Files
mercury/compiler/stack_layout.m
David Overton 82378c381b Allow polymorphic ground insts. This change assumes that all inst
Estimated hours taken: 80

Allow polymorphic ground insts.  This change assumes that all inst
parameters in the mode declaration for a predicate or function are
constrained to be ground-shared.  This is a temporary measure until we
work out a nice syntax to allow the programmer to tell the compiler that
certain inst parameters may be treated as ground insts.  Since we don't
currently support unconstrained inst parameters anyway, this shouldn't
cause a problem.

	TODO:
		- Add syntax, something like `:- mode p(in(I)) <= ground(I).',
		  to specify that an inst parameter represents a ground inst.
		- Allow abstract ground insts that are treated in a similar
		  way to what we've done here with ground inst parameters.
		- Make mode checking more efficient (i.e. rewrite the mode
		  system).

compiler/inst.m:
	Add a new alternative for ground insts:
		`constrained_inst_var(inst_var)'.
	Define the type `inst_var_sub'.

compiler/inst_match.m:
	Change inst_matches_initial so that it:
		- handles constrained_inst_vars correctly;
		- returns the inst_var substitutions necessary for the call;
		- handles inst_matches_initial(ground(...), bound(...), ...)
		  properly (this requires knowing the type of the variable).

	  The last change has also been made for inst_matches_final
	  and inst_matches_binding.  However, the check is disabled for
	  now because, without alias tracking, the mode checker
	  becomes too conservative.

compiler/hlds_pred.m:
compiler/mode_info.m:
compiler/simplify.m:
compiler/det_util.m:
	Include the inst_varset in the proc_info, mode_info and simplify_info.
	Add a vartypes field to the det_info.
	Remove the vartypes field from the simplify_info since it is
	now in the det_info.
	Use record syntax for these data structures and their access predicates
	to make future changes easier.

compiler/prog_io.m:
	When processing pred and func mode declarations, convert all inst_var(V)
	insts to ground(shared, constrained_inst_var(V)).

compiler/prog_data.m:
compiler/hlds_data.m:
compiler/make_hlds.m:
compiler/mode_util.m:
	Use inst_vars instead of inst_params.

compiler/modes.m:
compiler/modecheck_call.m:
compiler/unique_modes.m:
compiler/mode_util.m:
	When checking or recomputing initial insts of a call, build up
	an inst_var substitution (using the modified
	inst_matches_initial) and apply this to the final insts of the
	called procedure before checking/recomputing them.

compiler/mode_util.m:
	Make sure that recompute_instmap_delta recomputes the
	instmap_deltas for lambda_goals even when RecomputeAtomic = no.

compiler/type_util.m:
	Add a new predicate, type_util__cons_id_arg_types which
	nondeterministically returns the cons_ids and argument types for a
	given type.
	Add a new predicate type_util__get_consid_non_existential_arg_types
	which is the same as type_util__get_existential_arg_types except
	that it fails rather than aborting for existenially typed arguments.

compiler/accumulator.m:
compiler/check_typeclass.m:
compiler/clause_to_proc.m:
compiler/common.m:
compiler/continuation_info.m:
compiler/deforest.m:
compiler/det_analysis.m:
compiler/det_report.m:
compiler/det_util.m:
compiler/dnf.m:
compiler/follow_code.m:
compiler/goal_store.m:
compiler/goal_util.m:
compiler/higher_order.m:
compiler/inst_util.m:
compiler/instmap.m:
compiler/lambda.m:
compiler/magic.m:
compiler/magic_util.m:
compiler/mercury_to_mercury.m:
compiler/modecheck_unify.m:
compiler/module_qual.m:
compiler/pd_info.m:
compiler/pd_util.m:
compiler/polymorphism.m:
compiler/post_typecheck.m:
compiler/prog_io_util.m:
compiler/prog_rep.m:
compiler/saved_vars.m:
compiler/stack_layout.m:
compiler/table_gen.m:
compiler/unify_proc.m:
compiler/unneeded_code.m:
compiler/unused_args.m:
	Pass inst_varsets and types where needed.
	Changes to reflect change in definition of the inst data type.

compiler/inlining.m:
	Recompute the instmap deltas for a procedure after inlining.
	This bug showed up compiling tests/hard_coded/lp.m with
	inlining and deforestation turned on: deforestation was
	getting incorrect instmap deltas from inlining, causing
	the transformation to break mode-correctness.  It has only
	just shown up because of the added call to
	`inst_matches_initial' from within `recompute_instmap_delta'.

tests/invalid/Mmakefile:
tests/invalid/unbound_inst_var.m:
tests/invalid/unbound_inst_var.err_exp:
tests/valid/Mmakefile:
tests/valid/unbound_inst_var.m:
	Move the `unbound_inst_var' test case from `invalid' to `valid'
	and extend its coverage a bit.
2000-10-13 13:56:17 +00:00

