Files
mercury/compiler/ml_code_gen.m
Julien Fischer bdb50b33ce Break the cycle in the package dependency graph between the
Estimated hours taken: 1
Branches: main

Break the cycle in the package dependency graph between the
hlds and backend_libs packages by moving yet more of the
contents of the foreign module into the new prog_foreign
module.  There are no changes to any code other than
moving it around.

compiler/foreign.m:
compiler/prog_foreign.m:
	Shift most of the types related to the foreign language
	interface into the latter module.

	Fix a typo in a comment at the beginning of prog_foreign.m.

	Clean up the formatting of comments in foreign.m.

compiler/hlds.m:
	Update the comment about why the transform_hlds package
	is imported here.

compiler/*.m:
	Minor changes caused by the above.
2005-03-24 13:33:34 +00:00

3713 lines
120 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1999-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: ml_code_gen.m
% Main author: fjh
% MLDS code generation -- convert from HLDS to MLDS.
% This module is an alternative to the original code generator.
% The original code generator compiles from HLDS to LLDS, generating
% very low-level code. This code generator instead compiles to MLDS,
% generating much higher-level code than the original code generator.
% One of the aims of the MLDS is to be able to generated human-readable
% code in languages like C or Java. This means that unlike the LLDS back-end,
% we do not want to rely on macros or conditional compilation. If the
% final code is going to depend on the setting of some compilation option,
% our philosophy is to reflect that change in the generated MLDS and C code
% where possible, rather than generating C code which calls macros that do
% different things in different grades. This is important both for
% readability of the generated code, and to make sure that we can easily
% adapt the MLDS code generator to target languages like Java that don't
% support macros or conditional compilation.
% A big challenge in generating MLDS code is handling nondeterminism.
% For nondeterministic procedures, we generate code using an explicit
% continuation passing style. Each nondeterministic procedures gets
% translated into a function which takes an extra parameter which is a
% function pointer that points to the success continuation. On success,
% the function calls its success continuation, and on failure it returns.
% To keep things easy, this pass generates code which may contain nested
% functions; if the target language doesn't support nested functions (or
% doesn't support them _efficiently_) then a later MLDS->MLDS simplification
% pass will convert it to a form that does not use nested functions.
% Note that when we take the address of a nested function, we only ever
% do two things with it: pass it as a continuation argument, or call it.
% The continuations are never returned and never stored inside heap objects
% or global variables. These conditions are sufficient to ensure that
% we never keep the address of a nested function after the containing
% functions has returned, so we won't get any dangling continuations.
%-----------------------------------------------------------------------------%
% CODE GENERATION SUMMARY
%-----------------------------------------------------------------------------%
%
% In each procedure, we declare a local variable `MR_bool succeeded'.
% This is used to hold the success status of semidet sub-goals.
% Note that the comments below show local declarations for the
% `succeeded' variable in all the places where they would be
% needed if we were generating them locally, but currently
% we actually just generate a single `succeeded' variable for
% each procedure.
%
% The calling convention for sub-goals is as follows.
%
% model_det goal:
% On success, fall through.
% (May clobber `succeeded'.)
% model_semi goal:
% On success, set `succeeded' to MR_TRUE and fall through.
% On failure, set `succeeded' to MR_FALSE and fall through.
% multi/nondet goal:
% On success, call the current success continuation.
% On failure, fall through.
% (May clobber `succeeded' in either case.)
%
% In comments, we use the following notation to distinguish between
% these three.
%
% model_det goal:
% <do Goal>
% This means execute Goal (which must be model_det).
% model_semi goal:
% <succeeded = Goal>
% This means execute Goal, and set `succeeded' to
% MR_TRUE if the goal succeeds and MR_FALSE if it fails.
% model_non goal:
% <Goal && CONT()>
% This means execute Goal, calling the success
% continuation function CONT() if it succeeds,
% and falling through if it fails.
%
% The notation
%
% [situation]:
% <[construct]>
% ===>
% [code]
%
% means that in the situation described by [situation],
% for the the specified [construct] we will generate the specified [code].
% There is one other important thing which can be considered part of the
% calling convention for the code that we generate for each goal.
% If static ground term optimization is enabled, then for the terms
% marked as static by mark_static_terms.m, we will generate static consts.
% These static consts can refer to other static consts defined earlier.
% We need to be careful about the scopes of variables to ensure that
% for any term that mark_static_terms.m marks as static, the C constants
% representing the arguments of that term are in scope at the point
% where that term is constructed. Basically this means that
% all the static consts generated inside a goal must be hoist out to
% the top level scope for that goal, except for goal types where
% goal_expr_mark_static_terms (in mark_static_terms.m) returns the
% same static_info unchanged, i.e. branched goals and negations.
%
% Handling static constants also requires that the calls to ml_gen_goal
% for each subgoal must be done in the right order, so that the
% const_num_map in the ml_gen_info holds the right sequence numbers
% for the constants in scope.
%-----------------------------------------------------------------------------%
%
% Code for wrapping goals
%
% If a model_foo goal occurs in a model_bar context, where foo != bar,
% then we need to modify the code that we emit for the goal so that
% it conforms to the calling convenion expected for model_bar.
% det goal in semidet context:
% <succeeded = Goal>
% ===>
% <do Goal>
% succeeded = MR_TRUE;
% det goal in nondet context:
% <Goal && SUCCEED()>
% ===>
% <do Goal>
% SUCCEED();
% semi goal in nondet context:
% <Goal && SUCCEED()>
% ===>
% MR_bool succeeded;
%
% <succeeded = Goal>
% if (succeeded) SUCCEED();
%-----------------------------------------------------------------------------%
%
% Code for commits
%
% There's several different ways of handling commits:
% - using catch/throw
% - using setjmp/longjmp
% - using GCC's __builtin_setjmp/__builtin_longjmp
% - exiting nested functions via gotos to
% their containing functions
%
% The MLDS data structure abstracts away these differences
% using the `try_commit' and `do_commit' instructions.
% The comments below show the MLDS try_commit/do_commit version first,
% but for clarity I've also included sample code using each of the three
% different techniques. This shows how the MLDS->target back-end can map
% mlds__commit_type, do_commit and try_commit into target language
% constructs.
%
% Note that if we're using GCC's __builtin_longjmp(),
% then it is important that the call to __builtin_longjmp() be
% put in its own function, to ensure that it is not in the same
% function as the __builtin_setjmp().
% The code generation schema below does that automatically.
% We will need to be careful with MLDS optimizations to
% ensure that we preserve that invariant, though.
% (Alternatively, we could just call a function that
% calls __builtin_longjmp() rather than calling it directly.
% But that would be a little less efficient.)
%
% If those methods turn out to be too inefficient,
% another alternative would be to change the generated
% code so that after every function call, it would check a flag,
% and if that flag was set, it would return.
% Then MR_DO_COMMIT would just set the flag and return.
% The flag could be in a global (or thread-local) variable,
% or it could be an additional value returned from each function.
