Files
mercury/library/sparse_bitset.m
2015-12-01 07:58:07 +11:00

1579 lines
56 KiB
Mathematica

%---------------------------------------------------------------------------%
% vim: ts=4 sw=4 et ft=mercury
%---------------------------------------------------------------------------%
% Copyright (C) 2000-2007, 2011-2012 The University of Melbourne.
% This file may only be copied under the terms of the GNU Library General
% Public License - see the file COPYING.LIB in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: sparse_bitset.m.
% Author: stayl.
% Stability: medium.
%
% This module provides an ADT for storing sets of integers.
% If the integers stored are closely grouped, a sparse_bitset
% is much more compact than the representation provided by set.m,
% and the operations will be much faster.
%
% Efficiency notes:
%
% A sparse bitset is represented as a sorted list of pairs of integers.
% For a pair `Offset - Bits', `Offset' is a multiple of `int.bits_per_int'.
% The bits of `Bits' describe which of the elements of the range
% `Offset' .. `Offset + bits_per_int - 1' are in the set.
% Pairs with the same value of `Offset' are merged.
% Pairs for which `Bits' is zero are removed.
%
% The values of `Offset' in the list need not be contiguous multiples
% of `bits_per_int', hence the name _sparse_ bitset.
%
% A sparse_bitset is suitable for storing sets of integers which
% can be represented using only a few `Offset - Bits' pairs.
% In the worst case, where the integers stored are not closely
% grouped, a sparse_bitset will take more memory than an
% ordinary set, but the operations should not be too much slower.
%
% In the asymptotic complexities of the operations below,
% `rep_size(Set)' is the number of pairs needed to represent `Set',
% and `card(Set)' is the number of elements in `Set'.
%
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- module sparse_bitset.
:- interface.
:- import_module enum.
:- import_module list.
:- import_module term.
:- use_module set.
%---------------------------------------------------------------------------%
:- type sparse_bitset(T). % <= enum(T).
% Return an empty set.
%
:- func init = sparse_bitset(T).
:- pred init(sparse_bitset(T)::out) is det.
:- pred empty(sparse_bitset(T)).
:- mode empty(in) is semidet.
:- mode empty(out) is det.
:- pred is_empty(sparse_bitset(T)::in) is semidet.
:- pred is_non_empty(sparse_bitset(T)::in) is semidet.
% `equal(SetA, SetB' is true iff `SetA' and `SetB' contain the same
% elements. Takes O(min(rep_size(SetA), rep_size(SetB))) time.
%
:- pred equal(sparse_bitset(T)::in, sparse_bitset(T)::in) is semidet.
% `list_to_set(List)' returns a set containing only the members of `List'.
% In the worst case this will take O(length(List)^2) time and space.
% If the elements of the list are closely grouped, it will be closer
% to O(length(List)).
%
:- func list_to_set(list(T)) = sparse_bitset(T) <= enum(T).
:- pred list_to_set(list(T)::in, sparse_bitset(T)::out) is det <= enum(T).
% `sorted_list_to_set(List)' returns a set containing only the members
% of `List'. `List' must be sorted. Takes O(length(List)) time and space.
%
:- func sorted_list_to_set(list(T)) = sparse_bitset(T) <= enum(T).
:- pred sorted_list_to_set(list(T)::in, sparse_bitset(T)::out)
is det <= enum(T).
% `from_set(Set)' returns a bitset containing only the members of `Set'.
% Takes O(card(Set)) time and space.
%
:- func from_set(set.set(T)) = sparse_bitset(T) <= enum(T).
% `to_sorted_list(Set)' returns a list containing all the members of `Set',
% in sorted order. Takes O(card(Set)) time and space.
%
:- func to_sorted_list(sparse_bitset(T)) = list(T) <= enum(T).
:- pred to_sorted_list(sparse_bitset(T)::in, list(T)::out) is det <= enum(T).
% `to_sorted_list(Set)' returns a set.set containing all the members
% of `Set', in sorted order. Takes O(card(Set)) time and space.
%
:- func to_set(sparse_bitset(T)) = set.set(T) <= enum(T).
% `make_singleton_set(Elem)' returns a set containing just the single
% element `Elem'.
%
:- func make_singleton_set(T) = sparse_bitset(T) <= enum(T).
% Note: set.m contains the reverse mode of this predicate, but it is
% difficult to implement both modes using the representation in this
% module.
%
:- pred singleton_set(sparse_bitset(T)::out, T::in) is det <= enum(T).
% Is the given set a singleton, and if yes, what is the element?
%
:- pred is_singleton(sparse_bitset(T)::in, T::out) is semidet <= enum(T).
% `subset(Subset, Set)' is true iff `Subset' is a subset of `Set'.
% Same as `intersect(Set, Subset, Subset)', but may be more efficient.
%
:- pred subset(sparse_bitset(T)::in, sparse_bitset(T)::in) is semidet.
% `superset(Superset, Set)' is true iff `Superset' is a superset of `Set'.
% Same as `intersect(Superset, Set, Set)', but may be more efficient.
%
:- pred superset(sparse_bitset(T)::in, sparse_bitset(T)::in) is semidet.
% `contains(Set, X)' is true iff `X' is a member of `Set'.
% Takes O(rep_size(Set)) time.
%
:- pred contains(sparse_bitset(T)::in, T::in) is semidet <= enum(T).
% `member(X, Set)' is true iff `X' is a member of `Set'.
% Takes O(rep_size(Set)) time.
%
:- pred member(T, sparse_bitset(T)) <= enum(T).
:- mode member(in, in) is semidet.
:- mode member(out, in) is nondet.
% `insert(Set, X)' returns the union of `Set' and the set containing
% only `X'. Takes O(rep_size(Set)) time and space.
%
:- func insert(sparse_bitset(T), T) = sparse_bitset(T) <= enum(T).
:- pred insert(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out)
is det <= enum(T).
% `insert_new(X, Set0, Set)' returns the union of `Set' and the set
% containing only `X' if `Set0' does not already contain `X'; if it does,
% it fails. Takes O(rep_size(Set)) time and space.
%
:- pred insert_new(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out)
is semidet <= enum(T).
% `insert_list(Set, X)' returns the union of `Set' and the set containing
% only the members of `X'. Same as `union(Set, list_to_set(X))', but may be
% more efficient.
%
:- func insert_list(sparse_bitset(T), list(T)) = sparse_bitset(T) <= enum(T).
:- pred insert_list(list(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out)
is det <= enum(T).
% `delete(Set, X)' returns the difference of `Set' and the set containing
% only `X'. Takes O(rep_size(Set)) time and space.
%
:- func delete(sparse_bitset(T), T) = sparse_bitset(T) <= enum(T).
:- pred delete(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out)
is det <= enum(T).
% `delete_list(Set, X)' returns the difference of `Set' and the set
% containing only the members of `X'. Same as
% `difference(Set, list_to_set(X))', but may be more efficient.
%
:- func delete_list(sparse_bitset(T), list(T)) = sparse_bitset(T) <= enum(T).
:- pred delete_list(list(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out)
is det <= enum(T).
% `remove(X, Set0, Set)' returns in `Set' the difference of `Set0'
% and the set containing only `X', failing if `Set0' does not contain `X'.
% Takes O(rep_size(Set)) time and space.
%
:- pred remove(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out)
is semidet <= enum(T).
% `remove_list(X, Set0, Set)' returns in `Set' the difference of `Set0'
% and the set containing all the elements of `X', failing if any element
% of `X' is not in `Set0'. Same as `subset(list_to_set(X), Set0),
% difference(Set0, list_to_set(X), Set)', but may be more efficient.
%
:- pred remove_list(list(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out)
is semidet <= enum(T).
% `remove_leq(Set, X)' returns `Set' with all elements less than or equal
% to `X' removed. In other words, it returns the set containing all the
% elements of `Set' which are greater than `X'.
%
:- func remove_leq(sparse_bitset(T), T) = sparse_bitset(T) <= enum(T).
:- pred remove_leq(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out)
is det <= enum(T).
