Files
mercury/compiler/prog_data.m
David Overton 82378c381b Allow polymorphic ground insts. This change assumes that all inst
Estimated hours taken: 80

Allow polymorphic ground insts.  This change assumes that all inst
parameters in the mode declaration for a predicate or function are
constrained to be ground-shared.  This is a temporary measure until we
work out a nice syntax to allow the programmer to tell the compiler that
certain inst parameters may be treated as ground insts.  Since we don't
currently support unconstrained inst parameters anyway, this shouldn't
cause a problem.

	TODO:
		- Add syntax, something like `:- mode p(in(I)) <= ground(I).',
		  to specify that an inst parameter represents a ground inst.
		- Allow abstract ground insts that are treated in a similar
		  way to what we've done here with ground inst parameters.
		- Make mode checking more efficient (i.e. rewrite the mode
		  system).

compiler/inst.m:
	Add a new alternative for ground insts:
		`constrained_inst_var(inst_var)'.
	Define the type `inst_var_sub'.

compiler/inst_match.m:
	Change inst_matches_initial so that it:
		- handles constrained_inst_vars correctly;
		- returns the inst_var substitutions necessary for the call;
		- handles inst_matches_initial(ground(...), bound(...), ...)
		  properly (this requires knowing the type of the variable).

	  The last change has also been made for inst_matches_final
	  and inst_matches_binding.  However, the check is disabled for
	  now because, without alias tracking, the mode checker
	  becomes too conservative.

compiler/hlds_pred.m:
compiler/mode_info.m:
compiler/simplify.m:
compiler/det_util.m:
	Include the inst_varset in the proc_info, mode_info and simplify_info.
	Add a vartypes field to the det_info.
	Remove the vartypes field from the simplify_info since it is
	now in the det_info.
	Use record syntax for these data structures and their access predicates
	to make future changes easier.

compiler/prog_io.m:
	When processing pred and func mode declarations, convert all inst_var(V)
	insts to ground(shared, constrained_inst_var(V)).

compiler/prog_data.m:
compiler/hlds_data.m:
compiler/make_hlds.m:
compiler/mode_util.m:
	Use inst_vars instead of inst_params.

compiler/modes.m:
compiler/modecheck_call.m:
compiler/unique_modes.m:
compiler/mode_util.m:
	When checking or recomputing initial insts of a call, build up
	an inst_var substitution (using the modified
	inst_matches_initial) and apply this to the final insts of the
	called procedure before checking/recomputing them.

compiler/mode_util.m:
	Make sure that recompute_instmap_delta recomputes the
	instmap_deltas for lambda_goals even when RecomputeAtomic = no.

compiler/type_util.m:
	Add a new predicate, type_util__cons_id_arg_types which
	nondeterministically returns the cons_ids and argument types for a
	given type.
	Add a new predicate type_util__get_consid_non_existential_arg_types
	which is the same as type_util__get_existential_arg_types except
	that it fails rather than aborting for existenially typed arguments.

compiler/accumulator.m:
compiler/check_typeclass.m:
compiler/clause_to_proc.m:
compiler/common.m:
compiler/continuation_info.m:
compiler/deforest.m:
compiler/det_analysis.m:
compiler/det_report.m:
compiler/det_util.m:
compiler/dnf.m:
compiler/follow_code.m:
compiler/goal_store.m:
compiler/goal_util.m:
compiler/higher_order.m:
compiler/inst_util.m:
compiler/instmap.m:
compiler/lambda.m:
compiler/magic.m:
compiler/magic_util.m:
compiler/mercury_to_mercury.m:
compiler/modecheck_unify.m:
compiler/module_qual.m:
compiler/pd_info.m:
compiler/pd_util.m:
compiler/polymorphism.m:
compiler/post_typecheck.m:
compiler/prog_io_util.m:
compiler/prog_rep.m:
compiler/saved_vars.m:
compiler/stack_layout.m:
compiler/table_gen.m:
compiler/unify_proc.m:
compiler/unneeded_code.m:
compiler/unused_args.m:
	Pass inst_varsets and types where needed.
	Changes to reflect change in definition of the inst data type.

