Files
mercury/library/integer.m
Zoltan Somogyi bbbbfde36c Convert (C->T;E) to (if C then T else E).
Also, eliminate the use of DCGs, turn semidet functions into predicates,
and improve documentation.
2015-10-21 11:04:05 +11:00

1539 lines
43 KiB
Mathematica

%---------------------------------------------------------------------------%
% vim: ts=4 sw=4 et ft=mercury
%---------------------------------------------------------------------------%
% Copyright (C) 1997-2000, 2003-2007, 2011-2012 The University of Melbourne.
% This file may only be copied under the terms of the GNU Library General
% Public License - see the file COPYING.LIB in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: integer.m.
% Main authors: aet, Dan Hazel <odin@svrc.uq.edu.au>.
% Stability: high.
%
% This modules defines an arbitrary precision integer type (named "integer")
% and basic arithmetic operations on it.
%
% The builtin Mercury type "int" is implemented as machine integers,
% which on virtually all modern machines will be 32 or 64 bits in size.
% If you need to manipulate integers that may not fit into this many bits,
% you will want to use "integer"s instead of "int"s.
%
% NOTE: All the operators we define on "integers" behave the same as the
% corresponding operators on "int"s. This includes the operators related
% to division: /, //, rem, div, and mod.
%
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- module integer.
:- interface.
:- type integer.
% X < Y: Succeed if and only if X is less than Y.
%
:- pred '<'(integer::in, integer::in) is semidet.
% X > Y: Succeed if and only if X is greater than Y.
%
:- pred '>'(integer::in, integer::in) is semidet.
% X =< Y: Succeed if and only if X is less than or equal to Y.
%
:- pred '=<'(integer::in, integer::in) is semidet.
% X >= Y: Succeed if and only if X is greater than or equal to Y.
%
:- pred '>='(integer::in, integer::in) is semidet.
% Convert int to integer.
%
:- func integer(int) = integer.
% Convert an integer to a string (in base 10).
%
:- func to_string(integer) = string.
% to_base_string(Integer, Base) = String:
%
% Convert an integer to a string in a given Base.
%
% Base must be between 2 and 36, both inclusive; if it is not,
% the predicate will throw an exception.
%
:- func to_base_string(integer, int) = string.
% Convert a string to an integer. The string must contain only digits
% [0-9], optionally preceded by a plus or minus sign. If the string does
% not match this syntax, then the predicate fails.
%
:- pred from_string(string::in, integer::out) is semidet.
:- func from_string(string::in) = (integer::out) is semidet.
:- pragma obsolete(from_string/1).
% As above, but throws an exception rather than failing.
%
:- func det_from_string(string) = integer.
% Convert a string in the specified base (2-36) to an integer.
% The string must contain one or more digits in the specified base,
% optionally preceded by a plus or minus sign. For bases > 10, digits
% 10 to 35 are represented by the letters A-Z or a-z. If the string
% does not match this syntax, then the predicate fails.
%
:- pred from_base_string(int::in, string::in, integer::out) is semidet.
:- func from_base_string(int, string) = integer is semidet.
:- pragma obsolete(from_base_string/2).
% As above, but throws an exception rather than failing.
%
:- func det_from_base_string(int, string) = integer.
% Unary plus.
%
:- func '+'(integer) = integer.
% Unary minus.
%
:- func '-'(integer) = integer.
% Addition.
%
:- func integer + integer = integer.
% Subtraction.
%
:- func integer - integer = integer.
% Multiplication.
%
:- func integer * integer = integer.
% Truncating integer division.
% Behaves as int.(//).
%
:- func integer // integer = integer.
% Flooring integer division.
% Behaves as int.div.
%
:- func integer div integer = integer.
% Remainder.
% Behaves as int.rem.
%
:- func integer rem integer = integer.
% Modulus.
% Behaves as int.mod.
%
:- func integer mod integer = integer.
% divide_with_rem(X, Y, Q, R) where Q = X // Y and R = X rem Y
% where both answers are calculated at the same time.
%
:- pred divide_with_rem(integer::in, integer::in,
integer::out, integer::out) is det.
% Left shift.
% Behaves as int.(<<).
%
:- func integer << int = integer.
% Right shift.
% Behaves as int.(>>).
%
:- func integer >> int = integer.
% Bitwise and.
%
:- func integer /\ integer = integer.
% Bitwise or.
%
:- func integer \/ integer = integer.
% Bitwise exclusive or (xor).
%
:- func integer `xor` integer = integer.
% Bitwise complement.
%
:- func \ integer = integer.
% Absolute value.
%
:- func abs(integer) = integer.
% Exponentiation.
% pow(X, Y) = Z: Z is X raised to the Yth power.
% Throws a `math.domain_error' exception if Y is negative.
%
:- func pow(integer, integer) = integer.
% Convert an integer to a float.
%
:- func float(integer) = float.
% Convert an integer to an int.
% Fails if the integer is not in the range [min_int, max_int].
%
:- pred to_int(integer::in, int::out) is semidet.
% As above, but throws an exception rather than failing.
%
:- func det_to_int(integer) = int.
:- func int(integer) = int.
:- pragma obsolete(int/1).
% True if the argument is equal to integer.zero.
%
:- pred is_zero(integer::in) is semidet.
%---------------------------------------------------------------------------%
%
% Constants.
%
% Equivalent to integer(-1).
%
:- func negative_one = integer.
% Equivalent to integer(0).
%
:- func zero = integer.
% Equivalent to integer(1).
%
:- func one = integer.
% Equivalent to integer(2).
%
:- func two = integer.
% Equivalent to integer(10).
%
:- func ten = integer.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
:- import_module char.
:- import_module exception.
:- import_module float.
:- import_module int.
:- import_module list.
:- import_module math.
:- import_module require.
:- import_module string.
%---------------------------------------------------------------------------%
% Possible improvements:
%
% 1) allow negative digits (-base+1 .. base-1) in lists of digits
% and normalise only when printing. This would probably simplify
% the division algorithm, also.
