Files
mercury/compiler/term_constr_fixpoint.m
Zoltan Somogyi cc9912faa8 Don't import anything in packages.
Packages are modules whose only job is to serve as a container for submodules.
Modules like top_level.m, hlds.m, parse_tree.m and ll_backend.m are packages
in this (informal) sense.

Besides the include_module declarations for their submodules, most of the
packages in the compiler used to import some modules, mostly other packages
whose component modules their submodules may need. For example, ll_backend.m
used to import parse_tree.m. This meant that modules in the ll_backend package
did not have to import parse_tree.m before importing modules in the parse_tree
package.

However, this had a price. When we add a new module to the parse_tree package,
parse_tree.int would change, and this would require the recompilation of ALL
the modules in the ll_backend package, even the ones that did NOT import ANY
of the modules in the parse_tree package.

This happened even at one remove. Pretty much all modules in every one
of the backend have to import one or more modules in the hlds package,
and they therefore have import hlds.m. Since hlds.m imported transform_hlds.m,
any addition of a new middle pass to the transform_hlds package required
the recompilation of all backend modules, even in the usual case of the two
having nothing to do with each other.

This diff removes all import_module declarations from the packages,
and replaces them with import_module declarations in the modules that need
them. This includes only a SUBSET of their child modules and of the non-child
modules that import them.
2015-11-13 15:03:20 +11:00

484 lines
18 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 2002, 2005-2011 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: term_constr_fixpoint.m.
% Main author: juliensf.
%
% TODO:
% * code for handling calls could do with a cleanup.
%
% NOTE: the code in this module should not refer to things in the HLDS
% (with the exception of the termination2_info slots in the
% proc_sub_info structure)
%
%-----------------------------------------------------------------------------%
:- module transform_hlds.term_constr_fixpoint.
:- interface.
:- import_module hlds.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module transform_hlds.term_constr_data.
:- import_module transform_hlds.term_constr_errors.
:- import_module list.
%-----------------------------------------------------------------------------%
% Derive the argument size constraints for the procedures in this SCC.
%
:- pred do_fixpoint_calculation(fixpoint_options::in, list(pred_proc_id)::in,
int::in, list(term2_error)::out, module_info::in, module_info::out) is det.
% This structure holds the values of options used to control
% the fixpoint calculation.
%
:- type fixpoint_options.
% fixpoint_options_init(Widening, MaxMatrixSize):
%
% Initialise the fixpoint_options structure. `Widening' is the threshold
% after which we invoke widening. `MaxMatrixSize' specifies the maximum
% number of constraints we allow a matrix to grow to before we abort
% and try other approximations.
%
:- func fixpoint_options_init(widening, int) = fixpoint_options.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module hlds.hlds_out.
:- import_module hlds.hlds_out.hlds_out_util.
:- import_module libs.
:- import_module libs.globals.
:- import_module libs.lp_rational.
:- import_module libs.options.
:- import_module libs.polyhedron.
:- import_module transform_hlds.term_constr_main_types.
:- import_module transform_hlds.term_constr_util.
:- import_module bool.
:- import_module int.
:- import_module io.
:- import_module maybe.
:- import_module require.
:- import_module set.
:- import_module string.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
:- type fixpoint_options
---> fixpoint_options(
fo_widening :: widening,
fo_max_size :: int
).
fixpoint_options_init(Widening, MaxMatrixSize) =
fixpoint_options(Widening, MaxMatrixSize).
%-----------------------------------------------------------------------------%
%
% Perform the fixpoint calculation on the AR.
%
% The information for each procedure in the SCC returned by a single
% iteration of the fixpoint calculation.
%
:- type iteration_info
---> iteration_info(
ii_ppid :: pred_proc_id,
ii_arg_size_poly :: polyhedron,
ii_change_flag :: bool
).
