Files
mercury/compiler/ml_optimize.m
Tyson Dowd 76ac44335d Implement a C# interface for the .NET backend.
Estimated hours taken: 45
Branches: main

Implement a C# interface for the .NET backend.

To use it, you currently need to set
	--backend-foreign-language csharp --use-foreign-language csharp
in your MCFLAGS.

The C# foreign language interface works by introducing a new sort of
MLDS statement called outline_foreign_proc.  outline_foreign_proc is expected
to be turned into a separate procedure in a separate file.  This is
quite different to normal foreign code which has been renamed as inline
target code, as it is really intended to be generated inline, inside the
generated code.

Because outline_foreign_proc is expected to be generated outside the
normal code, we don't need to generate variable renamings,
initializations, casts and other complicated interfacing code.

Any marshalling is done by the backend, which knows how to marshall
arguments across the boundary into the outline code and back.  In the
case of marshalling to C# from the .NET backend, we currently don't do
anything special (part of the point of .NET is that data
representation don't have to change very often just because you are
using different languages, so this is a property we should try to
preserve).

The actual implementation of the foreign code is therefore very simple.
Simply generate an appropriate procedure, and insert the user's code in
the middle.

The bulk of this change to delay the mangling of MLDS var names, so we
can still use the original user's var name when we output the outline
procedure (since the user's foreign code will refer to these var names,
it's important to keep them around).

compiler/foreign.m:
	Handle the csharp foreign language.

compiler/globals.m:
	Fix an XXX about converting to lowercase to do language name
	comparisons.
	Add new predicates to make conversion of foreign languages
	to strings more uniform.

compiler/handle_options.m:
	Don't set backend_foreign_language to the default if it has
	already been set by hand.

compiler/ml_call_gen.m:
compiler/ml_code_gen.m:
compiler/ml_code_util.m:
	Delay the mangling of MLDS var names by keeping the variable
	number around until the output phase.

	Slightly generalize the handling of foreign language interfacing.
	Handle C# foreign language interfacing.

	Add value_output_vars to the ml_gen_info, which are the variables
	returned rather than passed by reference.  We need to know
	these variables for C# interfacing so that we can handle the return
	value of the forwarding function.

	Mark the beginning and end of the MLDS foreign language processing as
	a "sub-module" (in comments at least).  Later I may put this code
	into a separate module.

	Rename some predicates from c_code to foreign_code.

compiler/ml_elim_nested.m:
compiler/ml_optimize.m:
compiler/ml_string_switch.m:
compiler/ml_type_gen.m:
compiler/ml_unify_gen.m:
compiler/ml_util.m:
compiler/rtti_to_mlds.m:
	Handle the new var_name type, and the new target_code constructors.

compiler/mlds.m:
	Add outline_foreign_proc which is handled differently to the old
	target_code (which has been renamed inline_target_code).

	Change the definiton for mlds__var_name.

compiler/mlds_to_c.m:
	Factor out mlds_output_to_file.
	Handle the new var_name type, and the new target_code constructors.

compiler/mlds_to_csharp.m:
	A new module to generate C# code suitable for foreign language
	interfacing.  This is largely lifted from the MC++ code, with a few
	changes to the output syntax.

compiler/mlds_to_il.m:
	Return the set of foreign languages processed instead of a bool
	saying wither MC++ was present.  This is so we can generate the
	appropriate output .cs or .cpp files, and because we need to keep
	track of all the external assembly references we need to put in the
	.il file.

	Handle the inline_target_code and mlds__var_name changes.

compiler/mlds_to_ilasm.m:
	Output .cpp and .cs files conditionally.
	Factor out output_to_file.
	Move MC++ output code to mlds_to_mcpp.m

compiler/mlds_to_java.m:
	Factor out output_to_file.
	Handle the new var_name type, and the new target_code constructors.

compiler/mlds_to_mcpp.m:
	New file to handle generating MC++ code suitable for foreign language
	interfacing.

compiler/options.m:
	Add a way of setting the backend-foreign-language option.

compiler/passes_aux.m:
	Add output_to_file which is used by the MLDS backend to generate
	output files.

compiler/prog_data.m:
	Uncomment csharp as a foreign language.
2001-05-02 11:36:41 +00:00

