Files
mercury/compiler/prog_util.m
Zoltan Somogyi 5eee81204e A big step towards cleaning up the way we handle errors.
Estimated hours taken: 28
Branches: main

A big step towards cleaning up the way we handle errors. The main changes are

- the provision, in error_util.m, of a mechanism for completely specifying
  everything to do with a single error in one data structure,

- the conversion of typecheck_errors.m from using io.write_string to
  using this new capability,

- the conversion of mode_errors.m and det_report.m from using
  write_error_pieces to using this new capability, and

- consistently using the quoting style `symname'/N instead of `symname/N'
  in error_util and hlds_error_util (previously, error_util used the former
  but hlds_error_util used the latter).

This diff sets up later diffs which will collect all error specifications
in a central place and print them all at once, in order.

compiler/error_util.m:
	The new type error_spec, which completely specifies an error.
	An error_spec may have multiple components with different contexts
	and may have parts which are printed only under certain conditions,
	e.g. a given option being set. Each error_spec has a severity
	and also records which phase found the error.

	The new predicate write_error_spec takes care of updates of the exit
	status for errors and (if --halt-at-warn is set) for warnings. It also
	takes care of setting the flag that calls for the reminder about -E
	at the end.

	This diff also makes it simpler to use the ability to print arbitrary
	output. It adds the ability to include integers in messages directly,
	and the ability to create blank lines. It renames some function symbols
	to avoid ambiguities.

	Move a predicate that only used by typecheck_errors.m to that file.

compiler/hlds_error_util.m:
	Switch to the `symname'/N quoting style for describing predicates and
	procedures.

compiler/prog_util.m:
	Switch to the `symname'/N quoting style for describing
	sym_name_and_arity.

compiler/hlds_module.m:
	Provide a predicate to increment the number of errors not by one,
	but by the number of errors printed by write_error_spec.

	Fix some documentation rot.

compiler/typecheck_errors.m:
	Use write_error_spec instead of io.write_strings to print error
	messages. In several cases, improve the formatting of the messages
	printed.

	Mark a number of places where we don't (yet) update the number of
	errors in the module_info correctly.

	Rename the checkpoint predicate to avoid potential ambiguity with
	similar predicates in e.g. mode_info.

compiler/typecheck_info.m:
	Group the code for writing stuff out together in one bunch. For each
	such predicate, create another that returns a list of format components
	instead of doing I/O directly.

compiler/typecheck.m:
	Move the code for writing inference messages here from
	typecheck_errors.m, since these messages aren't errors.

compiler/mode_errors.m:
compiler/det_report.m:
	Use write_error_spec instead of write_error_pieces. In the case of
	mode_errors.m, this means we now get correct the set of circumstances
	in which we set the flag that calls for the reminder about -E.

compiler/add_pragma.m:
compiler/add_type.m:
	Convert some code that used to use write_error_pieces to print error
	messages to use write_error_spec instead.

compiler/assertion.m:
compiler/hlds_pred.m:
compiler/post_typecheck.m:
	Assertion.m used to contain some code to check for assertions in the
	interface that mention predicates that are not exported. Move most
	of this code to post_typecheck.m (which is where this code used to be
	called from). One small part, which is a test for a particular property
	of import_statuses, is moved to hlds_pred.m to be with all the other
	similar tests of import_statuses.

compiler/prog_util.m:
	Change unqualify_name from a predicate to a function.

compiler/pred_table.m:
compiler/hlds_out.m:
	Avoid some ambiguities by adding a suffix to the names of some
	predicates.

compiler/*.m:
	Conform to the changes above.

library/list.m:
	Add a function that was previously present (with different names)
	in two compiler modules.

tests/hard_coded/allow_stubs.exp:
	Update the format of the expected exception.

tests/invalid/errors2.err_exp2:
	Remove this file. As far as I can tell, it was never the correct
	expected output on the main branch. (It originated on the alias branch
	way back in the mists of time.)

tests/invalid/*.err_exp:
tests/invalid/purity/*.err_exp:
tests/warnings/*.exp:
	Update the format of the expected error messages.

tests/recompilation/*.err_exp.2:
	Update the format of the expected messages about what was modified.
2006-09-07 05:51:48 +00:00