% model_non in semi context: (using try_commit/do_commit)
% <succeeded = Goal>
% ===>
% MR_COMMIT_TYPE ref;
% void success() {
% MR_DO_COMMIT(ref);
% }
% MR_TRY_COMMIT(ref, {
% <Goal && success()>
% succeeded = MR_FALSE;
% }, {
% succeeded = MR_TRUE;
% })
% model_non in semi context: (using catch/throw)
% <succeeded = Goal>
% ===>
% void success() {
% throw COMMIT();
% }
% try {
% <Goal && success()>
% succeeded = MR_FALSE;
% } catch (COMMIT) {
% succeeded = MR_TRUE;
% }
% The above is using C++ syntax. Here COMMIT is an exception type,
% which can be defined trivially (e.g. "class COMMIT {};").
% Note that when using catch/throw, we don't need the "ref" argument
% at all; the target language's exception handling implementation
% keeps track of all the information needed to unwind the stack.
% model_non in semi context: (using setjmp/longjmp)
% <succeeded = Goal>
% ===>
% jmp_buf ref;
% void success() {
% longjmp(ref, 1);
% }
% if (setjmp(ref)) {
% succeeded = MR_TRUE;
% } else {
% <Goal && success()>
% succeeded = MR_FALSE;
% }
% model_non in semi context: (using GNU C nested functions,
% GNU C local labels, and exiting
% the nested function by a goto
% to a label in the containing function)
% <succeeded = Goal>
% ===>
% __label__ commit;
% void success() {
% goto commit;
% }
% <Goal && success()>
% succeeded = MR_FALSE;
% goto commit_done;
% commit:
% succeeded = MR_TRUE;
% commit_done:
% ;
% model_non in det context: (using try_commit/do_commit)
% <do Goal>
% ===>
% MR_COMMIT_TYPE ref;
% void success() {
% MR_DO_COMMIT(ref);
% }
% MR_TRY_COMMIT(ref, {
% <Goal && success()>
% }, {})
% model_non in det context (using GNU C nested functions,
% GNU C local labels, and exiting
% the nested function by a goto
% to a label in the containing function)
% <do Goal>
% ===>
% __label__ done;
% void success() {
% goto done;
% }
% <Goal && success()>
% done: ;
% model_non in det context (using catch/throw):
% <do Goal>
% ===>
% void success() {
% throw COMMIT();
% }
% try {
% <Goal && success()>
% } catch (COMMIT) {}
% model_non in det context (using setjmp/longjmp):
% <do Goal>
% ===>
% jmp_buf ref;
% void success() {
% longjmp(ref, 1);
% }
% if (setjmp(ref) == 0) {
% <Goal && success()>
% }
% Note that for all of these versions, we must hoist any static declarations
% generated for <Goal> out to the top level; this is needed so that such
% declarations remain in scope for any following goals.
%-----------------------------------------------------------------------------%
%
% Code for empty conjunctions (`true')
%
% model_det goal:
% <do true>
% ===>
% /* fall through */
% model_semi goal:
% <succeeded = true>
% ===>
% succceeded = MR_TRUE;
% model_non goal
% <true && CONT()>
% ===>
% CONT();
%-----------------------------------------------------------------------------%
%
% Code for non-empty conjunctions
%
% We need to handle the case where the first goal cannot succeed
% specially:
%
% at_most_zero Goal:
% <Goal, Goals>
% ===>
% <Goal>
%
% The remaining cases for conjunction all assume that the first
% goal's determinism is not `erroneous' or `failure'.
% If the first goal is model_det, it is straight-forward:
%
% model_det Goal:
% <Goal, Goals>
% ===>
% <do Goal>
% <Goals>
% If the first goal is model_semidet, then there are two cases:
% if the conj as a whole is semidet, things are simple, and
% if the conj as a whole is model_non, then we do the same as
% for the semidet case, except that we also (ought to) declare
% a local `succeeded' variable.
%
% model_semi Goal in model_semi conj:
% <succeeded = (Goal, Goals)>
% ===>
% <succeeded = Goal>;
% if (succeeded) {
% <Goals>;
% }
%
% model_semi Goal in model_non conj:
% <Goal && Goals>
% ===>
% MR_bool succeeded;
%
% <succeeded = Goal>;
% if (succeeded) {
% <Goals>;
% }
%
% The actual code generation scheme we use is slightly
% different to that: we hoist any declarations generated
% for <Goals> to the outer scope, rather than keeping
% them inside the `if', so that they remain in
% scope for any later goals which follow this.
% This is needed for declarations of static consts.
% For model_non goals, there are a couple of different
% ways that we could generate code, depending on whether
% we are aiming to maximize readability, or whether we
% prefer to generate code that may be more efficient
% but is a little less readable. The more readable method
% puts the generated goals in the same order that
% they occur in the source code:
%
% model_non Goal (optimized for readability)
% <Goal, Goals>
% ===>
% entry_func() {
% <Goal && succ_func()>;
% }
% succ_func() {
% <Goals && SUCCEED()>;
% }
%
% entry_func();
%
% The more efficient method generates the goals in
% reverse order, so it's less readable, but it has fewer
% function calls and can make it easier for the C compiler
% to inline things:
%
% model_non Goal (optimized for efficiency):
% <Goal, Goals>
% ===>
% succ_func() {
% <Goals && SUCCEED()>;
% }
%
% <Goal && succ_func()>;
%
% The more efficient method is the one we actually use.
%
% Here's how those two methods look on longer
% conjunctions of nondet goals:
%
% model_non goals (optimized for readability):
% <Goal1, Goal2, Goal3, Goals>
% ===>
% label0_func() {
% <Goal1 && label1_func()>;
% }
% label1_func() {
% <Goal2 && label2_func()>;
% }
% label2_func() {
% <Goal3 && label3_func()>;
% }
% label3_func() {
% <Goals && SUCCEED()>;
% }
%
% label0_func();
%
% model_non goals (optimized for efficiency):
% <Goal1, Goal2, Goal3, Goals>
% ===>
% label1_func() {
% label2_func() {
% label3_func() {
% <Goals && SUCCEED()>;
% }
% <Goal3 && label3_func()>;
% }
% <Goal2 && label2_func()>;
% }
% <Goal1 && label1_func()>;
%
% Note that it might actually make more sense to generate
% conjunctions of nondet goals like this:
%
% model_non goals (optimized for efficiency, alternative version):
% <Goal1, Goal2, Goal3, Goals>
% ===>
% label3_func() {
% <Goals && SUCCEED()>;
% }
% label2_func() {
% <Goal3 && label3_func()>;
% }
% label1_func() {
% <Goal2 && label2_func()>;
% }
%
% <Goal1 && label1_func()>;
%
% This would avoid the undesirable deep nesting that we sometimes get
% with our current scheme. However, if we're eliminating nested
% functions, as is normally the case, then after the ml_elim_nested
% transformation all the functions and variables have been hoisted
% to the top level, so there is no difference between these two.
%
% As with semidet conjunctions, we hoist declarations
% out so that they remain in scope for any following goals.
% This is needed for declarations of static consts.