compiler/inlining.m:
	Recompute the instmap deltas for a procedure after inlining.
	This bug showed up compiling tests/hard_coded/lp.m with
	inlining and deforestation turned on: deforestation was
	getting incorrect instmap deltas from inlining, causing
	the transformation to break mode-correctness.  It has only
	just shown up because of the added call to
	`inst_matches_initial' from within `recompute_instmap_delta'.

tests/invalid/Mmakefile:
tests/invalid/unbound_inst_var.m:
tests/invalid/unbound_inst_var.err_exp:
tests/valid/Mmakefile:
tests/valid/unbound_inst_var.m:
	Move the `unbound_inst_var' test case from `invalid' to `valid'
	and extend its coverage a bit.
2000-10-13 13:56:17 +00:00

948 lines
28 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_data.m.
% Main author: fjh.
%
% This module defines a data structure for representing Mercury programs.
%
% This data structure specifies basically the same information as is
% contained in the source code, but in a parse tree rather than a flat file.
% Simplifications are done only by make_hlds.m, which transforms
% the parse tree which we built here into the HLDS.
:- module prog_data.
:- interface.
% This module should NOT import hlds*.m, either directly or indirectly.
% Any types which are needed in both the parse tree and in the HLDS
% should be defined here, rather than in hlds*.m.
:- import_module (inst).
:- import_module bool, list, assoc_list, map, varset, term, std_util.
%-----------------------------------------------------------------------------%
% This is how programs (and parse errors) are represented.
:- type message_list == list(pair(string, term)).
% the error/warning message, and the
% term to which it relates
:- type compilation_unit
---> module(
module_name,
item_list
).
:- type item_list == list(item_and_context).
:- type item_and_context == pair(item, prog_context).
:- type item
---> pred_clause(prog_varset, sym_name, list(prog_term), goal)
% VarNames, PredName, HeadArgs, ClauseBody
; func_clause(prog_varset, sym_name, list(prog_term),
prog_term, goal)
% VarNames, PredName, HeadArgs, Result, ClauseBody
; type_defn(tvarset, type_defn, condition)
; inst_defn(inst_varset, inst_defn, condition)
; mode_defn(inst_varset, mode_defn, condition)
; module_defn(prog_varset, module_defn)
; pred(tvarset, inst_varset, existq_tvars, sym_name,
list(type_and_mode), maybe(determinism), condition,
purity, class_constraints)
% TypeVarNames, InstVarNames,
% ExistentiallyQuantifiedTypeVars, PredName, ArgTypes,
% Deterministicness, Cond, Purity, TypeClassContext
; func(tvarset, inst_varset, existq_tvars, sym_name,
list(type_and_mode), type_and_mode, maybe(determinism),
condition, purity, class_constraints)
% TypeVarNames, InstVarNames,
% ExistentiallyQuantifiedTypeVars, PredName, ArgTypes,
% ReturnType, Deterministicness, Cond, Purity,
% TypeClassContext
; pred_mode(inst_varset, sym_name, list(mode), maybe(determinism),
condition)
% VarNames, PredName, ArgModes, Deterministicness,
% Cond
; func_mode(inst_varset, sym_name, list(mode), mode,
maybe(determinism), condition)
% VarNames, PredName, ArgModes, ReturnValueMode,
% Deterministicness, Cond
; pragma(pragma_type)
; assertion(goal, prog_varset)
; typeclass(list(class_constraint), class_name, list(tvar),
class_interface, tvarset)
% Constraints, ClassName, ClassParams,
% ClassMethods, VarNames
; instance(list(class_constraint), class_name, list(type),
instance_body, tvarset)
% DerivingClass, ClassName, Types,
% MethodInstances, VarNames
; nothing.
% used for items that should be ignored (currently only
% NU-Prolog `when' declarations, which are silently ignored
% for backwards compatibility).
:- type type_and_mode
---> type_only(type)
; type_and_mode(type, mode).
% We only support C right now.
:- type foreign_language
---> c
% ; cplusplus
% ; csharp
% ; managedcplusplus
% ; java
% ; il
.
:- type pred_or_func
---> predicate