2044 lines
79 KiB
Mathematica

%---------------------------------------------------------------------------%
% Copyright (C) 1997-2000 University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% This module generates the LLDS code that defines global constants to
% hold the `stack_layout' structures of the stack frames defined by the
% current module.
%
% The tables generated have a number of `create' rvals within them.
% llds_common.m converts these into static data structures.
%
% We can create several types of stack layouts. Which kind we generate
% depends on the values of several options.
%
% Main authors: trd, zs.
%
% NOTE: If you make changes in this file, you may also need to modify
% runtime/mercury_stack_layout.h.
%
%---------------------------------------------------------------------------%
%
% Data Structure: procedure layouts
%
% If the option basic_stack_layout is set, we generate a MR_Stack_Layout_Entry
% for each procedure. This will be stored in the global variable whose name is
% mercury_data__layout__mercury__<proc_label>.
%
% This structure contains up to three groups of fields. The first group,
% which contains information that enables the stack to be traversed, is always
% present. The second group, which identifies the procedure in terms that are
% meaningful to both humans and machines, will be generated only if the option
% procid_stack_layout is set, i.e. if we are doing stack tracing, execution
% tracing or profiling. The third group, which contains information
% specifically intended for the debugger, will be generated only if the option
% trace_stack_layout is set.
%
% The distinguished value -1 in the first field of the second group
% indicates that the later fields are not present.
%
% The distinguished value NULL in the first field of the third group
% indicates that the later fields are not present.
%
%---------------------------------------------------------------------------%
%
% The first group contains the following fields:
%
% MR_Code *MR_sle_code_addr;
% MR_Long_Lval MR_sle_succip_locn;
% MR_int_least16_t MR_sle_stack_slots;
% MR_Determinism MR_sle_detism;
%
% The code_addr field points to the start of the procedure's code.
%
% The succip_locn field encoded the location of the saved succip if it is saved
% in a general purpose stack slot. If the succip is saved in a specal purpose
% stack slot (as it is for model_non procedures) or if the procedure never
% saves the succip (as in leaf procedures), this field will contain -1.
%
% The stack_slots field gives the number of general purpose stack slots
% in the procedure.
%
% The detism field encodes the determinism of the procedure.
%
%---------------------------------------------------------------------------%
%
% The second group contains one field:
%
% MR_Stack_Layout_Proc_Id MR_sle_proc_id;
%
% This field is a union. The usual alternative of which identifies ordinary
% procedures, while the other alternative identifies automatically generated
% unification, comparison and index functions. The meanings of the fields
% in both forms are the same as in procedure labels. The runtime system can
% figure out which form is present by testing the value of the first slot,
% as the acceptable ranges of values of the first fields (which are the same
% size) are disjoint.
%
%---------------------------------------------------------------------------%
%
% The third group contains the following fields:
%
% struct MR_Stack_Layout_Label_Struct *MR_sle_call_label;
% struct MR_Module_Layout_Struct *MR_sle_module_layout;
% MR_Word MR_sle_proc_rep;
% MR_int_least16_t *MR_sle_used_var_names;
% MR_int_least16_t MR_sle_max_var_num;
% MR_int_least16_t MR_sle_max_r_num;
% MR_int_least8_t MR_sle_maybe_from_full;
% MR_int_least8_t MR_sle_maybe_trail;
% MR_int_least8_t MR_sle_maybe_maxfr;
% MR_EvalMethod MR_sle_eval_method:8;
% MR_int_least8_t MR_sle_maybe_call_table;
% MR_int_least8_t MR_sle_maybe_decl_debug;
%
% The call_label field points to the label layout structure for the label
% associated with the call event at the entry to the procedure. The purpose
% of this field is to allow the runtime debugger to find out which variables
% are where on entry, so it can reexecute the procedure if asked to do so
% and if the values of the required variables are still available.
%
% The module_layout field points to the module info structure of the module
% containing the procedure. This allows the debugger access to the string table
% stored there, as well the table associating source-file contexts with labels.
%
% The proc_rep field contains a representation of the body of the procedure
% as a Mercury term of type goal_rep, defined in program_representation.m.
% If will be 0 if no such representation is available.
%
% The used_var_names field points to an array that contains offsets
% into the string table, with the offset at index i-1 giving the name of
% variable i (since variable numbers start at one). If a variable has no name
% or cannot be referred to from an event, the offset will be zero, at which
% offset the string table will contain an empty string. The string table
% is restricted to be small enough to be addressed with 16 bits;
% a string is reserved near the start for a string that says "too many
% variables". Stack_layout.m will generate a reference to this string
% instead of generating an offset that does not fit into 16 bits.
% Therefore using the stored offset to index into the string table
% is always safe.
%
% The max_var_num field gives the number of elements in the used_var_names
% table.
%
% The max_r_num field tells the debugger which Mercury abstract machine
% registers need saving in MR_trace: besides the special registers, it is
% the general-purpose registers rN for values of N up to and including the
% value of this field. Note that this field contains an upper bound; in
% general, there will be calls to MR_trace at which the number of the highest
% numbered general purpose (i.e. rN) registers is less than this. However,
% storing the upper bound gets us almost all the benefit (of not saving and
% restoring all the thousand rN registers) for a small fraction of the static
% space cost of storing the actual number in label layout structures.
%
% If the procedure is compiled with deep tracing, the maybe_from_full field
% will contain a negative number. If it is compiled with shallow tracing,
% it will contain the number of the stack slot that holds the flag that says
% whether this incarnation of the procedure was called from deeply traced code
% or not. (The determinism of the procedure decides whether the stack slot
% refers to a stackvar or a framevar.)
%
% If trailing is not enabled, the maybe_trail field will contain a negative
% number. If it is enabled, it will contain number of the first of two stack
% slots used for checkpointing the state of the trail on entry to the
% procedure. The first contains the trail pointer, the second the ticket.
%
% If the procedure lives on the nondet stack, or if it cannot create any
% temporary nondet stack frames, the maybe_maxfr field will contain a negative
% number. If it lives on the det stack, and can create temporary nondet stack
% frames, it will contain the number number of the stack slot that contains the
% value of maxfr on entry, for use in executing the retry debugger command
% from the middle of the procedure.
%
% The eval_method field contains a representation of the evaluation method
% used by the procedure. The retry command needs this information if it is
% to reset the call tables of the procedure invocations being retried.
%
% If --trace-decl is not set, the maybe_decl field will contain a negative
% number. If it is set, it will contain the number of the first of two stack
% slots used by the declarative debugger; the other slot is the next higher
% numbered one. (The determinism of the procedure decides whether the stack
% slot refers to a stackvar or a framevar.)
%
%---------------------------------------------------------------------------%
%
% Data Structure: label layouts
%
% If the option basic_stack_layout is set, we generate stack layout tables
% for some labels internal to the procedure. This table will be stored in the
% global variable whose name is
% mercury_data__layout__mercury__<proc_label>_i<label_number>.
% This table has the following format:
%
% proc layout (Word *) - pointer to the layout structure of
% the procedure containing this label
% trace port (int_least16) - a representation of the trace
% port associated with the label, or -1
% goal path (int_least16) - an index into the module's
% string table giving the goal path associated
% with the trace port of the label, or -1
% # of live data items (Integer) - an encoded representation of
% the number of live data items at the label
% live data types locns (void *) - pointer to an area of memory
% containing information about where the live
% data items are and what their types are
% live data var nums (int_least16 *) - pointer to vector of ints
% giving the HLDS var numbers (if any) of live
% data items
% type parameters (MR_Long_Lval *) - pointer to vector of
% MR_Long_Lval giving the locations of the
% typeinfos for the type parameters that may
% be referred to by the types of the live data
% items; the first word of the vector is an
% integer giving the number of entries in the
% vector; a NULL pointer means no type parameters
%
% The layout of the memory area containing information about the locations
% and types of live data items is somewhat complicated, due to our desire
% to make this information compact. We can represent a location in one of
% two ways, as an 8-bit MR_Short_Lval or as a 32-bit MR_Long_Lval.
% We prefer representing a location as an MR_Short_Lval, but of course
% not all locations can be represented in this way, so those other locations
% are represented as MR_Long_Lvals.
%
% The field containing the number of live data items is encoded by the
% formula (#Long << short_count_bits + #Short), where #Short is the number
% data items whose descriptions fit into an MR_Short_Lval and #Long is the
% number of data items whose descriptions do not. (The field is not an integer
% so that people who attempt to use it without going through the decoding
% macros in runtime/mercury_stack_layout.h get an error from the C compiler.
% The number of distinct values that fit into a uint_least_t also fits into
% 8 bits, but since some locations hold the value of more than one variable
% at a time, not all the values need to be distinct; this is why
% short_count_bits is more than 8.)
%
% The memory area contains three vectors back to back. The first vector
% has #Long + #Short word-sized elements, each of which is a pointer to a
% MR_PseudoTypeInfo giving the type of a live data item, with a small
% integer instead of a pointer representing a special kind of live data item
% (e.g. a saved succip or hp). The second vector is an array of #Long
% MR_Long_Lvals, and the third is an array of #Short MR_Short_Lvals,