504 lines
15 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 2000-2001 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: ml_optimize.m
% Main author: trd, fjh
% This module runs various optimizations on the MLDS.
%
% Currently the optimizations we do here are
% - turning tailcalls into loops;
% - converting assignments to local variables into variable initializers.
%
% Note that tailcall detection is done in ml_tailcall.m.
% It might be nice to move the detection here, and do both the
% loop transformation (in the case of self-tailcalls) and marking
% tailcalls at the same time.
%
% Ultimately this module should just consist of a skeleton to traverse
% the MLDS, and should call various optimization modules along the way.
%
% It would probably be a good idea to make each transformation optional.
% Previously the tailcall transformation depended on emit_c_loops, but
% this is a bit misleading given the documentation of emit_c_loops.
%-----------------------------------------------------------------------------%
:- module ml_optimize.
:- interface.
:- import_module mlds, io.
:- pred optimize(mlds, mlds, io__state, io__state).
:- mode optimize(in, out, di, uo) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module ml_util, ml_code_util.
:- import_module builtin_ops, globals, options, error_util.
:- import_module bool, list, require, std_util, string.
:- type opt_info --->
opt_info(
globals :: globals,
module_name :: mlds_module_name,
entity_name :: mlds__entity_name,
func_params :: mlds__func_params,
context :: mlds__context
).
% The label name we use for the top of the loop introduced by
% tailcall optimization.
:- func tailcall_loop_label_name = string.
tailcall_loop_label_name = "loop_top".
optimize(MLDS0, MLDS) -->
globals__io_get_globals(Globals),
{ MLDS0 = mlds(ModuleName, ForeignCode, Imports, Defns0) },
{ Defns = optimize_in_defns(Defns0, Globals,
mercury_module_name_to_mlds(ModuleName)) },
{ MLDS = mlds(ModuleName, ForeignCode, Imports, Defns) }.
:- func optimize_in_defns(mlds__defns, globals, mlds_module_name)
= mlds__defns.
optimize_in_defns(Defns, Globals, ModuleName) =
list__map(optimize_in_defn(ModuleName, Globals), Defns).
:- func optimize_in_defn(mlds_module_name, globals, mlds__defn) = mlds__defn.
optimize_in_defn(ModuleName, Globals, Defn0) = Defn :-
Defn0 = mlds__defn(Name, Context, Flags, DefnBody0),
(
DefnBody0 = mlds__function(PredProcId, Params, FuncBody0),
OptInfo = opt_info(Globals, ModuleName, Name, Params, Context),
FuncBody1 = optimize_func(OptInfo, FuncBody0),
FuncBody = optimize_in_maybe_statement(OptInfo, FuncBody1),
DefnBody = mlds__function(PredProcId, Params, FuncBody),
Defn = mlds__defn(Name, Context, Flags, DefnBody)
;
DefnBody0 = mlds__data(_, _),
Defn = Defn0
;
DefnBody0 = mlds__class(ClassDefn0),
ClassDefn0 = class_defn(Kind, Imports, BaseClasses, Implements,
MemberDefns0),
MemberDefns = optimize_in_defns(MemberDefns0, Globals,
ModuleName),
ClassDefn = class_defn(Kind, Imports, BaseClasses, Implements,
MemberDefns),
DefnBody = mlds__class(ClassDefn),
Defn = mlds__defn(Name, Context, Flags, DefnBody)
).
:- func optimize_in_maybe_statement(opt_info,
maybe(mlds__statement)) = maybe(mlds__statement).
optimize_in_maybe_statement(_, no) = no.
optimize_in_maybe_statement(OptInfo, yes(Statement0)) = yes(Statement) :-
Statement = optimize_in_statement(OptInfo, Statement0).
:- func optimize_in_statements(opt_info, list(mlds__statement)) =
list(mlds__statement).
optimize_in_statements(OptInfo, Statements) =
list__map(optimize_in_statement(OptInfo), Statements).
:- func optimize_in_statement(opt_info, mlds__statement) =