% However, we want to keep the declarations of non-static
% variables local, since accessing local variables is more
% efficient that accessing variables in the environment
% from a nested function. So we only hoist declarations
% of static constants.
%-----------------------------------------------------------------------------%
%
% Code for empty disjunctions (`fail')
%
% model_semi goal:
% <succeeded = fail>
% ===>
% succeeded = MR_FALSE;
% model_non goal:
% <fail && CONT()>
% ===>
% /* fall through */
%-----------------------------------------------------------------------------%
%
% Code for non-empty disjunctions
%
% model_det disj:
% model_det Goal:
% <do (Goal ; Goals)>
% ===>
% <do Goal>
% /* <Goals> will never be reached */
% model_semi Goal:
% <do (Goal ; Goals)>
% ===>
% MR_bool succeeded;
%
% <succeeded = Goal>;
% if (!succeeded) {
% <do Goals>;
% }
% model_semi disj:
% model_det Goal:
% <succeeded = (Goal ; Goals)>
% ===>
% MR_bool succeeded;
%
% <do Goal>
% succeeded = MR_TRUE
% /* <Goals> will never be reached */
% model_semi Goal:
% <succeeded = (Goal ; Goals)>
% ===>
% MR_bool succeeded;
%
% <succeeded = Goal>;
% if (!succeeded) {
% <succeeded = Goals>;
% }
% model_non disj:
%
% model_det Goal:
% <(Goal ; Goals) && SUCCEED()>
% ===>
% <Goal>
% SUCCEED();
% <Goals && SUCCEED()>
%
% model_semi Goal:
% <(Goal ; Goals) && SUCCEED()>
% ===>
% MR_bool succeeded;
%
% <succeeded = Goal>
% if (succeeded) SUCCEED();
% <Goals && SUCCEED()>
%
% model_non Goal:
% <(Goal ; Goals) && SUCCEED()>
% ===>
% <Goal && SUCCEED()>
% <Goals && SUCCEED()>
%-----------------------------------------------------------------------------%
%
% Code for if-then-else
%
% model_det Cond:
% <(Cond -> Then ; Else)>
% ===>
% <Cond>
% <Then>
% model_semi Cond:
% <(Cond -> Then ; Else)>
% ===>
% MR_bool succeeded;
%
% <succeeded = Cond>
% if (succeeded) {
% <Then>
% } else {
% <Else>
% }
% /*
% ** XXX The following transformation does not do as good a job of GC
% ** as it could. Ideally we ought to ensure that stuff used only
% ** in the `Else' part will be reclaimed if a GC occurs during
% ** the `Then' part. But that is a bit tricky to achieve.
% */
%
% model_non Cond:
% <(Cond -> Then ; Else)>
% ===>
% MR_bool cond_<N>;
%
% void then_func() {
% cond_<N> = MR_TRUE;
% <Then>
% }
%
% cond_<N> = MR_FALSE;
% <Cond && then_func()>
% if (!cond_<N>) {
% <Else>
% }
% except that we hoist any declarations generated
% for <Cond> to the top of the scope, so that they
% are in scope for the <Then> goal
% (this is needed for declarations of static consts)
%-----------------------------------------------------------------------------%
%
% Code for negation
%
% model_det negation
% <not(Goal)>
% ===>
% MR_bool succeeded;
% <succeeded = Goal>
% /* now ignore the value of succeeded,
% which we know will be MR_FALSE */
% model_semi negation, model_det Goal:
% <succeeded = not(Goal)>
% ===>
% <do Goal>
% succeeded = MR_FALSE;
% model_semi negation, model_semi Goal:
% <succeeded = not(Goal)>
% ===>
% <succeeded = Goal>
% succeeded = !succeeded;
%-----------------------------------------------------------------------------%
%
% Code for deconstruction unifications
%
% det (cannot_fail) deconstruction:
% <succeeded = (X => f(A1, A2, ...))>
% ===>
% A1 = arg(X, f, 1); % extract arguments
% A2 = arg(X, f, 2);
% ...
% semidet (can_fail) deconstruction:
% <X => f(A1, A2, ...)>
% ===>
% <succeeded = (X => f(_, _, _, _))> % tag test
% if (succeeded) {
% A1 = arg(X, f, 1); % extract arguments
% A2 = arg(X, f, 2);
% ...
% }
%-----------------------------------------------------------------------------%
% This back-end is still not yet 100% complete.
%
% Done:
% - function prototypes
% - code generation for det, semidet, and nondet predicates/functions:
% - conjunctions
% - disjunctions
% - negation
% - if-then-else
% - predicate/function calls
% - higher-order calls
% - unifications
% - assignment
% - simple tests
% - constructions
% - deconstructions
% - switches
% - commits
% - `pragma c_code'
% - RTTI
% - high level data representation
% (i.e. generate MLDS type declarations for user-defined types)
% - support trailing
%
% BUGS:
% - XXX parameter passing problem for abstract equivalence types
% that are defined as float (or anything which doesn't map to `Word')
%
% TODO:
% - XXX define compare & unify preds for RTTI types
% - XXX need to generate correct layout information for closures
% so that tests/hard_coded/copy_pred works.
% - XXX fix ANSI/ISO C conformance of the generated code (i.e. port to lcc)
%
% UNIMPLEMENTED FEATURES:
% - test --det-copy-out
% - fix --gcc-nested-functions (need forward declarations for
% nested functions)
% - support debugging (with mdb)
% - support genuine parallel conjunction
% - support fact tables
% - support --split-c-files
% - support accurate GC
%
% POTENTIAL EFFICIENCY IMPROVEMENTS:
% - optimize unboxed float on DEC Alphas.
% - generate better code for switches:
% - optimize switches so that the recursive case comes first
% (see switch_gen.m).
% - apply the reverse tag test optimization
% for types with two functors (see unify_gen.m)
% - binary search switches
% - lookup switches
% - generate local declarations for the `succeeded' variable;
% this would help in nondet code, because it would avoid
% the need to access the outermost function's `succeeded'
% variable via the environment pointer
% (be careful about the interaction with setjmp(), though)
%-----------------------------------------------------------------------------%
:- module ml_backend__ml_code_gen.
:- interface.
:- import_module hlds__code_model.
:- import_module hlds__hlds_goal.
:- import_module hlds__hlds_module.
:- import_module ml_backend__ml_code_util.
:- import_module ml_backend__mlds.
:- import_module parse_tree__prog_data.
:- import_module io.
:- import_module map.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Generate MLDS code for an entire module.
%
:- pred ml_code_gen(module_info::in, mlds::out, io::di, io::uo) is det.
% Generate MLDS code for the specified goal in the
% specified code model. Return the result as a single statement
% (which may be a block statement containing nested declarations).
%
:- pred ml_gen_goal(code_model::in, hlds_goal::in, mlds__statement::out,
ml_gen_info::in, ml_gen_info::out) is det.
% Generate MLDS code for the specified goal in the
% specified code model. Return the result as two lists,
% one containing the necessary declarations and the other
% containing the generated statements.