:- type iteration_infos == list(iteration_info).
do_fixpoint_calculation(Options, SCC, Iteration, [], !ModuleInfo) :-
AbstractSCC = get_abstract_scc(!.ModuleInfo, SCC),
% Carry out one iteration of fixpoint computation. We need to do this
% for all SCCs at least once in order to obtain the argument size
% constraints for non-recursive procedures. We could do that during
% the build phase for non-recursive procedures (and in fact used to)
% but the code ends up being a horrible mess.
%
list.foldl(
term_iterate_over_abstract_proc(Iteration, Options, !.ModuleInfo),
AbstractSCC, [], IterationInfos),
ChangeFlag = or_flags(IterationInfos),
(
ChangeFlag = yes,
list.foldl(update_size_info, IterationInfos, !ModuleInfo),
do_fixpoint_calculation(Options, SCC, Iteration + 1,
_, !ModuleInfo)
;
ChangeFlag = no,
% If one of the polyhedra in the SCC has `false' as its
% argument size constraint then the analysis failed. In that
% case set the argument size constraints for every procedure
% in the SCC to `true'.
% XXX Should this be happening?
%
( if
list.member(OneInfo, IterationInfos),
polyhedron.is_empty(OneInfo ^ ii_arg_size_poly)
then
ChangePoly = (func(Info0) = Info :-
Identity = polyhedron.universe,
Info = Info0 ^ ii_arg_size_poly := Identity
),
list.foldl(update_size_info, list.map(ChangePoly, IterationInfos),
!ModuleInfo)
else
list.foldl(update_size_info, IterationInfos, !ModuleInfo)
)
).
:- func or_flags(iteration_infos) = bool.
or_flags([]) = no.
or_flags([Info | Infos]) = bool.or(Info ^ ii_change_flag, or_flags(Infos)).
:- pred update_size_info(iteration_info::in, module_info::in, module_info::out)
is det.
update_size_info(Info, !ModuleInfo) :-
Info = iteration_info(PPId, Poly, _),
update_arg_size_info(PPId, Poly, !ModuleInfo).
%-----------------------------------------------------------------------------%
:- pred term_iterate_over_abstract_proc(int::in, fixpoint_options::in,
module_info::in, abstract_proc::in,
iteration_infos::in, iteration_infos::out) is det.
term_iterate_over_abstract_proc(Iteration, Options, ModuleInfo, Proc,
!IterationInfo) :-
WideningInfo = Options ^ fo_widening,
MaxMatrixSize = Options ^ fo_max_size,
AbstractPPId = Proc ^ ap_ppid,
AbstractPPId = real(PPId),
SizeVarSet = Proc ^ ap_size_varset,
Zeros = Proc ^ ap_zeros,
HeadVars = Proc ^ ap_head_vars,
% Print out the debugging traces.
module_info_get_globals(ModuleInfo, Globals),
globals.lookup_bool_option(Globals, debug_term, DebugTerm),
(
DebugTerm = yes,
trace [io(!IO)] (
io.write(PPId, !IO),
io.write_string(": ", !IO),
write_pred_proc_id(ModuleInfo, PPId, !IO),
io.write_string(" ", !IO),
write_size_vars(SizeVarSet, HeadVars, !IO),
io.format("\nIteration %d:\n", [i(Iteration)], !IO),
io.flush_output(!IO)
)
;
DebugTerm = no
),
% Begin by traversing the procedure and calculating the
% IR approximation for this iteration.
Info = init_fixpoint_info(ModuleInfo, SizeVarSet, PPId, MaxMatrixSize,
HeadVars, Zeros),
some [!Polyhedron] (
term_traverse_abstract_goal(Info, Proc ^ ap_body, polyhedron.universe,
!:Polyhedron),
polyhedron.optimize(SizeVarSet, !Polyhedron),
% XXX Bug workaround - the build pass sometimes stuffs up
% the local variable set for if-then-elses.
% (See comments in term_constr_build.m).
