Files
mercury/compiler/ml_optimize.m
Tyson Dowd 416ca83320 Merge changes to add attributes to the HLDS, MLDS and ILDS from the
Estimated hours taken: 2
Branches: main

Merge changes to add attributes to the HLDS, MLDS and ILDS from the
dotnet-foreign branch.  We don't merge the changes to add syntax for
attributes, as the syntax is still very experimental.

compiler/hlds_pred.m:
compiler/prog_data.m:
	Add attributes to the pred_info (they are a bit like markers,
	but are more than just boolean flags).

compiler/ilasm.m:
	Add custom attributes to appropriate positions (on assemblies,
	IL types and methods).

compiler/ml_code_gen.m:
compiler/ml_code_util.m:
compiler/ml_elim_nested.m:
compiler/ml_optimize.m:
compiler/ml_tailcall.m:
compiler/ml_type_gen.m:
compiler/ml_util.m:
compiler/mlds.m:
compiler/mlds_to_c.m:
compiler/mlds_to_csharp.m:
compiler/mlds_to_gcc.m:
compiler/mlds_to_java.m:
compiler/mlds_to_mcpp.m:
	Add mlds__attributes, which are the MLDS version of custom attributes.
	Convert hlds_pred__attributes into mlds__attributes.
	Add a list of mlds__attributes to the mlds__function defn.

compiler/mlds_to_il.m:
	Convert MLDS attributes to IL custom attributes.
2001-08-24 15:44:57 +00:00

513 lines
16 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 2000-2001 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: ml_optimize.m
% Main author: trd, fjh
% This module runs various optimizations on the MLDS.
%
% Currently the optimizations we do here are
% - turning tailcalls into loops;
% - converting assignments to local variables into variable initializers.
%
% Note that tailcall detection is done in ml_tailcall.m.
% It might be nice to move the detection here, and do both the
% loop transformation (in the case of self-tailcalls) and marking
% tailcalls at the same time.
%
% Ultimately this module should just consist of a skeleton to traverse
% the MLDS, and should call various optimization modules along the way.
%
% It would probably be a good idea to make each transformation optional.
% Previously the tailcall transformation depended on emit_c_loops, but
% this is a bit misleading given the documentation of emit_c_loops.
%-----------------------------------------------------------------------------%
:- module ml_optimize.
:- interface.
:- import_module mlds, io.
:- pred optimize(mlds, mlds, io__state, io__state).
:- mode optimize(in, out, di, uo) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module ml_util, ml_code_util.
:- import_module builtin_ops, globals, options, error_util.
:- import_module bool, list, require, std_util, string.
:- type opt_info --->
opt_info(
globals :: globals,
module_name :: mlds_module_name,
entity_name :: mlds__entity_name,
func_params :: mlds__func_params,
context :: mlds__context
).
% The label name we use for the top of the loop introduced by
% tailcall optimization.
:- func tailcall_loop_label_name = string.
tailcall_loop_label_name = "loop_top".
optimize(MLDS0, MLDS) -->
globals__io_get_globals(Globals),
{ MLDS0 = mlds(ModuleName, ForeignCode, Imports, Defns0) },
{ Defns = optimize_in_defns(Defns0, Globals,
mercury_module_name_to_mlds(ModuleName)) },
{ MLDS = mlds(ModuleName, ForeignCode, Imports, Defns) }.
:- func optimize_in_defns(mlds__defns, globals, mlds_module_name)
= mlds__defns.
optimize_in_defns(Defns, Globals, ModuleName) =
list__map(optimize_in_defn(ModuleName, Globals), Defns).
:- func optimize_in_defn(mlds_module_name, globals, mlds__defn) = mlds__defn.
optimize_in_defn(ModuleName, Globals, Defn0) = Defn :-
Defn0 = mlds__defn(Name, Context, Flags, DefnBody0),
(
DefnBody0 = mlds__function(PredProcId, Params, FuncBody0,
Attributes),
OptInfo = opt_info(Globals, ModuleName, Name, Params, Context),
FuncBody1 = optimize_func(OptInfo, FuncBody0),
FuncBody = optimize_in_function_body(OptInfo, FuncBody1),
DefnBody = mlds__function(PredProcId, Params, FuncBody,
Attributes),
Defn = mlds__defn(Name, Context, Flags, DefnBody)
;
DefnBody0 = mlds__data(_, _),
Defn = Defn0
;
DefnBody0 = mlds__class(ClassDefn0),
ClassDefn0 = class_defn(Kind, Imports, BaseClasses, Implements,
CtorDefns0, MemberDefns0),
MemberDefns = optimize_in_defns(MemberDefns0, Globals,
ModuleName),
CtorDefns = optimize_in_defns(CtorDefns0, Globals,
ModuleName),
ClassDefn = class_defn(Kind, Imports, BaseClasses, Implements,
CtorDefns, MemberDefns),
DefnBody = mlds__class(ClassDefn),
Defn = mlds__defn(Name, Context, Flags, DefnBody)
).