839 lines
32 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2001, 2003-2006 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_util.
% Main author: fjh.
%
% Various utility predicates acting on the parse tree data structure defined
% in prog_data.m and prog_item.m
%
%-----------------------------------------------------------------------------%
:- module parse_tree.prog_util.
:- interface.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_item.
:- import_module list.
:- import_module maybe.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
% Given a symbol name, return its unqualified name.
%
:- func unqualify_name(sym_name) = string.
% sym_name_get_module_name(SymName) = ModName:
%
% Given a symbol name, return the module qualifiers(s).
% Fails if the symbol is unqualified.
%
:- pred sym_name_get_module_name(sym_name::in, module_name::out) is semidet.
% sym_name_get_module_name(SymName, DefaultModName, ModName):
%
% Given a symbol name, return the module qualifier(s).
% If the symbol is unqualified, then return the specified default
% module name.
%
:- pred sym_name_get_module_name(sym_name::in, module_name::in,
module_name::out) is det.
% match_sym_name(PartialSymName, CompleteSymName):
%
% Succeeds iff there is some sequence of module qualifiers
% which when prefixed to PartialSymName gives CompleteSymName.
%
:- pred match_sym_name(sym_name::in, sym_name::in) is semidet.
% remove_sym_name_prefix(SymName0, Prefix, SymName)
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName0 has the given prefix
% and the unqualified part of SymName is the unqualified
% part of SymName0 with the prefix removed.
%
:- pred remove_sym_name_prefix(sym_name, string, sym_name).
:- mode remove_sym_name_prefix(in, in, out) is semidet.
:- mode remove_sym_name_prefix(out, in, in) is det.
% remove_sym_name_suffix(SymName0, Suffix, SymName)
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName0 has the given suffix
% and the unqualified part of SymName is the unqualified
% part of SymName0 with the suffix removed.
%
:- pred remove_sym_name_suffix(sym_name::in, string::in, sym_name::out)
is semidet.
% add_sym_name_suffix(SymName0, Suffix, SymName)
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName is the unqualified
% part of SymName0 with the suffix added.
%
:- pred add_sym_name_suffix(sym_name::in, string::in, sym_name::out) is det.
% transform_sym_base_name(TransformFunc, SymName0) = SymName
% succeeds iff
% SymName and SymName0 have the same module qualifier
% and the unqualified part of SymName is the result of applying
% TransformFunc to the unqualified part of SymName0.
%
:- func transform_sym_base_name(func(string) = string, sym_name) = sym_name.
% Given a possible module qualified sym_name and a list of
% argument types and a context, construct a term. This is
% used to construct types.
%
:- pred construct_qualified_term(sym_name::in, list(term(T))::in,
term(T)::out) is det.
:- pred construct_qualified_term(sym_name::in, list(term(T))::in,
prog_context::in, term(T)::out) is det.
% Given a sym_name return the top level qualifier of that name.
%
:- func outermost_qualifier(sym_name) = string.
%-----------------------------------------------------------------------------%
% adjust_func_arity(PredOrFunc, FuncArity, PredArity).
%
% We internally store the arity as the length of the argument
% list including the return value, which is one more than the
% arity of the function reported in error messages.
%
:- pred adjust_func_arity(pred_or_func, int, int).
:- mode adjust_func_arity(in, in, out) is det.
:- mode adjust_func_arity(in, out, in) is det.
%-----------------------------------------------------------------------------%
% make_pred_name_with_context(ModuleName, Prefix, PredOrFunc, PredName,
% Line, Counter, SymName).
%
% Create a predicate name with context, e.g. for introduced
% lambda or deforestation predicates.
%
:- pred make_pred_name(module_name::in, string::in, maybe(pred_or_func)::in,
string::in, new_pred_id::in, sym_name::out) is det.