% (djh: this is not really done although -ve integers include a list
% of -ve digits for faster comparison and so that normal mercury
% sorting produces an intuitive order)
%
% 2) alternatively, instead of using base=10000, use *all* the bits in an int
% and make use of the properties of machine arithmetic. Base 10000 doesn't
% use even half the bits in an int, which is inefficient. (Base 2^14
% would be a little better but would require a slightly more complex
% case conversion on reading and printing.)
% (djh: this is done)
%
% 3) Use an O(n^(3/2)) algorithm for multiplying large integers, rather than
% the current O(n^2) method. There is an obvious divide-and-conquer
% technique, Karatsuba multiplication. (this is done)
%
% 4) We could overload operators so that we can have mixed operations
% on ints and integers. For example, "integer(1)+3". This
% would obviate most calls of integer().
%
% 5) Use double-ended lists rather than simple lists. This would improve
% the efficiency of the division algorithm, which reverse lists.
% (djh: this is obsolete - digits lists are now in normal order)
%
% 6) Add bit operations (XOR, AND, OR, etc). We would treat the integers
% as having a 2's complement bit representation. This is easier to do
% if we use base 2^14 as mentioned above.
% (djh: this is done: /\ \/ << >> xor \)
%
% 7) The implementation of `div' is slower than it need be.
% (djh: this is much improved)
%
% 8) Fourier methods such as Schoenhage-Strassen and multiplication via
% modular arithmetic are left as exercises to the reader. 8^)
%
% Of the above, 1) would have the best bang-for-buck, 5) would benefit
% division and remainder operations quite a lot, and 3) would benefit
% large multiplications (thousands of digits) and is straightforward
% to implement.
%
% (djh: I'd like to see 1) done. integers are now represented as
% i(Length, Digits) where Digits are no longer reversed.
% The only penalty for not reversing is in multiplication by the base
% which now entails walking to the end of the list to append a 0.
% Therefore I'd like to see:
%
% 9) Allow empty tails for low end zeros.
% Base multiplication is then an increment to Length.
:- type sign == int. % sign of integer and length of digit list
:- type digit == int. % base 2^14 digit
:- type integer
---> i(sign, list(digit)).
:- func base = int.
base = 16384. % 2^14
:- func basediv2 = int.
basediv2 = 8192.
:- func log2base = int.
log2base = 14.
:- func basemask = int.
basemask = 16383.
:- func highbitmask = int.
highbitmask = basediv2.
:- func lowbitmask = int.
lowbitmask = 1.
:- func evenmask = int.
evenmask = 16382.
'<'(X, Y) :-
big_cmp(X, Y) = C,
C = (<).
'>'(X, Y) :-
big_cmp(X, Y) = C,
C = (>).
'=<'(X, Y) :-
big_cmp(X, Y) = C,
( C = (<) ; C = (=)).
'>='(X, Y) :-
big_cmp(X, Y) = C,
( C = (>) ; C = (=)).
'+'(X) = X.
'-'(X) = big_neg(X).
X + Y = big_plus(X, Y).
X - Y = big_plus(X, big_neg(Y)).
X * Y = big_mul(X, Y).
X div Y = big_div(X, Y).
X // Y = big_quot(X, Y).
X rem Y = big_rem(X, Y).
X mod Y = big_mod(X, Y).
divide_with_rem(X, Y, Quotient, Remainder) :-
big_quot_rem(X, Y, Quotient, Remainder).
X << I = Result :-
( if I > 0 then
Result = big_left_shift(X, I)
else if I < 0 then
Result = X >> -I
else
Result = X
).
X >> I = Result :-
( if I < 0 then
Result = X << -I
else if I > 0 then
Result = big_right_shift(X, I)
else
Result = X
).
X /\ Y = Result :-
( if big_isnegative(X) then
( if big_isnegative(Y) then
Result = \ big_or(\ X, \ Y)
else
Result = big_and_not(Y, \ X)
)
else if big_isnegative(Y) then
Result = big_and_not(X, \ Y)
else
Result = big_and(X, Y)
).
X \/ Y = Result :-
( if big_isnegative(X) then
( if big_isnegative(Y) then
Result = \ big_and(\ X, \ Y)
else
Result = \ big_and_not(\ X, Y)
)
else if big_isnegative(Y) then
Result = \ big_and_not(\ Y, X)
else
Result = big_or(X, Y)
).
X `xor` Y = Result :-
( if big_isnegative(X) then
( if big_isnegative(Y) then
Result = big_xor(\ X, \ Y)
else
Result = big_xor_not(Y, \ X)
)
else if big_isnegative(Y) then
Result = big_xor_not(X, \ Y)
else
Result = big_xor(X, Y)
).
\ X = big_neg(big_plus(X, integer.one)).
integer.abs(N) = big_abs(N).
:- func big_abs(integer) = integer.
big_abs(i(Sign, Ds)) = Result :-
( if Sign < 0 then
Result = big_neg(i(Sign, Ds))
else
Result = i(Sign, Ds)
).
:- pred neg_list(list(int)::in, list(int)::out) is det.
neg_list([], []).
neg_list([H | T], [-H | NT]) :-
neg_list(T, NT).
:- pred big_isnegative(integer::in) is semidet.
big_isnegative(i(Sign, _)) :-
Sign < 0.
:- func big_neg(integer) = integer.
big_neg(i(S, Digits0)) = i(-S, Digits) :-
neg_list(Digits0, Digits).
:- func big_mul(integer, integer) = integer.
big_mul(X, Y) = Result :-
Sign = integer_signum(X) * integer_signum(Y),
Value = pos_mul(big_abs(X), big_abs(Y)),
Result = big_sign(Sign, Value).
:- func big_sign(int, integer) = integer.
big_sign(Sign, In) = Result :-
( if Sign < 0 then
Result = big_neg(In)
else
Result = In
).
:- func big_quot(integer, integer) = integer.
big_quot(X, Y) = Quot :-
big_quot_rem(X, Y, Quot, _Rem).
:- func big_rem(integer, integer) = integer.
big_rem(X, Y) = Rem :-
big_quot_rem(X, Y, _Quot, Rem).