% `remove_gt(Set, X)' returns `Set' with all elements greater than `X'
% removed. In other words, it returns the set containing all the elements
% of `Set' which are less than or equal to `X'.
%
:- func remove_gt(sparse_bitset(T), T) = sparse_bitset(T) <= enum(T).
:- pred remove_gt(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out)
is det <= enum(T).
% `remove_least(Set0, X, Set)' is true iff `X' is the least element in
% `Set0', and `Set' is the set which contains all the elements of `Set0'
% except `X'. Takes O(1) time and space.
%
:- pred remove_least(T::out, sparse_bitset(T)::in, sparse_bitset(T)::out)
is semidet <= enum(T).
% `union(SetA, SetB)' returns the union of `SetA' and `SetB'. The
% efficiency of the union operation is not sensitive to the argument
% ordering. Takes O(rep_size(SetA) + rep_size(SetB)) time and space.
%
:- func union(sparse_bitset(T), sparse_bitset(T)) = sparse_bitset(T).
:- pred union(sparse_bitset(T)::in, sparse_bitset(T)::in,
sparse_bitset(T)::out) is det.
% `union_list(Sets, Set)' returns the union of all the sets in Sets.
%
:- func union_list(list(sparse_bitset(T))) = sparse_bitset(T).
:- pred union_list(list(sparse_bitset(T))::in, sparse_bitset(T)::out) is det.
% `intersect(SetA, SetB)' returns the intersection of `SetA' and `SetB'.
% The efficiency of the intersection operation is not sensitive to the
% argument ordering. Takes O(rep_size(SetA) + rep_size(SetB)) time and
% O(min(rep_size(SetA)), rep_size(SetB)) space.
%
:- func intersect(sparse_bitset(T), sparse_bitset(T)) = sparse_bitset(T).
:- pred intersect(sparse_bitset(T)::in, sparse_bitset(T)::in,
sparse_bitset(T)::out) is det.
% `intersect_list(Sets, Set)' returns the intersection of all the sets
% in Sets.
%
:- func intersect_list(list(sparse_bitset(T))) = sparse_bitset(T).
:- pred intersect_list(list(sparse_bitset(T))::in, sparse_bitset(T)::out)
is det.
% `difference(SetA, SetB)' returns the set containing all the elements
% of `SetA' except those that occur in `SetB'. Takes
% O(rep_size(SetA) + rep_size(SetB)) time and O(rep_size(SetA)) space.
%
:- func difference(sparse_bitset(T), sparse_bitset(T)) = sparse_bitset(T).
:- pred difference(sparse_bitset(T)::in, sparse_bitset(T)::in,
sparse_bitset(T)::out) is det.
% divide(Pred, Set, InPart, OutPart):
% InPart consists of those elements of Set for which Pred succeeds;
% OutPart consists of those elements of Set for which Pred fails.
%
:- pred divide(pred(T)::in(pred(in) is semidet), sparse_bitset(T)::in,
sparse_bitset(T)::out, sparse_bitset(T)::out) is det <= enum(T).
% divide_by_set(DivideBySet, Set, InPart, OutPart):
% InPart consists of those elements of Set which are also in DivideBySet;
% OutPart consists of those elements of Set which are not in DivideBySet.
%
:- pred divide_by_set(sparse_bitset(T)::in, sparse_bitset(T)::in,
sparse_bitset(T)::out, sparse_bitset(T)::out) is det <= enum(T).
% `count(Set)' returns the number of elements in `Set'.
% Takes O(card(Set)) time.
%
:- func count(sparse_bitset(T)) = int <= enum(T).
% `foldl(Func, Set, Start)' calls Func with each element of `Set'
% (in sorted order) and an accumulator (with the initial value of `Start'),
% and returns the final value. Takes O(card(Set)) time.
%
:- func foldl(func(T, U) = U, sparse_bitset(T), U) = U <= enum(T).
:- pred foldl(pred(T, U, U), sparse_bitset(T), U, U) <= enum(T).
:- mode foldl(pred(in, in, out) is det, in, in, out) is det.
:- mode foldl(pred(in, mdi, muo) is det, in, mdi, muo) is det.
:- mode foldl(pred(in, di, uo) is det, in, di, uo) is det.
:- mode foldl(pred(in, in, out) is semidet, in, in, out) is semidet.
:- mode foldl(pred(in, mdi, muo) is semidet, in, mdi, muo) is semidet.
:- mode foldl(pred(in, di, uo) is semidet, in, di, uo) is semidet.
:- mode foldl(pred(in, in, out) is nondet, in, in, out) is nondet.
:- mode foldl(pred(in, in, out) is cc_multi, in, in, out) is cc_multi.
:- mode foldl(pred(in, di, uo) is cc_multi, in, di, uo) is cc_multi.
:- pred foldl2(pred(T, U, U, V, V), sparse_bitset(T), U, U, V, V) <= enum(T).
:- mode foldl2(pred(in, in, out, in, out) is det, in, in, out, in, out) is det.
:- mode foldl2(pred(in, in, out, mdi, muo) is det, in, in, out, mdi, muo) is det.
:- mode foldl2(pred(in, in, out, di, uo) is det, in, in, out, di, uo) is det.
:- mode foldl2(pred(in, di, uo, di, uo) is det, in, di, uo, di, uo) is det.
:- mode foldl2(pred(in, in, out, in, out) is semidet, in, in, out, in, out)
is semidet.
:- mode foldl2(pred(in, in, out, mdi, muo) is semidet, in, in, out, mdi, muo)
is semidet.
:- mode foldl2(pred(in, in, out, di, uo) is semidet, in, in, out, di, uo)
is semidet.
:- mode foldl2(pred(in, in, out, in, out) is nondet, in, in, out, in, out)
is nondet.
:- mode foldl2(pred(in, in, out, in, out) is cc_multi, in, in, out, in, out)
is cc_multi.
:- mode foldl2(pred(in, in, out, di, uo) is cc_multi, in, in, out, di, uo)
is cc_multi.
:- mode foldl2(pred(in, di, uo, di, uo) is cc_multi, in, di, uo, di, uo)
is cc_multi.
% `foldr(Func, Set, Start)' calls Func with each element of `Set'
% (in reverse sorted order) and an accumulator (with the initial value
% of `Start'), and returns the final value. Takes O(card(Set)) time.
%
:- func foldr(func(T, U) = U, sparse_bitset(T), U) = U <= enum(T).
:- pred foldr(pred(T, U, U), sparse_bitset(T), U, U) <= enum(T).
:- mode foldr(pred(in, in, out) is det, in, in, out) is det.
:- mode foldr(pred(in, mdi, muo) is det, in, mdi, muo) is det.
:- mode foldr(pred(in, di, uo) is det, in, di, uo) is det.
:- mode foldr(pred(in, in, out) is semidet, in, in, out) is semidet.
:- mode foldr(pred(in, mdi, muo) is semidet, in, mdi, muo) is semidet.
:- mode foldr(pred(in, di, uo) is semidet, in, di, uo) is semidet.
:- mode foldr(pred(in, in, out) is nondet, in, in, out) is nondet.
:- mode foldr(pred(in, in, out) is cc_multi, in, in, out) is cc_multi.
:- mode foldr(pred(in, di, uo) is cc_multi, in, di, uo) is cc_multi.
:- pred foldr2(pred(T, U, U, V, V), sparse_bitset(T), U, U, V, V) <= enum(T).
:- mode foldr2(pred(in, in, out, in, out) is det, in, in, out, in, out) is det.
:- mode foldr2(pred(in, in, out, mdi, muo) is det, in, in, out, mdi, muo) is det.
:- mode foldr2(pred(in, in, out, di, uo) is det, in, in, out, di, uo) is det.
:- mode foldr2(pred(in, di, uo, di, uo) is det, in, di, uo, di, uo) is det.
:- mode foldr2(pred(in, in, out, in, out) is semidet, in, in, out, in, out)
is semidet.
:- mode foldr2(pred(in, in, out, mdi, muo) is semidet, in, in, out, mdi, muo)
is semidet.
:- mode foldr2(pred(in, in, out, di, uo) is semidet, in, in, out, di, uo)
is semidet.