% make_pred_name_with_context(ModuleName, Prefix, PredOrFunc, PredName,
% Line, Counter, SymName).
%
% Create a predicate name with context, e.g. for introduced
% lambda or deforestation predicates.
%
:- pred make_pred_name_with_context(module_name::in, string::in,
pred_or_func::in, string::in, int::in, int::in, sym_name::out) is det.
:- type new_pred_id
---> newpred_counter(int, int) % Line number, Counter
; newpred_type_subst(tvarset, type_subst)
; newpred_unused_args(list(int))
; newpred_parallel_args(list(int)).
%-----------------------------------------------------------------------------%
% A pred declaration may contains just types, as in
% :- pred list.append(list(T), list(T), list(T)).
% or it may contain both types and modes, as in
% :- pred list.append(list(T)::in, list(T)::in, list(T)::output).
%
% This predicate takes the argument list of a pred declaration, splits it
% into two separate lists for the types and (if present) the modes.
:- type maybe_modes == maybe(list(mer_mode)).
:- pred split_types_and_modes(list(type_and_mode)::in, list(mer_type)::out,
maybe_modes::out) is det.
:- pred split_type_and_mode(type_and_mode::in, mer_type::out,
maybe(mer_mode)::out) is det.
%-----------------------------------------------------------------------------%
% Perform a substitution on a goal.
%
:- pred rename_in_goal(prog_var::in, prog_var::in, goal::in, goal::out) is det.
%-----------------------------------------------------------------------------%
% Various predicates for accessing the cons_id type.
% Given a cons_id and a list of argument terms, convert it into a
% term. Fails if the cons_id is a pred_const, or type_ctor_info_const.
%
:- pred cons_id_and_args_to_term(cons_id::in, list(term(T))::in, term(T)::out)
is semidet.
% Get the arity of a cons_id, aborting on pred_const and
% type_ctor_info_const.
%
:- func cons_id_arity(cons_id) = arity.
% Get the arity of a cons_id. Return a `no' on those cons_ids
% where cons_id_arity/2 would normally abort.
%
:- func cons_id_maybe_arity(cons_id) = maybe(arity).
% The reverse conversion - make a cons_id for a functor.
% Given a const and an arity for the functor, create a cons_id.
%
:- func make_functor_cons_id(const, arity) = cons_id.
% Another way of making a cons_id from a functor.
% Given the name, argument types, and type_ctor of a functor,
% create a cons_id for that functor.
%
:- func make_cons_id(sym_name, list(constructor_arg), type_ctor) = cons_id.
% Another way of making a cons_id from a functor.
% Given the name, argument types, and type_ctor of a functor,
% create a cons_id for that functor.
%
% Differs from make_cons_id in that (a) it requires the sym_name
% to be already module qualified, which means that it does not
% need the module qualification of the type, (b) it can compute the
% arity from any list of the right length.
%
:- func make_cons_id_from_qualified_sym_name(sym_name, list(_)) = cons_id.
%-----------------------------------------------------------------------------%
% make_n_fresh_vars(Name, N, VarSet0, Vars, VarSet):
% `Vars' is a list of `N' fresh variables allocated from
% `VarSet0'. The variables will be named "<Name>1", "<Name>2",
% "<Name>3", and so on, where <Name> is the value of `Name'.
% `VarSet' is the resulting varset.
%
:- pred make_n_fresh_vars(string::in, int::in, list(var(T))::out,
varset(T)::in, varset(T)::out) is det.
% Given the list of predicate arguments for a predicate that
% is really a function, split that list into the function arguments
% and the function return type.
%
:- pred pred_args_to_func_args(list(T)::in, list(T)::out, T::out) is det.
% Get the last two arguments from the list, failing if there
% aren't at least two arguments.
%
:- pred get_state_args(list(T)::in, list(T)::out, T::out, T::out) is semidet.
% Get the last two arguments from the list, aborting if there
% aren't at least two arguments.
%
:- pred get_state_args_det(list(T)::in, list(T)::out, T::out, T::out) is det.