:- func big_div(integer, integer) = integer.
big_div(X, Y) = Div :-
big_quot_rem(X, Y, Trunc, Rem),
( if integer_signum(Y) * integer_signum(Rem) < 0 then
Div = Trunc - integer.one
else
Div = Trunc
).
:- func big_mod(integer, integer) = integer.
big_mod(X, Y) = Mod :-
big_quot_rem(X, Y, _Trunc, Rem),
( if integer_signum(Y) * integer_signum(Rem) < 0 then
Mod = Rem + Y
else
Mod = Rem
).
:- func big_right_shift(integer, int) = integer.
big_right_shift(X, I) = Result :-
( if is_zero(X) then
Result = X
else if big_isnegative(X) then
Result = \ pos_right_shift(\ X, I)
else
Result = pos_right_shift(X, I)
).
:- func pos_right_shift(integer, int) = integer.
pos_right_shift(i(Len, Digits), I) = Integer :-
Div = I div log2base,
( if Div < Len then
Mod = I mod log2base,
Integer = decap(rightshift(Mod, log2base - Mod,
i(Len - Div, Digits), 0))
else
Integer = integer.zero
).
:- func rightshift(int, int, integer, int) = integer.
rightshift(_Mod, _InvMod, i(_Len, []), _Carry) = integer.zero.
rightshift(Mod, InvMod, i(Len, [H | T]), Carry) = Integer :-
( if Len =< 0 then
Integer = integer.zero
else
NewH = Carry \/ (H >> Mod),
NewCarry = (H /\ (basemask >> InvMod)) << InvMod,
i(TailLen, NewTail) = rightshift(Mod, InvMod, i(Len - 1, T),
NewCarry),
Integer = i(TailLen + 1, [NewH | NewTail])
).
:- func big_left_shift(integer, int) = integer.
big_left_shift(X, I) = Result :-
( if is_zero(X) then
Result = X
else if big_isnegative(X) then
Result = big_neg(pos_left_shift(big_neg(X), I))
else
Result = pos_left_shift(X, I)
).
:- func pos_left_shift(integer, int) = integer.
pos_left_shift(i(Len, Digits), I) = Integer :-
Div = I div log2base,
Mod = I mod log2base,
NewLen = Len + Div,
leftshift(Mod, log2base - Mod, NewLen, Digits, Carry, NewDigits),
( if Carry = 0 then
Integer = i(NewLen, NewDigits)
else
Integer = i(NewLen + 1, [Carry | NewDigits])
).
:- pred leftshift(int::in, int::in, int::in, list(digit)::in,
int::out, list(digit)::out) is det.
leftshift(_Mod, _InvMod, Len, [], Carry, DigitsOut) :-
Carry = 0,
zeros(Len, [], DigitsOut).
leftshift(Mod, InvMod, Len, [H | T], Carry, DigitsOut) :-
( if Len =< 0 then
Carry = 0,
DigitsOut = []
else
Carry = (H /\ (basemask << InvMod)) >> InvMod,
leftshift(Mod, InvMod, Len - 1, T, TailCarry, Tail),
DigitsOut = [TailCarry \/ ((H << Mod) /\ basemask) | Tail]
).
:- pred zeros(int::in, list(digit)::in, list(digit)::out) is det.
zeros(Len, Digits0, Digits) :-
( if Len > 0 then
zeros(Len - 1, Digits0, Digits1),
Digits = [0 | Digits1]
else
Digits = Digits0
).
:- func big_or(integer, integer) = integer.
big_or(X, Y) = decap(or_pairs(X, Y)).
:- func or_pairs(integer, integer) = integer.
or_pairs(i(L1, D1), i(L2, D2)) = Integer :-
( if L1 = L2 then
Integer = i(L1, or_pairs_equal(D1, D2))
else if L1 < L2, D2 = [H2 | T2] then
i(_, DsT) = or_pairs(i(L1, D1), i(L2 - 1, T2)),
Integer = i(L2, [H2 | DsT])
else if L1 > L2, D1 = [H1 | T1] then
i(_, DsT) = or_pairs(i(L1 - 1, T1), i(L2, D2)),
Integer = i(L1, [H1 | DsT])
else
unexpected($module, $pred, "invalid integer")
).
:- func or_pairs_equal(list(digit), list(digit)) = list(digit).
or_pairs_equal([], _) = [].
or_pairs_equal([_ | _], []) = [].
or_pairs_equal([X | Xs], [Y | Ys]) = [X \/ Y | or_pairs_equal(Xs, Ys)].
:- func big_xor(integer, integer) = integer.
big_xor(X, Y) = decap(xor_pairs(X, Y)).
:- func xor_pairs(integer, integer) = integer.
xor_pairs(i(L1, D1), i(L2, D2)) = Integer :-
( if L1 = L2 then
Integer = i(L1, xor_pairs_equal(D1, D2))
else if L1 < L2, D2 = [H2 | T2] then
i(_, DsT) = xor_pairs(i(L1, D1), i(L2 - 1, T2)),
Integer = i(L2, [H2 | DsT])
else if L1 > L2, D1 = [H1 | T1] then
i(_, DsT) = xor_pairs(i(L1 - 1, T1), i(L2, D2)),
Integer = i(L1, [H1 | DsT])
else
unexpected($module, $pred, "invalid integer")
).
:- func xor_pairs_equal(list(digit), list(digit)) = list(digit).
xor_pairs_equal([], _) = [].
xor_pairs_equal([_ | _], []) = [].
xor_pairs_equal([X | Xs], [Y | Ys]) =
[int.xor(X, Y) | xor_pairs_equal(Xs, Ys)].
:- func big_and(integer, integer) = integer.
big_and(X, Y) = decap(and_pairs(X, Y)).
:- func and_pairs(integer, integer) = integer.
and_pairs(i(L1, D1), i(L2, D2)) = Integer :-
( if L1 = L2 then
Integer = i(L1, and_pairs_equal(D1, D2))
else if L1 < L2, D2 = [_ | T2] then
i(_, DsT) = and_pairs(i(L1, D1), i(L2 - 1, T2)),
Integer = i(L1, DsT)
else if L1 > L2, D1 = [_ | T1] then
i(_, DsT) = and_pairs(i(L1 - 1, T1), i(L2, D2)),
Integer = i(L2, DsT)
else
unexpected($module, $pred, "invalid integer")
).