% each of which describes a location. The pseudotypeinfo pointed to by
% the slot at subscript i in the first vector describes the type of
% the data stored in slot i in the second vector if i < #Long, and
% the type of the data stored in slot i - #Long in the third vector
% otherwise.
%
% The live data pair vector will have an entry for each live variable.
% The entry will give the location of the variable and its type.
%
% The live data var nums vector pointer may be NULL. If it is not, the vector
% will have an entry consisting of a 16-bit number for each live data item.
% This is either the live data item's HLDS variable number, or one of two
% special values. Zero means that the live data item is not a variable
% (e.g. it is a saved copy of succip). The largest possible 16-bit number
% on the other hand means "the number of this variable does not fit into
% 16 bits". With the exception of these special values, the value in this
% slot uniquely identifies the variable.
%
% If the number of type parameters is not zero, we store the number,
% so that the code that needs the type parameters can materialize
% all the type parameters from their location descriptions in one go.
% This is an optimization, since the type parameter vector could simply
% be indexed on demand by the type variable's variable number stored within
% pseudo-typeinfos inside the elements of the live data pairs vectors.
%
% Since we allocate type variable numbers sequentially, the type parameter
% vector will usually be dense. However, after all variables whose types
% include e.g. type variable 2 have gone out of scope, variables whose
% types include type variable 3 may still be around. In cases like this,
% the entry for type variable 2 will be zero; this signals to the code
% in the internal debugger that materializes typeinfo structures that
% this typeinfo structure need not be materialized.
%
% We need detailed information about the variables that are live at an
% internal label in two kinds of circumstances. Stack layout information
% will be present only for labels that fall into one or both of these
% circumstances.
%
% - The option trace_stack_layout is set, and the label represents
% a traced event at which variable info is needed (call, exit,
% or entrance to one branch of a branched control structure;
% fail events have no variable information).
%
% - The option agc_stack_layout is set or the trace level specifies
% a capability for uplevel printing, and the label represents
% a point where execution can resume after a procedure call or
% after backtracking.
%
% For labels that do not fall into one of these two categories, the
% "# of live vars" field will be negative to indicate the absence of
% information about the variables live at this label, and the last
% four fields will not be present.
%
% For labels that do fall into one of these two categories, the
% "# of live vars" field will hold the number of live variables, which
% will not be negative. If it is zero, the last four fields will not be
% present. Even if it is not zero, however, the pointer to the live data
% names vector will be NULL unless the label is used in execution tracing.
%
% XXX: Presently, inst information is ignored. We also do not yet enable
% procid stack layouts for profiling, since profiling does not yet use
% stack layouts.
%
%---------------------------------------------------------------------------%
:- module stack_layout.
:- interface.
:- import_module continuation_info, hlds_module, llds.
:- import_module std_util, list, set_bbbtree, counter.
:- pred stack_layout__generate_llds(module_info::in, module_info::out,
global_data::in,
list(comp_gen_c_data)::out, list(comp_gen_c_data)::out,
set_bbbtree(label)::out) is det.
:- pred stack_layout__construct_closure_layout(proc_label::in,
closure_layout_info::in, list(maybe(rval))::out,
create_arg_types::out, counter::in, counter::out) is det.
:- implementation.
:- import_module globals, options, llds_out, trace_params, trace.
:- import_module hlds_data, hlds_goal, hlds_pred.
:- import_module prog_data, prog_util, prog_out, instmap.
:- import_module prog_rep, static_term.
:- import_module rtti, ll_pseudo_type_info, (inst), code_util.
:- import_module assoc_list, bool, string, int, require.
:- import_module map, term, set, varset.
%---------------------------------------------------------------------------%
% Process all the continuation information stored in the HLDS,
% converting it into LLDS data structures.
stack_layout__generate_llds(ModuleInfo0, ModuleInfo, GlobalData,
PossiblyDynamicLayouts, StaticLayouts, LayoutLabels) :-
global_data_get_all_proc_layouts(GlobalData, ProcLayoutList0),
list__filter(stack_layout__valid_proc_layout, ProcLayoutList0,
ProcLayoutList),
module_info_globals(ModuleInfo0, Globals),
globals__lookup_bool_option(Globals, agc_stack_layout, AgcLayout),
globals__lookup_bool_option(Globals, trace_stack_layout, TraceLayout),
globals__lookup_bool_option(Globals, procid_stack_layout,
ProcIdLayout),
globals__get_trace_level(Globals, TraceLevel),
globals__get_trace_suppress(Globals, TraceSuppress),
globals__have_static_code_addresses(Globals, StaticCodeAddr),
set_bbbtree__init(LayoutLabels0),
map__init(StringMap0),
map__init(LabelTables0),
StringTable0 = string_table(StringMap0, [], 0),
LayoutInfo0 = stack_layout_info(ModuleInfo0,
AgcLayout, TraceLayout, ProcIdLayout,
TraceLevel, TraceSuppress,
StaticCodeAddr, [], [], LayoutLabels0, [],
StringTable0, LabelTables0, map__init),
stack_layout__lookup_string_in_table("", _, LayoutInfo0, LayoutInfo1),
stack_layout__lookup_string_in_table("<too many variables>", _,
LayoutInfo1, LayoutInfo2),
list__foldl(stack_layout__construct_layouts, ProcLayoutList,
LayoutInfo2, LayoutInfo3),
% This version of the layout info structure is final in all
% respects except the cell count.
ProcLayouts = LayoutInfo3 ^ proc_layouts,
InternalLayouts = LayoutInfo3 ^ internal_layouts,
LayoutLabels = LayoutInfo3 ^ label_set,
ProcLayoutArgs = LayoutInfo3 ^ proc_layout_args,
StringTable = LayoutInfo3 ^ string_table,
LabelTables = LayoutInfo3 ^ label_tables,
StringTable = string_table(_, RevStringList, StringOffset),
list__reverse(RevStringList, StringList),
stack_layout__concat_string_list(StringList, StringOffset,
ConcatStrings),
( TraceLayout = yes ->
Exported = no, % ignored; see linkage/2 in llds_out.m
list__length(ProcLayoutList, NumProcLayouts),
module_info_name(ModuleInfo0, ModuleName),
llds_out__sym_name_mangle(ModuleName, ModuleNameStr),
stack_layout__get_next_cell_number(ProcVectorCellNum,
LayoutInfo3, LayoutInfo4),
Reuse = no,
ProcLayoutVector = create(0, ProcLayoutArgs,
uniform(yes(data_ptr)), must_be_static,
ProcVectorCellNum, "proc_layout_vector", Reuse),
globals__lookup_bool_option(Globals, rtti_line_numbers,
LineNumbers),
( LineNumbers = yes ->
EffLabelTables = LabelTables
;
map__init(EffLabelTables)
),
stack_layout__format_label_tables(EffLabelTables,
NumSourceFiles, SourceFileVectors,
LayoutInfo4, LayoutInfo),
Rvals = [yes(const(string_const(ModuleNameStr))),
yes(const(int_const(StringOffset))),
yes(const(multi_string_const(StringOffset,
ConcatStrings))),
yes(const(int_const(NumProcLayouts))),
yes(ProcLayoutVector),
yes(const(int_const(NumSourceFiles))),
yes(SourceFileVectors)],
ModuleLayouts = comp_gen_c_data(ModuleName, module_layout,
Exported, Rvals, uniform(no), []),
StaticLayouts = [ModuleLayouts | InternalLayouts]
;
StaticLayouts = InternalLayouts,
LayoutInfo = LayoutInfo3
),
PossiblyDynamicLayouts = ProcLayouts,
stack_layout__get_module_info(ModuleInfo, LayoutInfo, _).
:- pred stack_layout__valid_proc_layout(proc_layout_info::in) is semidet.
stack_layout__valid_proc_layout(ProcLayoutInfo) :-
EntryLabel = ProcLayoutInfo ^ entry_label,
code_util__extract_proc_label_from_label(EntryLabel, ProcLabel),
(
ProcLabel = proc(_, _, DeclModule, Name, Arity, _),
\+ no_type_info_builtin(DeclModule, Name, Arity)
;
ProcLabel = special_proc(_, _, _, _, _, _)
).
%---------------------------------------------------------------------------%
:- pred stack_layout__concat_string_list(list(string)::in, int::in,
string::out) is det.
:- pragma c_code(stack_layout__concat_string_list(StringList::in,
ArenaSize::in, Arena::out),
[will_not_call_mercury, thread_safe], "{
Word cur_node;
Integer cur_offset;
Word tmp;
incr_hp_atomic(tmp, (ArenaSize + sizeof(Word)) / sizeof(Word));
Arena = (char *) tmp;
cur_offset = 0;
cur_node = StringList;
while (! MR_list_is_empty(cur_node)) {
(void) strcpy(&Arena[cur_offset],
(char *) MR_list_head(cur_node));
cur_offset += strlen((char *) MR_list_head(cur_node)) + 1;
cur_node = MR_list_tail(cur_node);
}
if (cur_offset != ArenaSize) {
char msg[256];
sprintf(msg, ""internal error in creating string table;\\n""
""cur_offset = %ld, ArenaSize = %ld\\n"",
(long) cur_offset, (long) ArenaSize);
MR_fatal_error(msg);
}
}").
%---------------------------------------------------------------------------%
:- pred stack_layout__format_label_tables(map(string, label_table)::in,
int::out, rval::out, stack_layout_info::in, stack_layout_info::out)
is det.
stack_layout__format_label_tables(LabelTableMap, NumSourceFiles,
SourceFilesVector, LayoutInfo0, LayoutInfo) :-
map__to_assoc_list(LabelTableMap, LabelTableList),
list__length(LabelTableList, NumSourceFiles),
list__map_foldl(stack_layout__format_label_table, LabelTableList,
SourceFileRvals, LayoutInfo0, LayoutInfo1),
stack_layout__get_next_cell_number(SourceFileVectorCellNum,
LayoutInfo1, LayoutInfo),
Reuse = no,
SourceFilesVector = create(0, SourceFileRvals,
uniform(yes(data_ptr)), must_be_static,
SourceFileVectorCellNum, "source_files_vector", Reuse).
:- pred stack_layout__format_label_table(pair(string, label_table)::in,
maybe(rval)::out, stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__format_label_table(FileName - LineNoMap, yes(SourceFileVector),
LayoutInfo0, LayoutInfo) :-
% This step should produce a list ordered on line numbers.
map__to_assoc_list(LineNoMap, LineNoList),
% And this step should preserve that order.
stack_layout__flatten_label_table(LineNoList, [], FlatLineNoList),
list__length(FlatLineNoList, VectorLength),
stack_layout__get_module_name(CurrentModule, LayoutInfo0, LayoutInfo1),
ProjectLineNos = (pred(LabelInfo::in, LineNoRval::out) is det :-
LabelInfo = LineNo - (_Label - _IsReturn),
LineNoRval = yes(const(int_const(LineNo)))
),
ProjectLabels = (pred(LabelInfo::in, LabelRval::out) is det :-
LabelInfo = _LineNo - (Label - _IsReturn),
DataAddr = data_addr(CurrentModule, internal_layout(Label)),
LabelRval = yes(const(data_addr_const(DataAddr)))
),
% See the comment below.
% ProjectCallees = lambda([LabelInfo::in, CalleeRval::out] is det, (
% LabelInfo = _LineNo - (_Label - IsReturn),
% (
% IsReturn = not_a_return,
% CalleeRval = yes(const(int_const(0)))
% ;
% IsReturn = unknown_callee,
% CalleeRval = yes(const(int_const(1)))
% ;
% IsReturn = known_callee(Label),
% code_util__extract_proc_label_from_label(Label,
% ProcLabel),
% (
% ProcLabel = proc(ModuleName, _, _, _, _, _)
% ;
% ProcLabel = special_proc(ModuleName, _, _,
% _, _, _)
% ),
% DataAddr = data_addr(ModuleName, proc_layout(Label)),