:- mode foldr2(pred(in, in, out, in, out) is nondet, in, in, out, in, out)
is nondet.
:- mode foldr2(pred(in, di, uo, di, uo) is cc_multi, in, di, uo, di, uo)
is cc_multi.
:- mode foldr2(pred(in, in, out, di, uo) is cc_multi, in, in, out, di, uo)
is cc_multi.
:- mode foldr2(pred(in, in, out, in, out) is cc_multi, in, in, out, in, out)
is cc_multi.
% all_true(Pred, Set) succeeds iff Pred(Element) succeeds
% for all the elements of Set.
%
:- pred all_true(pred(T)::in(pred(in) is semidet), sparse_bitset(T)::in)
is semidet <= enum(T).
% `filter(Pred, Set) = TrueSet' returns the elements of Set for which
% Pred succeeds.
%
:- func filter(pred(T), sparse_bitset(T)) = sparse_bitset(T) <= enum(T).
:- mode filter(pred(in) is semidet, in) = out is det.
% `filter(Pred, Set, TrueSet, FalseSet)' returns the elements of Set
% for which Pred succeeds, and those for which it fails.
%
:- pred filter(pred(T), sparse_bitset(T), sparse_bitset(T), sparse_bitset(T))
<= enum(T).
:- mode filter(pred(in) is semidet, in, out, out) is det.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
% Everything below here is not intended to be part of the public interface,
% and will not be included in the Mercury library reference manual.
:- interface.
:- pragma type_spec(list_to_set/1, T = var(_)).
:- pragma type_spec(list_to_set/1, T = int).
:- pragma type_spec(sorted_list_to_set/1, T = var(_)).
:- pragma type_spec(sorted_list_to_set/1, T = int).
:- pragma type_spec(to_sorted_list/1, T = var(_)).
:- pragma type_spec(to_sorted_list/1, T = int).
:- pragma type_spec(to_set/1, T = var(_)).
:- pragma type_spec(to_set/1, T = int).
:- pragma type_spec(from_set/1, T = var(_)).
:- pragma type_spec(from_set/1, T = int).
:- pragma type_spec(make_singleton_set/1, T = var(_)).
:- pragma type_spec(make_singleton_set/1, T = int).
:- pragma type_spec(contains/2, T = var(_)).
:- pragma type_spec(contains/2, T = int).
:- pragma type_spec(insert/2, T = var(_)).
:- pragma type_spec(insert/2, T = int).
:- pragma type_spec(insert_list/2, T = var(_)).
:- pragma type_spec(insert_list/2, T = int).
:- pragma type_spec(delete/2, T = var(_)).
:- pragma type_spec(delete/2, T = int).
:- pragma type_spec(delete_list/2, T = var(_)).
:- pragma type_spec(delete_list/2, T = int).
:- pragma type_spec(foldr/3, T = int).
:- pragma type_spec(foldr/3, T = var(_)).
:- pragma type_spec(foldr/4, T = int).
:- pragma type_spec(foldr/4, T = var(_)).
:- pragma type_spec(foldl/3, T = int).
:- pragma type_spec(foldl/3, T = var(_)).
:- pragma type_spec(foldl/4, T = int).
:- pragma type_spec(foldl/4, T = var(_)).
:- pragma type_spec(list_to_set/2, T = var(_)).
:- pragma type_spec(list_to_set/2, T = int).
:- pragma type_spec(sorted_list_to_set/2, T = var(_)).
:- pragma type_spec(sorted_list_to_set/2, T = int).
:- pragma type_spec(to_sorted_list/2, T = var(_)).
:- pragma type_spec(to_sorted_list/2, T = int).
:- pragma type_spec(singleton_set/2, T = var(_)).
:- pragma type_spec(singleton_set/2, T = int).
:- pragma type_spec(insert/3, T = var(_)).
:- pragma type_spec(insert/3, T = int).
:- pragma type_spec(insert_list/3, T = var(_)).
:- pragma type_spec(insert_list/3, T = int).
:- pragma type_spec(delete/3, T = var(_)).
:- pragma type_spec(delete/3, T = int).
:- pragma type_spec(delete_list/3, T = var(_)).
:- pragma type_spec(delete_list/3, T = int).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
:- import_module int.
:- import_module require.
%---------------------------------------------------------------------------%
% The number of variables for most procedures
% should fit into one or two words.
:- type sparse_bitset(T) % <= enum(T)
---> sparse_bitset(bitset_impl).
% The list of elements, sorted on offset.
% No two elements have the same offset.
:- type bitset_impl == list(bitset_elem).
% Cells of this type should only be
% constructed using make_bitset_elem/2.
:- type bitset_elem
---> bitset_elem(
offset :: int, % multiple of bits_per_int
bits :: int % bits offset .. offset + bits_per_int - 1
% The sparse_bitset operations all remove
% elements of the list with a `bits'
% field of zero.
).
%---------------------------------------------------------------------------%
init = sparse_bitset([]).
init(init).
empty(init).
equal(X, X).
is_empty(sparse_bitset([])).
is_non_empty(sparse_bitset([_ | _])).
%---------------------------------------------------------------------------%
to_sorted_list(A, to_sorted_list(A)).
to_sorted_list(Set) = foldr(func(Elem, Acc0) = [Elem | Acc0], Set, []).
to_set(Set) = set.sorted_list_to_set(to_sorted_list(Set)).
from_set(Set) = sorted_list_to_set(set.to_sorted_list(Set)).
%---------------------------------------------------------------------------%
:- type fold_direction
---> low_to_high
; high_to_low.
foldl(F, sparse_bitset(Set), Acc0) = Acc :-
do_foldl_pred(
(pred(E::in, Acc1::in, Acc2::out) is det :-
Acc2 = F(E, Acc1)
), Set, Acc0, Acc).
foldl(P, sparse_bitset(Set), !Acc) :-
do_foldl_pred(P, Set, !Acc).
foldl2(P, sparse_bitset(Set), !Acc1, !Acc2) :-
do_foldl2_pred(P, Set, !Acc1, !Acc2).
:- pred do_foldl_pred(pred(T, U, U), bitset_impl, U, U) <= enum(T).
:- mode do_foldl_pred(pred(in, in, out) is det, in, in, out) is det.
:- mode do_foldl_pred(pred(in, mdi, muo) is det, in, mdi, muo) is det.
:- mode do_foldl_pred(pred(in, di, uo) is det, in, di, uo) is det.
:- mode do_foldl_pred(pred(in, in, out) is semidet, in, in, out) is semidet.
:- mode do_foldl_pred(pred(in, mdi, muo) is semidet, in, mdi, muo) is semidet.
:- mode do_foldl_pred(pred(in, di, uo) is semidet, in, di, uo) is semidet.
:- mode do_foldl_pred(pred(in, in, out) is nondet, in, in, out) is nondet.
:- mode do_foldl_pred(pred(in, in, out) is cc_multi, in, in, out) is cc_multi.
:- mode do_foldl_pred(pred(in, di, uo) is cc_multi, in, di, uo) is cc_multi.
:- pragma type_spec(do_foldl_pred/4, T = int).
:- pragma type_spec(do_foldl_pred/4, T = var(_)).
do_foldl_pred(_, [], !Acc).
do_foldl_pred(P, [H | T], !Acc) :-
fold_bits(low_to_high, P, H ^ offset, H ^ bits, bits_per_int, !Acc),
do_foldl_pred(P, T, !Acc).
:- pred do_foldl2_pred(pred(T, U, U, V, V), bitset_impl, U, U, V, V)
<= enum(T).
:- mode do_foldl2_pred(pred(in, in, out, in, out) is det,
in, in, out, in, out) is det.
:- mode do_foldl2_pred(pred(in, in, out, mdi, muo) is det,
in, in, out, mdi, muo) is det.
:- mode do_foldl2_pred(pred(in, di, uo, di, uo) is det,
in, di, uo, di, uo) is det.
:- mode do_foldl2_pred(pred(in, in, out, di, uo) is det,
in, in, out, di, uo) is det.