% Parse a term of the form `Head :- Body', treating a term not in that form
% as `Head :- true'.
%
:- pred parse_rule_term(term.context::in, term(T)::in, term(T)::out,
term(T)::out) is det.
%-----------------------------------------------------------------------------%
% Add new type variables for those introduced by a type qualification.
%
:- pred get_new_tvars(list(tvar)::in, tvarset::in, tvarset::in, tvarset::out,
tvar_name_map::in, tvar_name_map::out,
tvar_renaming::in, tvar_renaming::out) is det.
% substitute_vars(Vars0, Subst, Vars):
%
% Apply substitution `Subst' (which must only rename vars) to `Vars0',
% and return the result in `Vars'.
%
:- pred substitute_vars(list(var(T))::in, substitution(T)::in,
list(var(T))::out) is det.
%-----------------------------------------------------------------------------%
% We need to "unparse" the sym_name to construct the properly
% module qualified term.
%
:- func sym_name_and_args_to_term(sym_name, list(term(T)), prog_context) =
term(T).
%-----------------------------------------------------------------------------%
% Convert a list of goals into a conjunction.
%
:- func goal_list_to_conj(prog_context, list(goal)) = goal.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module libs.compiler_util.
:- import_module parse_tree.mercury_to_mercury.
:- import_module parse_tree.prog_io.
:- import_module parse_tree.prog_out.
:- import_module bool.
:- import_module int.
:- import_module map.
:- import_module pair.
:- import_module string.
:- import_module svmap.
:- import_module varset.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
unqualify_name(unqualified(Name)) = Name.
unqualify_name(qualified(_ModuleName, Name)) = Name.
sym_name_get_module_name(unqualified(_), _) :- fail.
sym_name_get_module_name(qualified(ModuleName, _), ModuleName).
sym_name_get_module_name(unqualified(_), ModuleName, ModuleName).
sym_name_get_module_name(qualified(ModuleName, _PredName), _, ModuleName).
construct_qualified_term(qualified(Module, Name), Args, Context, Term) :-
construct_qualified_term(Module, [], Context, ModuleTerm),
UnqualifiedTerm = term.functor(term.atom(Name), Args, Context),
Term = term.functor(term.atom("."),
[ModuleTerm, UnqualifiedTerm], Context).
construct_qualified_term(unqualified(Name), Args, Context, Term) :-
Term = term.functor(term.atom(Name), Args, Context).
construct_qualified_term(SymName, Args, Term) :-
term.context_init(Context),
construct_qualified_term(SymName, Args, Context, Term).
outermost_qualifier(unqualified(Name)) = Name.
outermost_qualifier(qualified(Module, _Name)) = outermost_qualifier(Module).
%-----------------------------------------------------------------------------%
adjust_func_arity(predicate, Arity, Arity).
adjust_func_arity(function, Arity - 1, Arity).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
split_types_and_modes(TypesAndModes, Types, MaybeModes) :-
split_types_and_modes_2(TypesAndModes, yes, Types, Modes, Result),
( Result = yes ->
MaybeModes = yes(Modes)
;
MaybeModes = no
).
:- pred split_types_and_modes_2(list(type_and_mode)::in, bool::in,
list(mer_type)::out, list(mer_mode)::out, bool::out) is det.
% T = type, M = mode, TM = combined type and mode
split_types_and_modes_2([], Result, [], [], Result).
split_types_and_modes_2([TM|TMs], Result0, [T|Ts], [M|Ms], Result) :-
split_type_and_mode(TM, Result0, T, M, Result1),
split_types_and_modes_2(TMs, Result1, Ts, Ms, Result).
% If a pred declaration specifies modes for some but not all of the
% arguments, then the modes are ignored - should this be an error instead?
% trd: this should never happen because prog_io.m will detect these cases.
%
:- pred split_type_and_mode(type_and_mode::in, bool::in,
mer_type::out, mer_mode::out, bool::out) is det.
split_type_and_mode(type_only(T), _, T, (free -> free), no).
split_type_and_mode(type_and_mode(T,M), R, T, M, R).
split_type_and_mode(type_only(T), T, no).
split_type_and_mode(type_and_mode(T,M), T, yes(M)).
%-----------------------------------------------------------------------------%