:- func and_pairs_equal(list(digit), list(digit)) = list(digit).
and_pairs_equal([], _) = [].
and_pairs_equal([_ | _], []) = [].
and_pairs_equal([X | Xs], [Y | Ys]) = [X /\ Y | and_pairs_equal(Xs, Ys)].
:- func big_and_not(integer, integer) = integer.
big_and_not(X, Y) = decap(and_not_pairs(X, Y)).
:- func and_not_pairs(integer, integer) = integer.
and_not_pairs(i(L1, D1), i(L2, D2)) = Integer :-
( if L1 = L2 then
Integer = i(L1, and_not_pairs_equal(D1, D2))
else if L1 < L2, D2 = [_ | T2] then
i(_, DsT) = and_not_pairs(i(L1, D1), i(L2 - 1, T2)),
Integer = i(L1, DsT)
else if L1 > L2, D1 = [H1 | T1] then
i(_, DsT) = and_not_pairs(i(L1 - 1, T1), i(L2, D2)),
Integer = i(L1, [H1 | DsT])
else
unexpected($module, $pred, "invalid integer")
).
:- func and_not_pairs_equal(list(digit), list(digit)) = list(digit).
and_not_pairs_equal([], _) = [].
and_not_pairs_equal([_ | _], []) = [].
and_not_pairs_equal([X | Xs], [Y | Ys]) =
[X /\ \ Y | and_not_pairs_equal(Xs, Ys)].
:- func big_xor_not(integer, integer) = integer.
big_xor_not(X1, NotX2) =
\ big_and_not(big_or(X1, NotX2), big_and(X1, NotX2)).
:- func big_cmp(integer, integer) = comparison_result.
big_cmp(X, Y) = Result :-
compare(Result, X, Y).
:- func pos_cmp(integer, integer) = comparison_result.
pos_cmp(X, Y) = Result :-
compare(Result, X, Y).
:- func big_plus(integer, integer) = integer.
big_plus(X, Y) = Sum :-
( if is_zero(X) then
Sum = Y
else if is_zero(Y) then
Sum = X
else
AbsX = big_abs(X),
AbsY = big_abs(Y),
SignX = integer_signum(X),
SignY = integer_signum(Y),
( if SignX = SignY then
Sum = big_sign(SignX, pos_plus(AbsX, AbsY))
else
C = pos_cmp(AbsX, AbsY),
(
C = (<),
Sum = big_sign(SignY, pos_minus(AbsY, AbsX))
;
C = (>),
Sum = big_sign(SignX, pos_minus(AbsX, AbsY))
;
C = (=),
Sum = integer.zero
)
)
).
integer(N) = int_to_integer(N).
% Note: Since most machines use 2's complement arithmetic,
% INT_MIN is usually -INT_MAX-1, hence -INT_MIN will cause int overflow.
% We handle overflow below.
% We don't check for a negative result from abs(), which would indicate
% overflow, since we may trap int overflow instead.
%
% XXX: What about machines that aren't 2's complement?
:- func int_to_integer(int) = integer.
int_to_integer(D) = Int :-
( if D = 0 then
Int = integer.zero
else if D > 0, D < base then
Int = i(1, [D])
else if D < 0, D > -base then
Int = i(-1, [D])
else
( if int.min_int(D) then
% Were we to call int.abs, int overflow might occur.
Int = integer(D + 1) - integer.one
else
Int = big_sign(D, pos_int_to_digits(int.abs(D)))
)
).
:- func shortint_to_integer(int) = integer.
shortint_to_integer(D) = Result :-
( if D = 0 then
Result = integer.zero
else if D > 0 then
Result = i(1, [D])
else
Result = i(-1, [D])
).
:- func signum(int) = int.
signum(N) = Sign :-
( if N < 0 then
Sign = -1
else if N = 0 then
Sign = 0
else
Sign = 1
).
:- func integer_signum(integer) = int.
integer_signum(i(Sign, _)) = signum(Sign).
:- func pos_int_to_digits(int) = integer.
pos_int_to_digits(D) = pos_int_to_digits_2(D, integer.zero).
:- func pos_int_to_digits_2(int, integer) = integer.
pos_int_to_digits_2(D, Tail) = Result :-
( if D = 0 then
Result = Tail
else
Tail = i(Length, Digits),
chop(D, Div, Mod),
Result = pos_int_to_digits_2(Div, i(Length + 1, [Mod | Digits]))
).
:- func mul_base(integer) = integer.
mul_base(i(Len, Digits)) = Result :-
(
Digits = [],
Result = integer.zero
;
Digits = [_ | _],
Result = i(Len + 1, mul_base_2(Digits))
).
:- func mul_base_2(list(digit)) = list(digit).
mul_base_2([]) = [0].
mul_base_2([H | T]) = [H | mul_base_2(T)].
:- func mul_by_digit(digit, integer) = integer.
mul_by_digit(Digit, i(Len, Digits0)) = Out :-
mul_by_digit_2(Digit, Mod, Digits0, Digits),
( if Mod = 0 then
Out = i(Len, Digits)
else
Out = i(Len + 1, [Mod | Digits])
).
:- pred mul_by_digit_2(digit::in, digit::out, list(digit)::in,
list(digit)::out) is det.
mul_by_digit_2(_, 0, [], []).
mul_by_digit_2(D, Div, [X | Xs], [Mod | NewXs]) :-
mul_by_digit_2(D, DivXs, Xs, NewXs),
chop(D * X + DivXs, Div, Mod).
