_util__rename_in_goal(OldVar, NewVar, Goal0 - Context, Goal - Context) :-
prog_util__rename_in_goal_expr(OldVar, NewVar, Goal0, Goal).
:- pred prog_util__rename_in_goal_expr(prog_var::in, prog_var::in,
goal_expr::in, goal_expr::out) is det.
prog_util__rename_in_goal_expr(OldVar, NewVar, (GoalA0, GoalB0),
(GoalA, GoalB)) :-
prog_util__rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
prog_util__rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
prog_util__rename_in_goal_expr(OldVar, NewVar, (GoalA0 & GoalB0),
(GoalA & GoalB)) :-
prog_util__rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
prog_util__rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
prog_util__rename_in_goal_expr(_OldVar, _NewVar, true, true).
prog_util__rename_in_goal_expr(OldVar, NewVar, (GoalA0; GoalB0),
(GoalA; GoalB)) :-
prog_util__rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
prog_util__rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
prog_util__rename_in_goal_expr(_Var, _NewVar, fail, fail).
prog_util__rename_in_goal_expr(OldVar, NewVar, not(Goal0), not(Goal)) :-
prog_util__rename_in_goal(OldVar, NewVar, Goal0, Goal).
prog_util__rename_in_goal_expr(OldVar, NewVar, some(Vars0, Goal0),
some(Vars, Goal)) :-
prog_util__rename_in_vars(OldVar, NewVar, Vars0, Vars),
prog_util__rename_in_goal(OldVar, NewVar, Goal0, Goal).
prog_util__rename_in_goal_expr(OldVar, NewVar, some_state_vars(Vars0, Goal0),
some_state_vars(Vars, Goal)) :-
prog_util__rename_in_vars(OldVar, NewVar, Vars0, Vars),
prog_util__rename_in_goal(OldVar, NewVar, Goal0, Goal).
prog_util__rename_in_goal_expr(OldVar, NewVar, all(Vars0, Goal0),
all(Vars, Goal)) :-
prog_util__rename_in_vars(OldVar, NewVar, Vars0, Vars),
prog_util__rename_in_goal(OldVar, NewVar, Goal0, Goal).
prog_util__rename_in_goal_expr(OldVar, NewVar, all_state_vars(Vars0, Goal0),
all_state_vars(Vars, Goal)) :-
prog_util__rename_in_vars(OldVar, NewVar, Vars0, Vars),
prog_util__rename_in_goal(OldVar, NewVar, Goal0, Goal).
prog_util__rename_in_goal_expr(OldVar, NewVar, implies(GoalA0, GoalB0),
implies(GoalA, GoalB)) :-
prog_util__rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
prog_util__rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
prog_util__rename_in_goal_expr(OldVar, NewVar, equivalent(GoalA0, GoalB0),
equivalent(GoalA, GoalB)) :-
prog_util__rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
prog_util__rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
prog_util__rename_in_goal_expr(OldVar, NewVar,
if_then(Vars0, StateVars0, Cond0, Then0),
if_then(Vars, StateVars, Cond, Then)) :-
prog_util__rename_in_vars(OldVar, NewVar, Vars0, Vars),
prog_util__rename_in_vars(OldVar, NewVar, StateVars0, StateVars),
prog_util__rename_in_goal(OldVar, NewVar, Cond0, Cond),
prog_util__rename_in_goal(OldVar, NewVar, Then0, Then).
prog_util__rename_in_goal_expr(OldVar, NewVar,
if_then_else(Vars0, StateVars0, Cond0, Then0, Else0),
if_then_else(Vars, StateVars, Cond, Then, Else)) :-
prog_util__rename_in_vars(OldVar, NewVar, Vars0, Vars),
prog_util__rename_in_vars(OldVar, NewVar, StateVars0, StateVars),
prog_util__rename_in_goal(OldVar, NewVar, Cond0, Cond),
prog_util__rename_in_goal(OldVar, NewVar, Then0, Then),
prog_util__rename_in_goal(OldVar, NewVar, Else0, Else).
prog_util__rename_in_goal_expr(OldVar, NewVar, call(SymName, Terms0, Purity),
call(SymName, Terms, Purity)) :-
term__substitute_list(Terms0, OldVar, term__variable(NewVar), Terms).
prog_util__rename_in_goal_expr(OldVar, NewVar, unify(TermA0, TermB0, Purity),
unify(TermA, TermB, Purity)) :-
term__substitute(TermA0, OldVar, term__variable(NewVar), TermA),
term__substitute(TermB0, OldVar, term__variable(NewVar), TermB).
:- pred prog_util__rename_in_vars(prog_var::in, prog_var::in,
list(prog_var)::in, list(prog_var)::out) is det.
prog_util__rename_in_vars(_, _, [], []).
prog_util__rename_in_vars(OldVar, NewVar, [Var0 | Vars0], [Var | Vars]) :-
( Var0 = OldVar ->
Var = NewVar
;
Var = Var0
),
prog_util__rename_in_vars(OldVar, NewVar, Vars0, Vars).
%-----------------------------------------------------------------------------%
% This would be simpler if we had a string__rev_sub_string_search/3 pred.