:- mode do_foldl2_pred(pred(in, in, out, in, out) is semidet,
in, in, out, in, out) is semidet.
:- mode do_foldl2_pred(pred(in, in, out, mdi, muo) is semidet,
in, in, out, mdi, muo) is semidet.
:- mode do_foldl2_pred(pred(in, in, out, di, uo) is semidet,
in, in, out, di, uo) is semidet.
:- mode do_foldl2_pred(pred(in, in, out, in, out) is nondet,
in, in, out, in, out) is nondet.
:- mode do_foldl2_pred(pred(in, di, uo, di, uo) is cc_multi,
in, di, uo, di, uo) is cc_multi.
:- mode do_foldl2_pred(pred(in, in, out, di, uo) is cc_multi,
in, in, out, di, uo) is cc_multi.
:- mode do_foldl2_pred(pred(in, in, out, in, out) is cc_multi,
in, in, out, in, out) is cc_multi.
:- pragma type_spec(do_foldl2_pred/6, T = int).
:- pragma type_spec(do_foldl2_pred/6, T = var(_)).
do_foldl2_pred(_, [], !Acc1, !Acc2).
do_foldl2_pred(P, [H | T], !Acc1, !Acc2) :-
fold2_bits(low_to_high, P, H ^ offset, H ^ bits, bits_per_int,
!Acc1, !Acc2),
do_foldl2_pred(P, T, !Acc1, !Acc2).
foldr(F, sparse_bitset(Set), Acc0) = Acc :-
do_foldr_pred(
(pred(E::in, Acc1::in, Acc2::out) is det :-
Acc2 = F(E, Acc1)
), Set, Acc0, Acc).
foldr(P, sparse_bitset(Set), !Acc) :-
do_foldr_pred(P, Set, !Acc).
foldr2(P, sparse_bitset(Set), !Acc1, !Acc2) :-
do_foldr2_pred(P, Set, !Acc1, !Acc2).
:- pred do_foldr_pred(pred(T, U, U), bitset_impl, U, U) <= enum(T).
:- mode do_foldr_pred(pred(in, in, out) is det, in, in, out) is det.
:- mode do_foldr_pred(pred(in, mdi, muo) is det, in, mdi, muo) is det.
:- mode do_foldr_pred(pred(in, di, uo) is det, in, di, uo) is det.
:- mode do_foldr_pred(pred(in, in, out) is semidet, in, in, out) is semidet.
:- mode do_foldr_pred(pred(in, mdi, muo) is semidet, in, mdi, muo) is semidet.
:- mode do_foldr_pred(pred(in, di, uo) is semidet, in, di, uo) is semidet.
:- mode do_foldr_pred(pred(in, in, out) is nondet, in, in, out) is nondet.
:- mode do_foldr_pred(pred(in, di, uo) is cc_multi, in, di, uo) is cc_multi.
:- mode do_foldr_pred(pred(in, in, out) is cc_multi, in, in, out) is cc_multi.
:- pragma type_spec(do_foldr_pred/4, T = int).
:- pragma type_spec(do_foldr_pred/4, T = var(_)).
% We don't just use list.foldr here because the overhead of allocating
% the closure for fold_bits is significant for the compiler's runtime,
% so it's best to avoid that even if `--optimize-higher-order' is not set.
do_foldr_pred(_, [], !Acc).
do_foldr_pred(P, [H | T], !Acc) :-
do_foldr_pred(P, T, !Acc),
fold_bits(high_to_low, P, H ^ offset, H ^ bits, bits_per_int, !Acc).
:- pred do_foldr2_pred(pred(T, U, U, V, V), bitset_impl, U, U, V, V)
<= enum(T).
:- mode do_foldr2_pred(pred(in, in, out, in, out) is det,
in, in, out, in, out) is det.
:- mode do_foldr2_pred(pred(in, in, out, mdi, muo) is det,
in, in, out, mdi, muo) is det.
:- mode do_foldr2_pred(pred(in, in, out, di, uo) is det,
in, in, out, di, uo) is det.
:- mode do_foldr2_pred(pred(in, di, uo, di, uo) is det,
in, di, uo, di, uo) is det.
:- mode do_foldr2_pred(pred(in, in, out, in, out) is semidet,
in, in, out, in, out) is semidet.
:- mode do_foldr2_pred(pred(in, in, out, mdi, muo) is semidet,
in, in, out, mdi, muo) is semidet.
:- mode do_foldr2_pred(pred(in, in, out, di, uo) is semidet,
in, in, out, di, uo) is semidet.
:- mode do_foldr2_pred(pred(in, in, out, in, out) is nondet,
in, in, out, in, out) is nondet.
:- mode do_foldr2_pred(pred(in, di, uo, di, uo) is cc_multi,
in, di, uo, di, uo) is cc_multi.
:- mode do_foldr2_pred(pred(in, in, out, di, uo) is cc_multi,
in, in, out, di, uo) is cc_multi.
:- mode do_foldr2_pred(pred(in, in, out, in, out) is cc_multi,
in, in, out, in, out) is cc_multi.
:- pragma type_spec(do_foldr2_pred/6, T = int).
:- pragma type_spec(do_foldr2_pred/6, T = var(_)).
% We don't just use list.foldr here because the overhead of allocating
% the closure for fold_bits is significant for the compiler's runtime,
% so it's best to avoid that even if `--optimize-higher-order' is not set.
do_foldr2_pred(_, [], !Acc1, !Acc2).
do_foldr2_pred(P, [H | T], !Acc1, !Acc2) :-
do_foldr2_pred(P, T, !Acc1, !Acc2),
fold2_bits(high_to_low, P, H ^ offset, H ^ bits, bits_per_int,
!Acc1, !Acc2).
% Do a binary search for the 1 bits in an int.
%
:- pred fold_bits(fold_direction, pred(T, U, U),
int, int, int, U, U) <= enum(T).
:- mode fold_bits(in, pred(in, in, out) is det,
in, in, in, in, out) is det.
:- mode fold_bits(in, pred(in, mdi, muo) is det,
in, in, in, mdi, muo) is det.
:- mode fold_bits(in, pred(in, di, uo) is det,
in, in, in, di, uo) is det.
:- mode fold_bits(in, pred(in, in, out) is semidet,
in, in, in, in, out) is semidet.
:- mode fold_bits(in, pred(in, mdi, muo) is semidet,
in, in, in, mdi, muo) is semidet.
:- mode fold_bits(in, pred(in, di, uo) is semidet,
in, in, in, di, uo) is semidet.
:- mode fold_bits(in, pred(in, in, out) is nondet,
in, in, in, in, out) is nondet.
:- mode fold_bits(in, pred(in, di, uo) is cc_multi,
in, in, in, di, uo) is cc_multi.
:- mode fold_bits(in, pred(in, in, out) is cc_multi,
in, in, in, in, out) is cc_multi.
:- pragma type_spec(fold_bits/7, T = int).
:- pragma type_spec(fold_bits/7, T = var(_)).
fold_bits(Dir, P, Offset, Bits, Size, !Acc) :-
( if Bits = 0 then
true
else if Size = 1 then
( if Elem = from_int(Offset) then
P(Elem, !Acc)
else
% We only apply `from_int/1' to integers returned
% by `to_int/1', so it should never fail.
unexpected($module, $pred, "`enum.from_int/1' failed")
)
else
HalfSize = unchecked_right_shift(Size, 1),
Mask = mask(HalfSize),
% Extract the low-order half of the bits.
LowBits = Mask /\ Bits,
% Extract the high-order half of the bits.
HighBits = Mask /\ unchecked_right_shift(Bits, HalfSize),
(
Dir = low_to_high,
fold_bits(Dir, P, Offset, LowBits, HalfSize, !Acc),
fold_bits(Dir, P, Offset + HalfSize, HighBits, HalfSize, !Acc)
;
Dir = high_to_low,
fold_bits(Dir, P, Offset + HalfSize, HighBits, HalfSize, !Acc),
fold_bits(Dir, P, Offset, LowBits, HalfSize, !Acc)
)
).