rename_in_goal(OldVar, NewVar, Goal0 - Context, Goal - Context) :-
rename_in_goal_expr(OldVar, NewVar, Goal0, Goal).
:- pred rename_in_goal_expr(prog_var::in, prog_var::in,
goal_expr::in, goal_expr::out) is det.
rename_in_goal_expr(OldVar, NewVar,
conj_expr(GoalA0, GoalB0),
conj_expr(GoalA, GoalB)) :-
rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
rename_in_goal_expr(OldVar, NewVar,
par_conj_expr(GoalA0, GoalB0),
par_conj_expr(GoalA, GoalB)) :-
rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
rename_in_goal_expr(_OldVar, _NewVar, true_expr, true_expr).
rename_in_goal_expr(OldVar, NewVar,
disj_expr(GoalA0, GoalB0),
disj_expr(GoalA, GoalB)) :-
rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
rename_in_goal_expr(_Var, _NewVar, fail_expr, fail_expr).
rename_in_goal_expr(OldVar, NewVar, not_expr(Goal0), not_expr(Goal)) :-
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar,
some_expr(Vars0, Goal0),
some_expr(Vars, Goal)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar,
some_state_vars_expr(Vars0, Goal0),
some_state_vars_expr(Vars, Goal)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar,
all_expr(Vars0, Goal0),
all_expr(Vars, Goal)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar,
all_state_vars_expr(Vars0, Goal0),
all_state_vars_expr(Vars, Goal)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar,
promise_purity_expr(Implicit, Purity, Goal0),
promise_purity_expr(Implicit, Purity, Goal)) :-
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar,
promise_equivalent_solutions_expr(Vars0, DotSVars0, ColonSVars0,
Goal0),
promise_equivalent_solutions_expr(Vars, DotSVars, ColonSVars,
Goal)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_vars(OldVar, NewVar, DotSVars0, DotSVars),
rename_in_vars(OldVar, NewVar, ColonSVars0, ColonSVars),
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar,
promise_equivalent_solution_sets_expr(Vars0, DotSVars0, ColonSVars0,
Goal0),
promise_equivalent_solution_sets_expr(Vars, DotSVars, ColonSVars,
Goal)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_vars(OldVar, NewVar, DotSVars0, DotSVars),
rename_in_vars(OldVar, NewVar, ColonSVars0, ColonSVars),
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar,
promise_equivalent_solution_arbitrary_expr(Vars0,
DotSVars0, ColonSVars0, Goal0),
promise_equivalent_solution_arbitrary_expr(Vars,
DotSVars, ColonSVars, Goal)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_vars(OldVar, NewVar, DotSVars0, DotSVars),
rename_in_vars(OldVar, NewVar, ColonSVars0, ColonSVars),
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar,
trace_expr(CompileTime, RunTime, MaybeIO0, Mutables0, Goal0),
trace_expr(CompileTime, RunTime, MaybeIO, Mutables, Goal)) :-
(
MaybeIO0 = no,
MaybeIO = no
;
MaybeIO0 = yes(IOStateVar0),
rename_in_var(OldVar, NewVar, IOStateVar0, IOStateVar),
MaybeIO = yes(IOStateVar)
),
list.map(rename_in_trace_mutable_var(OldVar, NewVar),
Mutables0, Mutables),
rename_in_goal(OldVar, NewVar, Goal0, Goal).
rename_in_goal_expr(OldVar, NewVar,
implies_expr(GoalA0, GoalB0),
implies_expr(GoalA, GoalB)) :-
rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
rename_in_goal_expr(OldVar, NewVar,
equivalent_expr(GoalA0, GoalB0),
equivalent_expr(GoalA, GoalB)) :-
rename_in_goal(OldVar, NewVar, GoalA0, GoalA),
rename_in_goal(OldVar, NewVar, GoalB0, GoalB).
rename_in_goal_expr(OldVar, NewVar,
if_then_else_expr(Vars0, StateVars0, Cond0, Then0, Else0),
if_then_else_expr(Vars, StateVars, Cond, Then, Else)) :-
rename_in_vars(OldVar, NewVar, Vars0, Vars),
rename_in_vars(OldVar, NewVar, StateVars0, StateVars),
rename_in_goal(OldVar, NewVar, Cond0, Cond),
rename_in_goal(OldVar, NewVar, Then0, Then),
rename_in_goal(OldVar, NewVar, Else0, Else).
rename_in_goal_expr(OldVar, NewVar,
event_expr(Name, Terms0),
event_expr(Name, Terms)) :-
term.substitute_list(Terms0, OldVar, term.variable(NewVar), Terms).
rename_in_goal_expr(OldVar, NewVar,
call_expr(SymName, Terms0, Purity),
call_expr(SymName, Terms, Purity)) :-
term.substitute_list(Terms0, OldVar, term.variable(NewVar), Terms).