:- func optimize_in_function_body(opt_info, function_body) = function_body.
optimize_in_function_body(_, external) = external.
optimize_in_function_body(OptInfo, defined_here(Statement0)) =
defined_here(Statement) :-
Statement = optimize_in_statement(OptInfo, Statement0).
:- func optimize_in_maybe_statement(opt_info,
maybe(mlds__statement)) = maybe(mlds__statement).
optimize_in_maybe_statement(_, no) = no.
optimize_in_maybe_statement(OptInfo, yes(Statement0)) = yes(Statement) :-
Statement = optimize_in_statement(OptInfo, Statement0).
:- func optimize_in_statements(opt_info, list(mlds__statement)) =
list(mlds__statement).
optimize_in_statements(OptInfo, Statements) =
list__map(optimize_in_statement(OptInfo), Statements).
:- func optimize_in_statement(opt_info, mlds__statement) =
mlds__statement.
optimize_in_statement(OptInfo, statement(Stmt, Context)) =
statement(optimize_in_stmt(OptInfo ^ context := Context, Stmt),
Context).
:- func optimize_in_stmt(opt_info, mlds__stmt) = mlds__stmt.
optimize_in_stmt(OptInfo, Stmt0) = Stmt :-
(
Stmt0 = call(_, _, _, _, _, _),
Stmt = optimize_in_call_stmt(OptInfo, Stmt0)
;
Stmt0 = block(Defns0, Statements0),
convert_assignments_into_initializers(Defns0, Statements0,
OptInfo, Defns, Statements1),
Statements = optimize_in_statements(OptInfo, Statements1),
Stmt = block(Defns, Statements)
;
Stmt0 = while(Rval, Statement0, Once),
Stmt = while(Rval, optimize_in_statement(OptInfo,
Statement0), Once)
;
Stmt0 = if_then_else(Rval, Then, MaybeElse),
Stmt = if_then_else(Rval,
optimize_in_statement(OptInfo, Then),
maybe_apply(optimize_in_statement(OptInfo), MaybeElse))
;
Stmt0 = switch(Type, Rval, Range, Cases0, Default0),
Stmt = switch(Type, Rval, Range,
list__map(optimize_in_case(OptInfo), Cases0),
optimize_in_default(OptInfo, Default0))
;
Stmt0 = do_commit(_),
Stmt = Stmt0
;
Stmt0 = return(_),
Stmt = Stmt0
;
Stmt0 = try_commit(Ref, TryGoal, HandlerGoal),
Stmt = try_commit(Ref,
optimize_in_statement(OptInfo, TryGoal),
optimize_in_statement(OptInfo, HandlerGoal))
;
Stmt0 = label(_Label),
Stmt = Stmt0
;
Stmt0 = goto(_Label),
Stmt = Stmt0
;
Stmt0 = computed_goto(_Rval, _Label),
Stmt = Stmt0
;
Stmt0 = atomic(_Atomic),
Stmt = Stmt0
).
:- func optimize_in_case(opt_info, mlds__switch_case) = mlds__switch_case.
optimize_in_case(OptInfo, Conds - Statement0) = Conds - Statement :-
Statement = optimize_in_statement(OptInfo, Statement0).
:- func optimize_in_default(opt_info, mlds__switch_default) =
mlds__switch_default.
optimize_in_default(_OptInfo, default_is_unreachable) = default_is_unreachable.
optimize_in_default(_OptInfo, default_do_nothing) = default_do_nothing.
optimize_in_default(OptInfo, default_case(Statement0)) =
default_case(Statement) :-
Statement = optimize_in_statement(OptInfo, Statement0).
%-----------------------------------------------------------------------------%
:- func optimize_in_call_stmt(opt_info, mlds__stmt) = mlds__stmt.
optimize_in_call_stmt(OptInfo, Stmt0) = Stmt :-
% If we have a self-tailcall, assign to the arguments and
% then goto the top of the tailcall loop.