:- pred fold2_bits(fold_direction, pred(T, U, U, V, V),
int, int, int, U, U, V, V) <= enum(T).
:- mode fold2_bits(in, pred(in, in, out, in, out) is det,
in, in, in, in, out, in, out) is det.
:- mode fold2_bits(in, pred(in, in, out, mdi, muo) is det,
in, in, in, in, out, mdi, muo) is det.
:- mode fold2_bits(in, pred(in, di, uo, di, uo) is det,
in, in, in, di, uo, di, uo) is det.
:- mode fold2_bits(in, pred(in, in, out, di, uo) is det,
in, in, in, in, out, di, uo) is det.
:- mode fold2_bits(in, pred(in, in, out, in, out) is semidet,
in, in, in, in, out, in, out) is semidet.
:- mode fold2_bits(in, pred(in, in, out, mdi, muo) is semidet,
in, in, in, in, out, mdi, muo) is semidet.
:- mode fold2_bits(in, pred(in, in, out, di, uo) is semidet,
in, in, in, in, out, di, uo) is semidet.
:- mode fold2_bits(in, pred(in, in, out, in, out) is nondet,
in, in, in, in, out, in, out) is nondet.
:- mode fold2_bits(in, pred(in, di, uo, di, uo) is cc_multi,
in, in, in, di, uo, di, uo) is cc_multi.
:- mode fold2_bits(in, pred(in, in, out, di, uo) is cc_multi,
in, in, in, in, out, di, uo) is cc_multi.
:- mode fold2_bits(in, pred(in, in, out, in, out) is cc_multi,
in, in, in, in, out, in, out) is cc_multi.
:- pragma type_spec(fold2_bits/9, T = int).
:- pragma type_spec(fold2_bits/9, T = var(_)).
fold2_bits(Dir, P, Offset, Bits, Size, !Acc1, !Acc2) :-
( if Bits = 0 then
true
else if Size = 1 then
( if Elem = from_int(Offset) then
P(Elem, !Acc1, !Acc2)
else
% We only apply `from_int/1' to integers returned
% by `to_int/1', so it should never fail.
unexpected($module, $pred, "`enum.from_int/1' failed")
)
else
HalfSize = unchecked_right_shift(Size, 1),
Mask = mask(HalfSize),
% Extract the low-order half of the bits.
LowBits = Mask /\ Bits,
% Extract the high-order half of the bits.
HighBits = Mask /\ unchecked_right_shift(Bits, HalfSize),
(
Dir = low_to_high,
fold2_bits(Dir, P, Offset, LowBits, HalfSize, !Acc1, !Acc2),
fold2_bits(Dir, P, Offset + HalfSize, HighBits, HalfSize,
!Acc1, !Acc2)
;
Dir = high_to_low,
fold2_bits(Dir, P, Offset + HalfSize, HighBits, HalfSize,
!Acc1, !Acc2),
fold2_bits(Dir, P, Offset, LowBits, HalfSize, !Acc1, !Acc2)
)
).
%---------------------------------------------------------------------------%
all_true(P, sparse_bitset(Set)) :-
all_true_node(P, Set).
:- pred all_true_node(pred(T)::in(pred(in) is semidet), bitset_impl::in)
is semidet <= enum(T).
:- pragma type_spec(all_true_node/2, T = int).
:- pragma type_spec(all_true_node/2, T = var(_)).
all_true_node(_, []).
all_true_node(P, [bitset_elem(Offset, Bits) | Rest]) :-
all_true_bits(P, Offset, Bits, bits_per_int),
all_true_node(P, Rest).
:- pred all_true_bits(pred(T)::in(pred(in) is semidet),
int::in, int::in, int::in) is semidet <= enum(T).
:- pragma type_spec(all_true_bits/4, T = int).
:- pragma type_spec(all_true_bits/4, T = var(_)).
all_true_bits(P, Offset, Bits, Size) :-
( if Bits = 0 then
true
else if Size = 1 then
( if Elem = from_int(Offset) then
P(Elem)
else
% We only apply `from_int/1' to integers returned
% by `to_int/1', so it should never fail.
unexpected($module, $pred, "`enum.from_int/1' failed")
)
else
HalfSize = unchecked_right_shift(Size, 1),
Mask = mask(HalfSize),
% Extract the low-order half of the bits.
LowBits = Mask /\ Bits,
% Extract the high-order half of the bits.
HighBits = Mask /\ unchecked_right_shift(Bits, HalfSize),
all_true_bits(P, Offset, LowBits, HalfSize),
all_true_bits(P, Offset + HalfSize, HighBits, HalfSize)
).
%---------------------------------------------------------------------------%
% XXX We should make these more efficient.
filter(Pred, Set) = TrueSet :-
SortedList = to_sorted_list(Set),
SortedTrueList = list.filter(Pred, SortedList),
TrueSet = sorted_list_to_set(SortedTrueList).
filter(Pred, Set, TrueSet, FalseSet) :-
SortedList = to_sorted_list(Set),
list.filter(Pred, SortedList, SortedTrueList, SortedFalseList),
TrueSet = sorted_list_to_set(SortedTrueList),
FalseSet = sorted_list_to_set(SortedFalseList).
%---------------------------------------------------------------------------%
count(Set) = foldl((func(_, Acc) = Acc + 1), Set, 0).
%---------------------------------------------------------------------------%
make_singleton_set(A) = insert(init, A).
singleton_set(make_singleton_set(A), A).
is_singleton(sparse_bitset([Node]), Elem) :-
Node = bitset_elem(Offset, Bits),
count_bits(Offset, bits_per_int, Bits, [], SetOffsets),
SetOffsets = [SetOffset],
( if ElemPrime = from_int(SetOffset) then
Elem = ElemPrime
else
% We only apply `from_int/1' to integers returned
% by `to_int/1', so it should never fail.
unexpected($module, $pred, "`enum.from_int/1' failed")
).
% Do a binary search for the 1 bits in an int.
%
:- pred count_bits(int::in, int::in, int::in,
list(int)::in, list(int)::out) is det.
count_bits(BitOffset, Size, Bits, !SetOffsets) :-
( if Bits = 0 then
true
else if Size = 1 then
% If Bits were 0, we wouldn't have got here.
!:SetOffsets = [BitOffset | !.SetOffsets]
else
HalfSize = unchecked_right_shift(Size, 1),
Mask = mask(HalfSize),
% Extract the low-order half of the bits.
LowBits = Mask /\ Bits,
% Extract the high-order half of the bits.
HighBits = Mask /\ unchecked_right_shift(Bits, HalfSize),
count_bits(BitOffset, HalfSize, LowBits, !SetOffsets),
count_bits(BitOffset + HalfSize, HalfSize, HighBits, !SetOffsets)
).
%---------------------------------------------------------------------------%
insert(Set0, Elem) = Set :-
insert(Elem, Set0, Set).
insert(E, !Set) :-
!.Set = sparse_bitset(Set0),
insert_2(Set0, enum.to_int(E), Set),
!:Set = sparse_bitset(Set).
:- pred insert_2(bitset_impl::in, int::in, bitset_impl::out) is det.
insert_2([], Index, [make_bitset_elem(Offset, Bits)]) :-
bits_for_index(Index, Offset, Bits).
insert_2(Set0, Index, Set) :-
Set0 = [Data0 | Rest0],
Offset0 = Data0 ^ offset,
( if Index < Offset0 then
bits_for_index(Index, Offset, Bits),
Set = [make_bitset_elem(Offset, Bits) | Set0]
else if BitToSet = Index - Offset0, BitToSet < bits_per_int then
Bits0 = Data0 ^ bits,
( if get_bit(Bits0, BitToSet) \= 0 then
Set = Set0
else
Bits = set_bit(Bits0, BitToSet),
Set = [make_bitset_elem(Offset0, Bits) | Rest0]
)
else
insert_2(Rest0, Index, Set1),
Set = [Data0 | Set1]
).
%---------------------------------------------------------------------------%
insert_new(E, !Set) :-
!.Set = sparse_bitset(Set0),
insert_new_2(enum.to_int(E), Set0, Set),
!:Set = sparse_bitset(Set).
