Files
mercury/runtime/mercury_array_macros.h
Mark Brown d465fa53cb Update the COPYING.LIB file and references to it.
Discussion of these changes can be found on the Mercury developers
mailing list archives from June 2018.

COPYING.LIB:
    Add a special linking exception to the LGPL.

*:
    Update references to COPYING.LIB.

    Clean up some minor errors that have accumulated in copyright
    messages.
2018-06-09 17:43:12 +10:00

219 lines
12 KiB
C

// vim: ts=4 sw=4 expandtab ft=c
// Copyright (C) 1998-2000,2002, 2004-2005 The University of Melbourne.
// Copyright (C) 2016, 2018 The Mercury team.
// This file is distributed under the terms specified in COPYING.LIB.
// mercury_array_macros.h defines macros for dealing with expandable arrays.
#ifndef MERCURY_ARRAY_MACROS_H
#define MERCURY_ARRAY_MACROS_H
#include "mercury_reg_workarounds.h" // for MR_assign_structure
// The MR_ensure_room_for_next macro works with a group of three variables
// that follow the pattern
//
// Item *widgets = NULL;
// int widget_max = 0;
// int widget_next = 0;
//
// where widgets is a pointer to a MR_malloc'd array of items, widget_max
// gives the number of elements in the array, and widget_next is the
// index of the first free slot in the widgets array. Widget_max is
// zero if and only if widgets is NULL.
//
// MR_ensure_room_for_next(widget, Item, INIT_SIZE) checks whether
// there is enough room in the widgets array to add a new item.
// If not, doubles the size of the existing widgets array, or
// allocates an array of INIT_SIZE items if the widgets array
// has not been initialized before.
//
// BEWARE: YOU NEED TO BE VERY CAREFUL OF POINTERS TO OBJECTS ON THE GC HEAP:
//
// - For MR_ensure_room_for_next(), the memory is allocated with MR_malloc(),
// which means that if conservative GC is enabled, the array elements
// _MUST NOT_ point to the GC heap (or at least must not be the _only_
// pointer to any object on the GC heap); but the array address can be
// stored anywhere.
//
// - For MR_GC_ensure_room_for_next(), the memory is allocated on the GC heap,
// which means that the array elements can point to anything;
// but the array address _MUST NOT_ be stored in memory allocated with
// malloc() or MR_malloc() (unless it is also stored in some place
// which _is_ scanned by the collector).
//
// It is the caller's responsibility to deallocate the memory for the array
// if/when it is no longer needed, using MR_free() or MR_GC_free_attrib()
// respectively.
#define MR_ensure_room_for_next(base, type, init) \
do { \
if (base##_next >= base##_max) { \
if (base##_max == 0) { \
base##_max = (init); \
base##s = MR_NEW_ARRAY(type, base##_max); \
} else { \
base##_max *= 2; \
base##s = MR_RESIZE_ARRAY(base##s, type, base##_max); \
} \
} \
} while (0)
#define MR_GC_ensure_room_for_next(base, type, init, alloc_id) \
do { \
if (base##_next >= base##_max) { \
if (base##_max == 0) { \
base##_max = (init); \
base##s = MR_GC_NEW_ARRAY_ATTRIB(type, base##_max, \
(alloc_id)); \
} else { \
base##_max *= 2; \
base##s = MR_GC_RESIZE_ARRAY_ATTRIB(base##s, type, \
base##_max); \
} \
} \
} while (0)
// MR_ensure_big_enough makes the same assumptions as MR_ensure_room_for_next,
// and operates almost the same way. The exception is that it does not assume
// that the array grows one item at a time; instead it ensures that the array
// is big enough to contain the element at index `slot'. Since with this regime
// there is no notion of the "next" slot, this macro does not access, nor does
// it require the existence of, base##_next.
//
// BEWARE: YOU NEED TO BE VERY CAREFUL OF POINTERS TO OBJECTS ON THE GC HEAP.
// See the comment for MR_ensure_room_for_next().
#define MR_ensure_big_enough(slot, base, type, init) \
do { \
if ((slot) >= base##_max) { \
if (base##_max == 0) { \
base##_max = MR_max((init), (slot) + 1); \
base##s = MR_NEW_ARRAY(type, base##_max); \
} else { \
base##_max = MR_max(base##_max * 2, (slot) + 1); \
base##s = MR_RESIZE_ARRAY(base##s, type, base##_max); \
} \
} \
} while (0)