(
Stmt0 = call(_Signature, _FuncRval, _MaybeObject, CallArgs,
_Results, _IsTailCall),
can_optimize_tailcall(qual(OptInfo ^ module_name,
OptInfo ^ entity_name), Stmt0)
->
CommentStatement = statement(
atomic(comment("direct tailcall eliminated")),
OptInfo ^ context),
GotoStatement = statement(goto(tailcall_loop_label_name),
OptInfo ^ context),
OptInfo ^ func_params = mlds__func_params(FuncArgs, _RetTypes),
generate_assign_args(OptInfo, FuncArgs, CallArgs,
AssignStatements, AssignDefns),
AssignVarsStatement = statement(block(AssignDefns,
AssignStatements), OptInfo ^ context),
CallReplaceStatements = [
CommentStatement,
AssignVarsStatement,
GotoStatement
],
Stmt = block([], CallReplaceStatements)
;
Stmt = Stmt0
).
%----------------------------------------------------------------------------
% Assign the specified list of rvals to the arguments.
% This is used as part of tail recursion optimization (see above).
:- pred generate_assign_args(opt_info, mlds__arguments, list(mlds__rval),
list(mlds__statement), list(mlds__defn)).
:- mode generate_assign_args(in, in, in, out, out) is det.
generate_assign_args(_, [_|_], [], [], []) :-
error("generate_assign_args: length mismatch").
generate_assign_args(_, [], [_|_], [], []) :-
error("generate_assign_args: length mismatch").
generate_assign_args(_, [], [], [], []).
generate_assign_args(OptInfo,
[Name - Type | Rest], [Arg | Args], Statements, TempDefns) :-
(
%
% extract the variable name
%
Name = data(var(VarName))
->
QualVarName = qual(OptInfo ^ module_name, VarName),
(
%
% don't bother assigning a variable to itself
%
Arg = lval(var(QualVarName, _VarType))
->
generate_assign_args(OptInfo, Rest, Args,
Statements, TempDefns)
;
% Declare a temporary variable, initialized it
% to the arg, recursively process the remaining
% args, and then assign the temporary to the
% parameter:
%
% SomeType argN__tmp_copy = new_argN_value;
% ...
% new_argN_value = argN_tmp_copy;
%
% The temporaries are needed for the case where
% we are e.g. assigning v1, v2 to v2, v1;
% they ensure that we don't try to reference the old
% value of a parameter after it has already been
% clobbered by the new value.
VarName = mlds__var_name(VarNameStr, MaybeNum),
TempName = mlds__var_name(VarNameStr ++ "__tmp_copy",
MaybeNum),
QualTempName = qual(OptInfo ^ module_name,
TempName),
Initializer = init_obj(Arg),
TempDefn = ml_gen_mlds_var_decl(var(TempName),
Type, Initializer, OptInfo ^ context),
Statement = statement(
atomic(assign(
var(QualVarName, Type),
lval(var(QualTempName, Type)))),
OptInfo ^ context),
generate_assign_args(OptInfo, Rest, Args, Statements0,
TempDefns0),
Statements = [Statement | Statements0],
TempDefns = [TempDefn | TempDefns0]
)
;
error("generate_assign_args: function param is not a var")
).
%----------------------------------------------------------------------------
:- func optimize_func(opt_info, function_body) = function_body.
optimize_func(_, external) = external.
optimize_func(OptInfo, defined_here(Statement)) =
defined_here(optimize_func_stmt(OptInfo, Statement)).
:- func optimize_func_stmt(opt_info, mlds__statement) = (mlds__statement).
optimize_func_stmt(OptInfo, mlds__statement(Stmt0, Context)) =
mlds__statement(Stmt, Context) :-
% Tailcall optimization -- if we do a self tailcall, we
% can turn it into a loop.
(
stmt_contains_statement(Stmt0, Call),
Call = mlds__statement(CallStmt, _),
can_optimize_tailcall(
qual(OptInfo ^ module_name, OptInfo ^ entity_name),
CallStmt)
->
Comment = atomic(comment("tailcall optimized into a loop")),
Label = label(tailcall_loop_label_name),
Stmt = block([], [statement(Comment, Context),
statement(Label, Context),
statement(Stmt0, Context)])
;
Stmt = Stmt0
).
%-----------------------------------------------------------------------------%
%
% This code implements the --optimize-initializations option.
% It converts MLDS code using assignments, e.g.
%
% {
% int v1; // or any other type -- it doesn't have to be int
% int v2;
% int v3;
% int v4;
% int v5;
%
% v1 = 1;
% v2 = 2;
% v3 = 3;
% foo();
% v4 = 4;
% ...
% }
%
% into code that instead uses initializers, e.g.
%
% {
% int v1 = 1;
% int v2 = 2;
% int v3 = 3;
% int v4;
%
% foo();
% v4 = 4;
% ...
% }
%
% Note that if there are multiple initializations of the same
% variable, then we'll apply the optimization successively,
% replacing the existing initializers as we go, and keeping
% only the last, e.g.