:- pred insert_new_2(int::in, bitset_impl::in, bitset_impl::out)
is semidet.
insert_new_2(Index, [], [make_bitset_elem(Offset, Bits)]) :-
bits_for_index(Index, Offset, Bits).
insert_new_2(Index, Set0, Set) :-
Set0 = [Data0 | Rest0],
Offset0 = Data0 ^ offset,
( if Index < Offset0 then
bits_for_index(Index, Offset, Bits),
Set = [make_bitset_elem(Offset, Bits) | Set0]
else if BitToSet = Index - Offset0, BitToSet < bits_per_int then
Bits0 = Data0 ^ bits,
( if get_bit(Bits0, BitToSet) \= 0 then
fail
else
Bits = set_bit(Bits0, BitToSet),
Set = [make_bitset_elem(Offset0, Bits) | Rest0]
)
else
insert_new_2(Index, Rest0, Set1),
Set = [Data0 | Set1]
).
%---------------------------------------------------------------------------%
insert_list(List, !Set) :-
!:Set = insert_list(!.Set, List).
insert_list(Set, List) = union(list_to_set(List), Set).
%---------------------------------------------------------------------------%
delete(E, !Set) :-
!:Set = delete(!.Set, E).
delete(Set, Elem) = difference(Set, insert(init, Elem)).
delete_list(List, !Set) :-
!:Set = delete_list(!.Set, List).
delete_list(Set, List) = difference(Set, list_to_set(List)).
%---------------------------------------------------------------------------%
remove(Elem, !Set) :-
contains(!.Set, Elem),
!:Set = delete(!.Set, Elem).
remove_list(Elems, !Set) :-
list_to_set(Elems, ElemsSet),
subset(ElemsSet, !.Set),
!:Set = difference(!.Set, ElemsSet).
%---------------------------------------------------------------------------%
remove_leq(E, !Set) :-
!:Set = remove_leq(!.Set, E).
remove_leq(sparse_bitset(Set), Elem) =
sparse_bitset(remove_leq_2(Set, enum.to_int(Elem))).
:- func remove_leq_2(bitset_impl, int) = bitset_impl.
remove_leq_2([], _) = [].
remove_leq_2([Data | Rest], Index) = Result :-
Offset = Data ^ offset,
( if Offset + bits_per_int =< Index then
Result = remove_leq_2(Rest, Index)
else if Offset =< Index then
( if
Bits = Data ^ bits /\
unchecked_left_shift(\ 0, Index - Offset + 1),
Bits \= 0
then
Result = [make_bitset_elem(Offset, Bits) | Rest]
else
Result = Rest
)
else
Result = [Data | Rest]
).
%---------------------------------------------------------------------------%
remove_gt(E, !Set) :-
!:Set = remove_gt(!.Set, E).
remove_gt(sparse_bitset(Set), Elem) =
sparse_bitset(remove_gt_2(Set, enum.to_int(Elem))).
:- func remove_gt_2(bitset_impl, int) = bitset_impl.
remove_gt_2([], _) = [].
remove_gt_2([Data | Rest], Index) = Result :-
Offset = Data ^ offset,
( if Offset + bits_per_int - 1 =< Index then
Result = [Data | remove_gt_2(Rest, Index)]
else if Offset =< Index then
( if
Bits = Data ^ bits /\
\ unchecked_left_shift(\ 0, Index - Offset + 1),
Bits \= 0
then
Result = [make_bitset_elem(Offset, Bits)]
else
Result = []
)
else
Result = []
).
%---------------------------------------------------------------------------%
remove_least(Elem, sparse_bitset(Set0), sparse_bitset(Set)) :-
Set0 = [First | Rest],
Bits0 = First ^ bits,
Offset = First ^ offset,
Bit = find_least_bit(Bits0),
( if Elem0 = from_int(Offset + Bit) then
Elem = Elem0
else
% We only apply `from_int/1' to integers returned
% by `to_int/1', so it should never fail.
unexpected($module, $pred, "`enum.from_int/1' failed")
),
Bits = clear_bit(Bits0, Bit),
( if Bits = 0 then
Set = Rest
else
Set = [make_bitset_elem(Offset, Bits) | Rest]
).
:- func find_least_bit(int) = int.
find_least_bit(Bits0) = BitNum :-
Size = bits_per_int,
BitNum0 = 0,
BitNum = find_least_bit_2(Bits0, Size, BitNum0).
:- func find_least_bit_2(int, int, int) = int.
find_least_bit_2(Bits0, Size, BitNum0) = BitNum :-
( if Size = 1 then
% We can't get here unless the bit is a 1 bit.
BitNum = BitNum0
else
HalfSize = unchecked_right_shift(Size, 1),
Mask = mask(HalfSize),
LowBits = Bits0 /\ Mask,
( if LowBits \= 0 then
BitNum = find_least_bit_2(LowBits, HalfSize, BitNum0)
else
HighBits = Mask /\ unchecked_right_shift(Bits0, HalfSize),
BitNum = find_least_bit_2(HighBits, HalfSize, BitNum0 + HalfSize)
)
).
%---------------------------------------------------------------------------%
list_to_set(A, list_to_set(A)).
list_to_set(List) =
sparse_bitset(list_to_set_2(List, [])).
% Each pass over the input list selects out the elements which belong
% in the same bitset_elem as the first element. The assumption here is that
% the items in the input list will have similar values, so that only a few
% passes will be needed.
%
:- func list_to_set_2(list(T), bitset_impl) = bitset_impl <= enum(T).
:- pragma type_spec(list_to_set_2/2, T = var(_)).
:- pragma type_spec(list_to_set_2/2, T = int).
list_to_set_2([], List) = List.
list_to_set_2([H | T], List0) = List :-
bits_for_index(enum.to_int(H), Offset, Bits0),
list_to_set_3(T, Offset, Bits0, Bits, [], Rest),
List1 = insert_bitset_elem(make_bitset_elem(Offset, Bits), List0),
List = list_to_set_2(Rest, List1).
% Go through the list picking out the elements which belong in the same
% bitset_elem as the first element, returning the uncollected elements.
%
:- pred list_to_set_3(list(T)::in, int::in, int::in, int::out,
list(T)::in, list(T)::out) is det <= enum(T).
:- pragma type_spec(list_to_set_3/6, T = var(_)).
:- pragma type_spec(list_to_set_3/6, T = int).
list_to_set_3([], _, !Bits, !Rest).
list_to_set_3([H | T], Offset, !Bits, !Rest) :-
BitToSet = enum.to_int(H) - Offset,
( if BitToSet >= 0, BitToSet < bits_per_int then
!:Bits = set_bit(!.Bits, BitToSet)
else
!:Rest = [H | !.Rest]
),
list_to_set_3(T, Offset, !Bits, !Rest).
% The list of elements here is pretty much guaranteed to be small,
% so use an insertion sort.
%
:- func insert_bitset_elem(bitset_elem, bitset_impl) = bitset_impl.
insert_bitset_elem(Data, []) = [Data].
insert_bitset_elem(Data, [Head | Tail]) = List :-
( if Data ^ offset < Head ^ offset then
List = [Data, Head | Tail]
else
List = [Head | insert_bitset_elem(Data, Tail)]
).
%---------------------------------------------------------------------------%
sorted_list_to_set(A, sorted_list_to_set(A)).
sorted_list_to_set(L) = sparse_bitset(sorted_list_to_set_2(L)).
:- func sorted_list_to_set_2(list(T)) = bitset_impl <= enum(T).
:- pragma type_spec(sorted_list_to_set_2/1, T = var(_)).
:- pragma type_spec(sorted_list_to_set_2/1, T = int).
sorted_list_to_set_2([]) = [].
sorted_list_to_set_2([H | T]) = Set :-
sorted_list_to_set_3(H, T, Offset, Bits, Set0),
( if Bits = 0 then
Set = Set0
else
Set = [make_bitset_elem(Offset, Bits) | Set0]
).
:- pred sorted_list_to_set_3(T::in, list(T)::in, int::out, int::out,
bitset_impl::out) is det <= enum(T).