BugConstrs0 = polyhedron.constraints(!.Polyhedron),
ConstrVarsSet = get_vars_from_constraints(BugConstrs0),
HeadVarSet = set.from_list(HeadVars),
BadVarsSet = set.difference(ConstrVarsSet, HeadVarSet),
BadVars = set.to_sorted_list(BadVarsSet),
!:Polyhedron = polyhedron.project(BadVars, SizeVarSet, !.Polyhedron),
polyhedron.optimize(SizeVarSet, !Polyhedron),
% XXX End of bug workaround.
% Print out the polyhedron obtained during this iteration.
(
DebugTerm = yes,
trace [io(!IO)] (
polyhedron.write_polyhedron(!.Polyhedron, SizeVarSet, !IO),
io.nl(!IO),
io.flush_output(!IO)
)
;
DebugTerm = no
),
% Look up the constraints obtained during the previous iteration.
ArgSizeInfo = lookup_proc_constr_arg_size_info(ModuleInfo, PPId),
% NOTE: `!.Polyhedron' is the set of constraints obtained by
% *this* iteration. `OldPolyhedron' is the set of constraints
% obtained by the *previous* iteration -- which may in fact be `empty'
% (i.e. false).
(
% If there were no constraints for the procedure then
% we are at the beginning of the analysis.
ArgSizeInfo = no,
OldPolyhedron = polyhedron.empty
;
ArgSizeInfo = yes(SizeInfo),
OldPolyhedron = SizeInfo
),
( if polyhedron.is_empty(!.Polyhedron) then
( if polyhedron.is_empty(OldPolyhedron) then
ChangeFlag = no
else
unexpected($module, $pred, "old polyhedron is empty")
)
else
% If the procedure is not recursive then we need only perform one
% pass over the AR - subsequent iterations will yield the same
% result.
( if Proc ^ ap_recursion = none then
ChangeFlag = no
else if polyhedron.is_empty(OldPolyhedron) then
ChangeFlag = yes
else
test_fixpoint_and_perhaps_widen(WideningInfo, SizeVarSet,
Iteration, OldPolyhedron, !Polyhedron, ChangeFlag)
)
),
ThisIterationInfo = iteration_info(PPId, !.Polyhedron, ChangeFlag)
),
!:IterationInfo = [ThisIterationInfo | !.IterationInfo].
%-----------------------------------------------------------------------------%
:- type fixpoint_info
---> fixpoint_info(
tcfi_module_info :: module_info,
tcfi_varset :: size_varset,
tcfi_ppid :: pred_proc_id,
tcfi_max_matrix_size :: int,
tcfi_curr_head_vars :: head_vars,
tcfi_zeros :: zero_vars
).
:- func init_fixpoint_info(module_info, size_varset, pred_proc_id, int,
head_vars, zero_vars) = fixpoint_info.
init_fixpoint_info(ModuleInfo, SizeVarSet, PPId, MaxMatrixSize, HeadVars,
Zeros) =
fixpoint_info(ModuleInfo, SizeVarSet, PPId, MaxMatrixSize, HeadVars,
Zeros).
%-----------------------------------------------------------------------------%
:- pred term_traverse_abstract_goal(fixpoint_info::in, abstract_goal::in,
polyhedron::in, polyhedron::out) is det.
term_traverse_abstract_goal(Info, Goal, !Polyhedron) :-
(
Goal = term_disj(Goals, _Size, Locals, _),
% There are number of possible improvements that should be made here:
%
% - Take the intersection each disjunct with the constraints
% before the disjunction and compute the convex hull of that.
% This is more accurate but slower. (XXX There is some code for this
% in term_constr_data.m but it needs to be moved here). To do this
% you need to add the constraints that occur to left of the
% disjunctions to `PriorConstraints'.
%
% - Try computing the convex hull of large disjunctions pairwise
% rather than linearly. There is code to do this below but we
% currently don't use it.