; function.
% Purity indicates whether a goal can have side effects or can
% depend on global state. See purity.m and the "Purity" section
% of the Mercury language reference manual.
:- type purity ---> pure
; (semipure)
; (impure).
% The `determinism' type specifies how many solutions a given
% procedure may have. Procedures for manipulating this type
% are defined in det_analysis.m and hlds_data.m.
:- type determinism
---> det
; semidet
; nondet
; multidet
; cc_nondet
; cc_multidet
; erroneous
; failure.
%-----------------------------------------------------------------------------%
%
% Pragmas
%
:- type pragma_type
---> c_header_code(string)
; foreign(foreign_language, string)
; foreign(foreign_language, pragma_foreign_code_attributes,
sym_name, pred_or_func, list(pragma_var),
prog_varset, pragma_foreign_code_impl)
% Set of C code attributes, eg.:
% whether or not the code may call Mercury,
% whether or not the code is thread-safe
% PredName, Predicate or Function, Vars/Mode,
% VarNames, C Code Implementation Info
; type_spec(sym_name, sym_name, arity, maybe(pred_or_func),
maybe(list(mode)), type_subst, tvarset)
% PredName, SpecializedPredName, Arity,
% PredOrFunc, Modes if a specific procedure was
% specified, type substitution (using the variable
% names from the pred declaration), TVarSet
; inline(sym_name, arity)
% Predname, Arity
; no_inline(sym_name, arity)
% Predname, Arity
; obsolete(sym_name, arity)
% Predname, Arity
; export(sym_name, pred_or_func, list(mode),
string)
% Predname, Predicate/function, Modes,
% C function name.
; import(sym_name, pred_or_func, list(mode),
pragma_foreign_code_attributes, string)
% Predname, Predicate/function, Modes,
% Set of foreign code attributes, eg.:
% whether or not the foreign code may call Mercury,
% whether or not the foreign code is thread-safe
% foreign function name.
; source_file(string)
% Source file name.
; unused_args(pred_or_func, sym_name, arity,
mode_num, list(int))
% PredName, Arity, Mode number, Optimized pred name,
% Removed arguments.
% Used for inter-module unused argument
% removal, should only appear in .opt files.
; fact_table(sym_name, arity, string)
% Predname, Arity, Fact file name.
; aditi(sym_name, arity)
% Predname, Arity
; base_relation(sym_name, arity)
% Predname, Arity
%
% Eventually, these should only occur in
% automatically generated database interface
% files, but for now there's no such thing,
% so they can occur in user programs.
; aditi_index(sym_name, arity, index_spec)
% PredName, Arity, IndexType, Attributes
%
% Specify an index on a base relation.
; naive(sym_name, arity)
% Predname, Arity
% Use naive evaluation.
; psn(sym_name, arity)
% Predname, Arity
% Use predicate semi-naive evaluation.
; aditi_memo(sym_name, arity)
% Predname, Arity
; aditi_no_memo(sym_name, arity)
% Predname, Arity
; supp_magic(sym_name, arity)
% Predname, Arity
; context(sym_name, arity)
% Predname, Arity
; owner(sym_name, arity, string)
% PredName, Arity, String.
; tabled(eval_method, sym_name, int, maybe(pred_or_func),
maybe(list(mode)))
% Tabling type, Predname, Arity, PredOrFunc?, Mode?
; promise_pure(sym_name, arity)
% Predname, Arity
; termination_info(pred_or_func, sym_name, list(mode),
maybe(pragma_arg_size_info),
maybe(pragma_termination_info))
% the list(mode) is the declared argmodes of the
% procedure, unless there are no declared argmodes,
% in which case the inferred argmodes are used.
% This pragma is used to define information about a
% predicates termination properties. It is most
% useful where the compiler has insufficient
% information to be able to analyse the predicate.
% This includes c_code, and imported predicates.
% termination_info pragmas are used in opt and
% trans_opt files.
; terminates(sym_name, arity)
% Predname, Arity
; does_not_terminate(sym_name, arity)
% Predname, Arity
; check_termination(sym_name, arity).