:- pragma type_spec(sorted_list_to_set_3/5, T = var(_)).
:- pragma type_spec(sorted_list_to_set_3/5, T = int).
sorted_list_to_set_3(Elem, [], Offset, Bits, []) :-
bits_for_index(enum.to_int(Elem), Offset, Bits).
sorted_list_to_set_3(Elem1, [Elem2 | Elems], Offset, Bits, Rest) :-
sorted_list_to_set_3(Elem2, Elems, Offset0, Bits0, Rest0),
bits_for_index(enum.to_int(Elem1), Offset1, Bits1),
( if Offset1 = Offset0 then
Bits = Bits1 \/ Bits0,
Offset = Offset1,
Rest = Rest0
else
Rest = [make_bitset_elem(Offset0, Bits0) | Rest0],
Offset = Offset1,
Bits = Bits1
).
%---------------------------------------------------------------------------%
subset(Subset, Set) :-
intersect(Set, Subset, Subset).
superset(Superset, Set) :-
subset(Set, Superset).
%---------------------------------------------------------------------------%
contains(sparse_bitset(Set), Elem) :-
contains_search_nodes(Set, enum.to_int(Elem)).
:- pred contains_search_nodes(bitset_impl::in, int::in) is semidet.
contains_search_nodes([Data | Rest], Index) :-
Offset = Data ^ offset,
Index >= Offset,
( if Index < Offset + bits_per_int then
get_bit(Data ^ bits, Index - Offset) \= 0
else
contains_search_nodes(Rest, Index)
).
%---------------------------------------------------------------------------%
:- pragma promise_equivalent_clauses(member/2).
member(Elem::in, Set::in) :-
contains(Set, Elem).
member(Elem::out, sparse_bitset(Set)::in) :-
member_search_nodes(Index, Set),
( if Elem0 = from_int(Index) then
Elem = Elem0
else
% We only apply `from_int/1' to integers returned
% by `to_int/1', so it should never fail.
unexpected($module, $pred, "`enum.from_int/1' failed")
).
:- pred member_search_nodes(int::out, bitset_impl::in) is nondet.
member_search_nodes(Index, [Elem | Elems]) :-
( member_search_one_node(Index, Elem ^ offset, bits_per_int, Elem ^ bits)
; member_search_nodes(Index, Elems)
).
:- pred member_search_one_node(int::out, int::in, int::in, int::in) is nondet.
member_search_one_node(Index, Offset, Size, Bits) :-
( if Bits = 0 then
fail
else if Size = 1 then
Index = Offset
else
HalfSize = unchecked_right_shift(Size, 1),
Mask = mask(HalfSize),
% Extract the low-order half of the bits.
LowBits = Mask /\ Bits,
% Extract the high-order half of the bits.
HighBits = Mask /\ unchecked_right_shift(Bits, HalfSize),
( member_search_one_node(Index, Offset, HalfSize, LowBits)
; member_search_one_node(Index, Offset + HalfSize, HalfSize, HighBits)
)
).
%---------------------------------------------------------------------------%
:- func rest(bitset_impl::in(bound([ground | ground]))) =
(bitset_impl::out) is det.
rest([_ | Rest]) = Rest.
union(A, B, union(A, B)).
union(sparse_bitset(Set1), sparse_bitset(Set2)) =
sparse_bitset(union_2(Set1, Set2)).
:- func union_2(bitset_impl, bitset_impl) = bitset_impl.
union_2([], []) = [].
union_2([], B) = B :-
B = [_ | _].
union_2(A, []) = A :-
A = [_ | _].
union_2(Set1, Set2) = Set :-
Set1 = [Data1 | _],
Set2 = [Data2 | _],
Offset1 = Data1 ^ offset,
Offset2 = Data2 ^ offset,
( if Offset1 = Offset2 then
Elem = make_bitset_elem(Offset1, (Data1 ^ bits) \/ (Data2 ^ bits)),
Set = [Elem | union_2(Set1 ^ rest, Set2 ^ rest)]
else if Offset1 < Offset2 then
Set = [Data1 | union_2(Set1 ^ rest, Set2)]
else
Set = [Data2 | union_2(Set1, Set2 ^ rest)]
).
%---------------------------------------------------------------------------%
intersect(A, B, intersect(A, B)).
intersect(sparse_bitset(Set1), sparse_bitset(Set2)) =
sparse_bitset(intersect_2(Set1, Set2)).
:- func intersect_2(bitset_impl, bitset_impl) = bitset_impl.
intersect_2([], []) = [].
intersect_2([], B) = [] :-
B = [_ | _].
intersect_2(A, []) = [] :-
A = [_ | _].
intersect_2(Set1, Set2) = Set :-
Set1 = [Data1 | _],
Set2 = [Data2 | _],
Offset1 = Data1 ^ offset,
Offset2 = Data2 ^ offset,
( if Offset1 = Offset2 then
Bits = Data1 ^ bits /\ Data2 ^ bits,
( if Bits = 0 then
Set = intersect_2(Set1 ^ rest, Set2 ^ rest)
else
Set = [make_bitset_elem(Offset1, Bits) |
intersect_2(Set1 ^ rest, Set2 ^ rest)]
)
else if Offset1 < Offset2 then
Set = intersect_2(Set1 ^ rest, Set2)
else
Set = intersect_2(Set1, Set2 ^ rest)
).
%---------------------------------------------------------------------------%
difference(A, B, difference(A, B)).
difference(sparse_bitset(Set1), sparse_bitset(Set2)) =
sparse_bitset(difference_2(Set1, Set2)).
:- func difference_2(bitset_impl, bitset_impl) = bitset_impl.
difference_2([], []) = [].
difference_2([], B) = [] :-
B = [_ | _].
difference_2(A, []) = A :-
A = [_ | _].
difference_2(Set1, Set2) = Set :-
Set1 = [Data1 | _],
Set2 = [Data2 | _],
Offset1 = Data1 ^ offset,
Offset2 = Data2 ^ offset,
( if Offset1 = Offset2 then
Bits = (Data1 ^ bits) /\ \ (Data2 ^ bits),
( if Bits = 0 then
Set = difference_2(Set1 ^ rest, Set2 ^ rest)
else
Set = [make_bitset_elem(Offset1, Bits) |
difference_2(Set1 ^ rest, Set2 ^ rest)]
)
else if Offset1 < Offset2 then
Set = [Data1 | difference_2(Set1 ^ rest, Set2)]
else
Set = difference_2(Set1, Set2 ^ rest)
).
%---------------------------------------------------------------------------%
union_list(Sets) = Set :-
union_list(Sets, Set).
union_list([], sparse_bitset.init).
union_list([Set], Set).
union_list(Sets @ [_, _ | _], Set) :-
union_list_pass(Sets, [], MergedSets),
union_list(MergedSets, Set).
% Union adjacent pairs of sets, so that the resulting list has N sets
% if the input list has 2N or 2N-1 sets.
%
% We keep invoking union_list_pass until it yields a list of only one set.
%
% The point of this approach is that unioning a large set with a small set
% is often only slightly faster than unioning that large set with another
% large set, yet it gets significantly less work done. This is because
% the bitsets in a small set can be expected to be considerably sparser
% that bitsets in large sets.
%
% We expect that this approach should yield performance closer to NlogN
% than to N^2 when unioning a list of N sets.
%
:- pred union_list_pass(list(sparse_bitset(T))::in,
list(sparse_bitset(T))::in, list(sparse_bitset(T))::out)
is det.
union_list_pass([], !MergedSets).
union_list_pass([Set], !MergedSets) :-
!:MergedSets = [Set | !.MergedSets].
union_list_pass([SetA, SetB | Sets0], !MergedSets) :-
union(SetA, SetB, SetAB),
!:MergedSets = [SetAB | !.MergedSets],
union_list_pass(Sets0, !MergedSets).
%---------------------------------------------------------------------------%
intersect_list(Sets) = Set :-
intersect_list(Sets, Set).
intersect_list([], sparse_bitset.init).
intersect_list([Set], Set).
intersect_list(Sets @ [_, _ | _], Set) :-
intersect_list_pass(Sets, [], MergedSets),
intersect_list(MergedSets, Set).