% CalleeRval = yes(const(data_addr_const(DataAddr)))
% )
% )),
list__map(ProjectLineNos, FlatLineNoList, LineNoRvals),
stack_layout__get_next_cell_number(LineNoVectorCellNum,
LayoutInfo1, LayoutInfo2),
Reuse = no,
LineNoVector = create(0, LineNoRvals,
uniform(yes(int_least16)), must_be_static,
LineNoVectorCellNum, "line_number_vector", Reuse),
list__map(ProjectLabels, FlatLineNoList, LabelRvals),
stack_layout__get_next_cell_number(LabelsVectorCellNum,
LayoutInfo2, LayoutInfo3),
LabelsVector = create(0, LabelRvals,
uniform(yes(data_ptr)), must_be_static,
LabelsVectorCellNum, "label_vector", Reuse),
% We do not include the callees vector in the table because it makes references
% to the proc layouts of procedures from other modules without knowing whether
% those modules were compiled with debugging. This works only if all procedures
% always have a proc layout structure, which we don't want to require yet.
%
% Callees vectors would allow us to use faster code to check at every event
% whether a breakpoint applies to that event, in the usual case that no context
% breakpoint is on a line contains a higher order call. Instead of always
% searching a separate data structure, as we now do, to check for the
% applicability of context breakpoints, the code could search this data
% structure only if the proc layout matched the proc layout of the caller
% Since we already search a table of proc layouts in order to check for plain,
% non-context breakpoints on procedures, this would incur no extra cost
% in most cases.
%
% list__map(ProjectCallees, FlatLineNoList, CalleeRvals),
% stack_layout__get_next_cell_number(CalleesVectorCellNum,
% LayoutInfo3, LayoutInfo4),
% CalleesVector = create(0, CalleeRvals,
% uniform(no), must_be_static,
% CalleesVectorCellNum, "callee_vector", Reuse),
SourceFileRvals = [
yes(const(string_const(FileName))),
yes(const(int_const(VectorLength))),
yes(LineNoVector),
yes(LabelsVector)
% yes(CalleesVector)
],
stack_layout__get_next_cell_number(SourceFileVectorCellNum,
LayoutInfo3, LayoutInfo),
SourceFileVector = create(0, SourceFileRvals,
initial([1 - yes(string), 1 - yes(integer),
2 - yes(data_ptr)], none),
must_be_static,
SourceFileVectorCellNum, "source_file_vector", Reuse).
:- pred stack_layout__flatten_label_table(
assoc_list(int, list(line_no_info))::in,
assoc_list(int, line_no_info)::in,
assoc_list(int, line_no_info)::out) is det.
stack_layout__flatten_label_table([], RevList, List) :-
list__reverse(RevList, List).
stack_layout__flatten_label_table([LineNo - LinesInfos | Lines],
RevList0, List) :-
list__foldl(stack_layout__add_line_no(LineNo), LinesInfos,
RevList0, RevList1),
stack_layout__flatten_label_table(Lines, RevList1, List).
:- pred stack_layout__add_line_no(int::in, line_no_info::in,
assoc_list(int, line_no_info)::in,
assoc_list(int, line_no_info)::out) is det.
stack_layout__add_line_no(LineNo, LineInfo, RevList0, RevList) :-
RevList = [LineNo - LineInfo | RevList0].
%---------------------------------------------------------------------------%
% Construct the layouts that concern a single procedure:
% the procedure-specific layout and the layouts of the labels
% inside that procedure. Also update the module-wide label table
% with the labels defined in this procedure.
:- pred stack_layout__construct_layouts(proc_layout_info::in,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_layouts(ProcLayoutInfo) -->
{ ProcLayoutInfo = proc_layout_info(EntryLabel, Detism, StackSlots,
SuccipLoc, EvalMethod, MaybeCallLabel, MaxTraceReg,
Goal, InstMap, TraceSlotInfo, ForceProcIdLayout,
VarSet, VarTypes, InternalMap) },
{ map__to_assoc_list(InternalMap, Internals) },
stack_layout__set_cur_proc_named_vars(map__init),
list__foldl(stack_layout__construct_internal_layout(EntryLabel),
Internals),
stack_layout__get_cur_proc_named_vars(NamedVars),
stack_layout__get_label_tables(LabelTables0),
{ list__foldl(stack_layout__update_label_table, Internals,
LabelTables0, LabelTables) },
stack_layout__set_label_tables(LabelTables),
stack_layout__construct_proc_layout(EntryLabel, Detism, StackSlots,
SuccipLoc, EvalMethod, MaybeCallLabel, MaxTraceReg,
Goal, InstMap, TraceSlotInfo, ForceProcIdLayout,
VarSet, VarTypes, NamedVars).
%---------------------------------------------------------------------------%
% Add the given label to the module-wide label tables.
:- pred stack_layout__update_label_table(pair(label, internal_layout_info)::in,
map(string, label_table)::in, map(string, label_table)::out) is det.
stack_layout__update_label_table(Label - InternalInfo,
LabelTables0, LabelTables) :-
InternalInfo = internal_layout_info(Port, _, Return),
(
Return = yes(return_layout_info(TargetsContexts, _)),
stack_layout__find_valid_return_context(TargetsContexts,
Target, Context, _GoalPath)
->
( Target = label(TargetLabel) ->
IsReturn = known_callee(TargetLabel)
;
IsReturn = unknown_callee
),
stack_layout__update_label_table_2(Label, Context, IsReturn,
LabelTables0, LabelTables)
;
Port = yes(trace_port_layout_info(Context, _, _, _)),
stack_layout__context_is_valid(Context)
->
stack_layout__update_label_table_2(Label, Context,
not_a_return, LabelTables0, LabelTables)
;
LabelTables = LabelTables0
).
:- pred stack_layout__update_label_table_2(label::in, context::in,
is_label_return::in,
map(string, label_table)::in, map(string, label_table)::out) is det.
stack_layout__update_label_table_2(Label, Context, IsReturn,
LabelTables0, LabelTables) :-
term__context_file(Context, File),
term__context_line(Context, Line),
( map__search(LabelTables0, File, LabelTable0) ->
( map__search(LabelTable0, Line, LineInfo0) ->
LineInfo = [Label - IsReturn | LineInfo0],
map__det_update(LabelTable0, Line, LineInfo,
LabelTable),
map__det_update(LabelTables0, File, LabelTable,
LabelTables)
;
LineInfo = [Label - IsReturn],
map__det_insert(LabelTable0, Line, LineInfo,
LabelTable),
map__det_update(LabelTables0, File, LabelTable,
LabelTables)
)
; stack_layout__context_is_valid(Context) ->
map__init(LabelTable0),
LineInfo = [Label - IsReturn],
map__det_insert(LabelTable0, Line, LineInfo, LabelTable),
map__det_insert(LabelTables0, File, LabelTable, LabelTables)
;
% We don't have a valid context for this label,
% so we don't enter it into any tables.
LabelTables = LabelTables0
).
:- pred stack_layout__find_valid_return_context(
assoc_list(code_addr, pair(prog_context, goal_path))::in,
code_addr::out, prog_context::out, goal_path::out) is semidet.
stack_layout__find_valid_return_context([Target - (Context - GoalPath)
| TargetContexts], ValidTarget, ValidContext, ValidGoalPath) :-
( stack_layout__context_is_valid(Context) ->
ValidTarget = Target,
ValidContext = Context,
ValidGoalPath = GoalPath
;
stack_layout__find_valid_return_context(TargetContexts,
ValidTarget, ValidContext, ValidGoalPath)
).
:- pred stack_layout__context_is_valid(prog_context::in) is semidet.
stack_layout__context_is_valid(Context) :-
term__context_file(Context, File),
term__context_line(Context, Line),
File \= "",
Line > 0.
%---------------------------------------------------------------------------%
% Construct a procedure-specific layout.
:- pred stack_layout__construct_proc_layout(label::in, determinism::in,
int::in, maybe(int)::in, eval_method::in, maybe(label)::in, int::in,
hlds_goal::in, instmap::in, trace_slot_info::in, bool::in,
prog_varset::in, vartypes::in, map(int, string)::in,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_proc_layout(EntryLabel, Detism, StackSlots,
MaybeSuccipLoc, EvalMethod, MaybeCallLabel, MaxTraceReg, Goal,
InstMap, TraceSlotInfo, ForceProcIdLayout, VarSet, VarTypes,
UsedVarNames) -->
{
MaybeSuccipLoc = yes(Location0)
->
Location = Location0
;
% Use a dummy location of -1 if there is
% no succip on the stack.
%
% This case can arise in two circumstances.
% First, procedures that use the nondet stack
% have a special slot for the succip, so the
% succip is not stored in a general purpose
% slot. Second, procedures that use the det stack
% but which do not call other procedures
% do not save the succip on the stack.
%
% The tracing system does not care about the
% location of the saved succip. The accurate
% garbage collector does. It should know from
% the determinism that the procedure uses the
% nondet stack, which takes care of the first
% possibility above. Procedures that do not call
% other procedures do not establish resumption
% points and thus agc is not interested in them.
% As far as stack dumps go, calling error counts
% as a call, so any procedure that may call error
% (directly or indirectly) will have its saved succip
% location recorded, so the stack dump will work.
%
% Future uses of stack layouts will have to have
% similar constraints.
Location = -1
},
stack_layout__get_static_code_addresses(StaticCodeAddr),
{ StaticCodeAddr = yes ->
CodeAddrRval = const(code_addr_const(label(EntryLabel)))
;
% This is a lie; the slot will be filled in for real
% at initialization time.
CodeAddrRval = const(int_const(0))
},
{ determinism_components(Detism, _, at_most_many) ->
SuccipLval = framevar(Location)
;
SuccipLval = stackvar(Location)
},
{ stack_layout__represent_locn_as_int(direct(SuccipLval), SuccipRval) },
{ StackSlotsRval = const(int_const(StackSlots)) },
{ stack_layout__represent_determinism(Detism, DetismRval) },
{ TraversalRvals = [yes(CodeAddrRval), yes(SuccipRval),
yes(StackSlotsRval), yes(DetismRval)] },
{ TraversalArgTypes = [1 - yes(code_ptr), 1 - yes(uint_least32),
2 - yes(uint_least16)] },
stack_layout__get_procid_stack_layout(ProcIdLayout0),
{ bool__or(ProcIdLayout0, ForceProcIdLayout, ProcIdLayout) },
( { ProcIdLayout = yes } ->
{ code_util__extract_proc_label_from_label(EntryLabel,
ProcLabel) },
{ stack_layout__construct_procid_rvals(ProcLabel, IdRvals,
IdArgTypes) },
stack_layout__construct_trace_layout(EvalMethod, MaybeCallLabel,
MaxTraceReg, Goal, InstMap, TraceSlotInfo, VarSet,
VarTypes, UsedVarNames, TraceRvals, TraceArgTypes),
{ list__append(IdRvals, TraceRvals, IdTraceRvals) },
{ IdTraceArgTypes = initial(IdArgTypes, TraceArgTypes) }
;
% Indicate the absence of the proc id and exec trace fields.
{ IdTraceRvals = [yes(const(int_const(-1)))] },
{ IdTraceArgTypes = initial([1 - yes(integer)], none) }
),
{ Exported = no }, % XXX With the new profiler, we will need to
% set this to `yes' if the profiling option
% is given and if the procedure is exported.
% Beware however that linkage/2 in llds_out.m
% assumes that this is `no'.
{ list__append(TraversalRvals, IdTraceRvals, Rvals) },
{ ArgTypes = initial(TraversalArgTypes, IdTraceArgTypes) },
stack_layout__get_module_name(ModuleName),
{ CDataName = proc_layout(EntryLabel) },
{ CData = comp_gen_c_data(ModuleName, CDataName, Exported,
Rvals, ArgTypes, []) },
stack_layout__add_proc_layout_data(CData, CDataName, EntryLabel).
:- pred stack_layout__construct_trace_layout(eval_method::in, maybe(label)::in,
int::in, hlds_goal::in, instmap::in, trace_slot_info::in,
prog_varset::in, vartypes::in, map(int, string)::in,
list(maybe(rval))::out, create_arg_types::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_trace_layout(EvalMethod, MaybeCallLabel, MaxTraceReg,