%
% int v = 1;
% v = 2;
% v = 3;
% ...
%
% will get replaced with
%
% int v = 3;
% ...
%
% We need to watch out for some tricky cases that can't be safely optimized.
% If the RHS of the assignment refers to a variable which was declared after
% the variable whose initialization we're optimizing, e.g.
%
% int v1 = 1;
% int v2 = 0;
% v1 = v2 + 1; // RHS refers to variable declared after v1
%
% then we can't do the optimization because it would cause a forward reference
%
% int v1 = v2 + 1; // error -- v2 not declared yet!
% int v2 = 0;
%
% Likewise if the RHS refers to the variable itself
%
% int v1 = 1;
% v1 = v1 + 1;
%
% then we can't optimize it, because that would be bogus:
%
% int v1 = v1 + 1; // error -- v1 not initialized yet!
%
% Similarly, if the initializers of the variables that follow
% the one we're trying to optimize refer to it, e.g.
%
% int v1 = 1;
% int v2 = v1 + 1; // here v2 == 2
% v1 = 0;
% ...
%
% then we can't eliminate the assignment, because that would produce
% different results:
%
% int v1 = 0;
% int v2 = v1 + 1; // wrong -- v2 == 1
% ...
:- pred convert_assignments_into_initializers(mlds__defns, mlds__statements,
opt_info, mlds__defns, mlds__statements).
:- mode convert_assignments_into_initializers(in, in, in, out, out) is det.
convert_assignments_into_initializers(Defns0, Statements0, OptInfo,
Defns, Statements) :-
(
% Check if --optimize-initializations is enabled
globals__lookup_bool_option(OptInfo ^ globals,
optimize_initializations, yes),
% Check if the first statement in the block is
% an assignment to one of the variables declared in
% the block.
Statements0 = [AssignStatement | Statements1],
AssignStatement = statement(atomic(assign(LHS, RHS)), _),
LHS = var(ThisVar, _ThisType),
ThisVar = qual(Qualifier, VarName),
Qualifier = OptInfo ^ module_name,
list__takewhile(isnt(var_defn(VarName)), Defns0,
_PrecedingDefns, [_VarDefn | FollowingDefns]),
% We must check that the value being assigned
% doesn't refer to the variable itself, or to any
% of the variables which are declared after this one.
% We must also check that the initializers (if any)
% of the variables that follow this one don't
% refer to this variable.
\+ rval_contains_var(RHS, ThisVar),
\+ (
list__member(OtherDefn, FollowingDefns),
OtherDefn = mlds__defn(data(var(OtherVarName)),
_, _, data(_Type, OtherInitializer)),
( rval_contains_var(RHS, qual(Qualifier, OtherVarName))
; initializer_contains_var(OtherInitializer, ThisVar)
)
)
->
% Replace the assignment statement with an initializer
% on the variable declaration.
set_initializer(Defns0, VarName, RHS, Defns1),
% Now try to apply the same optimization again
convert_assignments_into_initializers(Defns1, Statements1,
OptInfo, Defns, Statements)
;
% No optimization possible -- leave the block unchanged.
Defns = Defns0,
Statements = Statements0
).
:- pred var_defn(var_name::in, mlds__defn::in) is semidet.
var_defn(VarName, Defn) :-
Defn = mlds__defn(data(var(VarName)), _, _, _).
% set_initializer(Defns0, VarName, Rval, Defns):
% Finds the first definition of the specified variable
% in Defns0, and replaces the initializer of that
% definition with init_obj(Rval).
%
:- pred set_initializer(mlds__defns, mlds__var_name, mlds__rval, mlds__defns).
:- mode set_initializer(in, in, in, out) is det.
set_initializer([], _, _, _) :-
unexpected(this_file, "set_initializer: var not found!").
set_initializer([Defn0 | Defns0], VarName, Rval, [Defn | Defns]) :-
Defn0 = mlds__defn(Name, Context, Flags, DefnBody0),
(
Name = data(var(VarName)),
DefnBody0 = mlds__data(Type, _OldInitializer)
->
DefnBody = mlds__data(Type, init_obj(Rval)),
Defn = mlds__defn(Name, Context, Flags, DefnBody),
Defns = Defns0
;
Defn = Defn0,
set_initializer(Defns0, VarName, Rval, Defns)
).
%-----------------------------------------------------------------------------%
% Maps T into V, inside a maybe .
:- func maybe_apply(func(T) = V, maybe(T)) = maybe(V).
maybe_apply(_, no) = no.
maybe_apply(F, yes(T)) = yes(F(T)).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "ml_optimize.m".
:- end_module ml_optimize.
%-----------------------------------------------------------------------------%