:- pred chop(int::in, digit::out, digit::out) is det.
chop(N, Div, Mod) :-
Div = N >> log2base, % i.e. Div = N div base
Mod = N /\ basemask. % i.e. Mod = N mod base
:- func pos_plus(integer, integer) = integer.
pos_plus(i(L1, D1), i(L2, D2)) = Out :-
add_pairs(Div, i(L1, D1), i(L2, D2), Ds),
( if L1 > L2 then
Len = L1
else
Len = L2
),
( if Div = 0 then
Out = i(Len, Ds)
else
Out = i(Len + 1, [Div | Ds])
).
:- pred add_pairs(digit::out, integer::in, integer::in,
list(digit)::out) is det.
add_pairs(Div, i(L1, D1), i(L2, D2), Ds) :-
( if L1 = L2 then
add_pairs_equal(Div, D1, D2, Ds)
else if L1 < L2, D2 = [H2 | T2] then
add_pairs(Div1, i(L1, D1), i(L2 - 1, T2), Ds1),
chop(H2 + Div1, Div, Mod),
Ds = [Mod | Ds1]
else if L1 > L2, D1 = [H1 | T1] then
add_pairs(Div1, i(L1 - 1, T1), i(L2, D2), Ds1),
chop(H1 + Div1, Div, Mod),
Ds = [Mod | Ds1]
else
unexpected($module, $pred, "invalid integer")
).
:- pred add_pairs_equal(digit::out, list(digit)::in, list(digit)::in,
list(digit)::out) is det.
add_pairs_equal(0, [], _, []).
add_pairs_equal(0, [_ | _], [], []).
add_pairs_equal(Div, [X | Xs], [Y | Ys], [Mod | TailDs]) :-
add_pairs_equal(DivTail, Xs, Ys, TailDs),
chop(X + Y + DivTail, Div, Mod).
:- func pos_minus(integer, integer) = integer.
pos_minus(i(L1, D1), i(L2, D2)) = Out :-
diff_pairs(Mod, i(L1, D1), i(L2, D2), Ds),
( if L1 > L2 then
Len = L1
else
Len = L2
),
( if Mod = 0 then
Out = decap(i(Len, Ds))
else
Out = i(Len + 1, [Mod | Ds])
).
:- pred diff_pairs(digit::out, integer::in, integer::in,
list(digit)::out) is det.
diff_pairs(Div, i(L1, D1), i(L2, D2), Ds) :-
( if L1 = L2 then
diff_pairs_equal(Div, D1, D2, Ds)
else if L1 > L2, D1 = [H1 | T1] then
diff_pairs(Div1, i(L1 - 1, T1), i(L2, D2), Ds1),
chop(H1 + Div1, Div, Mod),
Ds = [Mod | Ds1]
else
unexpected($module, $pred, "invalid integer")
).
:- pred diff_pairs_equal(digit::out, list(digit)::in, list(digit)::in,
list(digit)::out) is det.
diff_pairs_equal(0, [], _, []).
diff_pairs_equal(0, [_ | _], [], []).
diff_pairs_equal(Div, [X | Xs], [Y | Ys], [Mod | TailDs]) :-
diff_pairs_equal(DivTail, Xs, Ys, TailDs),
chop(X - Y + DivTail, Div, Mod).
:- func pos_mul(integer, integer) = integer.
pos_mul(i(L1, Ds1), i(L2, Ds2)) =
( if L1 < L2 then
pos_mul_karatsuba(i(L1, Ds1), i(L2, Ds2))
else
pos_mul_karatsuba(i(L2, Ds2), i(L1, Ds1))
).
% Use quadratic multiplication for less than threshold digits.
:- func karatsuba_threshold = int.
karatsuba_threshold = 35.
% Use parallel execution if number of digits of split numbers is larger
% than this threshold.
:- func karatsuba_parallel_threshold = int.
karatsuba_parallel_threshold = karatsuba_threshold * 10.
% Karatsuba / Toom-2 multiplication in O(n^1.585)
:- func pos_mul_karatsuba(integer, integer) = integer.
pos_mul_karatsuba(i(L1, Ds1), i(L2, Ds2)) = Res :-
( if L1 < karatsuba_threshold then
Res = pos_mul_list(Ds1, integer.zero, i(L2, Ds2))
else
( if L2 < L1 then
unexpected($module, $pred, "second factor smaller")
else
Middle = L2 div 2,
HiDigits = L2 - Middle,
HiDigitsSmall = max(0, L1 - Middle),
% Split Ds1 in [L1 - Middle];[Middle] digits if L1 > Middle
% or leave as [L1] digits.
list.split_upto(HiDigitsSmall, Ds1, Ds1Upper, Ds1Lower),
% Split Ds2 in [L2 - Middle; Middle] digits.
list.split_upto(HiDigits, Ds2, Ds2Upper, Ds2Lower),
LoDs1 = i(min(L1, Middle), Ds1Lower),
LoDs2 = i(Middle, Ds2Lower),
HiDs1 = i(HiDigitsSmall, Ds1Upper),
HiDs2 = i(HiDigits, Ds2Upper),
( if Middle > karatsuba_parallel_threshold then
Res0 = pos_mul(LoDs1, LoDs2) &
Res1 = pos_mul(LoDs1 + HiDs1, LoDs2 + HiDs2) &
Res2 = pos_mul(HiDs1, HiDs2)
else
Res0 = pos_mul(LoDs1, LoDs2),
Res1 = pos_mul(LoDs1 + HiDs1, LoDs2 + HiDs2),
Res2 = pos_mul(HiDs1, HiDs2)
)
),
Res = big_left_shift(Res2, 2*Middle*log2base) +
big_left_shift(Res1 - (Res2 + Res0), Middle*log2base) + Res0
).
:- func pos_mul_list(list(digit), integer, integer) = integer.
pos_mul_list([], Carry, _Y) = Carry.
pos_mul_list([X | Xs], Carry, Y) =
pos_mul_list(Xs, pos_plus(mul_base(Carry), mul_by_digit(X, Y)), Y).
:- pred big_quot_rem(integer::in, integer::in, integer::out, integer::out)
is det.
big_quot_rem(X, Y, Quot, Rem) :-
( if is_zero(Y) then
throw(math.domain_error("integer.big_quot_rem: division by zero"))
else if is_zero(X) then
Quot = integer.zero,
Rem = integer.zero
else
X = i(SignX, _),
Y = i(SignY, _),
quot_rem(big_abs(X), big_abs(Y), Quot0, Rem0),
Quot = big_sign(SignX * SignY, Quot0),
Rem = big_sign(SignX, Rem0)
).