Goal, InstMap, TraceSlotInfo, VarSet, VarTypes, UsedVarNameMap,
Rvals, ArgTypes) -->
stack_layout__get_trace_stack_layout(TraceLayout),
( { TraceLayout = yes } ->
stack_layout__construct_var_name_vector(VarSet, UsedVarNameMap,
VarNameCount, VarNameVector),
stack_layout__get_trace_level(TraceLevel),
stack_layout__get_trace_suppress(TraceSuppress),
{ trace_needs_proc_body_reps(TraceLevel, TraceSuppress)
= BodyReps },
(
{ BodyReps = no },
{ GoalRepRval = yes(const(int_const(0))) }
;
{ BodyReps = yes },
stack_layout__get_module_info(ModuleInfo0),
{ prog_rep__represent_goal(Goal, InstMap, VarTypes,
ModuleInfo0, GoalRep) },
{ type_to_univ(GoalRep, GoalRepUniv) },
stack_layout__get_cell_counter(CellCounter0),
{ static_term__term_to_rval(GoalRepUniv, GoalRepRval,
CellCounter0, CellCounter) },
stack_layout__set_cell_counter(CellCounter)
),
stack_layout__get_module_info(ModuleInfo),
{
( MaybeCallLabel = yes(CallLabel) ->
module_info_name(ModuleInfo, ModuleName),
CallRval = yes(const(data_addr_const(
data_addr(ModuleName,
internal_layout(CallLabel)))))
;
error("stack_layout__construct_trace_layout: call label not present")
),
ModuleRval = yes(const(data_addr_const(
data_addr(ModuleName, module_layout)))),
MaxTraceRegRval = yes(const(int_const(MaxTraceReg))),
TraceSlotInfo = trace_slot_info(MaybeFromFullSlot,
MaybeDeclSlots, MaybeTrailSlots, MaybeMaxfrSlot,
MaybeCallTableSlot),
EvalMethodInt =
stack_layout__represent_eval_method(EvalMethod),
EvalMethodRval = yes(const(int_const(EvalMethodInt))),
( MaybeFromFullSlot = yes(FromFullSlot) ->
FromFullRval = yes(const(int_const(FromFullSlot)))
;
FromFullRval = yes(const(int_const(-1)))
),
( MaybeTrailSlots = yes(FirstTrailSlot) ->
TrailRval = yes(const(int_const(FirstTrailSlot)))
;
TrailRval = yes(const(int_const(-1)))
),
( MaybeMaxfrSlot = yes(MaxfrSlot) ->
MaxfrRval = yes(const(int_const(MaxfrSlot)))
;
MaxfrRval = yes(const(int_const(-1)))
),
( MaybeCallTableSlot = yes(CallTableSlot) ->
CallTableRval = yes(const(int_const(CallTableSlot)))
;
CallTableRval = yes(const(int_const(-1)))
),
( MaybeDeclSlots = yes(DeclSlot) ->
DeclRval = yes(const(int_const(DeclSlot)))
;
DeclRval = yes(const(int_const(-1)))
),
Rvals = [CallRval, ModuleRval, GoalRepRval, VarNameVector,
VarNameCount, MaxTraceRegRval,
FromFullRval, TrailRval, MaxfrRval,
EvalMethodRval, CallTableRval, DeclRval],
ArgTypes = initial([
4 - yes(data_ptr),
2 - yes(int_least16),
6 - yes(int_least8)],
none)
}
;
% Indicate the absence of the trace layout fields.
{ Rvals = [yes(const(int_const(0)))] },
{ ArgTypes = initial([1 - yes(integer)], none) }
).
:- func stack_layout__represent_eval_method(eval_method) = int.
stack_layout__represent_eval_method(eval_normal) = 0.
stack_layout__represent_eval_method(eval_loop_check) = 1.
stack_layout__represent_eval_method(eval_memo) = 2.
stack_layout__represent_eval_method(eval_minimal) = 3.
:- pred stack_layout__construct_var_name_vector(prog_varset::in,
map(int, string)::in, maybe(rval)::out, maybe(rval)::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_var_name_vector(VarSet, UsedVarNameMap, Count, Vector)
-->
stack_layout__get_trace_level(TraceLevel),
stack_layout__get_trace_suppress(TraceSuppress),
{ trace_needs_all_var_names(TraceLevel, TraceSuppress)
= NeedsAllNames },
(
{ NeedsAllNames = yes },
{ varset__var_name_list(VarSet, VarNameList) },
{ list__map(stack_layout__convert_var_name_to_int,
VarNameList, VarNames) }
;
{ NeedsAllNames = no },
{ map__to_assoc_list(UsedVarNameMap, VarNames) }
),
(
{ VarNames = [FirstVar - _ | _] }
->
stack_layout__construct_var_name_rvals(VarNames, 1,
FirstVar, MaxVar, Rvals),
{ Count = yes(const(int_const(MaxVar))) },
stack_layout__get_cell_counter(C0),
{ counter__allocate(CNum, C0, C) },
stack_layout__set_cell_counter(C),
{ Reuse = no },
{ Vector = yes(create(0, Rvals, uniform(yes(uint_least16)),
must_be_static, CNum,
"stack_layout_var_names_vector", Reuse)) }
;
{ Count = yes(const(int_const(0))) },
{ Vector = yes(const(int_const(0))) }
).
:- pred stack_layout__construct_var_name_rvals(assoc_list(int, string)::in,
int::in, int::in, int::out, list(maybe(rval))::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_var_name_rvals([], _CurNum, MaxNum, MaxNum, []) --> [].
stack_layout__construct_var_name_rvals([Var - Name | VarNames1], CurNum,
MaxNum0, MaxNum, MaybeRvals) -->
( { Var = CurNum } ->
stack_layout__lookup_string_in_table(Name, Offset),
{ Rval = const(int_const(Offset)) },
{ MaxNum1 = Var },
{ VarNames = VarNames1 }
;
{ Rval = const(int_const(0)) },
{ MaxNum1 = MaxNum0 },
{ VarNames = [Var - Name | VarNames1] }
),
stack_layout__construct_var_name_rvals(VarNames, CurNum + 1,
MaxNum1, MaxNum, MaybeRvals1),
{ MaybeRvals = [yes(Rval) | MaybeRvals1] }.
%---------------------------------------------------------------------------%
:- pred stack_layout__construct_procid_rvals(proc_label::in,
list(maybe(rval))::out, initial_arg_types::out) is det.
stack_layout__construct_procid_rvals(ProcLabel, Rvals, ArgTypes) :-
(
ProcLabel = proc(DefModule, PredFunc, DeclModule,
PredName, Arity, ProcId),
stack_layout__represent_pred_or_func(PredFunc, PredFuncCode),
prog_out__sym_name_to_string(DefModule, DefModuleString),
prog_out__sym_name_to_string(DeclModule, DeclModuleString),
proc_id_to_int(ProcId, Mode),
Rvals = [
yes(const(int_const(PredFuncCode))),
yes(const(string_const(DeclModuleString))),
yes(const(string_const(DefModuleString))),
yes(const(string_const(PredName))),
yes(const(int_const(Arity))),
yes(const(int_const(Mode)))
],
ArgTypes = [1 - yes(integer), 3 - yes(string),
2 - yes(int_least16)]
;
ProcLabel = special_proc(DefModule, PredName, TypeModule,
TypeName, Arity, ProcId),
prog_out__sym_name_to_string(TypeModule, TypeModuleString),
prog_out__sym_name_to_string(DefModule, DefModuleString),
proc_id_to_int(ProcId, Mode),
Rvals = [
yes(const(string_const(TypeName))),
yes(const(string_const(TypeModuleString))),
yes(const(string_const(DefModuleString))),
yes(const(string_const(PredName))),
yes(const(int_const(Arity))),
yes(const(int_const(Mode)))
],
ArgTypes = [4 - yes(string), 2 - yes(int_least16)]
).
:- pred stack_layout__represent_pred_or_func(pred_or_func::in, int::out) is det.
stack_layout__represent_pred_or_func(predicate, 0).
stack_layout__represent_pred_or_func(function, 1).
%---------------------------------------------------------------------------%
% Construct the layout describing a single internal label.
:- pred stack_layout__construct_internal_layout(label::in,
pair(label, internal_layout_info)::in,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_internal_layout(EntryLabel, Label - Internal) -->
% generate the required rvals
stack_layout__get_module_name(ModuleName),
{ EntryAddrRval = const(data_addr_const(data_addr(ModuleName,
proc_layout(EntryLabel)))) },
stack_layout__construct_internal_rvals(Internal, VarInfoRvals,
VarInfoRvalTypes),
{ LayoutRvals = [yes(EntryAddrRval) | VarInfoRvals] },
{ ArgTypes = initial([1 - no], VarInfoRvalTypes) },
{ CData = comp_gen_c_data(ModuleName, internal_layout(Label),
no, LayoutRvals, ArgTypes, []) },
stack_layout__add_internal_layout_data(CData, Label).
% Construct the rvals required for accurate GC or for tracing.
:- pred stack_layout__construct_internal_rvals(internal_layout_info::in,
list(maybe(rval))::out, create_arg_types::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_internal_rvals(Internal, RvalList, ArgTypes) -->
{ Internal = internal_layout_info(Trace, Resume, Return) },
(
{ Trace = no },
{ set__init(TraceLiveVarSet) },
{ map__init(TraceTypeVarMap) }
;
{ Trace = yes(trace_port_layout_info(_, _, _, TraceLayout)) },
{ TraceLayout = layout_label_info(TraceLiveVarSet,
TraceTypeVarMap) }
),
{ TraceArgTypes = [2 - yes(int_least16)] },
{
Resume = no,
set__init(ResumeLiveVarSet),
map__init(ResumeTypeVarMap)
;
Resume = yes(ResumeLayout),
ResumeLayout = layout_label_info(ResumeLiveVarSet,
ResumeTypeVarMap)
},
(
{ Trace = yes(trace_port_layout_info(_, Port, GoalPath, _)) },
{ Return = no },
{ llds_out__trace_port_to_num(Port, PortNum) },
{ trace__path_to_string(GoalPath, GoalPathStr) },
stack_layout__lookup_string_in_table(GoalPathStr, GoalPathNum)
;
{ Trace = no },
{ Return = yes(ReturnInfo) },
% We only ever use the port fields of these layout
% structures when we process exception events.
% (Since exception events are interface events,
% the goal path field is not meaningful then.)
{ llds_out__trace_port_to_num(exception, PortNum) },
% We only ever use the goal path fields of these
% layout structures when we process "fail" commands
% in the debugger.
{ ReturnInfo = return_layout_info(TargetsContexts, _) },
(
{ stack_layout__find_valid_return_context(
TargetsContexts, _, _, GoalPath) }
->
{ trace__path_to_string(GoalPath, GoalPathStr) },
stack_layout__lookup_string_in_table(GoalPathStr,
GoalPathNum)
;
% If tracing is enabled, then exactly one of
% the calls for which this label is a return
% site would have had a valid context. If none
% do, then tracing is not enabled, and
% therefore the goal path of this label will
% not be accessed.
{ GoalPathNum = 0 }
)
;
{ Trace = no },
{ Return = no },
{ PortNum = -1 },
{ GoalPathNum = -1 }
;
{ Trace = yes(_) },
{ Return = yes(_) },
{ error("label has both trace and return layout info") }
),
{ TraceRvals = [yes(const(int_const(PortNum))),
yes(const(int_const(GoalPathNum)))] },
stack_layout__get_agc_stack_layout(AgcStackLayout),
{
Return = no,
set__init(ReturnLiveVarSet),
map__init(ReturnTypeVarMap)
;
Return = yes(return_layout_info(_, ReturnLayout)),
ReturnLayout = layout_label_info(ReturnLiveVarSet0,
ReturnTypeVarMap0),
( AgcStackLayout = yes ->
ReturnLiveVarSet = ReturnLiveVarSet0,
ReturnTypeVarMap = ReturnTypeVarMap0
;
% This set of variables must be for uplevel printing
% in execution tracing, so we are interested only
% in (a) variables, not temporaries, (b) only named
% variables, and (c) only those on the stack, not
% the return values.
set__to_sorted_list(ReturnLiveVarSet0,
ReturnLiveVarList0),
stack_layout__select_trace_return(
ReturnLiveVarList0, ReturnTypeVarMap0,
ReturnLiveVarList, ReturnTypeVarMap),
set__list_to_set(ReturnLiveVarList, ReturnLiveVarSet)
)
},
(
{ Trace = no },
{ Resume = no },
{ Return = no }
->
% The -1 says that there is no info available
% about variables at this label. (Zero would say
% that there are no variables live at this label,
% which may not be true.)
{ RvalList = [yes(const(int_const(-1)))] },
{ ArgTypes = initial([1 - yes(integer)], none) }
;
% XXX ignore differences in insts inside var_infos
{ set__union(TraceLiveVarSet, ResumeLiveVarSet, LiveVarSet0) },
{ set__union(LiveVarSet0, ReturnLiveVarSet, LiveVarSet) },
{ map__union(set__intersect, TraceTypeVarMap, ResumeTypeVarMap,
TypeVarMap0) },
{ map__union(set__intersect, TypeVarMap0, ReturnTypeVarMap,
TypeVarMap) },
stack_layout__construct_livelval_rvals(LiveVarSet,
TypeVarMap, LivelvalRvalList, LivelvalArgTypes),
{ append(TraceRvals, LivelvalRvalList, RvalList) },
{ ArgTypes = initial(TraceArgTypes, LivelvalArgTypes) }
).
%---------------------------------------------------------------------------%