mlds__statement.
optimize_in_statement(OptInfo, statement(Stmt, Context)) =
statement(optimize_in_stmt(OptInfo ^ context := Context, Stmt),
Context).
:- func optimize_in_stmt(opt_info, mlds__stmt) = mlds__stmt.
optimize_in_stmt(OptInfo, Stmt0) = Stmt :-
(
Stmt0 = call(_, _, _, _, _, _),
Stmt = optimize_in_call_stmt(OptInfo, Stmt0)
;
Stmt0 = block(Defns0, Statements0),
convert_assignments_into_initializers(Defns0, Statements0,
OptInfo, Defns, Statements1),
Statements = optimize_in_statements(OptInfo, Statements1),
Stmt = block(Defns, Statements)
;
Stmt0 = while(Rval, Statement0, Once),
Stmt = while(Rval, optimize_in_statement(OptInfo,
Statement0), Once)
;
Stmt0 = if_then_else(Rval, Then, MaybeElse),
Stmt = if_then_else(Rval,
optimize_in_statement(OptInfo, Then),
maybe_apply(optimize_in_statement(OptInfo), MaybeElse))
;
Stmt0 = switch(Type, Rval, Range, Cases0, Default0),
Stmt = switch(Type, Rval, Range,
list__map(optimize_in_case(OptInfo), Cases0),
optimize_in_default(OptInfo, Default0))
;
Stmt0 = do_commit(_),
Stmt = Stmt0
;
Stmt0 = return(_),
Stmt = Stmt0
;
Stmt0 = try_commit(Ref, TryGoal, HandlerGoal),
Stmt = try_commit(Ref,
optimize_in_statement(OptInfo, TryGoal),
optimize_in_statement(OptInfo, HandlerGoal))
;
Stmt0 = label(_Label),
Stmt = Stmt0
;
Stmt0 = goto(_Label),
Stmt = Stmt0
;
Stmt0 = computed_goto(_Rval, _Label),
Stmt = Stmt0
;
Stmt0 = atomic(_Atomic),
Stmt = Stmt0
).
:- func optimize_in_case(opt_info, mlds__switch_case) = mlds__switch_case.
optimize_in_case(OptInfo, Conds - Statement0) = Conds - Statement :-
Statement = optimize_in_statement(OptInfo, Statement0).
:- func optimize_in_default(opt_info, mlds__switch_default) =
mlds__switch_default.
optimize_in_default(_OptInfo, default_is_unreachable) = default_is_unreachable.
optimize_in_default(_OptInfo, default_do_nothing) = default_do_nothing.
optimize_in_default(OptInfo, default_case(Statement0)) =
default_case(Statement) :-
Statement = optimize_in_statement(OptInfo, Statement0).
%-----------------------------------------------------------------------------%
:- func optimize_in_call_stmt(opt_info, mlds__stmt) = mlds__stmt.
optimize_in_call_stmt(OptInfo, Stmt0) = Stmt :-
% If we have a self-tailcall, assign to the arguments and
% then goto the top of the tailcall loop.
(
Stmt0 = call(_Signature, _FuncRval, _MaybeObject, CallArgs,
_Results, _IsTailCall),
can_optimize_tailcall(qual(OptInfo ^ module_name,
OptInfo ^ entity_name), Stmt0)
->
CommentStatement = statement(
atomic(comment("direct tailcall eliminated")),
OptInfo ^ context),
GotoStatement = statement(goto(tailcall_loop_label_name),
OptInfo ^ context),
OptInfo ^ func_params = mlds__func_params(FuncArgs, _RetTypes),
generate_assign_args(OptInfo, FuncArgs, CallArgs,
AssignStatements, AssignDefns),
AssignVarsStatement = statement(block(AssignDefns,
AssignStatements), OptInfo ^ context),
CallReplaceStatements = [
CommentStatement,
AssignVarsStatement,
GotoStatement
],
Stmt = block([], CallReplaceStatements)
;
Stmt = Stmt0
).
%----------------------------------------------------------------------------
% Assign the specified list of rvals to the arguments.
% This is used as part of tail recursion optimization (see above).
:- pred generate_assign_args(opt_info, mlds__arguments, list(mlds__rval),
list(mlds__statement), list(mlds__defn)).
:- mode generate_assign_args(in, in, in, out, out) is det.
generate_assign_args(_, [_|_], [], [], []) :-
error("generate_assign_args: length mismatch").
generate_assign_args(_, [], [_|_], [], []) :-
error("generate_assign_args: length mismatch").
generate_assign_args(_, [], [], [], []).