rename_in_goal_expr(OldVar, NewVar,
unify_expr(TermA0, TermB0, Purity),
unify_expr(TermA, TermB, Purity)) :-
term.substitute(TermA0, OldVar, term.variable(NewVar), TermA),
term.substitute(TermB0, OldVar, term.variable(NewVar), TermB).
:- pred rename_in_trace_mutable_var(prog_var::in, prog_var::in,
trace_mutable_var::in, trace_mutable_var::out) is det.
rename_in_trace_mutable_var(OldVar, NewVar, TMV0, TMV) :-
TMV0 = trace_mutable_var(MutableName, StateVar0),
rename_in_var(OldVar, NewVar, StateVar0, StateVar),
TMV = trace_mutable_var(MutableName, StateVar).
:- pred rename_in_vars(prog_var::in, prog_var::in,
list(prog_var)::in, list(prog_var)::out) is det.
rename_in_vars(_, _, [], []).
rename_in_vars(OldVar, NewVar, [Var0 | Vars0], [Var | Vars]) :-
rename_in_var(OldVar, NewVar, Var0, Var),
rename_in_vars(OldVar, NewVar, Vars0, Vars).
:- pred rename_in_var(prog_var::in, prog_var::in,
prog_var::in, prog_var::out) is det.
rename_in_var(OldVar, NewVar, Var0, Var) :-
( Var0 = OldVar ->
Var = NewVar
;
Var = Var0
).
%-----------------------------------------------------------------------------%
% match_sym_name(PartialSymName, CompleteSymName):
%
% Succeeds iff there is some sequence of module qualifiers
% which when prefixed to PartialSymName gives CompleteSymName.
%
match_sym_name(qualified(Module1, Name), qualified(Module2, Name)) :-
match_sym_name(Module1, Module2).
match_sym_name(unqualified(Name), unqualified(Name)).
match_sym_name(unqualified(Name), qualified(_, Name)).
%-----------------------------------------------------------------------------%
remove_sym_name_prefix(qualified(Module, Name0), Prefix,
qualified(Module, Name)) :-
string.append(Prefix, Name, Name0).
remove_sym_name_prefix(unqualified(Name0), Prefix, unqualified(Name)) :-
string.append(Prefix, Name, Name0).
remove_sym_name_suffix(qualified(Module, Name0), Suffix,
qualified(Module, Name)) :-
string.remove_suffix(Name0, Suffix, Name).
remove_sym_name_suffix(unqualified(Name0), Suffix, unqualified(Name)) :-
string.remove_suffix(Name0, Suffix, Name).
add_sym_name_suffix(qualified(Module, Name0), Suffix,
qualified(Module, Name)) :-
string.append(Name0, Suffix, Name).
add_sym_name_suffix(unqualified(Name0), Suffix, unqualified(Name)) :-
string.append(Name0, Suffix, Name).
transform_sym_base_name(TransformFunc, qualified(Module, Name0)) =
qualified(Module, TransformFunc(Name0)).
transform_sym_base_name(TransformFunc, unqualified(Name0)) =
unqualified(TransformFunc(Name0)).
%-----------------------------------------------------------------------------%
make_pred_name_with_context(ModuleName, Prefix,
PredOrFunc, PredName, Line, Counter, SymName) :-
make_pred_name(ModuleName, Prefix, yes(PredOrFunc), PredName,
newpred_counter(Line, Counter), SymName).
make_pred_name(ModuleName, Prefix, MaybePredOrFunc, PredName,
NewPredId, SymName) :-
(
MaybePredOrFunc = yes(PredOrFunc),
(
PredOrFunc = predicate,
PFS = "pred"
;
PredOrFunc = function,
PFS = "func"
)
;
MaybePredOrFunc = no,
PFS = "pred_or_func"
),
(
NewPredId = newpred_counter(Line, Counter),
string.format("%d__%d", [i(Line), i(Counter)], PredIdStr)
;
NewPredId = newpred_type_subst(VarSet, TypeSubst),
SubstToString = (pred(SubstElem::in, SubstStr::out) is det :-
SubstElem = Var - Type,
varset.lookup_name(VarSet, Var, VarName),
TypeString = mercury_type_to_string(VarSet, no, Type),
string.append_list([VarName, " = ", TypeString], SubstStr)
),
list_to_string(SubstToString, TypeSubst, PredIdStr)
;
NewPredId = newpred_unused_args(Args),
list_to_string(int_to_string, Args, PredIdStr)
;
NewPredId = newpred_parallel_args(Args),
list_to_string(int_to_string, Args, PredIdStr)
),
string.format("%s__%s__%s__%s",
[s(Prefix), s(PFS), s(PredName), s(PredIdStr)], Name),
SymName = qualified(ModuleName, Name).
:- pred list_to_string(pred(T, string)::in(pred(in, out) is det),
list(T)::in, string::out) is det.
list_to_string(Pred, List, String) :-
list_to_string_2(Pred, List, ["]"], Strings),
string.append_list(["[" | Strings], String).