% With that, we could search for underscores right-to-left,
% and construct the resulting symbol directly.
% Instead, we search for them left-to-right, and then call
% insert_module_qualifier to fix things up.
string_to_sym_name(String, ModuleSeparator, Result) :-
(
string__sub_string_search(String, ModuleSeparator, LeftLength),
LeftLength > 0
->
string__left(String, LeftLength, ModuleName),
string__length(String, StringLength),
string__length(ModuleSeparator, SeparatorLength),
RightLength = StringLength - LeftLength - SeparatorLength,
string__right(String, RightLength, Name),
string_to_sym_name(Name, ModuleSeparator, NameSym),
insert_module_qualifier(ModuleName, NameSym, Result)
;
Result = unqualified(String)
).
insert_module_qualifier(ModuleName, unqualified(PlainName),
qualified(unqualified(ModuleName), PlainName)).
insert_module_qualifier(ModuleName, qualified(ModuleQual0, PlainName),
qualified(ModuleQual, PlainName)) :-
insert_module_qualifier(ModuleName, ModuleQual0, ModuleQual).
%-----------------------------------------------------------------------------%
% match_sym_name(PartialSymName, CompleteSymName):
% succeeds iff there is some sequence of module qualifiers
% which when prefixed to PartialSymName gives CompleteSymName.
match_sym_name(qualified(Module1, Name), qualified(Module2, Name)) :-
match_sym_name(Module1, Module2).
match_sym_name(unqualified(Name), unqualified(Name)).
match_sym_name(unqualified(Name), qualified(_, Name)).
%-----------------------------------------------------------------------------%
remove_sym_name_prefix(qualified(Module, Name0), Prefix,
qualified(Module, Name)) :-
string__append(Prefix, Name, Name0).
remove_sym_name_prefix(unqualified(Name0), Prefix, unqualified(Name)) :-
string__append(Prefix, Name, Name0).
remove_sym_name_suffix(qualified(Module, Name0), Suffix,
qualified(Module, Name)) :-
string__remove_suffix(Name0, Suffix, Name).
remove_sym_name_suffix(unqualified(Name0), Suffix, unqualified(Name)) :-
string__remove_suffix(Name0, Suffix, Name).
add_sym_name_suffix(qualified(Module, Name0), Suffix,
qualified(Module, Name)) :-
string__append(Name0, Suffix, Name).
add_sym_name_suffix(unqualified(Name0), Suffix, unqualified(Name)) :-
string__append(Name0, Suffix, Name).
%-----------------------------------------------------------------------------%
make_pred_name_with_context(ModuleName, Prefix,
PredOrFunc, PredName, Line, Counter, SymName) :-
make_pred_name(ModuleName, Prefix, yes(PredOrFunc), PredName,
counter(Line, Counter), SymName).
make_pred_name(ModuleName, Prefix, MaybePredOrFunc, PredName,
NewPredId, SymName) :-
(
MaybePredOrFunc = yes(PredOrFunc),
(
PredOrFunc = predicate,
PFS = "pred"
;
PredOrFunc = function,
PFS = "func"
)
;
MaybePredOrFunc = no,
PFS = "pred_or_func"
),
(
NewPredId = counter(Line, Counter),
string__format("%d__%d", [i(Line), i(Counter)], PredIdStr)
;
NewPredId = type_subst(VarSet, TypeSubst),
SubstToString = (pred(SubstElem::in, SubstStr::out) is det :-
SubstElem = Var - Type,
varset__lookup_name(VarSet, Var, VarName),
TypeString = mercury_type_to_string(VarSet, Type),
string__append_list([VarName, " = ", TypeString],
SubstStr)
),
list_to_string(SubstToString, TypeSubst, PredIdStr)
;
NewPredId = unused_args(Args),
list_to_string(int_to_string, Args, PredIdStr)
),
string__format("%s__%s__%s__%s",
[s(Prefix), s(PFS), s(PredName), s(PredIdStr)], Name),
SymName = qualified(ModuleName, Name).
:- pred list_to_string(pred(T, string)::in(pred(in, out) is det),
list(T)::in, string::out) is det.
list_to_string(Pred, List, String) :-
list_to_string_2(Pred, List, Strings, ["]"]),
string__append_list(["[" | Strings], String).
:- pred list_to_string_2(pred(T, string)::in(pred(in, out) is det),
list(T)::in, list(string)::out, list(string)::in) is det.
list_to_string_2(_, []) --> [].
list_to_string_2(Pred, [T | Ts]) -->
{ call(Pred, T, String) },
[String],
( { Ts = [] } ->
[]
;
[", "],
list_to_string_2(Pred, Ts)
).