PriorConstraints = polyhedron.universe,
term_traverse_abstract_disj_linearly(Goals, Locals, Info,
PriorConstraints, Polyhedron0),
post_process_abstract_goal(Locals, Info, Polyhedron0, !Polyhedron)
;
Goal = term_conj(Goals, Locals, _),
list.foldl(
term_traverse_abstract_goal(Info), Goals, polyhedron.universe,
Polyhedron0),
post_process_abstract_goal(Locals, Info, Polyhedron0, !Polyhedron)
;
Goal = term_call(CallPPId0, _, CallVars, CallZeros, Locals, _,
CallArgsPoly),
CallPPId0 = real(CallPPId),
module_info_pred_proc_info(Info ^ tcfi_module_info, CallPPId, _,
CallProcInfo),
proc_info_get_termination2_info(CallProcInfo, CallTerm2Info),
CallArgSizeInfo = term2_info_get_success_constrs(CallTerm2Info),
(
CallArgSizeInfo = no,
!:Polyhedron = polyhedron.empty
;
CallArgSizeInfo = yes(SizeInfo),
( if polyhedron.is_empty(SizeInfo) then
!:Polyhedron = polyhedron.empty
else if polyhedron.is_universe(SizeInfo) then
% Constraint store += true
true
else
HeadVars = term2_info_get_head_vars(CallTerm2Info),
SubstMap = create_var_substitution(CallVars, HeadVars),
Polyhedron0 = polyhedron.substitute_vars(SubstMap,
SizeInfo),
Polyhedron1 = intersection(Polyhedron0, CallArgsPoly),
% Set any zero_vars in the constraints to zero
% (i.e. delete the terms). We need to do this
% when polymorphic arguments are zero sized.
Polyhedron2 = polyhedron.zero_vars(CallZeros, Polyhedron1),
post_process_abstract_goal(Locals, Info,
Polyhedron2, !Polyhedron)
)
)
;
Goal = term_primitive(Poly, Locals, _),
post_process_abstract_goal(Locals, Info, Poly, !Polyhedron)
).
%-----------------------------------------------------------------------------%
:- pred post_process_abstract_goal(size_vars::in, fixpoint_info::in,
polyhedron::in, polyhedron::in, polyhedron::out) is det.
post_process_abstract_goal(Locals, Info, GoalPolyhedron0, !Polyhedron) :-
( if polyhedron.is_empty(GoalPolyhedron0) then
GoalPolyhedron = polyhedron.empty
else
GoalPolyhedron = polyhedron.project(Locals, Info ^ tcfi_varset,
GoalPolyhedron0)
),
polyhedron.intersection(GoalPolyhedron, !Polyhedron).
%-----------------------------------------------------------------------------%
%
% Predicates for handling disjunctions.
%
% This version computes the convex hull linearly.
% That is, ( A ; B ; C ; D) is processed as:
%
% ((((empty \/ A ) \/ B ) \/ C ) \/ D)
%
:- pred term_traverse_abstract_disj_linearly(abstract_goals::in,
size_vars::in, fixpoint_info::in, polyhedron::in, polyhedron::out) is det.
term_traverse_abstract_disj_linearly(Goals, Locals, Info, !Polyhedron) :-
list.foldl(term_traverse_abstract_disj_linearly_2(Info, Locals),
Goals, polyhedron.empty, ConvexUnion),
polyhedron.intersection(ConvexUnion, !Polyhedron).
:- pred term_traverse_abstract_disj_linearly_2(fixpoint_info::in,
size_vars::in, abstract_goal::in, polyhedron::in, polyhedron::out) is det.
term_traverse_abstract_disj_linearly_2(Info, Locals, Goal, !Polyhedron) :-
SizeVarSet = Info ^ tcfi_varset,
term_traverse_abstract_goal(Info, Goal, polyhedron.universe, Polyhedron0),
Polyhedron1 = polyhedron.project(Locals, SizeVarSet, Polyhedron0),
polyhedron.convex_union(SizeVarSet, yes(Info ^ tcfi_max_matrix_size),
Polyhedron1, !Polyhedron).