:- pred stack_layout__construct_livelval_rvals(set(var_info)::in,
map(tvar, set(layout_locn))::in, list(maybe(rval))::out,
create_arg_types::out, stack_layout_info::in, stack_layout_info::out)
is det.
stack_layout__construct_livelval_rvals(LiveLvalSet, TVarLocnMap,
RvalList, ArgTypes) -->
{ set__to_sorted_list(LiveLvalSet, LiveLvals) },
{ list__length(LiveLvals, Length) },
( { Length > 0 } ->
{ stack_layout__sort_livevals(LiveLvals, SortedLiveLvals) },
stack_layout__construct_liveval_arrays(SortedLiveLvals,
VarLengthRval, LiveValRval, NamesRval),
stack_layout__get_cell_counter(C0),
{ stack_layout__construct_tvar_vector(TVarLocnMap,
TypeParamRval, C0, C) },
stack_layout__set_cell_counter(C),
{ RvalList = [yes(VarLengthRval), yes(LiveValRval),
yes(NamesRval), yes(TypeParamRval)] },
{ ArgTypes = initial([1 - yes(integer), 3 - yes(data_ptr)],
none) }
;
{ RvalList = [yes(const(int_const(0)))] },
{ ArgTypes = initial([1 - yes(integer)], none) }
).
:- pred stack_layout__construct_tvar_vector(map(tvar, set(layout_locn))::in,
rval::out, counter::in, counter::out) is det.
stack_layout__construct_tvar_vector(TVarLocnMap, TypeParamRval, C0, C) :-
( map__is_empty(TVarLocnMap) ->
TypeParamRval = const(int_const(0)),
C = C0
;
stack_layout__construct_tvar_rvals(TVarLocnMap,
Vector, VectorTypes),
counter__allocate(CNum, C0, C),
Reuse = no,
TypeParamRval = create(0, Vector, VectorTypes,
must_be_static, CNum,
"stack_layout_type_param_locn_vector", Reuse)
).
:- pred stack_layout__construct_tvar_rvals(map(tvar, set(layout_locn))::in,
list(maybe(rval))::out, create_arg_types::out) is det.
stack_layout__construct_tvar_rvals(TVarLocnMap, Vector, VectorTypes) :-
map__to_assoc_list(TVarLocnMap, TVarLocns),
stack_layout__construct_type_param_locn_vector(TVarLocns, 1,
TypeParamLocs),
list__length(TypeParamLocs, TypeParamsLength),
LengthRval = const(int_const(TypeParamsLength)),
Vector = [yes(LengthRval) | TypeParamLocs],
VectorTypes = uniform(yes(uint_least32)).
%---------------------------------------------------------------------------%
% Given a list of var_infos and the type variables that occur in them,
% select only the var_infos that may be required by up-level printing
% in the trace-based debugger. At the moment the typeinfo list we
% return may be bigger than necessary, but this does not compromise
% correctness; we do this to avoid having to scan the types of all
% the selected var_infos.
:- pred stack_layout__select_trace_return(
list(var_info)::in, map(tvar, set(layout_locn))::in,
list(var_info)::out, map(tvar, set(layout_locn))::out) is det.
stack_layout__select_trace_return(Infos, TVars, TraceReturnInfos, TVars) :-
IsNamedReturnVar = (pred(LocnInfo::in) is semidet :-
LocnInfo = var_info(Locn, LvalType),
LvalType = var(_, Name, _, _),
Name \= "",
( Locn = direct(Lval) ; Locn = indirect(Lval, _)),
( Lval = stackvar(_) ; Lval = framevar(_) )
),
list__filter(IsNamedReturnVar, Infos, TraceReturnInfos).
% Given a list of var_infos, put the ones that tracing can be
% interested in (whether at an internal port or for uplevel printing)
% in a block at the start, and both this block and the remaining
% block. The division into two blocks can make the job of the
% debugger somewhat easier, the sorting of the named var block makes
% the output of the debugger look nicer, and the sorting of the both
% blocks makes it more likely that different labels' layout structures
% will have common parts (e.g. name vectors) that can be optimized
% by llds_common.m.
:- pred stack_layout__sort_livevals(list(var_info)::in, list(var_info)::out)
is det.
stack_layout__sort_livevals(OrigInfos, FinalInfos) :-
IsNamedVar = (pred(LvalInfo::in) is semidet :-
LvalInfo = var_info(_Lval, LvalType),
LvalType = var(_, Name, _, _),
Name \= ""
),
list__filter(IsNamedVar, OrigInfos, NamedVarInfos0, OtherInfos0),
CompareVarInfos = (pred(Var1::in, Var2::in, Result::out) is det :-
Var1 = var_info(Lval1, LiveType1),
Var2 = var_info(Lval2, LiveType2),
stack_layout__get_name_from_live_value_type(LiveType1, Name1),
stack_layout__get_name_from_live_value_type(LiveType2, Name2),
compare(NameResult, Name1, Name2),
( NameResult = (=) ->
compare(Result, Lval1, Lval2)
;
Result = NameResult
)
),
list__sort(CompareVarInfos, NamedVarInfos0, NamedVarInfos),
list__sort(CompareVarInfos, OtherInfos0, OtherInfos),
list__append(NamedVarInfos, OtherInfos, FinalInfos).
:- pred stack_layout__get_name_from_live_value_type(live_value_type::in,
string::out) is det.
stack_layout__get_name_from_live_value_type(LiveType, Name) :-
( LiveType = var(_, NamePrime, _, _) ->
Name = NamePrime
;
Name = ""
).
%---------------------------------------------------------------------------%
% Given a association list of type variables and their locations
% sorted on the type variables, represent them in an array of
% location descriptions indexed by the type variable. The next
% slot to fill is given by the second argument.
:- pred stack_layout__construct_type_param_locn_vector(
assoc_list(tvar, set(layout_locn))::in,
int::in, list(maybe(rval))::out) is det.
stack_layout__construct_type_param_locn_vector([], _, []).
stack_layout__construct_type_param_locn_vector([TVar - Locns | TVarLocns],
CurSlot, Vector) :-
term__var_to_int(TVar, TVarNum),
NextSlot is CurSlot + 1,
( TVarNum = CurSlot ->
( set__remove_least(Locns, LeastLocn, _) ->
Locn = LeastLocn
;
error("tvar has empty set of locations")
),
stack_layout__represent_locn_as_int(Locn, Rval),
stack_layout__construct_type_param_locn_vector(TVarLocns,
NextSlot, VectorTail),
Vector = [yes(Rval) | VectorTail]
; TVarNum > CurSlot ->
stack_layout__construct_type_param_locn_vector(
[TVar - Locns | TVarLocns], NextSlot, VectorTail),
% This slot will never be referred to.
Vector = [yes(const(int_const(0))) | VectorTail]
;
error("unsorted tvars in construct_type_param_locn_vector")
).
%---------------------------------------------------------------------------%
:- type liveval_array_info
---> live_array_info(
rval, % Rval describing the location of a live value.
% Always of llds type uint_least8 if the cell
% is in the byte array, and uint_least32 if it
% is in the int array.
rval, % Rval describing the type of a live value.
llds_type, % The llds type of the rval describing the
% type.
rval % Rval describing the variable number of a
% live value. Always of llds type uint_least16.
% Contains zero if the live value is not
% a variable. Contains the hightest possible
% uint_least16 value if the variable number
% does not fit in 16 bits.
).
% Construct a vector of (locn, live_value_type) pairs,
% and a corresponding vector of variable names.
:- pred stack_layout__construct_liveval_arrays(list(var_info)::in,
rval::out, rval::out, rval::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_liveval_arrays(VarInfos, LengthRval,
TypeLocnVector, NumVector) -->
{ int__pow(2, stack_layout__short_count_bits, BytesLimit) },
stack_layout__construct_liveval_array_infos(VarInfos,
0, BytesLimit, IntArrayInfo, ByteArrayInfo),
{ list__length(IntArrayInfo, IntArrayLength) },
{ list__length(ByteArrayInfo, ByteArrayLength) },
{ list__append(IntArrayInfo, ByteArrayInfo, AllArrayInfo) },
{ EncodedLength is IntArrayLength << stack_layout__short_count_bits
+ ByteArrayLength },
{ LengthRval = const(int_const(EncodedLength)) },
{ SelectLocns = (pred(ArrayInfo::in, MaybeLocnRval::out) is det :-
ArrayInfo = live_array_info(LocnRval, _, _, _),
MaybeLocnRval = yes(LocnRval)
) },
{ SelectTypes = (pred(ArrayInfo::in, MaybeTypeRval::out) is det :-
ArrayInfo = live_array_info(_, TypeRval, _, _),
MaybeTypeRval = yes(TypeRval)
) },
{ SelectTypeTypes = (pred(ArrayInfo::in, CountTypeType::out) is det :-
ArrayInfo = live_array_info(_, _, TypeType, _),
CountTypeType = 1 - yes(TypeType)
) },
{ AddRevNums = (pred(ArrayInfo::in, NumRvals0::in, NumRvals::out)
is det :-
ArrayInfo = live_array_info(_, _, _, NumRval),
NumRvals = [yes(NumRval) | NumRvals0]
) },
{ list__map(SelectTypes, AllArrayInfo, AllTypes) },
{ list__map(SelectTypeTypes, AllArrayInfo, AllTypeTypes) },
{ list__map(SelectLocns, IntArrayInfo, IntLocns) },
{ list__map(SelectLocns, ByteArrayInfo, ByteLocns) },
{ list__append(IntLocns, ByteLocns, AllLocns) },
{ list__append(AllTypes, AllLocns, TypeLocnVectorRvals) },
{ LocnArgTypes = [IntArrayLength - yes(uint_least32),
ByteArrayLength - yes(uint_least8)] },
{ list__append(AllTypeTypes, LocnArgTypes, ArgTypes) },
stack_layout__get_next_cell_number(CNum1),
{ Reuse = no },
{ TypeLocnVector = create(0, TypeLocnVectorRvals,
initial(ArgTypes, none), must_be_static, CNum1,
"stack_layout_locn_vector", Reuse) },
stack_layout__get_trace_stack_layout(TraceStackLayout),
( { TraceStackLayout = yes } ->
{ list__foldl(AddRevNums, AllArrayInfo,
[], RevVarNumRvals) },
{ list__reverse(RevVarNumRvals, VarNumRvals) },
stack_layout__get_next_cell_number(CNum2),
{ NumVector = create(0, VarNumRvals,
uniform(yes(uint_least16)), must_be_static,
CNum2, "stack_layout_num_name_vector", Reuse) }
;
{ NumVector = const(int_const(0)) }
).
:- pred stack_layout__construct_liveval_array_infos(list(var_info)::in,
int::in, int::in,
list(liveval_array_info)::out, list(liveval_array_info)::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_liveval_array_infos([], _, _, [], []) --> [].
stack_layout__construct_liveval_array_infos([VarInfo | VarInfos],
BytesSoFar, BytesLimit, IntVars, ByteVars) -->
{ VarInfo = var_info(Locn, LiveValueType) },
stack_layout__represent_live_value_type(LiveValueType, TypeRval,
TypeRvalType),
stack_layout__construct_liveval_num_rval(VarInfo, VarNumRval),
(
{ BytesSoFar < BytesLimit },
{ stack_layout__represent_locn_as_byte(Locn, LocnByteRval) }
->
{ Var = live_array_info(LocnByteRval, TypeRval, TypeRvalType,
VarNumRval) },
stack_layout__construct_liveval_array_infos(VarInfos,
BytesSoFar + 1, BytesLimit, IntVars, ByteVars0),
{ ByteVars = [Var | ByteVars0] }
;
{ stack_layout__represent_locn_as_int(Locn, LocnRval) },
{ Var = live_array_info(LocnRval, TypeRval, TypeRvalType,
VarNumRval) },
stack_layout__construct_liveval_array_infos(VarInfos,
BytesSoFar, BytesLimit, IntVars0, ByteVars),
{ IntVars = [Var | IntVars0] }
).
:- pred stack_layout__construct_liveval_num_rval(var_info::in, rval::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__construct_liveval_num_rval(var_info(_, LiveValueType),
VarNumRval, SLI0, SLI) :-
( LiveValueType = var(Var, Name, _, _) ->
stack_layout__convert_var_to_int(Var, VarNum),
VarNumRval = const(int_const(VarNum)),
stack_layout__get_cur_proc_named_vars(NamedVars0, SLI0, SLI1),
( map__insert(NamedVars0, VarNum, Name, NamedVars) ->
stack_layout__set_cur_proc_named_vars(NamedVars,
SLI1, SLI)
;
% The variable has been put into the map already at
% another label.
SLI = SLI1
)
;
VarNumRval = const(int_const(0)),
SLI = SLI0
).
:- pred stack_layout__convert_var_name_to_int(pair(prog_var, string)::in,
pair(int, string)::out) is det.
stack_layout__convert_var_name_to_int(Var - Name, VarNum - Name) :-
stack_layout__convert_var_to_int(Var, VarNum).
:- pred stack_layout__convert_var_to_int(prog_var::in, int::out) is det.