:- pred list_to_string_2(pred(T, string)::in(pred(in, out) is det),
list(T)::in, list(string)::in, list(string)::out) is det.
list_to_string_2(_, [], !Strings).
list_to_string_2(Pred, [T | Ts], !Strings) :-
(
Ts = []
;
Ts = [_ | _],
list_to_string_2(Pred, Ts, !Strings),
!:Strings = [", " | !.Strings]
),
call(Pred, T, String),
!:Strings = [String | !.Strings].
%-----------------------------------------------------------------------------%
cons_id_and_args_to_term(int_const(Int), [], Term) :-
term.context_init(Context),
Term = term.functor(term.integer(Int), [], Context).
cons_id_and_args_to_term(float_const(Float), [], Term) :-
term.context_init(Context),
Term = term.functor(term.float(Float), [], Context).
cons_id_and_args_to_term(string_const(String), [], Term) :-
term.context_init(Context),
Term = term.functor(term.string(String), [], Context).
cons_id_and_args_to_term(cons(SymName, _Arity), Args, Term) :-
construct_qualified_term(SymName, Args, Term).
cons_id_arity(cons(_, Arity)) = Arity.
cons_id_arity(int_const(_)) = 0.
cons_id_arity(string_const(_)) = 0.
cons_id_arity(float_const(_)) = 0.
cons_id_arity(pred_const(_, _)) =
unexpected(this_file, "cons_id_arity: can't get arity of pred_const").
cons_id_arity(type_ctor_info_const(_, _, _)) =
unexpected(this_file,
"cons_id_arity: can't get arity of type_ctor_info_const").
cons_id_arity(base_typeclass_info_const(_, _, _, _)) =
unexpected(this_file, "cons_id_arity: " ++
"can't get arity of base_typeclass_info_const").
cons_id_arity(type_info_cell_constructor(_)) =
unexpected(this_file, "cons_id_arity: " ++
"can't get arity of type_info_cell_constructor").
cons_id_arity(typeclass_info_cell_constructor) =
unexpected(this_file, "cons_id_arity: " ++
"can't get arity of typeclass_info_cell_constructor").
cons_id_arity(tabling_info_const(_)) =
unexpected(this_file,
"cons_id_arity: can't get arity of tabling_info_const").
cons_id_arity(deep_profiling_proc_layout(_)) =
unexpected(this_file, "cons_id_arity: " ++
"can't get arity of deep_profiling_proc_layout").
cons_id_arity(table_io_decl(_)) =
unexpected(this_file, "cons_id_arity: can't get arity of table_io_decl").
cons_id_maybe_arity(cons(_, Arity)) = yes(Arity).
cons_id_maybe_arity(int_const(_)) = yes(0).
cons_id_maybe_arity(string_const(_)) = yes(0).
cons_id_maybe_arity(float_const(_)) = yes(0).
cons_id_maybe_arity(pred_const(_, _)) = no.
cons_id_maybe_arity(type_ctor_info_const(_, _, _)) = no.
cons_id_maybe_arity(base_typeclass_info_const(_, _, _, _)) = no.
cons_id_maybe_arity(type_info_cell_constructor(_)) = no.
cons_id_maybe_arity(typeclass_info_cell_constructor) = no.
cons_id_maybe_arity(tabling_info_const(_)) = no.
cons_id_maybe_arity(deep_profiling_proc_layout(_)) = no.
cons_id_maybe_arity(table_io_decl(_)) = no.
make_functor_cons_id(term.atom(Name), Arity) = cons(unqualified(Name), Arity).
make_functor_cons_id(term.integer(Int), _) = int_const(Int).
make_functor_cons_id(term.string(String), _) = string_const(String).
make_functor_cons_id(term.float(Float), _) = float_const(Float).
make_cons_id(SymName0, Args, TypeCtor) = cons(SymName, Arity) :-
% Use the module qualifier on the SymName, if there is one,
% otherwise use the module qualifier on the Type, if there is one,
% otherwise leave it unqualified.
% XXX is that the right thing to do?
(
SymName0 = qualified(_, _),
SymName = SymName0
;
SymName0 = unqualified(ConsName),
(
TypeCtor = type_ctor(unqualified(_), _),
SymName = SymName0
;
TypeCtor = type_ctor(qualified(TypeModule, _), _),
SymName = qualified(TypeModule, ConsName)
)
),
list.length(Args, Arity).
make_cons_id_from_qualified_sym_name(SymName, Args) = cons(SymName, Arity) :-
list.length(Args, Arity).
%-----------------------------------------------------------------------------%
make_n_fresh_vars(BaseName, N, Vars, VarSet0, VarSet) :-
make_n_fresh_vars_2(BaseName, 0, N, Vars, VarSet0, VarSet).
:- pred make_n_fresh_vars_2(string::in, int::in, int::in, list(var(T))::out,
varset(T)::in, varset(T)::out) is det.