% This version computes the convex hull pairwise. That is
% ( A ; B ; C ; D) is processed as: (( A \/ B ) \/ ( C \/ D)).
%
% XXX This code is currently unused.
%
:- pred term_traverse_abstract_disj_pairwise(abstract_goals::in, size_vars::in,
fixpoint_info::in, polyhedron::in, polyhedron::out) is det.
term_traverse_abstract_disj_pairwise(Goals, Locals, Info, !Polyhedron) :-
SizeVarSet = Info ^ tcfi_varset,
% XXX at the moment, could be !.Poly...
PolyToLeft = polyhedron.universe,
% First convert the list of goals into their corresponding polyhedra.
ToPoly = (func(Goal) = Poly :-
term_traverse_abstract_goal(Info, Goal, PolyToLeft, Poly0),
Poly = polyhedron.project(Locals, SizeVarSet, Poly0)
),
Polyhedra0 = list.map(ToPoly, Goals),
% Now pairwise convex hull them.
HullOp = (func(A, B) = C :-
polyhedron.convex_union(SizeVarSet, yes(Info ^ tcfi_max_matrix_size),
A, B, C)
),
ConvexUnion = pairwise_map(HullOp, [ polyhedron.empty | Polyhedra0]),
polyhedron.intersection(ConvexUnion, !Polyhedron).
% This assumes that the operation in question is associative and
% commutative.
%
:- func pairwise_map(func(T, T) = T, list(T)) = T.
pairwise_map(_, []) = _ :-
unexpected($module, $pred, "empty list").
pairwise_map(_, [X]) = X.
pairwise_map(Op, List @ [_, _ | _]) = X :-
pairwise_map_2(Op, List, [], X0),
X = pairwise_map(Op, X0).
:- pred pairwise_map_2(func(T, T) = T, list(T), list(T), list(T)).
:- mode pairwise_map_2(func(in, in) = out is det, in, in, out) is det.
pairwise_map_2(_, [], !Acc).
pairwise_map_2(_, [X], Acc, [X | Acc]).
pairwise_map_2(Op, [X, Y | Rest], !Acc) :-
!:Acc = [Op(X, Y) | !.Acc],
pairwise_map_2(Op, Rest, !Acc).
%-----------------------------------------------------------------------------%
%
% Fixpoint test.
%
:- pred test_fixpoint_and_perhaps_widen(widening::in, size_varset::in, int::in,
polyhedron::in, polyhedron::in, polyhedron::out, bool::out) is det.
test_fixpoint_and_perhaps_widen(after_fixed_cutoff(Threshold), SizeVarSet,
Iteration, OldPoly, NewPoly, ResultPoly, ChangeFlag) :-
( if Iteration > Threshold then
ResultPoly = widen(OldPoly, NewPoly, SizeVarSet)
else
ResultPoly = NewPoly
),
ChangeFlag = test_fixpoint(NewPoly, OldPoly, SizeVarSet).
:- func test_fixpoint(polyhedron, polyhedron, size_varset) = bool.
test_fixpoint(NewPoly, OldPoly, SizeVarSet) = ChangeFlag :-
% Constraints from this iteration.
NewConstraints = polyhedron.non_false_constraints(NewPoly),
% Constraints from previous iteration.
OldConstraints = polyhedron.non_false_constraints(OldPoly),
( if
some [OldConstraint] (
list.member(OldConstraint, OldConstraints),
not entailed(SizeVarSet, NewConstraints, OldConstraint)
)
then
ChangeFlag = yes
else
ChangeFlag = no
).
%-----------------------------------------------------------------------------%
:- end_module transform_hlds.term_constr_fixpoint.
%-----------------------------------------------------------------------------%