%
:- pred ml_gen_goal(code_model::in, hlds_goal::in,
mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
% ml_gen_wrap_goal(OuterCodeModel, InnerCodeModel, Context,
% Statements0, Statements):
%
% OuterCodeModel is the code model expected by the
% context in which a goal is called. InnerCodeModel
% is the code model which the goal actually has.
% This predicate converts the code generated for
% the goal using InnerCodeModel into code that uses
% the calling convention appropriate for OuterCodeModel.
%
:- pred ml_gen_wrap_goal(code_model::in, code_model::in, prog_context::in,
mlds__statements::in, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
% Generate declarations for a list of local variables.
%
:- pred ml_gen_local_var_decls(prog_varset::in, map(prog_var, prog_type)::in,
prog_context::in, prog_vars::in, mlds__defns::out,
ml_gen_info::in, ml_gen_info::out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module backend_libs__builtin_ops.
:- import_module backend_libs__c_util.
:- import_module backend_libs__export.
:- import_module backend_libs__foreign. % XXX needed for pragma foreign code
:- import_module check_hlds__mode_util.
:- import_module check_hlds__type_util.
:- import_module hlds__goal_util.
:- import_module hlds__hlds_data.
:- import_module hlds__hlds_pred.
:- import_module hlds__passes_aux.
:- import_module libs__globals.
:- import_module libs__options.
:- import_module mdbcomp__prim_data.
:- import_module ml_backend__ml_call_gen.
:- import_module ml_backend__ml_code_util.
:- import_module ml_backend__ml_switch_gen.
:- import_module ml_backend__ml_type_gen.
:- import_module ml_backend__ml_unify_gen.
:- import_module parse_tree__error_util.
:- import_module parse_tree__modules.
:- import_module parse_tree__prog_foreign.
:- import_module parse_tree__prog_util.
:- import_module parse_tree__prog_type.
:- import_module assoc_list.
:- import_module bool.
:- import_module int.
:- import_module list.
:- import_module require.
:- import_module set.
:- import_module std_util.
:- import_module string.
:- import_module term.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Generate MLDS code for an entire module.
%
ml_code_gen(ModuleInfo, MLDS, !IO) :-
module_info_name(ModuleInfo, ModuleName),
ml_gen_foreign_code(ModuleInfo, ForeignCode, !IO),
ml_gen_imports(ModuleInfo, Imports),
ml_gen_defns(ModuleInfo, Defns, !IO),
MLDS = mlds(ModuleName, ForeignCode, Imports, Defns).
:- pred ml_gen_foreign_code(module_info::in,
map(foreign_language, mlds__foreign_code)::out,
io::di, io::uo) is det.
ml_gen_foreign_code(ModuleInfo, AllForeignCode, !IO) :-
module_info_get_foreign_decl(ModuleInfo, ForeignDecls),
module_info_get_foreign_import_module(ModuleInfo, ForeignImports),
module_info_get_foreign_body_code(ModuleInfo, ForeignBodys),
globals__io_get_backend_foreign_languages(BackendForeignLanguages,
!IO),
WantedForeignImports = list__condense(
list__map((func(L) = Imports :-
foreign__filter_imports(L, ForeignImports, Imports, _)
), BackendForeignLanguages)),
list__foldl(ml_gen_foreign_code_lang(ModuleInfo, ForeignDecls,
ForeignBodys, WantedForeignImports),
BackendForeignLanguages, map__init, AllForeignCode).
:- pred ml_gen_foreign_code_lang(module_info::in, foreign_decl_info::in,
foreign_body_info::in, foreign_import_module_info::in,
foreign_language::in,
map(foreign_language, mlds__foreign_code)::in,
map(foreign_language, mlds__foreign_code)::out) is det.
ml_gen_foreign_code_lang(ModuleInfo, ForeignDecls, ForeignBodys,
WantedForeignImports, Lang, Map0, Map) :-
foreign__filter_decls(Lang, ForeignDecls, WantedForeignDecls,
_OtherForeignDecls),
foreign__filter_bodys(Lang, ForeignBodys, WantedForeignBodys,
_OtherForeignBodys),
ConvBody = (func(foreign_body_code(L, S, C)) =
user_foreign_code(L, S, C)),
MLDSWantedForeignBodys = list__map(ConvBody,
WantedForeignBodys),
% XXX exports are only implemented for
% C and IL at the moment
( ( Lang = c ; Lang = il ) ->
ml_gen_pragma_export(ModuleInfo, MLDS_PragmaExports)
;
MLDS_PragmaExports = []
),
MLDS_ForeignCode = mlds__foreign_code(WantedForeignDecls,
WantedForeignImports, MLDSWantedForeignBodys,
MLDS_PragmaExports),
map__det_insert(Map0, Lang, MLDS_ForeignCode, Map).
:- pred ml_gen_imports(module_info::in, mlds__imports::out) is det.
ml_gen_imports(ModuleInfo, MLDS_ImportList) :-
% Determine all the mercury imports.
% XXX This is overly conservative,
% i.e. we import more than we really need.
module_info_globals(ModuleInfo, Globals),
globals__get_target(Globals, Target),
module_info_get_all_deps(ModuleInfo, AllImports0),
% No module needs to import itself.
module_info_name(ModuleInfo, ThisModule),
AllImports = set__delete(AllImports0, ThisModule),
P = (func(Name) = mercury_import(compiler_visible_interface,
mercury_module_name_to_mlds(Name))),
% For every foreign type determine the import needed to
% find the declaration for that type.
module_info_types(ModuleInfo, Types),
ForeignTypeImports = list__condense(
list__map(foreign_type_required_imports(Target),
map__values(Types))),
MLDS_ImportList = ForeignTypeImports ++
list__map(P, set__to_sorted_list(AllImports)).
:- func foreign_type_required_imports(compilation_target, hlds_type_defn)
= list(mlds__import).
foreign_type_required_imports(c, _) = [].
foreign_type_required_imports(il, TypeDefn) = Imports :-
hlds_data__get_type_defn_body(TypeDefn, Body),
(
Body = foreign_type(foreign_type_body(MaybeIL, _MaybeC,
_MaybeJava))
->
(
MaybeIL = yes(Data),
Data = foreign_type_lang_data(il(_, Location, _), _, _)
->
Name = il_assembly_name(mercury_module_name_to_mlds(
unqualified(Location))),
Imports = [foreign_import(Name)]
;
unexpected(this_file, "no IL type")
)
;
Imports = []
).
foreign_type_required_imports(java, _) = [].
foreign_type_required_imports(asm, _) = [].
:- pred ml_gen_defns(module_info::in, mlds__defns::out, io::di, io::uo) is det.
ml_gen_defns(ModuleInfo, Defns, !IO) :-
ml_gen_types(ModuleInfo, TypeDefns, !IO),
ml_gen_preds(ModuleInfo, PredDefns, !IO),
Defns = list__append(TypeDefns, PredDefns).
%-----------------------------------------------------------------------------%
%
% For each pragma export declaration we associate with it the
% information used to generate the function prototype for the MLDS
% entity.