% Predname, Arity
%
% Stuff for tabling pragmas
%
% The evaluation method that should be used for a pred.
% Ignored for Aditi procedures.
:- type eval_method
---> eval_normal % normal mercury
% evaluation
; eval_loop_check % loop check only
; eval_memo % memoing + loop check
; eval_minimal. % minimal model
% evaluation
%
% Stuff for the `aditi_index' pragma
%
% For Aditi base relations, an index_spec specifies how the base
% relation is indexed.
:- type index_spec
---> index_spec(
index_type,
list(int) % which attributes are being indexed on
% (attribute numbers start at 1)
).
% Hash indexes?
:- type index_type
---> unique_B_tree
; non_unique_B_tree.
%
% Stuff for the `termination_info' pragma.
% See term_util.m.
%
:- type pragma_arg_size_info
---> finite(int, list(bool))
% The termination constant is a finite integer.
% The list of bool has a 1:1 correspondence
% with the input arguments of the procedure.
% It stores whether the argument contributes
% to the size of the output arguments.
; infinite.
% There is no finite integer for which the
% above equation is true.
:- type pragma_termination_info
---> cannot_loop % This procedure definitely terminates for all
% possible inputs.
; can_loop. % This procedure might not terminate.
%
% Stuff for the `unused_args' pragma.
%
% This `mode_num' type is only used for mode numbers written out in
% automatically-generateed `pragma unused_args' pragmas in `.opt'
% files.
% The mode_num gets converted to an HLDS proc_id by make_hlds.m.
% We don't want to use the `proc_id' type here since the parse tree
% (prog_data.m) should not depend on the HLDS.
:- type mode_num == int.
%
% Stuff for the `type_spec' pragma.
%
% The type substitution for a `pragma type_spec' declaration.
% Elsewhere in the compiler we generally use the `tsubst' type
% which is a map rather than an assoc_list.
:- type type_subst == assoc_list(tvar, type).
%
% Stuff for `foreign_code' pragma.
%
% This type holds information about the implementation details
% of procedures defined via `pragma foreign_code'.
%
% All the strings in this type may be accompanied by the context
% of their appearance in the source code. These contexts are
% used to tell the foreign language compiler where the included
% code comes from, to allow it to generate error messages that
% refer to the original appearance of the code in the Mercury
% program.
% The context is missing if the foreign code was constructed by
% the compiler.
% Note that nondet pragma foreign definitions might not be
% possible in all foreign languages.
:- type pragma_foreign_code_impl
---> ordinary( % This is a foreign language
% definition of a model_det
% or model_semi procedure. (We
% also allow model_non, until
% everyone has had time to adapt
% to the new way
% of handling model_non pragmas.)
string, % The code of the procedure.
maybe(prog_context)
)
; nondet( % This is a foreign language
% definition of a model_non
% procedure.
string,
maybe(prog_context),
% The info saved for the time when
% backtracking reenters this procedure
% is stored in a data structure.
% This arg contains the field
% declarations.
string,
maybe(prog_context),
% Gives the code to be executed when
% the procedure is called for the first
% time. This code may access the input
% variables.
string,
maybe(prog_context),
% Gives the code to be executed when
% control backtracks into the procedure.
% This code may not access the input
% variables.
pragma_shared_code_treatment,
% How should the shared code be
% treated during code generation.
string,
maybe(prog_context)
% Shared code that is executed after
% both the previous code fragments.
% May not access the input variables.
)
; import(
string, % Pragma imported C func name
string, % Code to handle return value
string, % Comma seperated variables which
% the import function is called
% with.
maybe(prog_context)
).
% The use of this type is explained in the comment at the top of