% Algorithm: We take digits from the start of U (call them Ur)
% and divide by V to get a digit Q of the ratio.
% Essentially the usual long division algorithm.
% Qhat is an approximation to Q. It may be at most 2 too big.
%
% If the first digit of V is less than base/2, then we scale both
% the numerator and denominator. This way, we can use Knuth's[*] nifty trick
% for finding an accurate approximation to Q. That's all we use from Knuth;
% his MIX algorithm is fugly.
%
% [*] Knuth, Semi-numerical algorithms.
:- pred quot_rem(integer::in, integer::in, integer::out, integer::out) is det.
quot_rem(U, V, Quot, Rem) :-
( if U = i(_, [UI]), V = i(_, [VI]) then
Quot = shortint_to_integer(UI // VI),
Rem = shortint_to_integer(UI rem VI)
else
V0 = det_first(V),
( if V0 < basediv2 then
M = base div (V0 + 1),
quot_rem_2(integer.zero, mul_by_digit(M, U),
mul_by_digit(M, V), QuotZeros, R),
Rem = div_by_digit(M, R)
else
quot_rem_2(integer.zero, U, V, QuotZeros, Rem)
),
Quot = decap(QuotZeros)
).
:- pred quot_rem_2(integer::in, integer::in, integer::in, integer::out,
integer::out) is det.
quot_rem_2(Ur, U, V, Quot, Rem) :-
( if pos_lt(Ur, V) then
( if U = i(_, [Ua | _]) then
quot_rem_2(integer_append(Ur, Ua), det_tail(U), V,
Quot0, Rem0),
Quot = integer_prepend(0, Quot0),
Rem = Rem0
else
Quot = i(1, [0]),
Rem = Ur
)
else
( if length(Ur) > length(V) then
Qhat = (det_first(Ur) * base + det_second(Ur)) div det_first(V)
else
Qhat = det_first(Ur) div det_first(V)
),
QhatByV = mul_by_digit(Qhat, V),
( if pos_geq(Ur, QhatByV) then
Q = Qhat,
QByV = QhatByV
else
QhatMinus1ByV = pos_minus(QhatByV, V),
( if pos_geq(Ur, QhatMinus1ByV) then
Q = Qhat - 1,
QByV = QhatMinus1ByV
else
Q = Qhat - 2,
QByV = pos_minus(QhatMinus1ByV, V)
)
),
NewUr = pos_minus(Ur, QByV),
( if U = i(_, [Ua | _]) then
quot_rem_2(integer_append(NewUr, Ua), det_tail(U), V, Quot0, Rem0),
Quot = integer_prepend(Q, Quot0),
Rem = Rem0
else
Quot = i(1, [Q]),
Rem = NewUr
)
).
:- func length(integer) = int.
length(i(L, _)) = L.
:- func decap(integer) = integer.
decap(i(_, [])) = integer.zero.
decap(i(L, [H | T])) = Result :-
( if H = 0 then
Result = decap(i(L - 1, T))
else
Result = i(L, [H | T])
).
:- func det_first(integer) = digit.
det_first(i(_, Digits)) = First :-
(
Digits = [],
unexpected($module, $pred, "empty list")
;
Digits = [First | _]
).
:- func det_second(integer) = digit.
det_second(i(_, Digits)) = Second :-
(
Digits = [],
unexpected($module, $pred, "empty list")
;
Digits = [_],
unexpected($module, $pred, "short list")
;
Digits = [_, Second | _]
).
:- func det_tail(integer) = integer.
det_tail(i(Len, Digits)) = I :-
(
Digits = [],
unexpected($module, $pred, "empty list")
;
Digits = [_ | T],
I = i(Len - 1, T)
).
:- func integer_append(integer, digit) = integer.
integer_append(i(L, List), Digit) = i(L + 1, NewList) :-
list.append(List, [Digit], NewList).
:- func integer_prepend(digit, integer) = integer.
integer_prepend(Digit, i(L, List)) = i(L + 1, [Digit | List]).
:- func div_by_digit(digit, integer) = integer.
div_by_digit(_, i(_, [])) = integer.zero.
div_by_digit(Digit, i(_, [X | Xs])) = div_by_digit_1(X, Xs, Digit).
:- func div_by_digit_1(digit, list(digit), digit) = integer.
div_by_digit_1(X, [], D) = Integer :-
Q = X div D,
( if Q = 0 then
Integer = integer.zero
else
Integer = i(1, [Q])
).
div_by_digit_1(X, [H | T], D) = Integer :-
Q = X div D,
( if Q = 0 then
Integer = div_by_digit_1((X rem D) * base + H, T, D)
else
i(L, Ds) = div_by_digit_2((X rem D) * base + H, T, D),
Integer = i(L + 1, [Q | Ds])
).
:- func div_by_digit_2(digit, list(digit), digit) = integer.
div_by_digit_2(X, [], D) = i(1, [X div D]).
div_by_digit_2(X, [H | T], D) = i(Len + 1, [X div D | Tail]) :-
i(Len, Tail) = div_by_digit_2((X rem D) * base + H, T, D).
:- pred pos_lt(integer::in, integer::in) is semidet.
pos_lt(Xs, Ys) :-
(<) = pos_cmp(Xs, Ys).
:- pred pos_geq(integer::in, integer::in) is semidet.
pos_geq(Xs, Ys) :-
C = pos_cmp(Xs, Ys),
( C = (>)
; C = (=)
).
integer.pow(A, N) = P :-
( if big_isnegative(N) then
throw(math.domain_error("integer.pow: negative exponent"))
else
P = big_pow(A, N)
).
:- func big_pow(integer, integer) = integer.
big_pow(A, N) = Result :-
( if N = integer.zero then
Result = integer.one
else if N = integer.one then
Result = A
else if A = integer.one then
Result = integer.one
else if A = integer.zero then
Result = integer.zero
else if N = i(_, [_ | _]) then
Result = big_pow_sqmul(A, N)
else
Result = integer.zero
).