%
:- pred ml_gen_pragma_export(module_info::in, list(mlds__pragma_export)::out)
is det.
ml_gen_pragma_export(ModuleInfo, MLDS_PragmaExports) :-
module_info_get_pragma_exported_procs(ModuleInfo, PragmaExports),
list__map(ml_gen_pragma_export_proc(ModuleInfo),
PragmaExports, MLDS_PragmaExports).
:- pred ml_gen_pragma_export_proc(module_info::in, pragma_exported_proc::in,
mlds__pragma_export::out) is det.
ml_gen_pragma_export_proc(ModuleInfo,
pragma_exported_proc(PredId, ProcId, C_Name, ProgContext),
Defn) :-
ml_gen_proc_label(ModuleInfo, PredId, ProcId, Name, ModuleName),
FuncParams = ml_gen_proc_params(ModuleInfo, PredId, ProcId),
MLDS_Context = mlds__make_context(ProgContext),
Defn = ml_pragma_export(C_Name, qual(ModuleName, module_qual, Name),
FuncParams, MLDS_Context).
%-----------------------------------------------------------------------------%
%
% Stuff to generate MLDS code for HLDS predicates & functions.
%
% Generate MLDS definitions for all the non-imported
% predicates (and functions) in the HLDS.
%
:- pred ml_gen_preds(module_info::in, mlds__defns::out, io::di, io::uo) is det.
ml_gen_preds(ModuleInfo, PredDefns, !IO) :-
module_info_preds(ModuleInfo, PredTable),
map__keys(PredTable, PredIds),
PredDefns0 = [],
ml_gen_preds_2(ModuleInfo, PredIds, PredTable, PredDefns0, PredDefns,
!IO).
:- pred ml_gen_preds_2(module_info::in, list(pred_id)::in, pred_table::in,
mlds__defns::in, mlds__defns::out, io::di, io::uo) is det.
ml_gen_preds_2(ModuleInfo, PredIds0, PredTable, !Defns, !IO) :-
(
PredIds0 = [PredId | PredIds],
map__lookup(PredTable, PredId, PredInfo),
pred_info_import_status(PredInfo, ImportStatus),
(
( ImportStatus = imported(_)
; pred_info_is_aditi_relation(PredInfo)
% We generate incorrect and unnecessary
% code for the external special preds
% which are pseudo_imported, so just
% ignore them.
; is_unify_or_compare_pred(PredInfo),
ImportStatus = external(pseudo_imported)
)
->
true
;
ml_gen_pred(ModuleInfo, PredId, PredInfo, ImportStatus,
!Defns, !IO)
),
ml_gen_preds_2(ModuleInfo, PredIds, PredTable, !Defns, !IO)
;
PredIds0 = []
).
% Generate MLDS definitions for all the non-imported
% procedures of a given predicate (or function).
%
:- pred ml_gen_pred(module_info::in, pred_id::in, pred_info::in,
import_status::in, mlds__defns::in, mlds__defns::out,
io::di, io::uo) is det.
ml_gen_pred(ModuleInfo, PredId, PredInfo, ImportStatus, !Defns, !IO) :-
( ImportStatus = external(_) ->
ProcIds = pred_info_procids(PredInfo)
;
ProcIds = pred_info_non_imported_procids(PredInfo)
),
( ProcIds = [] ->
true
;
write_pred_progress_message("% Generating MLDS code for ",
PredId, ModuleInfo, !IO),
pred_info_procedures(PredInfo, ProcTable),
ml_gen_procs(ProcIds, ModuleInfo, PredId, PredInfo,
ProcTable, !Defns)
).
:- pred ml_gen_procs(list(proc_id)::in, module_info::in, pred_id::in,
pred_info::in, proc_table::in, mlds__defns::in, mlds__defns::out)
is det.
ml_gen_procs([], _, _, _, _, !Defns).
ml_gen_procs([ProcId | ProcIds], ModuleInfo, PredId, PredInfo, ProcTable,
!Defns) :-
map__lookup(ProcTable, ProcId, ProcInfo),
ml_gen_proc(ModuleInfo, PredId, ProcId, PredInfo, ProcInfo, !Defns),
ml_gen_procs(ProcIds, ModuleInfo, PredId, PredInfo, ProcTable, !Defns).
%-----------------------------------------------------------------------------%
%
% Code for handling individual procedures
%
% Generate MLDS code for the specified procedure.
%
:- pred ml_gen_proc(module_info::in, pred_id::in, proc_id::in, pred_info::in,
proc_info::in, mlds__defns::in, mlds__defns::out) is det.
ml_gen_proc(ModuleInfo, PredId, ProcId, _PredInfo, ProcInfo, !Defns) :-
proc_info_context(ProcInfo, Context),
ml_gen_proc_label(ModuleInfo, PredId, ProcId, Name, _ModuleName),
MLDS_Context = mlds__make_context(Context),
DeclFlags = ml_gen_proc_decl_flags(ModuleInfo, PredId, ProcId),
ml_gen_proc_defn(ModuleInfo, PredId, ProcId, ProcDefnBody, ExtraDefns),
ProcDefn = mlds__defn(Name, MLDS_Context, DeclFlags, ProcDefnBody),
!:Defns = list__append(ExtraDefns, [ProcDefn | !.Defns]),
ml_gen_maybe_add_table_var(ModuleInfo, PredId, ProcId, ProcInfo,
!Defns).
:- pred ml_gen_maybe_add_table_var(module_info::in, pred_id::in, proc_id::in,
proc_info::in, mlds__defns::in, mlds__defns::out) is det.
ml_gen_maybe_add_table_var(ModuleInfo, PredId, ProcId, ProcInfo,
Defns0, Defns) :-
proc_info_eval_method(ProcInfo, EvalMethod),
(
eval_method_has_per_proc_tabling_pointer(EvalMethod) = yes
->
ml_gen_pred_label(ModuleInfo, PredId, ProcId,
PredLabel, _PredModule),
Var = tabling_pointer(PredLabel - ProcId),
Type = mlds__generic_type,
Initializer = init_obj(const(null(Type))),
proc_info_context(ProcInfo, Context),
(
module_info_globals(ModuleInfo, Globals),
globals__get_gc_method(Globals, GC_Method),
GC_Method = accurate
->
% XXX To handle this case properly, the GC would
% need to trace through the global variable
% that we generate for the table pointer.
% Support for this is not yet implemented.
% Also, we'd need to add GC support (stack
% frame registration, and calls to MR_GC_check())
% to MR_make_long_lived() and MR_deep_copy()
% so that we do garbage collection of the
% "global heap" which is used to store the tables.
sorry(this_file, "tabling and `--gc accurate'")
;
GC_TraceCode = no
),
TablePointerVarDefn = ml_gen_mlds_var_decl(
Var, Type, Initializer, GC_TraceCode,
mlds__make_context(Context)),
Defns = [TablePointerVarDefn | Defns0]
;
Defns = Defns0
).
% Return the declaration flags appropriate for a procedure definition.