% pragma_c_gen.m.
:- type pragma_shared_code_treatment
---> duplicate
; share
; automatic.
%-----------------------------------------------------------------------------%
%
% Stuff for type classes
%
% A class constraint represents a constraint that a given
% list of types is a member of the specified type class.
% It is an invariant of this data structure that
% the types in a class constraint do not contain any
% information in their prog_context fields.
% This invariant is needed to ensure that we can do
% unifications, map__lookups, etc., and get the
% expected semantics.
% Any code that creates new class constraints must
% ensure that this invariant is preserved,
% probably by using strip_term_contexts/2 in type_util.m.
:- type class_constraint
---> constraint(class_name, list(type)).
:- type class_constraints
---> constraints(
list(class_constraint), % ordinary (universally quantified)
list(class_constraint) % existentially quantified constraints
).
:- type class_name == sym_name.
:- type class_interface == list(class_method).
:- type class_method
---> pred(tvarset, inst_varset, existq_tvars, sym_name,
list(type_and_mode), maybe(determinism), condition,
purity, class_constraints, prog_context)
% TypeVarNames, InstVarNames,
% ExistentiallyQuantifiedTypeVars,
% PredName, ArgTypes, Determinism, Cond
% Purity, ClassContext, Context
; func(tvarset, inst_varset, existq_tvars, sym_name,
list(type_and_mode), type_and_mode,
maybe(determinism), condition,
purity, class_constraints, prog_context)
% TypeVarNames, InstVarNames,
% ExistentiallyQuantfiedTypeVars,
% PredName, ArgTypes, ReturnType,
% Determinism, Cond
% Purity, ClassContext, Context
; pred_mode(inst_varset, sym_name, list(mode),
maybe(determinism), condition,
prog_context)
% InstVarNames, PredName, ArgModes,
% Determinism, Cond
% Context
; func_mode(inst_varset, sym_name, list(mode), mode,
maybe(determinism), condition,
prog_context)
% InstVarNames, PredName, ArgModes,
% ReturnValueMode,
% Determinism, Cond
% Context
.
:- type instance_method
---> instance_method(pred_or_func, sym_name, instance_proc_def,
arity, prog_context).
% PredOrFunc, Method, Instance, Arity,
% Line number of declaration
:- type instance_proc_def
% defined using the `pred(...) is <Name>' syntax
---> name(sym_name)
% defined using clauses
; clauses(
list(item) % the items must be either
% pred_clause or func_clause items
)
.
:- type instance_body
---> abstract
; concrete(instance_methods).
:- type instance_methods == list(instance_method).
%-----------------------------------------------------------------------------%
%
% Some more stuff for `pragma c_code'.
%
% an abstract type for representing a set of
% `pragma_c_code_attribute's.
:- type pragma_foreign_code_attributes.
:- pred default_attributes(pragma_foreign_code_attributes).
:- mode default_attributes(out) is det.
:- pred may_call_mercury(pragma_foreign_code_attributes, may_call_mercury).
:- mode may_call_mercury(in, out) is det.
:- pred set_may_call_mercury(pragma_foreign_code_attributes, may_call_mercury,
pragma_foreign_code_attributes).
:- mode set_may_call_mercury(in, in, out) is det.
:- pred thread_safe(pragma_foreign_code_attributes, thread_safe).
:- mode thread_safe(in, out) is det.
:- pred set_thread_safe(pragma_foreign_code_attributes, thread_safe,
pragma_foreign_code_attributes).
:- mode set_thread_safe(in, in, out) is det.
% For pragma c_code, there are two different calling conventions,
% one for C code that may recursively call Mercury code, and another
% more efficient one for the case when we know that the C code will
% not recursively invoke Mercury code.
:- type may_call_mercury
---> may_call_mercury
; will_not_call_mercury.
% If thread_safe execution is enabled, then we need to put a mutex
% around the C code for each `pragma c_code' declaration, unless
% it's declared to be thread_safe.