make_n_fresh_vars_2(BaseName, N, Max, Vars, !VarSet) :-
( N = Max ->
Vars = []
;
N1 = N + 1,
varset.new_var(!.VarSet, Var, !:VarSet),
string.int_to_string(N1, Num),
string.append(BaseName, Num, VarName),
varset.name_var(!.VarSet, Var, VarName, !:VarSet),
Vars = [Var | Vars1],
make_n_fresh_vars_2(BaseName, N1, Max, Vars1, !VarSet)
).
pred_args_to_func_args(PredArgs, FuncArgs, FuncReturn) :-
list.length(PredArgs, NumPredArgs),
NumFuncArgs = NumPredArgs - 1,
( list.split_list(NumFuncArgs, PredArgs, FuncArgs0, [FuncReturn0]) ->
FuncArgs = FuncArgs0,
FuncReturn = FuncReturn0
;
unexpected(this_file,
"pred_args_to_func_args: function missing return value?")
).
get_state_args(Args0, Args, State0, State) :-
list.reverse(Args0, RevArgs0),
RevArgs0 = [State, State0 | RevArgs],
list.reverse(RevArgs, Args).
get_state_args_det(Args0, Args, State0, State) :-
( get_state_args(Args0, Args1, State0A, StateA) ->
Args = Args1,
State0 = State0A,
State = StateA
;
unexpected(this_file, "get_state_args_det")
).
%-----------------------------------------------------------------------------%
parse_rule_term(Context, RuleTerm, HeadTerm, GoalTerm) :-
( RuleTerm = term.functor(term.atom(":-"), [HeadTerm0, GoalTerm0], _) ->
HeadTerm = HeadTerm0,
GoalTerm = GoalTerm0
;
HeadTerm = RuleTerm,
GoalTerm = term.functor(term.atom("true"), [], Context)
).
get_new_tvars([], _, !TVarSet, !TVarNameMap, !TVarRenaming).
get_new_tvars([TVar | TVars], VarSet, !TVarSet, !TVarNameMap, !TVarRenaming) :-
( map.contains(!.TVarRenaming, TVar) ->
true
;
( varset.search_name(VarSet, TVar, TVarName) ->
( map.search(!.TVarNameMap, TVarName, TVarSetVar) ->
svmap.det_insert(TVar, TVarSetVar, !TVarRenaming)
;
varset.new_var(!.TVarSet, NewTVar, !:TVarSet),
varset.name_var(!.TVarSet, NewTVar, TVarName, !:TVarSet),
svmap.det_insert(TVarName, NewTVar, !TVarNameMap),
svmap.det_insert(TVar, NewTVar, !TVarRenaming)
)
;
varset.new_var(!.TVarSet, NewTVar, !:TVarSet),
svmap.det_insert(TVar, NewTVar, !TVarRenaming)
)
),
get_new_tvars(TVars, VarSet, !TVarSet, !TVarNameMap, !TVarRenaming).
%-----------------------------------------------------------------------------%
substitute_vars(Vars0, Subst, Vars) :-
Vars = list.map(substitute_var(Subst), Vars0).
:- func substitute_var(substitution(T), var(T)) = var(T).
substitute_var(Subst, Var0) = Var :-
term.apply_substitution(term.variable(Var0), Subst, Term),
( Term = term.variable(Var1) ->
Var = Var1
;
unexpected(this_file, "substitute_var: invalid substitution")
).
%-----------------------------------------------------------------------------%
sym_name_and_args_to_term(unqualified(Name), Xs, Context) =
term.functor(term.atom(Name), Xs, Context).
sym_name_and_args_to_term(qualified(ModuleNames, Name), Xs, Context) =
sym_name_and_term_to_term(ModuleNames,
term.functor(term.atom(Name), Xs, Context), Context).
:- func sym_name_and_term_to_term(module_specifier, term(T), prog_context) =
term(T).
sym_name_and_term_to_term(unqualified(ModuleName), Term, Context) =
term.functor(
term.atom("."),
[term.functor(term.atom(ModuleName), [], Context), Term],
Context
).
sym_name_and_term_to_term(qualified(ModuleNames, ModuleName), Term, Context) =
term.functor(
term.atom("."),
[sym_name_and_term_to_term(
ModuleNames,
term.functor(term.atom(ModuleName), [], Context),
Context),
Term],
Context
).
%-----------------------------------------------------------------------------%
goal_list_to_conj(Context, []) = true_expr - Context.
goal_list_to_conj(Context, [Goal | Goals]) =
goal_list_to_conj_2(Context, Goal, Goals).
:- func goal_list_to_conj_2(prog_context, goal, list(goal)) = goal.
goal_list_to_conj_2(_, Goal, []) = Goal.
goal_list_to_conj_2(Context, Goal0, [Goal1 | Goals]) =
conj_expr(Goal0, goal_list_to_conj_2(Context, Goal1, Goals)) - Context.
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "prog_util.m".
%-----------------------------------------------------------------------------%
:- end_module prog_util.
%-----------------------------------------------------------------------------%