%
:- func ml_gen_proc_decl_flags(module_info, pred_id, proc_id)
= mlds__decl_flags.
ml_gen_proc_decl_flags(ModuleInfo, PredId, ProcId) = DeclFlags :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
( procedure_is_exported(ModuleInfo, PredInfo, ProcId) ->
Access = public
;
Access = private
),
PerInstance = one_copy,
Virtuality = non_virtual,
Finality = overridable,
Constness = modifiable,
Abstractness = concrete,
DeclFlags = init_decl_flags(Access, PerInstance,
Virtuality, Finality, Constness, Abstractness).
% Generate an MLDS definition for the specified procedure.
%
:- pred ml_gen_proc_defn(module_info::in, pred_id::in, proc_id::in,
mlds__entity_defn::out, mlds__defns::out) is det.
ml_gen_proc_defn(ModuleInfo, PredId, ProcId, ProcDefnBody, ExtraDefns) :-
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
PredInfo, ProcInfo),
pred_info_import_status(PredInfo, ImportStatus),
pred_info_arg_types(PredInfo, ArgTypes),
proc_info_interface_code_model(ProcInfo, CodeModel),
proc_info_headvars(ProcInfo, HeadVars),
proc_info_argmodes(ProcInfo, Modes),
proc_info_goal(ProcInfo, Goal0),
%
% The HLDS front-end sometimes over-estimates
% the set of non-locals. We need to restrict
% the set of non-locals for the top-level goal
% to just the headvars, because otherwise variables
% which occur in the top-level non-locals but which
% are not really non-local will not be declared.
%
Goal0 = GoalExpr - GoalInfo0,
goal_info_get_code_gen_nonlocals(GoalInfo0, NonLocals0),
set__list_to_set(HeadVars, HeadVarsSet),
set__intersect(HeadVarsSet, NonLocals0, NonLocals),
goal_info_set_code_gen_nonlocals(GoalInfo0, NonLocals, GoalInfo),
Goal = GoalExpr - GoalInfo,
goal_info_get_context(GoalInfo, Context),
Info0 = ml_gen_info_init(ModuleInfo, PredId, ProcId),
( ImportStatus = external(_) ->
%
% For Mercury procedures declared `:- external', we generate
% an MLDS definition for them with no function body.
% The MLDS -> target code pass can treat this accordingly,
% e.g. for C it outputs a function declaration with no
% corresponding definition, making sure that the function
% is declared as `extern' rather than `static'.
%
FunctionBody = external,
ExtraDefns = [],
ml_gen_proc_params(PredId, ProcId, MLDS_Params, Info0, _Info)
;
% Set up the initial success continuation, if any.
% Also figure out which output variables are returned by
% value (rather than being passed by reference) and remove
% them from the byref_output_vars field in the ml_gen_info.
( CodeModel = model_non ->
ml_set_up_initial_succ_cont(ModuleInfo,
CopiedOutputVars, Info0, Info1)
;
ml_det_copy_out_vars(ModuleInfo,
CopiedOutputVars, Info0, Info1)
),
% This would generate all the local variables at the top of
% the function:
% ml_gen_all_local_var_decls(Goal,
% VarSet, VarTypes, HeadVars, MLDS_LocalVars,
% Info1, Info2)
% But instead we now generate them locally for each goal.
% We just declare the `succeeded' var here, plus locals
% for any output arguments that are returned by value
% (e.g. if --nondet-copy-out is enabled, or for det function
% return values).
( CopiedOutputVars = [] ->
% optimize common case
OutputVarLocals = [],
Info2 = Info1
;
proc_info_varset(ProcInfo, VarSet),
proc_info_vartypes(ProcInfo, VarTypes),
% note that for headvars we must use the types from
% the procedure interface, not from the procedure body
HeadVarTypes = map__from_corresponding_lists(HeadVars,
ArgTypes),
ml_gen_local_var_decls(VarSet,
map__overlay(VarTypes, HeadVarTypes),
Context, CopiedOutputVars, OutputVarLocals,
Info1, Info2)
),
MLDS_Context = mlds__make_context(Context),
MLDS_LocalVars = [ml_gen_succeeded_var_decl(MLDS_Context) |
OutputVarLocals],
modes_to_arg_modes(ModuleInfo, Modes, ArgTypes, ArgModes),
ml_gen_proc_body(CodeModel, HeadVars, ArgTypes, ArgModes,
CopiedOutputVars, Goal, Decls0, Statements,
Info2, Info3),
ml_gen_proc_params(PredId, ProcId, MLDS_Params, Info3, Info),
ml_gen_info_get_extra_defns(Info, ExtraDefns),
Decls = list__append(MLDS_LocalVars, Decls0),
Statement = ml_gen_block(Decls, Statements, Context),
FunctionBody = defined_here(Statement)
),
pred_info_get_attributes(PredInfo, Attributes),
attributes_to_attribute_list(Attributes, AttributeList),
MLDS_Attributes = attributes_to_mlds_attributes(ModuleInfo,
AttributeList),
ProcDefnBody = mlds__function(yes(proc(PredId, ProcId)),
MLDS_Params, FunctionBody, MLDS_Attributes).
% for model_det and model_semi procedures,
% figure out which output variables are returned by
% value (rather than being passed by reference) and remove
% them from the byref_output_vars field in the ml_gen_info.
:- pred ml_det_copy_out_vars(module_info::in, list(prog_var)::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_det_copy_out_vars(ModuleInfo, CopiedOutputVars, !Info) :-
ml_gen_info_get_byref_output_vars(!.Info, OutputVars),
module_info_globals(ModuleInfo, Globals),
globals__lookup_bool_option(Globals, det_copy_out, DetCopyOut),
(
% if --det-copy-out is enabled, all output variables
% are returned by value, rather than passing
% them by reference.
DetCopyOut = yes
->
ByRefOutputVars = [],
CopiedOutputVars = OutputVars
;
% for det functions, the function result variable
% is returned by value, and any remaining output
% variables are passed by reference
ml_gen_info_get_pred_id(!.Info, PredId),
ml_gen_info_get_proc_id(!.Info, ProcId),
ml_is_output_det_function(ModuleInfo, PredId, ProcId,
ResultVar)
->
CopiedOutputVars = [ResultVar],
list__delete_all(OutputVars, ResultVar, ByRefOutputVars)
;
% otherwise, all output vars are passed by reference
CopiedOutputVars = [],
ByRefOutputVars = OutputVars
),
ml_gen_info_set_byref_output_vars(ByRefOutputVars, !Info),
ml_gen_info_set_value_output_vars(CopiedOutputVars, !Info).
% for model_non procedures,
% figure out which output variables are returned by
% value (rather than being passed by reference) and remove
% them from the byref_output_vars field in the ml_gen_info,
% and construct the initial success continuation.