generate_assign_args(OptInfo,
[Name - Type | Rest], [Arg | Args], Statements, TempDefns) :-
(
%
% extract the variable name
%
Name = data(var(VarName))
->
QualVarName = qual(OptInfo ^ module_name, VarName),
(
%
% don't bother assigning a variable to itself
%
Arg = lval(var(QualVarName, _VarType))
->
generate_assign_args(OptInfo, Rest, Args,
Statements, TempDefns)
;
% Declare a temporary variable, initialized it
% to the arg, recursively process the remaining
% args, and then assign the temporary to the
% parameter:
%
% SomeType argN__tmp_copy = new_argN_value;
% ...
% new_argN_value = argN_tmp_copy;
%
% The temporaries are needed for the case where
% we are e.g. assigning v1, v2 to v2, v1;
% they ensure that we don't try to reference the old
% value of a parameter after it has already been
% clobbered by the new value.
VarName = mlds__var_name(VarNameStr, MaybeNum),
TempName = mlds__var_name(VarNameStr ++ "__tmp_copy",
MaybeNum),
QualTempName = qual(OptInfo ^ module_name,
TempName),
Initializer = init_obj(Arg),
TempDefn = ml_gen_mlds_var_decl(var(TempName),
Type, Initializer, OptInfo ^ context),
Statement = statement(
atomic(assign(
var(QualVarName, Type),
lval(var(QualTempName, Type)))),
OptInfo ^ context),
generate_assign_args(OptInfo, Rest, Args, Statements0,
TempDefns0),
Statements = [Statement | Statements0],
TempDefns = [TempDefn | TempDefns0]
)
;
error("generate_assign_args: function param is not a var")
).
%----------------------------------------------------------------------------
:- func optimize_func(opt_info, maybe(mlds__statement))
= maybe(mlds__statement).
optimize_func(OptInfo, MaybeStatement) =
maybe_apply(optimize_func_stmt(OptInfo), MaybeStatement).
:- func optimize_func_stmt(opt_info,
mlds__statement) = (mlds__statement).
optimize_func_stmt(OptInfo, mlds__statement(Stmt0, Context)) =
mlds__statement(Stmt, Context) :-
% Tailcall optimization -- if we do a self tailcall, we
% can turn it into a loop.
(
stmt_contains_statement(Stmt0, Call),
Call = mlds__statement(CallStmt, _),
can_optimize_tailcall(
qual(OptInfo ^ module_name, OptInfo ^ entity_name),
CallStmt)
->
Comment = atomic(comment("tailcall optimized into a loop")),
Label = label(tailcall_loop_label_name),
Stmt = block([], [statement(Comment, Context),
statement(Label, Context),
statement(Stmt0, Context)])
;
Stmt = Stmt0
).
%-----------------------------------------------------------------------------%
%
% This code implements the --optimize-initializations option.
% It converts MLDS code using assignments, e.g.
%
% {
% int v1; // or any other type -- it doesn't have to be int
% int v2;
% int v3;
% int v4;
% int v5;
%
% v1 = 1;
% v2 = 2;
% v3 = 3;
% foo();
% v4 = 4;
% ...
% }
%
% into code that instead uses initializers, e.g.
%
% {
% int v1 = 1;
% int v2 = 2;
% int v3 = 3;
% int v4;
%
% foo();
% v4 = 4;
% ...
% }
%
% Note that if there are multiple initializations of the same
% variable, then we'll apply the optimization successively,
% replacing the existing initializers as we go, and keeping
% only the last, e.g.
%
% int v = 1;
% v = 2;
% v = 3;
% ...
%
% will get replaced with
%
% int v = 3;
% ...
%
% We need to watch out for some tricky cases that can't be safely optimized.
% If the RHS of the assignment refers to a variable which was declared after
% the variable whose initialization we're optimizing, e.g.
%
% int v1 = 1;
% int v2 = 0;
% v1 = v2 + 1; // RHS refers to variable declared after v1
%
% then we can't do the optimization because it would cause a forward reference
%
% int v1 = v2 + 1; // error -- v2 not declared yet!
% int v2 = 0;
%