:- type thread_safe
---> not_thread_safe
; thread_safe.
:- type pragma_var
---> pragma_var(prog_var, string, mode).
% variable, name, mode
% we explicitly store the name because we need the real
% name in code_gen
%-----------------------------------------------------------------------------%
%
% Goals
%
% Here's how clauses and goals are represented.
% a => b --> implies(a, b)
% a <= b --> implies(b, a) [just flips the goals around!]
% a <=> b --> equivalent(a, b)
% clause/4 defined above
:- type goal == pair(goal_expr, prog_context).
:- type goal_expr
% conjunctions
---> (goal , goal) % (non-empty) conjunction
; true % empty conjunction
; {goal & goal} % parallel conjunction
% (The curly braces just quote the '&'/2.)
% disjunctions
; {goal ; goal} % (non-empty) disjunction
% (The curly braces just quote the ';'/2.)
; fail % empty disjunction
% quantifiers
; { some(prog_vars, goal) }
% existential quantification
% (The curly braces just quote the 'some'/2.)
; all(prog_vars, goal) % universal quantification
% implications
; implies(goal, goal) % A => B
; equivalent(goal, goal) % A <=> B
% negation and if-then-else
; not(goal)
; if_then(prog_vars, goal, goal)
; if_then_else(prog_vars, goal, goal, goal)
% atomic goals
; call(sym_name, list(prog_term), purity)
; unify(prog_term, prog_term, purity).
:- type goals == list(goal).
% These type equivalences are for the type of program variables
% and associated structures.
:- type prog_var_type ---> prog_var_type.
:- type prog_var == var(prog_var_type).
:- type prog_varset == varset(prog_var_type).
:- type prog_substitution == substitution(prog_var_type).
:- type prog_term == term(prog_var_type).
:- type prog_vars == list(prog_var).
% A prog_context is just a term__context.
:- type prog_context == term__context.
% Describe how a lambda expression is to be evaluated.
%
% `normal' is the top-down Mercury execution algorithm.
%
% `lambda_eval_method's other than `normal' are used for lambda
% expressions constructed for arguments of the builtin Aditi
% update constructs.
%
% `aditi_top_down' expressions are used by `aditi_delete'
% goals (see hlds_goal.m) to determine whether a tuple
% should be deleted.
%
% `aditi_bottom_up' expressions are used as database queries to
% produce a set of tuples to be inserted or deleted.
:- type lambda_eval_method
---> normal
; (aditi_top_down)
; (aditi_bottom_up)
.
%-----------------------------------------------------------------------------%
%
% Types
%
% This is how types are represented.
% one day we might allow types to take
% value parameters as well as type parameters.
% type_defn/3 is defined above as a constructor for item/0
:- type type_defn
---> du_type(sym_name, list(type_param), list(constructor),
maybe(equality_pred)
)
; uu_type(sym_name, list(type_param), list(type))
; eqv_type(sym_name, list(type_param), type)
; abstract_type(sym_name, list(type_param)).
:- type constructor
---> ctor(
existq_tvars,
list(class_constraint), % existential constraints
sym_name,
list(constructor_arg)
).
:- type constructor_arg ==
pair(
maybe(ctor_field_name),
type
).
:- type ctor_field_name == sym_name.
% An equality_pred specifies the name of a user-defined predicate
% used for equality on a type. See the chapter on them in the
% Mercury Language Reference Manual.
:- type equality_pred == sym_name.
% probably type parameters should be variables not terms.
:- type type_param == term(tvar_type).
% Module qualified types are represented as ':'/2 terms.
% Use type_util:type_to_type_id to convert a type to a qualified
% type_id and a list of arguments.
% type_util:construct_type to construct a type from a type_id
% and a list of arguments.
:- type (type) == term(tvar_type).
:- type type_term == term(tvar_type).
:- type tvar_type ---> type_var.
:- type tvar == var(tvar_type).
% used for type variables
:- type tvarset == varset(tvar_type).