:- pred ml_set_up_initial_succ_cont(module_info::in, list(prog_var)::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_set_up_initial_succ_cont(ModuleInfo, NondetCopiedOutputVars, !Info) :-
module_info_globals(ModuleInfo, Globals),
globals__lookup_bool_option(Globals, nondet_copy_out,
NondetCopyOut),
( NondetCopyOut = yes ->
% for --nondet-copy-out, we generate local variables
% for the output variables and then pass them to the
% continuation, rather than passing them by reference.
ml_gen_info_get_byref_output_vars(!.Info,
NondetCopiedOutputVars),
ml_gen_info_set_byref_output_vars([], !Info)
;
NondetCopiedOutputVars = []
),
ml_gen_info_set_value_output_vars(NondetCopiedOutputVars, !Info),
ml_gen_var_list(!.Info, NondetCopiedOutputVars, OutputVarLvals),
ml_variable_types(!.Info, NondetCopiedOutputVars, OutputVarTypes),
ml_initial_cont(!.Info, OutputVarLvals, OutputVarTypes, InitialCont),
ml_gen_info_push_success_cont(InitialCont, !Info).
% Generate MLDS definitions for all the local variables in a function.
%
% Note that this function generates all the local variables at the
% top of the function. It might be a better idea to instead
% generate local declarations for all the variables used in
% each sub-goal.
%
:- pred ml_gen_all_local_var_decls(hlds_goal::in, prog_varset::in,
map(prog_var, prog_type)::in, list(prog_var)::in, mlds__defns::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_all_local_var_decls(Goal, VarSet, VarTypes, HeadVars, MLDS_LocalVars,
!Info) :-
Goal = _ - GoalInfo,
goal_info_get_context(GoalInfo, Context),
goal_util__goal_vars(Goal, AllVarsSet),
set__delete_list(AllVarsSet, HeadVars, LocalVarsSet),
set__to_sorted_list(LocalVarsSet, LocalVars),
ml_gen_local_var_decls(VarSet, VarTypes, Context, LocalVars,
MLDS_LocalVars0, !Info),
MLDS_Context = mlds__make_context(Context),
MLDS_SucceededVar = ml_gen_succeeded_var_decl(MLDS_Context),
MLDS_LocalVars = [MLDS_SucceededVar | MLDS_LocalVars0].
% Generate declarations for a list of local variables.
%
ml_gen_local_var_decls(_VarSet, _VarTypes, _Context, [], [], !Info).
ml_gen_local_var_decls(VarSet, VarTypes, Context, [Var | Vars], Defns,
!Info) :-
map__lookup(VarTypes, Var, Type),
( type_util__is_dummy_argument_type(Type) ->
% no declaration needed for this variable
ml_gen_local_var_decls(VarSet, VarTypes, Context, Vars,
Defns, !Info)
;
VarName = ml_gen_var_name(VarSet, Var),
ml_gen_var_decl(VarName, Type, Context, Defn, !Info),
ml_gen_local_var_decls(VarSet, VarTypes, Context, Vars,
Defns0, !Info),
Defns = [Defn | Defns0]
).
% Generate the code for a procedure body.
%
:- pred ml_gen_proc_body(code_model::in, list(prog_var)::in,
list(prog_type)::in, list(arg_mode)::in, list(prog_var)::in,
hlds_goal::in, mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_proc_body(CodeModel, HeadVars, ArgTypes, ArgModes, CopiedOutputVars,
Goal, Decls, Statements, !Info) :-
Goal = _ - GoalInfo,
goal_info_get_context(GoalInfo, Context),
%
% First just generate the code for the procedure's goal.
%
DoGenGoal = ml_gen_goal(CodeModel, Goal),
%
% In certain cases -- for example existentially typed procedures,
% or unification/compare procedures for equivalence types --
% the parameters types may not match the types of the head variables.
% In such cases, we need to box/unbox/cast them to the right type.
% We also grab the original (uncast) lvals for the copied output
% variables (if any) here, since for the return statement that
% we append below, we want the original vars, not their cast versions.
%
ml_gen_var_list(!.Info, CopiedOutputVars,
CopiedOutputVarOriginalLvals),
ml_gen_convert_headvars(HeadVars, ArgTypes, ArgModes, CopiedOutputVars,
Context, ConvDecls, ConvInputStatements, ConvOutputStatements,
!Info),
(
ConvDecls = [],
ConvInputStatements = [],
ConvOutputStatements = []
->
% No boxing/unboxing/casting required.
DoGenGoal(Decls, Statements1, !Info)
;
% Boxing/unboxing/casting required.
% We need to convert the input arguments,
% generate the goal, convert the output arguments,
% and then succeeed.
DoConvOutputs = (pred(NewDecls::out, NewStatements::out,
Info0::in, Info::out) is det :-
ml_gen_success(CodeModel, Context, SuccStatements,
Info0, Info),
NewDecls = [],
NewStatements = list__append(ConvOutputStatements,
SuccStatements)
),
ml_combine_conj(CodeModel, Context,
DoGenGoal, DoConvOutputs,
Decls0, Statements0, !Info),
Statements1 = list__append(ConvInputStatements,
Statements0),
Decls = list__append(ConvDecls, Decls0)
),
%
% Finally append an appropriate `return' statement, if needed.
%
ml_append_return_statement(!.Info, CodeModel,
CopiedOutputVarOriginalLvals, Context,
Statements1, Statements).
%
% In certain cases -- for example existentially typed procedures,
% or unification/compare procedures for equivalence types --
% the parameter types may not match the types of the head variables.
% In such cases, we need to box/unbox/cast them to the right type.
% This procedure handles that.
%
:- pred ml_gen_convert_headvars(list(prog_var)::in, list(prog_type)::in,
list(arg_mode)::in, list(prog_var)::in, prog_context::in,
mlds__defns::out, mlds__statements::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_convert_headvars(Vars, HeadTypes, ArgModes, CopiedOutputVars, Context,
Decls, InputStatements, OutputStatements, !Info) :-
(
% base case
Vars = [],
HeadTypes = [],
ArgModes = []
->
Decls = [],
InputStatements = [],
OutputStatements = []
;
% recursive case
Vars = [Var | Vars1],
HeadTypes = [HeadType | HeadTypes1],
ArgModes = [ArgMode | ArgModes1]
->
ml_variable_type(!.Info, Var, BodyType),
(
%
% Arguments with mode `top_unused' do not need
% to be converted
%
ArgMode = top_unused
->
% just recursively process the remaining arguments
ml_gen_convert_headvars(Vars1, HeadTypes1, ArgModes1,
CopiedOutputVars, Context, Decls,
InputStatements, OutputStatements, !Info)
;
%
% Check whether HeadType is the same as BodyType
% (modulo the term__contexts).
% If so, no conversion is needed.