%-----------------------------------------------------------------------------%
cons_id_and_args_to_term(int_const(Int), [], Term) :-
term__context_init(Context),
Term = term__functor(term__integer(Int), [], Context).
cons_id_and_args_to_term(float_const(Float), [], Term) :-
term__context_init(Context),
Term = term__functor(term__float(Float), [], Context).
cons_id_and_args_to_term(string_const(String), [], Term) :-
term__context_init(Context),
Term = term__functor(term__string(String), [], Context).
cons_id_and_args_to_term(cons(SymName, _Arity), Args, Term) :-
construct_qualified_term(SymName, Args, Term).
cons_id_arity(cons(_, Arity)) = Arity.
cons_id_arity(int_const(_)) = 0.
cons_id_arity(string_const(_)) = 0.
cons_id_arity(float_const(_)) = 0.
cons_id_arity(pred_const(_, _)) =
func_error("cons_id_arity: can't get arity of pred_const").
cons_id_arity(type_ctor_info_const(_, _, _)) =
func_error("cons_id_arity: can't get arity of type_ctor_info_const").
cons_id_arity(base_typeclass_info_const(_, _, _, _)) =
func_error("cons_id_arity: " ++
"can't get arity of base_typeclass_info_const").
cons_id_arity(type_info_cell_constructor(_)) =
func_error("cons_id_arity: " ++
"can't get arity of type_info_cell_constructor").
cons_id_arity(typeclass_info_cell_constructor) =
func_error("cons_id_arity: " ++
"can't get arity of typeclass_info_cell_constructor").
cons_id_arity(tabling_pointer_const(_)) =
func_error("cons_id_arity: can't get arity of tabling_pointer_const").
cons_id_arity(deep_profiling_proc_layout(_)) =
func_error("cons_id_arity: " ++
"can't get arity of deep_profiling_proc_layout").
cons_id_arity(table_io_decl(_)) =
func_error("cons_id_arity: can't get arity of table_io_decl").
cons_id_maybe_arity(cons(_, Arity)) = yes(Arity).
cons_id_maybe_arity(int_const(_)) = yes(0).
cons_id_maybe_arity(string_const(_)) = yes(0).
cons_id_maybe_arity(float_const(_)) = yes(0).
cons_id_maybe_arity(pred_const(_, _)) = no.
cons_id_maybe_arity(type_ctor_info_const(_, _, _)) = no.
cons_id_maybe_arity(base_typeclass_info_const(_, _, _, _)) = no.
cons_id_maybe_arity(type_info_cell_constructor(_)) = no.
cons_id_maybe_arity(typeclass_info_cell_constructor) = no.
cons_id_maybe_arity(tabling_pointer_const(_)) = no.
cons_id_maybe_arity(deep_profiling_proc_layout(_)) = no.
cons_id_maybe_arity(table_io_decl(_)) = no.
make_functor_cons_id(term__atom(Name), Arity) = cons(unqualified(Name), Arity).
make_functor_cons_id(term__integer(Int), _) = int_const(Int).
make_functor_cons_id(term__string(String), _) = string_const(String).
make_functor_cons_id(term__float(Float), _) = float_const(Float).
make_cons_id(SymName0, Args, TypeCtor) = cons(SymName, Arity) :-
% Use the module qualifier on the SymName, if there is one,
% otherwise use the module qualifier on the Type, if there is one,
% otherwise leave it unqualified.
% XXX is that the right thing to do?
(
SymName0 = qualified(_, _),
SymName = SymName0
;
SymName0 = unqualified(ConsName),
(
TypeCtor = unqualified(_) - _,
SymName = SymName0
;
TypeCtor = qualified(TypeModule, _) - _,
SymName = qualified(TypeModule, ConsName)
)
),
list__length(Args, Arity).
make_cons_id_from_qualified_sym_name(SymName, Args) = cons(SymName, Arity) :-
list__length(Args, Arity).
%-----------------------------------------------------------------------------%
make_n_fresh_vars(BaseName, N, Vars, VarSet0, VarSet) :-
make_n_fresh_vars_2(BaseName, 0, N, Vars, VarSet0, VarSet).
:- pred make_n_fresh_vars_2(string::in, int::in, int::in, list(var(T))::out,
varset(T)::in, varset(T)::out) is det.
make_n_fresh_vars_2(BaseName, N, Max, Vars, !VarSet) :-
(N = Max ->
Vars = []
;
N1 = N + 1,
varset__new_var(!.VarSet, Var, !:VarSet),
string__int_to_string(N1, Num),
string__append(BaseName, Num, VarName),
varset__name_var(!.VarSet, Var, VarName, !:VarSet),
Vars = [Var | Vars1],
make_n_fresh_vars_2(BaseName, N1, Max, Vars1, !VarSet)
).
pred_args_to_func_args(PredArgs, FuncArgs, FuncReturn) :-
list__length(PredArgs, NumPredArgs),
NumFuncArgs = NumPredArgs - 1,
( list__split_list(NumFuncArgs, PredArgs, FuncArgs0, [FuncReturn0]) ->
FuncArgs = FuncArgs0,
FuncReturn = FuncReturn0
;
error("pred_args_to_func_args: function missing return value?")
).
get_state_args(Args0, Args, State0, State) :-
list__reverse(Args0, RevArgs0),
RevArgs0 = [State, State0 | RevArgs],
list__reverse(RevArgs, Args).
get_state_args_det(Args0, Args, State0, State) :-
( get_state_args(Args0, Args1, State0A, StateA) ->
Args = Args1,
State0 = State0A,
State = StateA
;
error("hlds_pred__get_state_args_det")
).