% used for sets of type variables
:- type tsubst == map(tvar, type). % used for type substitutions
% existq_tvars is used to record the set of type variables which are
% existentially quantified
:- type existq_tvars == list(tvar).
% Types may have arbitrary assertions associated with them
% (eg. you can define a type which represents sorted lists).
% Similarly, pred declarations can have assertions attached.
% The compiler will ignore these assertions - they are intended
% to be used by other tools, such as the debugger.
:- type condition
---> true
; where(term).
%-----------------------------------------------------------------------------%
%
% insts and modes
%
% This is how instantiatednesses and modes are represented.
% Note that while we use the normal term data structure to represent
% type terms (see above), we need a separate data structure for inst
% terms.
% The `inst' data type itself is defined in the module `inst.m'.
:- type inst_var_type ---> inst_var_type.
:- type inst_var == var(inst_var_type).
:- type inst_term == term(inst_var_type).
:- type inst_varset == varset(inst_var_type).
% inst_defn/3 defined above
:- type inst_defn
---> eqv_inst(sym_name, list(inst_var), inst)
; abstract_inst(sym_name, list(inst_var)).
% An `inst_name' is used as a key for the inst_table.
% It is either a user-defined inst `user_inst(Name, Args)',
% or some sort of compiler-generated inst, whose name
% is a representation of it's meaning.
%
% For example, `merge_inst(InstA, InstB)' is the name used for the
% inst that results from merging InstA and InstB using `merge_inst'.
% Similarly `unify_inst(IsLive, InstA, InstB, IsReal)' is
% the name for the inst that results from a call to
% `abstractly_unify_inst(IsLive, InstA, InstB, IsReal)'.
% And `ground_inst' and `any_inst' are insts that result
% from unifying an inst with `ground' or `any', respectively.
% `typed_inst' is an inst with added type information.
% `typed_ground(Uniq, Type)' a equivalent to
% `typed_inst(ground(Uniq, no), Type)'.
% Note that `typed_ground' is a special case of `typed_inst',
% and `ground_inst' and `any_inst' are special cases of `unify_inst'.
% The reason for having the special cases is efficiency.
:- type inst_name
---> user_inst(sym_name, list(inst))
; merge_inst(inst, inst)
; unify_inst(is_live, inst, inst, unify_is_real)
; ground_inst(inst_name, is_live, uniqueness, unify_is_real)
; any_inst(inst_name, is_live, uniqueness, unify_is_real)
; shared_inst(inst_name)
; mostly_uniq_inst(inst_name)
; typed_ground(uniqueness, type)
; typed_inst(type, inst_name).
% Note: `is_live' records liveness in the sense used by
% mode analysis. This is not the same thing as the notion of liveness
% used by code generation. See compiler/notes/glossary.html.
:- type is_live ---> live ; dead.
% Unifications of insts fall into two categories, "real" and "fake".
% The "real" inst unifications correspond to real unifications,
% and are not allowed to unify with `clobbered' insts (unless
% the unification would be `det').
% Any inst unification which is associated with some code that
% will actually examine the contents of the variables in question
% must be "real". Inst unifications that are not associated with
% some real code that examines the variables' values are "fake".
% "Fake" inst unifications are used for procedure calls in implied
% modes, where the final inst of the var must be computed by
% unifying its initial inst with the procedure's final inst,
% so that if you pass a ground var to a procedure whose mode
% is `free -> list_skeleton', the result is ground, not list_skeleton.
% But these fake unifications must be allowed to unify with `clobbered'
% insts. Hence we pass down a flag to `abstractly_unify_inst' which
% specifies whether or not to allow unifications with clobbered values.
:- type unify_is_real
---> real_unify
; fake_unify.
% mode_defn/3 defined above