% Likewise if the RHS refers to the variable itself
%
% int v1 = 1;
% v1 = v1 + 1;
%
% then we can't optimize it, because that would be bogus:
%
% int v1 = v1 + 1; // error -- v1 not initialized yet!
%
% Similarly, if the initializers of the variables that follow
% the one we're trying to optimize refer to it, e.g.
%
% int v1 = 1;
% int v2 = v1 + 1; // here v2 == 2
% v1 = 0;
% ...
%
% then we can't eliminate the assignment, because that would produce
% different results:
%
% int v1 = 0;
% int v2 = v1 + 1; // wrong -- v2 == 1
% ...
:- pred convert_assignments_into_initializers(mlds__defns, mlds__statements,
opt_info, mlds__defns, mlds__statements).
:- mode convert_assignments_into_initializers(in, in, in, out, out) is det.
convert_assignments_into_initializers(Defns0, Statements0, OptInfo,
Defns, Statements) :-
(
% Check if --optimize-initializations is enabled
globals__lookup_bool_option(OptInfo ^ globals,
optimize_initializations, yes),
% Check if the first statement in the block is
% an assignment to one of the variables declared in
% the block.
Statements0 = [AssignStatement | Statements1],
AssignStatement = statement(atomic(assign(LHS, RHS)), _),
LHS = var(ThisVar, _ThisType),
ThisVar = qual(Qualifier, VarName),
Qualifier = OptInfo ^ module_name,
list__takewhile(isnt(var_defn(VarName)), Defns0,
_PrecedingDefns, [_VarDefn | FollowingDefns]),
% We must check that the value being assigned
% doesn't refer to the variable itself, or to any
% of the variables which are declared after this one.
% We must also check that the initializers (if any)
% of the variables that follow this one don't
% refer to this variable.
\+ rval_contains_var(RHS, ThisVar),
\+ (
list__member(OtherDefn, FollowingDefns),
OtherDefn = mlds__defn(data(var(OtherVarName)),
_, _, data(_Type, OtherInitializer)),
( rval_contains_var(RHS, qual(Qualifier, OtherVarName))
; initializer_contains_var(OtherInitializer, ThisVar)
)
)
->
% Replace the assignment statement with an initializer
% on the variable declaration.
set_initializer(Defns0, VarName, RHS, Defns1),
% Now try to apply the same optimization again
convert_assignments_into_initializers(Defns1, Statements1,
OptInfo, Defns, Statements)
;
% No optimization possible -- leave the block unchanged.
Defns = Defns0,
Statements = Statements0
).
:- pred var_defn(var_name::in, mlds__defn::in) is semidet.
var_defn(VarName, Defn) :-
Defn = mlds__defn(data(var(VarName)), _, _, _).
% set_initializer(Defns0, VarName, Rval, Defns):
% Finds the first definition of the specified variable
% in Defns0, and replaces the initializer of that
% definition with init_obj(Rval).
%
:- pred set_initializer(mlds__defns, mlds__var_name, mlds__rval, mlds__defns).
:- mode set_initializer(in, in, in, out) is det.
set_initializer([], _, _, _) :-
unexpected(this_file, "set_initializer: var not found!").
set_initializer([Defn0 | Defns0], VarName, Rval, [Defn | Defns]) :-
Defn0 = mlds__defn(Name, Context, Flags, DefnBody0),
(
Name = data(var(VarName)),
DefnBody0 = mlds__data(Type, _OldInitializer)
->
DefnBody = mlds__data(Type, init_obj(Rval)),
Defn = mlds__defn(Name, Context, Flags, DefnBody),
Defns = Defns0
;
Defn = Defn0,
set_initializer(Defns0, VarName, Rval, Defns)
).
%-----------------------------------------------------------------------------%
% Maps T into V, inside a maybe .
:- func maybe_apply(func(T) = V, maybe(T)) = maybe(V).
maybe_apply(_, no) = no.
maybe_apply(F, yes(T)) = yes(F(T)).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "ml_optimize.m".
:- end_module ml_optimize.
%-----------------------------------------------------------------------------%