% Intersect adjacent pairs of sets, so that the resulting list has N sets
% if the input list has 2N or 2N-1 sets.
%
% We keep invoking intersect_list_pass until it yields a list
% of only one set.
%
% The point of this approach is that intersecting a large set with a small
% set is often only slightly faster than intersecting that large set
% with another large set, yet it gets significantly less work done.
% This is because the bitsets in a small set can be expected to be
% considerably sparser that bitsets in large sets.
%
% We expect that this approach should yield performance closer to NlogN
% than to N^2 when intersecting a list of N sets.
%
:- pred intersect_list_pass(list(sparse_bitset(T))::in,
list(sparse_bitset(T))::in, list(sparse_bitset(T))::out) is det.
intersect_list_pass([], !MergedSets).
intersect_list_pass([Set], !MergedSets) :-
!:MergedSets = [Set | !.MergedSets].
intersect_list_pass([SetA, SetB | Sets0], !MergedSets) :-
intersect(SetA, SetB, SetAB),
!:MergedSets = [SetAB | !.MergedSets],
intersect_list_pass(Sets0, !MergedSets).
%---------------------------------------------------------------------------%
divide(Pred, Set, InSet, OutSet) :-
Set = sparse_bitset(Nodes),
divide_nodes(Pred, Nodes, InNodes, OutNodes),
InSet = sparse_bitset(InNodes),
OutSet = sparse_bitset(OutNodes).
:- pred divide_nodes(pred(T)::in(pred(in) is semidet),
list(bitset_elem)::in, list(bitset_elem)::out, list(bitset_elem)::out)
is det <= enum(T).
divide_nodes(_Pred, [], [], []).
divide_nodes(Pred, [Node | Nodes], InNodes, OutNodes) :-
divide_nodes(Pred, Nodes, InNodesTail, OutNodesTail),
Node = bitset_elem(Offset, Bits),
divide_bits(Pred, Offset, 0, Bits, bits_per_int, 0, In, 0, Out),
( if In = 0 then
InNodes = InNodesTail
else
InNodes = [make_bitset_elem(Offset, In) | InNodesTail]
),
( if Out = 0 then
OutNodes = OutNodesTail
else
OutNodes = [make_bitset_elem(Offset, Out) | OutNodesTail]
).
% Do a binary search for the 1 bits in an int.
%
:- pred divide_bits(pred(T)::in(pred(in) is semidet),
int::in, int::in, int::in, int::in, int::in, int::out, int::in, int::out)
is det <= enum(T).
divide_bits(P, BaseOffset, OffsetInWord, Bits, Size, !In, !Out) :-
( if Bits = 0 then
true
else if Size = 1 then
( if Elem = from_int(BaseOffset + OffsetInWord) then
OffsetBit = unchecked_left_shift(1, OffsetInWord),
( if P(Elem) then
!:In = !.In \/ OffsetBit
else
!:Out = !.Out \/ OffsetBit
)
else
% We only apply `from_int/1' to integers returned
% by `to_int/1', so it should never fail.
unexpected($module, $pred, "`enum.from_int/1' failed")
)
else
HalfSize = unchecked_right_shift(Size, 1),
Mask = mask(HalfSize),
% Extract the low-order half of the bits.
LowBits = Mask /\ Bits,
% Extract the high-order half of the bits.
HighBits = Mask /\ unchecked_right_shift(Bits, HalfSize),
divide_bits(P, BaseOffset, OffsetInWord, LowBits, HalfSize,
!In, !Out),
divide_bits(P, BaseOffset, OffsetInWord + HalfSize, HighBits, HalfSize,
!In, !Out)
).
divide_by_set(DivideBySet, Set, InSet, OutSet) :-
DivideBySet = sparse_bitset(DivideByNodes),
Set = sparse_bitset(Nodes),
divide_nodes_by_set(DivideByNodes, Nodes, InNodes, OutNodes),
InSet = sparse_bitset(InNodes),
OutSet = sparse_bitset(OutNodes).
:- pred divide_nodes_by_set(list(bitset_elem)::in, list(bitset_elem)::in,
list(bitset_elem)::out, list(bitset_elem)::out) is det.
divide_nodes_by_set(_DivideByNodes, [], [], []).
divide_nodes_by_set([], [Node | Nodes], [], [Node | Nodes]).
divide_nodes_by_set([DivideByNode | DivideByNodes], [Node | Nodes],
InNodes, OutNodes) :-
DivideByNode = bitset_elem(DivideByOffset, DivideByBits),
Node = bitset_elem(Offset, Bits),
( if DivideByOffset < Offset then
divide_nodes_by_set(DivideByNodes, [Node | Nodes], InNodes, OutNodes)
else if DivideByOffset > Offset then
divide_nodes_by_set([DivideByNode | DivideByNodes], Nodes,
InNodes, OutNodesTail),
OutNodes = [Node | OutNodesTail]
else
divide_nodes_by_set(DivideByNodes, Nodes, InNodesTail, OutNodesTail),
divide_bits_by_set(DivideByBits, Offset, Bits, bits_per_int,
0, In, 0, Out),
( if In = 0 then
InNodes = InNodesTail
else
InNodes = [make_bitset_elem(Offset, In) | InNodesTail]
),
( if Out = 0 then
OutNodes = OutNodesTail
else
OutNodes = [make_bitset_elem(Offset, Out) | OutNodesTail]
)
).
% Do a binary search for the 1 bits in an int.
%
:- pred divide_bits_by_set(int::in,
int::in, int::in, int::in, int::in, int::out, int::in, int::out) is det.
divide_bits_by_set(DivideByBits, Offset, Bits, Size, !In, !Out) :-
( if Bits = 0 then
true
else if Size = 1 then
OffsetBit = unchecked_left_shift(1, Offset),
( if DivideByBits /\ OffsetBit = 0 then
!:Out = !.Out \/ OffsetBit
else
!:In = !.In \/ OffsetBit
)
else
HalfSize = unchecked_right_shift(Size, 1),
Mask = mask(HalfSize),
% Extract the low-order half of the bits.
LowBits = Mask /\ Bits,
% Extract the high-order half of the bits.
HighBits = Mask /\ unchecked_right_shift(Bits, HalfSize),
divide_bits_by_set(DivideByBits, Offset, LowBits, HalfSize,
!In, !Out),
divide_bits_by_set(DivideByBits, Offset + HalfSize, HighBits, HalfSize,
!In, !Out)
).
%---------------------------------------------------------------------------%
% Return the offset of the element of a set which should contain the given
% element, and an int with the bit corresponding to that element set.
%
:- pred bits_for_index(int::in, int::out, int::out) is det.
:- pragma inline(bits_for_index/3).
bits_for_index(Index, Offset, Bits) :-
Offset = int.floor_to_multiple_of_bits_per_int(Index),
BitToSet = Index - Offset,
Bits = set_bit(0, BitToSet).
:- func get_bit(int, int) = int.
:- pragma inline(get_bit/2).
get_bit(Int, Bit) = Int /\ unchecked_left_shift(1, Bit).
:- func set_bit(int, int) = int.
:- pragma inline(set_bit/2).
set_bit(Int0, Bit) = Int0 \/ unchecked_left_shift(1, Bit).
:- func clear_bit(int, int) = int.
:- pragma inline(clear_bit/2).
clear_bit(Int0, Bit) = Int0 /\ \ unchecked_left_shift(1, Bit).
% `mask(N)' returns a mask which can be `and'ed with an integer to return
% the lower `N' bits of the integer. `N' must be less than bits_per_int.
%
:- func mask(int) = int.
:- pragma inline(mask/1).
mask(N) = \ unchecked_left_shift(\ 0, N).
:- func make_bitset_elem(int, int) = bitset_elem.
:- pragma inline(make_bitset_elem/2).
make_bitset_elem(Offset, Bits) = bitset_elem(Offset, Bits).
%---------------------------------------------------------------------------%
:- end_module sparse_bitset.
%---------------------------------------------------------------------------%