:- func big_pow_sqmul(integer, integer) = integer.
big_pow_sqmul(A, N) = Result :-
( if N = integer.zero then
Result = integer.one
else if N = integer.one then
Result = A
else
( if (N mod integer.two) = integer.zero then
% if exponent N is even -> Result = A^(N//2) * A^(N//2)
HalfResult = big_pow_sqmul(A, N // integer.two),
Result = HalfResult * HalfResult
else
% if odd, then Result = A * A^(N - 1)
SubResult = big_pow_sqmul(A, N - integer.one),
Result = A * SubResult
)
).
:- func big_sqr(integer) = integer.
big_sqr(A) = A * A.
integer.float(i(_, List)) = float_list(float.float(base), 0.0, List).
:- func float_list(float, float, list(int)) = float.
float_list(_, Accum, []) = Accum.
float_list(FBase, Accum, [H | T]) =
float_list(FBase, Accum * FBase + float.float(H), T).
integer.to_int(Integer, Int) :-
Integer >= integer(int.min_int),
Integer =< integer(int.max_int),
Integer = i(_Sign, Digits),
Int = int_list(Digits, 0).
integer.det_to_int(Integer) = Int :-
( if integer.to_int(Integer, IntPrime) then
Int = IntPrime
else
throw(math.domain_error(
"integer.det_to_int: domain error (conversion would overflow)"))
).
integer.int(Integer) = integer.det_to_int(Integer).
:- func int_list(list(int), int) = int.
int_list([], Accum) = Accum.
int_list([H | T], Accum) = int_list(T, Accum * base + H).
%---------------------------------------------------------------------------%
is_zero(i(0, [])).
%---------------------------------------------------------------------------%
%
% Constants.
%
negative_one = i(-1, [-1]).
zero = i(0, []).
one = i(1, [1]).
two = i(1, [2]).
ten = i(1, [10]).
%---------------------------------------------------------------------------%
%
% Converting strings to integers.
%
integer.from_string(S) = Big :-
integer.from_string(S, Big).
integer.from_string(S, Big) :-
string.to_char_list(S, Cs),
string_to_integer(Cs, Big).
integer.det_from_string(S) = I :-
( if integer.from_string(S, IPrime) then
I = IPrime
else
unexpected($module, $pred, "conversion failed")
).
:- pred string_to_integer(list(char)::in, integer::out) is semidet.
string_to_integer(Chars, Integer) :-
Chars = [HeadChar | TailChars],
( if HeadChar = ('-') then
TailChars = [_ | _], % Don't accept just "-" as an integer.
string_to_integer_acc(TailChars, integer.zero, PosInteger),
Integer = big_sign(-1, PosInteger)
else if HeadChar = ('+') then
TailChars = [_ | _], % Don't accept just "+" as an integer.
string_to_integer_acc(TailChars, integer.zero, Integer)
else
string_to_integer_acc(Chars, integer.zero, Integer)
).
:- pred string_to_integer_acc(list(char)::in, integer::in, integer::out)
is semidet.
string_to_integer_acc([], !Integer).
string_to_integer_acc([C | Cs], !Integer) :-
% The if-then-else here is acting as a sequential conjunction.
% It is needed to guarantee termination with --reorder-conj.
% Without it, the value of `Digit0 - Z' might be negative and
% then the call to pos_int_to_digits/1 may not terminate.
( if char.is_digit(C) then
Digit0 = char.to_int(C),
Z = char.to_int('0'),
Digit = pos_int_to_digits(Digit0 - Z),
!:Integer = pos_plus(Digit, mul_by_digit(10, !.Integer)),
string_to_integer_acc(Cs, !Integer)
else
fail
).
%---------------------------------------------------------------------------%
%
% Converting integers to strings.
%
to_string(Integer) = to_base_string(Integer, 10).
to_base_string(Integer, Base) = String :-
( if 2 =< Base, Base =< 36 then
true
else
unexpected($module, $pred, "invalid base")
),
PrintBase = printbase(pow(Base, printbase_exponent)),
Integer = i(Sign, Digits),
( if Sign < 0 then
neg_list(Digits, AbsDigits),
String = "-" ++ digits_to_string(Base, PrintBase, AbsDigits)
else
String = digits_to_string(Base, PrintBase, Digits)
).
:- func digits_to_string(int, printbase, list(digit)) = string.
digits_to_string(_Base, _PrintBase, []) = "0".
digits_to_string(Base, PrintBase, Digits) = Str :-
Digits = [_ | _],
printbase_rep(PrintBase, printbase_pos_int_to_digits(PrintBase, base),
Digits, i(_, DigitsInPrintBase)),
(
DigitsInPrintBase = [Head | Tail],
string.int_to_base_string(Head, Base, HeadStr),
digits_to_strings(Base, Tail, [], TailStrs),
string.append_list([HeadStr | TailStrs], Str)
;
DigitsInPrintBase = [],
unexpected($module, $pred, "empty list")
).
:- pred printbase_rep(printbase::in, integer::in, list(digit)::in,
integer::out) is det.
printbase_rep(PrintBase, Base, Digits, Result) :-
Result = printbase_rep_1(PrintBase, Digits, Base, integer.zero).
:- func printbase_rep_1(printbase, list(digit), integer, integer) = integer.
printbase_rep_1(_PrintBase, [], _Base, Carry) = Carry.
printbase_rep_1(PrintBase, [X | Xs], Base, Carry) =
printbase_rep_1(PrintBase, Xs, Base,
printbase_pos_plus(PrintBase,
printbase_pos_mul(PrintBase, Base, Carry),
printbase_pos_int_to_digits(PrintBase, X))).
:- pred digits_to_strings(int::in, list(digit)::in,
list(string)::in, list(string)::out) is det.
digits_to_strings(_Base, [], !Strs).
digits_to_strings(Base, [H | T], !Strs) :-
digit_to_string(Base, H, Str),
digits_to_strings(Base, T, !Strs),
!:Strs = [Str | !.Strs].