stack_layout__convert_var_to_int(Var, VarNum) :-
term__var_to_int(Var, VarNum0),
% The variable number has to fit into two bytes.
% We reserve the largest such number (Limit)
% to mean that the variable number is too large
% to be represented. This ought not to happen,
% since compilation would be glacial at best
% for procedures with that many variables.
Limit = (1 << (2 * stack_layout__byte_bits)) - 1,
int__min(VarNum0, Limit, VarNum).
%---------------------------------------------------------------------------%
% The representation we build here should be kept in sync
% with runtime/mercury_ho_call.h, which contains macros to access
% the data structures we build here.
stack_layout__construct_closure_layout(ProcLabel, ClosureLayoutInfo,
Rvals, ArgTypes, C0, C) :-
stack_layout__construct_procid_rvals(ProcLabel, ProcIdRvals,
ProcIdTypes),
ClosureLayoutInfo = closure_layout_info(ClosureArgs,
TVarLocnMap),
stack_layout__construct_closure_arg_rvals(ClosureArgs,
ClosureArgRvals, ClosureArgTypes, C0, C1),
stack_layout__construct_tvar_vector(TVarLocnMap, TVarVectorRval,
C1, C),
TVarVectorRvals = [yes(TVarVectorRval)],
TVarVectorTypes = [1 - yes(data_ptr)],
list__append(TVarVectorRvals, ClosureArgRvals, LayoutRvals),
list__append(ProcIdRvals, LayoutRvals, Rvals),
ArgTypes = initial(ProcIdTypes, initial(TVarVectorTypes,
initial(ClosureArgTypes, none))).
:- pred stack_layout__construct_closure_arg_rvals(list(closure_arg_info)::in,
list(maybe(rval))::out, initial_arg_types::out,
counter::in, counter::out) is det.
stack_layout__construct_closure_arg_rvals(ClosureArgs, ClosureArgRvals,
ClosureArgTypes, C0, C) :-
list__map_foldl(stack_layout__construct_closure_arg_rval,
ClosureArgs, MaybeArgRvalsTypes, C0, C),
assoc_list__keys(MaybeArgRvalsTypes, MaybeArgRvals),
AddOne = (pred(Pair::in, CountLldsType::out) is det :-
Pair = _ - LldsType,
CountLldsType = 1 - yes(LldsType)
),
list__map(AddOne, MaybeArgRvalsTypes, ArgRvalTypes),
list__length(MaybeArgRvals, Length),
ClosureArgRvals = [yes(const(int_const(Length))) | MaybeArgRvals],
ClosureArgTypes = [1 - yes(integer) | ArgRvalTypes].
:- pred stack_layout__construct_closure_arg_rval(closure_arg_info::in,
pair(maybe(rval), llds_type)::out, counter::in, counter::out) is det.
stack_layout__construct_closure_arg_rval(ClosureArg,
yes(ArgRval) - ArgRvalType, C0, C) :-
ClosureArg = closure_arg_info(Type, _Inst),
% For a stack layout, we can treat all type variables as
% universally quantified. This is not the argument of a
% constructor, so we do not need to distinguish between type
% variables that are and aren't in scope; we can take the
% variable number directly from the procedure's tvar set.
ExistQTvars = [],
NumUnivQTvars = -1,
ll_pseudo_type_info__construct_typed_llds_pseudo_type_info(Type,
NumUnivQTvars, ExistQTvars, ArgRval, ArgRvalType, C0, C).
%---------------------------------------------------------------------------%
% Construct a representation of the type of a value.
%
% For values representing variables, this will be a pseudo_type_info
% describing the type of the variable.
%
% For the kinds of values used internally by the compiler,
% this will be a pointer to a specific type_ctor_info (acting as a
% type_info) defined by hand in builtin.m to stand for values of
% each such kind; one for succips, one for hps, etc.
:- pred stack_layout__represent_live_value_type(live_value_type, rval,
llds_type, stack_layout_info, stack_layout_info).
:- mode stack_layout__represent_live_value_type(in, out, out, in, out) is det.
stack_layout__represent_live_value_type(succip, Rval, data_ptr) -->
{ RttiTypeId = rtti_type_id(unqualified(""), "succip", 0) },
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
{ Rval = const(data_addr_const(DataAddr)) }.
stack_layout__represent_live_value_type(hp, Rval, data_ptr) -->
{ RttiTypeId = rtti_type_id(unqualified(""), "hp", 0) },
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
{ Rval = const(data_addr_const(DataAddr)) }.
stack_layout__represent_live_value_type(curfr, Rval, data_ptr) -->
{ RttiTypeId = rtti_type_id(unqualified(""), "curfr", 0) },
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
{ Rval = const(data_addr_const(DataAddr)) }.
stack_layout__represent_live_value_type(maxfr, Rval, data_ptr) -->
{ RttiTypeId = rtti_type_id(unqualified(""), "maxfr", 0) },
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
{ Rval = const(data_addr_const(DataAddr)) }.
stack_layout__represent_live_value_type(redofr, Rval, data_ptr) -->
{ RttiTypeId = rtti_type_id(unqualified(""), "redofr", 0) },
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
{ Rval = const(data_addr_const(DataAddr)) }.
stack_layout__represent_live_value_type(redoip, Rval, data_ptr) -->
{ RttiTypeId = rtti_type_id(unqualified(""), "redoip", 0) },
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
{ Rval = const(data_addr_const(DataAddr)) }.
stack_layout__represent_live_value_type(trail_ptr, Rval, data_ptr) -->
{ RttiTypeId = rtti_type_id(unqualified(""), "trail_ptr", 0) },
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
{ Rval = const(data_addr_const(DataAddr)) }.
stack_layout__represent_live_value_type(ticket, Rval, data_ptr) -->
{ RttiTypeId = rtti_type_id(unqualified(""), "ticket", 0) },
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
{ Rval = const(data_addr_const(DataAddr)) }.
stack_layout__represent_live_value_type(unwanted, Rval, data_ptr) -->
{ RttiTypeId = rtti_type_id(unqualified(""), "unwanted", 0) },
{ DataAddr = rtti_addr(RttiTypeId, type_ctor_info) },
{ Rval = const(data_addr_const(DataAddr)) }.
stack_layout__represent_live_value_type(var(_, _, Type, _), Rval, LldsType)
-->
stack_layout__get_cell_counter(C0),
% For a stack layout, we can treat all type variables as
% universally quantified. This is not the argument of a
% constructor, so we do not need to distinguish between type
% variables that are and aren't in scope; we can take the
% variable number directly from the procedure's tvar set.
{ ExistQTvars = [] },
{ NumUnivQTvars = -1 },
{ ll_pseudo_type_info__construct_typed_llds_pseudo_type_info(Type,
NumUnivQTvars, ExistQTvars,
Rval, LldsType, C0, C) },
stack_layout__set_cell_counter(C).
%---------------------------------------------------------------------------%
% Construct a representation of a variable location as a 32-bit
% integer.
%
% Most of the time, a layout specifies a location as an lval.
% However, a type_info variable may be hidden inside a typeclass_info,
% In this case, accessing the type_info requires indirection.
% The address of the typeclass_info is given as an lval, and
% the location of the typeinfo within the typeclass_info as an index;
% private_builtin:type_info_from_typeclass_info interprets the index.
%
% This one level of indirection is sufficient, since type_infos
% cannot be nested inside typeclass_infos any deeper than this.
% A more general representation that would allow more indirection
% would be much harder to fit into one machine word.
:- pred stack_layout__represent_locn_as_int(layout_locn, rval).
:- mode stack_layout__represent_locn_as_int(in, out) is det.
stack_layout__represent_locn_as_int(direct(Lval), Rval) :-
stack_layout__represent_lval(Lval, Word),
Rval = const(int_const(Word)).
stack_layout__represent_locn_as_int(indirect(Lval, Offset), Rval) :-
stack_layout__represent_lval(Lval, BaseWord),
require((1 << stack_layout__long_lval_offset_bits) > Offset,
"stack_layout__represent_locn: offset too large to be represented"),
BaseAndOffset is (BaseWord << stack_layout__long_lval_offset_bits)
+ Offset,
stack_layout__make_tagged_word(lval_indirect, BaseAndOffset, Word),
Rval = const(int_const(Word)).
% Construct a four byte representation of an lval.
:- pred stack_layout__represent_lval(lval, int).
:- mode stack_layout__represent_lval(in, out) is det.
stack_layout__represent_lval(reg(r, Num), Word) :-
stack_layout__make_tagged_word(lval_r_reg, Num, Word).
stack_layout__represent_lval(reg(f, Num), Word) :-
stack_layout__make_tagged_word(lval_f_reg, Num, Word).
stack_layout__represent_lval(stackvar(Num), Word) :-
stack_layout__make_tagged_word(lval_stackvar, Num, Word).
stack_layout__represent_lval(framevar(Num), Word) :-
stack_layout__make_tagged_word(lval_framevar, Num, Word).
stack_layout__represent_lval(succip, Word) :-
stack_layout__make_tagged_word(lval_succip, 0, Word).
stack_layout__represent_lval(maxfr, Word) :-
stack_layout__make_tagged_word(lval_maxfr, 0, Word).
stack_layout__represent_lval(curfr, Word) :-
stack_layout__make_tagged_word(lval_curfr, 0, Word).
stack_layout__represent_lval(hp, Word) :-
stack_layout__make_tagged_word(lval_hp, 0, Word).
stack_layout__represent_lval(sp, Word) :-
stack_layout__make_tagged_word(lval_sp, 0, Word).
stack_layout__represent_lval(temp(_, _), _) :-
error("stack_layout: continuation live value stored in temp register").
stack_layout__represent_lval(succip(_), _) :-
error("stack_layout: continuation live value stored in fixed slot").
stack_layout__represent_lval(redoip(_), _) :-
error("stack_layout: continuation live value stored in fixed slot").
stack_layout__represent_lval(redofr(_), _) :-
error("stack_layout: continuation live value stored in fixed slot").
stack_layout__represent_lval(succfr(_), _) :-
error("stack_layout: continuation live value stored in fixed slot").
stack_layout__represent_lval(prevfr(_), _) :-
error("stack_layout: continuation live value stored in fixed slot").
stack_layout__represent_lval(field(_, _, _), _) :-
error("stack_layout: continuation live value stored in field").
stack_layout__represent_lval(mem_ref(_), _) :-
error("stack_layout: continuation live value stored in mem_ref").
stack_layout__represent_lval(lvar(_), _) :-
error("stack_layout: continuation live value stored in lvar").
% Some things in this module are encoded using a low tag.
% This is not done using the normal compiler mkword, but by
% doing the bit shifting here.
%
% This allows us to use more than the usual 2 or 3 bits, but
% we have to use low tags and cannot tag pointers this way.
:- pred stack_layout__make_tagged_word(locn_type::in, int::in, int::out) is det.
stack_layout__make_tagged_word(Locn, Value, TaggedValue) :-
stack_layout__locn_type_code(Locn, Tag),
TaggedValue is (Value << stack_layout__long_lval_tag_bits) + Tag.
:- type locn_type
---> lval_r_reg
; lval_f_reg
; lval_stackvar
; lval_framevar
; lval_succip
; lval_maxfr
; lval_curfr
; lval_hp
; lval_sp
; lval_indirect.
:- pred stack_layout__locn_type_code(locn_type::in, int::out) is det.
stack_layout__locn_type_code(lval_r_reg, 0).
stack_layout__locn_type_code(lval_f_reg, 1).
stack_layout__locn_type_code(lval_stackvar, 2).
stack_layout__locn_type_code(lval_framevar, 3).
stack_layout__locn_type_code(lval_succip, 4).
stack_layout__locn_type_code(lval_maxfr, 5).
stack_layout__locn_type_code(lval_curfr, 6).
stack_layout__locn_type_code(lval_hp, 7).
stack_layout__locn_type_code(lval_sp, 8).
stack_layout__locn_type_code(lval_indirect, 9).
:- func stack_layout__long_lval_tag_bits = int.
% This number of tag bits must be able to encode all values of
% stack_layout__locn_type_code.