:- type mode_defn
---> eqv_mode(sym_name, list(inst_var), mode).
:- type (mode)
---> ((inst) -> (inst))
; user_defined_mode(sym_name, list(inst)).
% mode/4 defined above
%-----------------------------------------------------------------------------%
%
% Module system
%
% This is how module-system declarations (such as imports
% and exports) are represented.
:- type module_defn
---> module(module_name)
; end_module(module_name)
; interface
; implementation
; private_interface
% This is used internally by the compiler,
% to identify items which originally
% came from an implementation section
% for a module that contains sub-modules;
% such items need to be exported to the
% sub-modules.
; imported(section)
% This is used internally by the compiler,
% to identify declarations which originally
% came from some other module imported with
% a `:- import_module' declaration, and which
% section the module was imported.
; used(section)
% This is used internally by the compiler,
% to identify declarations which originally
% came from some other module and for which
% all uses must be module qualified. This
% applies to items from modules imported using
% `:- use_module', and items from `.opt'
% and `.int2' files. It also records from which
% section the module was imported.
; opt_imported
% This is used internally by the compiler,
% to identify items which originally
% came from a .opt file.
; external(sym_name_specifier)
; export(sym_list)
; import(sym_list)
; use(sym_list)
; include_module(list(module_name)).
:- type section
---> implementation
; interface.
:- type sym_list
---> sym(list(sym_specifier))
; pred(list(pred_specifier))
; func(list(func_specifier))
; cons(list(cons_specifier))
; op(list(op_specifier))
; adt(list(adt_specifier))
; type(list(type_specifier))
; module(list(module_specifier)).
:- type sym_specifier
---> sym(sym_name_specifier)
; typed_sym(typed_cons_specifier)
; pred(pred_specifier)
; func(func_specifier)
; cons(cons_specifier)
; op(op_specifier)
; adt(adt_specifier)
; type(type_specifier)
; module(module_specifier).
:- type pred_specifier
---> sym(sym_name_specifier)
; name_args(sym_name, list(type)).
:- type func_specifier == cons_specifier.
:- type cons_specifier
---> sym(sym_name_specifier)
; typed(typed_cons_specifier).
:- type typed_cons_specifier
---> name_args(sym_name, list(type))
; name_res(sym_name_specifier, type)
; name_args_res(sym_name, list(type), type).
:- type adt_specifier == sym_name_specifier.
:- type type_specifier == sym_name_specifier.
:- type op_specifier
---> sym(sym_name_specifier)
% operator fixity specifiers not yet implemented
; fixity(sym_name_specifier, fixity).
:- type fixity
---> infix
; prefix
; postfix
; binary_prefix
; binary_postfix.
:- type sym_name_specifier
---> name(sym_name)
; name_arity(sym_name, arity).
:- type sym_name
---> unqualified(string)
; qualified(module_specifier, string).
:- type sym_name_and_arity
---> sym_name / arity.
:- type module_specifier == sym_name.
:- type module_name == sym_name.
:- type arity == int.
% Describes whether an item can be used without an
% explicit module qualifier.
:- type need_qualifier
---> must_be_qualified
; may_be_unqualified.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- type pragma_foreign_code_attributes
---> attributes(
may_call_mercury,
thread_safe
).
default_attributes(attributes(may_call_mercury, not_thread_safe)).
may_call_mercury(Attrs, MayCallMercury) :-
Attrs = attributes(MayCallMercury, _).
thread_safe(Attrs, ThreadSafe) :-
Attrs = attributes(_, ThreadSafe).
set_may_call_mercury(Attrs0, MayCallMercury, Attrs) :-
Attrs0 = attributes(_, ThreadSafe),
Attrs = attributes(MayCallMercury, ThreadSafe).
set_thread_safe(Attrs0, ThreadSafe, Attrs) :-
Attrs0 = attributes(MayCallMercury, _),
Attrs = attributes(MayCallMercury, ThreadSafe).
%-----------------------------------------------------------------------------%