:- pred digit_to_string(int::in, digit::in, string::out) is det.
digit_to_string(Base, D, S) :-
string.int_to_base_string(D, Base, S1),
string.pad_left(S1, '0', printbase_exponent, S).
%---------------------------------------------------------------------------%
%
% Essentially duplicated code to work in base `printbase' follows.
%
:- type printbase
---> printbase(int). % base^printbase_exponent
:- func printbase_exponent = int.
printbase_exponent = 3.
:- func printbase_pos_int_to_digits(printbase, int) = integer.
printbase_pos_int_to_digits(Base, D) =
printbase_pos_int_to_digits_2(Base, D, integer.zero).
:- func printbase_pos_int_to_digits_2(printbase, int, integer) = integer.
printbase_pos_int_to_digits_2(Base, D, Tail) = Result :-
( if D = 0 then
Result = Tail
else
Tail = i(Length, Digits),
printbase_chop(Base, D, Div, Mod),
Result = printbase_pos_int_to_digits_2(Base, Div,
i(Length + 1, [Mod | Digits]))
).
:- pred printbase_chop(printbase::in, int::in, digit::out, digit::out) is det.
printbase_chop(printbase(Base), N, Div, Mod) :-
Mod = N mod Base,
Div = N div Base.
:- func printbase_mul_by_digit(printbase, digit, integer) = integer.
printbase_mul_by_digit(Base, D, i(Len, Ds)) = Out :-
printbase_mul_by_digit_2(Base, D, Div, Ds, DsOut),
( if Div = 0 then
Out = i(Len, DsOut)
else
Out = i(Len + 1, [Div | DsOut])
).
:- pred printbase_mul_by_digit_2(printbase::in, digit::in, digit::out,
list(digit)::in, list(digit)::out) is det.
printbase_mul_by_digit_2(_Base, _, 0, [], []).
printbase_mul_by_digit_2(Base, D, Div, [X | Xs], [Mod | NewXs]) :-
printbase_mul_by_digit_2(Base, D, DivXs, Xs, NewXs),
printbase_chop(Base, D * X + DivXs, Div, Mod).
:- func printbase_pos_plus(printbase, integer, integer) = integer.
printbase_pos_plus(Base, i(L1, D1), i(L2, D2)) = Out :-
printbase_add_pairs(Base, Div, i(L1, D1), i(L2, D2), Ds),
( if L1 > L2 then
Len = L1
else
Len = L2
),
( if Div = 0 then
Out = i(Len, Ds)
else
Out = i(Len + 1, [Div | Ds])
).
:- pred printbase_add_pairs(printbase::in, digit::out,
integer::in, integer::in, list(digit)::out) is det.
printbase_add_pairs(Base, Div, i(L1, D1), i(L2, D2), Ds) :-
( if L1 = L2 then
printbase_add_pairs_equal(Base, Div, D1, D2, Ds)
else if L1 < L2, D2 = [H2 | T2] then
printbase_add_pairs(Base, Div1, i(L1, D1), i(L2 - 1, T2), Ds1),
printbase_chop(Base, H2 + Div1, Div, Mod),
Ds = [Mod | Ds1]
else if L1 > L2, D1 = [H1 | T1] then
printbase_add_pairs(Base, Div1, i(L1 - 1, T1), i(L2, D2), Ds1),
printbase_chop(Base, H1 + Div1, Div, Mod),
Ds = [Mod | Ds1]
else
unexpected($module, $pred, "integer.printbase_add_pairs")
).
:- pred printbase_add_pairs_equal(printbase::in, digit::out,
list(digit)::in, list(digit)::in, list(digit)::out) is det.
printbase_add_pairs_equal(_, 0, [], _, []).
printbase_add_pairs_equal(_, 0, [_ | _], [], []).
printbase_add_pairs_equal(Base, Div, [X | Xs], [Y | Ys], [Mod | TailDs]) :-
printbase_add_pairs_equal(Base, DivTail, Xs, Ys, TailDs),
printbase_chop(Base, X + Y + DivTail, Div, Mod).
:- func printbase_pos_mul(printbase, integer, integer) = integer.
printbase_pos_mul(Base, i(L1, Ds1), i(L2, Ds2)) =
( if L1 < L2 then
printbase_pos_mul_list(Base, Ds1, integer.zero, i(L2, Ds2))
else
printbase_pos_mul_list(Base, Ds2, integer.zero, i(L1, Ds1))
).
:- func printbase_pos_mul_list(printbase, list(digit), integer, integer)
= integer.
printbase_pos_mul_list(_Base, [], Carry, _Y) = Carry.
printbase_pos_mul_list(Base, [X | Xs], Carry, Y) =
printbase_pos_mul_list(Base, Xs,
printbase_pos_plus(Base, mul_base(Carry),
printbase_mul_by_digit(Base, X, Y)), Y).
%---------------------------------------------------------------------------%
integer.from_base_string(Base, String) = Integer :-
integer.from_base_string(Base, String, Integer).
integer.from_base_string(Base, String, Integer) :-
string.index(String, 0, Char),
Len = string.length(String),
( if Char = ('-') then
Len > 1,
string.foldl_between(accumulate_integer(Base), String, 1, Len,
integer.zero, PosInteger),
Integer = -PosInteger
else if Char = ('+') then
Len > 1,
string.foldl_between(accumulate_integer(Base), String, 1, Len,
integer.zero, Integer)
else
string.foldl_between(accumulate_integer(Base), String, 0, Len,
integer.zero, Integer)
).
:- pred accumulate_integer(int::in, char::in, integer::in, integer::out)
is semidet.
accumulate_integer(Base, Char, !N) :-
char.base_digit_to_int(Base, Char, Digit0),
Digit = integer(Digit0),
!:N = (integer(Base) * !.N) + Digit.
integer.det_from_base_string(Base, String) = Integer :-
( if integer.from_base_string(Base, String, IntegerPrime) then
Integer = IntegerPrime
else
unexpected($module, $pred, "conversion failed")
).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%