// MR_ensure_big_enough2 works like MR_ensure_big_enough, except that
// it resizes two arrays at once. These two arrays are named base##s1 and
// base##s2, and since they are always the same size, they share the
// base##_max variable.
//
// BEWARE: YOU NEED TO BE VERY CAREFUL OF POINTERS TO OBJECTS ON THE GC HEAP.
// See the comment for MR_ensure_room_for_next().
#define MR_ensure_big_enough2(slot, base, s1, s2, type, init) \
do { \
if ((slot) >= base##_max) { \
if (base##_max == 0) { \
base##_max = MR_max((init), (slot) + 1); \
base##s1 = MR_NEW_ARRAY(type, base##_max); \
base##s2 = MR_NEW_ARRAY(type, base##_max); \
} else { \
base##_max = MR_max(base##_max * 2, (slot) + 1); \
base##s1 = MR_RESIZE_ARRAY(base##s1, type, base##_max); \
base##s2 = MR_RESIZE_ARRAY(base##s2, type, base##_max); \
} \
} \
} while (0)
// MR_bsearch(int num_elements, int& element, MR_bool& found, COMPARE)
//
// Given a sorted array, this macro performs a binary search.
// If the search is successful, MR_bsearch sets the `found' parameter
// to MR_TRUE and the `element' parameter to the index of the desired item.
// If the search is unsuccessful, MR_bsearch sets `found' to MR_FALSE;
// `element' will be clobbered.
//
// The number of the elements in the array is given by the `num_elements'
// parameter.
// The `COMPARE' parameter should be an expression of type int which compares
// the value at the index specified by the current value of `element'
// with the desired value, and returns <0, 0, or >0 according to whether
// it is less than, equal to, or greater than the desired value.
//
// The name of the array to be searched is not explicitly a parameter;
// its identity is encoded in the boolean expression of the `COMPARE'
// parameter.
#define MR_bsearch(num_elements, element, found, COMPARE) \
do { \
int lo; \
int hi; \
int diff; \
\
/* \
** We initialize `element' here only to avoid gcc warnings \
** about possibly accessing an uninitialized variable \
** in code using MR_bsearch(). \
*/ \
\
(element) = 0; \
lo = 0; \
hi = (num_elements) - 1; \
(found) = MR_FALSE; \
while (lo <= hi) { \
(element) = (lo + hi) / 2; \
diff = (COMPARE); \
if (diff == 0) { \
(found) = MR_TRUE; \
break; \
} else if (diff < 0) { \
lo = (element) + 1; \
} else { \
hi = (element) - 1; \
} \
} \
} while (0)
// MR_find_first_match(int num_elements, int& element, MR_bool& found, COMPARE)
//
// Given a sorted array, this macro finds the first element in the array
// for which `COMPARE' is zero (MR_bsearch finds an arbitrary element).
// Otherwise, the parameters and behaviour are the same as for MR_bsearch.
#define MR_find_first_match(num_elements, element, found, COMPARE) \
do { \
MR_bsearch((num_elements), (element), (found), (COMPARE)); \
if (found) { \
while ((element) > 0) { \
(element)--; \
if ((COMPARE) != 0) { \
(element)++; \
break; \
} \
} \
} \
} while (0)
// MR_prepare_insert_into_sorted(array[], int& next, int& element, COMPARE)
//
// Given a sorted array of `items', this prepares for the insertion of a
// new item into the array at the proper point. It finds the index at which
// the new item should be inserted, and moves all items at and above that
// index one position to the right to make room for the new item.
//
// The `next' parameter holds the number of elements in the array;
// it is incremented by this macro. The macro returns the index of the slot
// at which the new item should be inserted in the `element' parameter.
// The `COMPARE' parameter should be an expression of type int which compares
// the item at the index specified by the current value of `element' with
// the item being inserted, and returns <0, 0, or >0 according to whether
// it is less than, equal to, or greater than the item being inserted.
#define MR_prepare_insert_into_sorted(items, next, element, COMPARE) \
do { \
(element) = (next) - 1; \
while ((element) >= 0 && (COMPARE) > 0) { \
MR_assign_structure(items[element + 1], items[element]); \
(element) -= 1; \
} \
(element) += 1; \
(next) += 1; \
} while (0)
#endif // MERCURY_ARRAY_MACROS_H