stack_layout__long_lval_tag_bits = 4.
% This number of tag bits must be able to encode the largest offset
% of a type_info within a typeclass_info.
:- func stack_layout__long_lval_offset_bits = int.
stack_layout__long_lval_offset_bits = 6.
%---------------------------------------------------------------------------%
% Construct a representation of a variable location as a byte,
% if this is possible.
:- pred stack_layout__represent_locn_as_byte(layout_locn::in, rval::out)
is semidet.
stack_layout__represent_locn_as_byte(LayoutLocn, Rval) :-
LayoutLocn = direct(Lval),
stack_layout__represent_lval_as_byte(Lval, Byte),
Rval = const(int_const(Byte)).
% Construct a representation of an lval in a byte, if possible.
:- pred stack_layout__represent_lval_as_byte(lval::in, int::out) is semidet.
stack_layout__represent_lval_as_byte(reg(r, Num), Byte) :-
stack_layout__make_tagged_byte(0, Num, Byte).
stack_layout__represent_lval_as_byte(stackvar(Num), Byte) :-
stack_layout__make_tagged_byte(1, Num, Byte).
stack_layout__represent_lval_as_byte(framevar(Num), Byte) :-
stack_layout__make_tagged_byte(2, Num, Byte).
stack_layout__represent_lval_as_byte(succip, Byte) :-
stack_layout__locn_type_code(lval_succip, Val),
stack_layout__make_tagged_byte(3, Val, Byte).
stack_layout__represent_lval_as_byte(maxfr, Byte) :-
stack_layout__locn_type_code(lval_maxfr, Val),
stack_layout__make_tagged_byte(3, Val, Byte).
stack_layout__represent_lval_as_byte(curfr, Byte) :-
stack_layout__locn_type_code(lval_curfr, Val),
stack_layout__make_tagged_byte(3, Val, Byte).
stack_layout__represent_lval_as_byte(hp, Byte) :-
stack_layout__locn_type_code(lval_hp, Val),
stack_layout__make_tagged_byte(3, Val, Byte).
stack_layout__represent_lval_as_byte(sp, Byte) :-
stack_layout__locn_type_code(lval_succip, Val),
stack_layout__make_tagged_byte(3, Val, Byte).
:- pred stack_layout__make_tagged_byte(int::in, int::in, int::out) is semidet.
stack_layout__make_tagged_byte(Tag, Value, TaggedValue) :-
Limit = 1 << (stack_layout__byte_bits -
stack_layout__short_lval_tag_bits),
Value < Limit,
TaggedValue is unchecked_left_shift(Value,
stack_layout__short_lval_tag_bits) + Tag.
:- func stack_layout__short_lval_tag_bits = int.
stack_layout__short_lval_tag_bits = 2.
:- func stack_layout__short_count_bits = int.
stack_layout__short_count_bits = 10.
:- func stack_layout__byte_bits = int.
stack_layout__byte_bits = 8.
%---------------------------------------------------------------------------%
% Construct a representation of the interface determinism of a
% procedure. The code we have chosen is not sequential; instead
% it encodes the various properties of each determinism.
%
% The 8 bit is set iff the context is first_solution.
% The 4 bit is set iff the min number of solutions is more than zero.
% The 2 bit is set iff the max number of solutions is more than zero.
% The 1 bit is set iff the max number of solutions is more than one.
:- pred stack_layout__represent_determinism(determinism::in, rval::out) is det.
stack_layout__represent_determinism(Detism, const(int_const(Code))) :-
(
Detism = det,
Code = 6 /* 0110 */
;
Detism = semidet, /* 0010 */
Code = 2
;
Detism = nondet,
Code = 3 /* 0011 */
;
Detism = multidet,
Code = 7 /* 0111 */
;
Detism = erroneous,
Code = 4 /* 0100 */
;
Detism = failure,
Code = 0 /* 0000 */
;
Detism = cc_nondet,
Code = 10 /* 1010 */
;
Detism = cc_multidet,
Code = 14 /* 1110 */
).
%---------------------------------------------------------------------------%
% Access to the stack_layout data structure.
% The per-sourcefile label table maps line numbers to the list of
% labels that correspond to that line. Each label is accompanied
% by a flag that says whether the label is the return site of a call
% or not, and if it is, whether the called procedure is known.
:- type is_label_return
---> known_callee(label)
; unknown_callee
; not_a_return.
:- type line_no_info == pair(label, is_label_return).
:- type label_table == map(int, list(line_no_info)).
:- type stack_layout_info --->
stack_layout_info(
module_info :: module_info,
agc_stack_layout :: bool, % generate agc info?
trace_stack_layout :: bool, % generate tracing info?
procid_stack_layout :: bool, % generate proc id info?
trace_level :: trace_level,
trace_suppress_items :: trace_suppress_items,
static_code_addresses :: bool, % have static code addresses?
proc_layouts :: list(comp_gen_c_data),
internal_layouts :: list(comp_gen_c_data),
label_set :: set_bbbtree(label),
% The set of labels (both entry
% and internal) with layouts.
proc_layout_args :: list(maybe(rval)),
% The list of proc_layouts in
% the module, represented as create
% args.
string_table :: string_table,
label_tables :: map(string, label_table),
% Maps each filename that
% contributes labels to this module
% to a table describing those
% labels.
cur_proc_named_vars :: map(int, string)
% Maps the number of each variable
% in the current procedure whose
% name is of interest in an internal
% label's layout structure to the
% name of that variable.
).
:- pred stack_layout__get_module_info(module_info::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_agc_stack_layout(bool::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_trace_stack_layout(bool::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_procid_stack_layout(bool::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_trace_level(trace_level::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_trace_suppress(trace_suppress_items::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_static_code_addresses(bool::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_proc_layout_data(list(comp_gen_c_data)::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_internal_layout_data(list(comp_gen_c_data)::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_label_set(set_bbbtree(label)::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_string_table(string_table::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_label_tables(map(string, label_table)::out,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__get_cur_proc_named_vars(map(int, string)::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__get_module_info(LI ^ module_info, LI, LI).
stack_layout__get_agc_stack_layout(LI ^ agc_stack_layout, LI, LI).
stack_layout__get_trace_stack_layout(LI ^ trace_stack_layout, LI, LI).
stack_layout__get_procid_stack_layout(LI ^ procid_stack_layout, LI, LI).
stack_layout__get_trace_level(LI ^ trace_level, LI, LI).
stack_layout__get_trace_suppress(LI ^ trace_suppress_items, LI, LI).
stack_layout__get_static_code_addresses(LI ^ static_code_addresses, LI, LI).
stack_layout__get_proc_layout_data(LI ^ proc_layouts, LI, LI).
stack_layout__get_internal_layout_data(LI ^ internal_layouts, LI, LI).
stack_layout__get_label_set(LI ^ label_set, LI, LI).
stack_layout__get_string_table(LI ^ string_table, LI, LI).
stack_layout__get_label_tables(LI ^ label_tables, LI, LI).
stack_layout__get_cur_proc_named_vars(LI ^ cur_proc_named_vars, LI, LI).
:- pred stack_layout__get_module_name(module_name::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__get_module_name(ModuleName) -->
stack_layout__get_module_info(ModuleInfo),
{ module_info_name(ModuleInfo, ModuleName) }.
:- pred stack_layout__get_cell_counter(counter::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__get_cell_counter(CellCounter) -->
stack_layout__get_module_info(ModuleInfo),
{ module_info_get_cell_counter(ModuleInfo, CellCounter) }.
:- pred stack_layout__add_proc_layout_data(comp_gen_c_data::in, data_name::in,
label::in, stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__add_proc_layout_data(NewProcLayout, NewDataName, NewLabel,
LI0, LI) :-
ProcLayouts0 = LI0 ^ proc_layouts,
ProcLayouts = [NewProcLayout | ProcLayouts0],
LabelSet0 = LI0 ^ label_set,
set_bbbtree__insert(LabelSet0, NewLabel, LabelSet),
ModuleInfo = LI0 ^ module_info,
module_info_name(ModuleInfo, ModuleName),
NewProcLayoutArg = yes(const(data_addr_const(
data_addr(ModuleName, NewDataName)))),
ProcLayoutArgs0 = LI0 ^ proc_layout_args,
ProcLayoutArgs = [NewProcLayoutArg | ProcLayoutArgs0],
LI = (((LI0 ^ proc_layouts := ProcLayouts)
^ label_set := LabelSet)
^ proc_layout_args := ProcLayoutArgs).
:- pred stack_layout__add_internal_layout_data(comp_gen_c_data::in,
label::in, stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__add_internal_layout_data(NewInternalLayout, NewLabel, LI0, LI) :-
InternalLayouts0 = LI0 ^ internal_layouts,
InternalLayouts = [NewInternalLayout | InternalLayouts0],
LabelSet0 = LI0 ^ label_set,
set_bbbtree__insert(LabelSet0, NewLabel, LabelSet),
LI = ((LI0 ^ internal_layouts := InternalLayouts)
^ label_set := LabelSet).
:- pred stack_layout__get_next_cell_number(int::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__get_next_cell_number(CellNum) -->
stack_layout__get_cell_counter(CellCounter0),
{ counter__allocate(CellNum, CellCounter0, CellCounter) },
stack_layout__set_cell_counter(CellCounter).
:- pred stack_layout__set_cell_counter(counter::in,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__set_cell_counter(CellCounter) -->
stack_layout__get_module_info(ModuleInfo0),
{ module_info_set_cell_counter(ModuleInfo0, CellCounter,
ModuleInfo) },
stack_layout__set_module_info(ModuleInfo).
:- pred stack_layout__set_module_info(module_info::in,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__set_string_table(string_table::in,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__set_label_tables(map(string, label_table)::in,
stack_layout_info::in, stack_layout_info::out) is det.
:- pred stack_layout__set_cur_proc_named_vars(map(int, string)::in,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__set_module_info(MI, LI0, LI0 ^ module_info := MI).
stack_layout__set_string_table(ST, LI0, LI0 ^ string_table := ST).
stack_layout__set_label_tables(LT, LI0, LI0 ^ label_tables := LT).
stack_layout__set_cur_proc_named_vars(NV, LI0,
LI0 ^ cur_proc_named_vars := NV).
%---------------------------------------------------------------------------%
% Access to the string_table data structure.
:- type string_table --->
string_table(
map(string, int), % Maps strings to their offsets.
list(string), % List of strings so far,
% in reverse order.
int % Next available offset
).
:- pred stack_layout__lookup_string_in_table(string::in, int::out,
stack_layout_info::in, stack_layout_info::out) is det.
stack_layout__lookup_string_in_table(String, Offset) -->
stack_layout__get_string_table(StringTable0),
{ StringTable0 = string_table(TableMap0, TableList0, TableOffset0) },
(
{ map__search(TableMap0, String, OldOffset) }
->
{ Offset = OldOffset }
;
{ string__length(String, Length) },
{ TableOffset is TableOffset0 + Length + 1 },
{ TableOffset < (1 << (2 * stack_layout__byte_bits)) }
->
{ Offset = TableOffset0 },
{ map__det_insert(TableMap0, String, TableOffset0,
TableMap) },
{ TableList = [String | TableList0] },
{ StringTable = string_table(TableMap, TableList,
TableOffset) },
stack_layout__set_string_table(StringTable)
;
% Says that the name of the variable is "TOO_MANY_VARIABLES".
{ Offset = 1 }
).