%
map__init(Subst0),
type_unify(HeadType, BodyType, [], Subst0, Subst),
map__is_empty(Subst)
->
% just recursively process the remaining arguments
ml_gen_convert_headvars(Vars1, HeadTypes1, ArgModes1,
CopiedOutputVars, Context, Decls,
InputStatements, OutputStatements, !Info)
;
%
% generate the lval for the head variable
%
ml_gen_var_with_type(!.Info, Var, HeadType,
HeadVarLval),
%
% generate code to box or unbox that head variable,
% to convert its type from HeadType to BodyType
%
ml_gen_info_get_varset(!.Info, VarSet),
VarName = ml_gen_var_name(VarSet, Var),
ml_gen_box_or_unbox_lval(HeadType, BodyType,
HeadVarLval, VarName, Context, no, 0, BodyLval,
ConvDecls, ConvInputStatements,
ConvOutputStatements, !Info),
%
% Ensure that for any uses of this variable in the
% procedure body, we use the BodyLval (which has type
% BodyType) rather than the HeadVarLval (which has
% type HeadType).
%
ml_gen_info_set_var_lval(Var, BodyLval, !Info),
%
% Recursively process the remaining arguments
%
ml_gen_convert_headvars(Vars1, HeadTypes1, ArgModes1,
CopiedOutputVars, Context, Decls1,
InputStatements1, OutputStatements1, !Info),
%
% Add the code to convert this input or output.
%
ml_gen_info_get_byref_output_vars(!.Info,
ByRefOutputVars),
(
( list__member(Var, ByRefOutputVars)
; list__member(Var, CopiedOutputVars)
)
->
InputStatements = InputStatements1,
OutputStatements =
list__append(OutputStatements1,
ConvOutputStatements)
;
InputStatements =
list__append(ConvInputStatements,
InputStatements1),
OutputStatements = OutputStatements1
),
list__append(ConvDecls, Decls1, Decls)
)
;
% neither base case nor recursive case matched
unexpected(this_file,
"ml_gen_convert_headvars: length mismatch")
).
%-----------------------------------------------------------------------------%
%
% Stuff to generate code for goals.
%
% Generate MLDS code for the specified goal in the
% specified code model. Return the result as a single statement
% (which may be a block statement containing nested declarations).
%
ml_gen_goal(CodeModel, Goal, Statement, !Info) :-
ml_gen_goal(CodeModel, Goal, Decls, Statements, !Info),
Goal = _ - GoalInfo,
goal_info_get_context(GoalInfo, Context),
Statement = ml_gen_block(Decls, Statements, Context).
% Generate MLDS code for the specified goal in the
% specified code model. Return the result as two lists,
% one containing the necessary declarations and the other
% containing the generated statements.
%
ml_gen_goal(CodeModel, Goal, Decls, Statements, !Info) :-
Goal = GoalExpr - GoalInfo,
goal_info_get_context(GoalInfo, Context),
%
% Generate the local variables for this goal.
% We need to declare any variables which
% are local to this goal (including its subgoals),
% but which are not local to a subgoal.
% (If they're local to a subgoal, they'll be declared
% when we generate code for that subgoal.)
%
% We need to make sure that we declare any type_info or
% type_classinfo variables *before* any other variables,
% since the GC tracing code for the other variables may
% refer to the type_info variables, so they need to be in scope.
Locals = goal_local_vars(Goal),
SubGoalLocals = union_of_direct_subgoal_locals(Goal),
set__difference(Locals, SubGoalLocals, VarsToDeclareHere),
set__to_sorted_list(VarsToDeclareHere, VarsList0),
ml_gen_info_get_varset(!.Info, VarSet),
ml_gen_info_get_var_types(!.Info, VarTypes),
VarsList = put_typeinfo_vars_first(VarsList0, VarTypes),
ml_gen_local_var_decls(VarSet, VarTypes, Context, VarsList, VarDecls,
!Info),
%
% Generate code for the goal in its own code model.
%
goal_info_get_code_model(GoalInfo, GoalCodeModel),
ml_gen_goal_expr(GoalExpr, GoalCodeModel, Context,
GoalDecls, GoalStatements0, !Info),
%
% Add whatever wrapper is needed to convert the goal's
% code model to the desired code model.
%
ml_gen_wrap_goal(CodeModel, GoalCodeModel, Context,
GoalStatements0, GoalStatements, !Info),
ml_join_decls(VarDecls, [], GoalDecls, GoalStatements, Context,
Decls, Statements).
% Return the set of variables which occur in the specified goal
% (including in its subgoals) and which are local to that goal.
:- func goal_local_vars(hlds_goal) = set(prog_var).
goal_local_vars(Goal) = LocalVars :-
% find all the variables in the goal
goal_util__goal_vars(Goal, GoalVars),
% delete the non-locals
Goal = _ - GoalInfo,
goal_info_get_code_gen_nonlocals(GoalInfo, NonLocalVars),
set__difference(GoalVars, NonLocalVars, LocalVars).
:- func union_of_direct_subgoal_locals(hlds_goal) = set(prog_var).
union_of_direct_subgoal_locals(Goal - _GoalInfo) =
promise_only_solution((pred(UnionOfSubGoalLocals::out) is cc_multi :-
set__init(EmptySet),
unsorted_aggregate(direct_subgoal(Goal),
union_subgoal_locals, EmptySet, UnionOfSubGoalLocals)
)).
:- pred union_subgoal_locals(hlds_goal::in, set(prog_var)::in,
set(prog_var)::out) is det.
union_subgoal_locals(SubGoal, UnionOfSubGoalLocals0, UnionOfSubGoalLocals) :-
SubGoalLocals = goal_local_vars(SubGoal),
set__union(UnionOfSubGoalLocals0, SubGoalLocals, UnionOfSubGoalLocals).
% ml_gen_wrap_goal(OuterCodeModel, InnerCodeModel, Context,
% Statements0, Statements):
%
% OuterCodeModel is the code model expected by the
% context in which a goal is called. InnerCodeModel
% is the code model which the goal actually has.
% This predicate converts the code generated for
% the goal using InnerCodeModel into code that uses
% the calling convention appropriate for OuterCodeModel.
%
% If the inner and outer code models are equal,
% we don't need to do anything special.
ml_gen_wrap_goal(model_det, model_det, _, !Statements, !Info).
ml_gen_wrap_goal(model_semi, model_semi, _, !Statements, !Info).
ml_gen_wrap_goal(model_non, model_non, _, !Statements, !Info).
% If the inner code model is more precise than the outer code
% model, then we need to append some statements to convert
% the calling convention for the inner code model to that of
% the outer code model.
ml_gen_wrap_goal(model_semi, model_det, Context, !Statements, !Info) :-
%
% det goal in semidet context:
% <succeeded = Goal>
% ===>
% <do Goal>
% succeeded = MR_TRUE
%
ml_gen_set_success(!.Info, const(true), Context, SetSuccessTrue),
!:Statements = list__append(!.Statements, [SetSuccessTrue]).
ml_gen_wrap_goal(model_non, model_det, Context, !Statements, !Info) :-
%
% det goal in nondet context:
% <Goal && SUCCEED()>
% ===>
% <do Goal>
% SUCCEED()
%
ml_gen_call_current_success_cont(Context, CallCont, !Info),
!:Statements = list__append(!.Statements, [CallCont]).
ml_gen_wrap_goal(model_non, model_semi, Context, !Statements, !Info) :-
%
% semi goal in nondet context:
% <Goal && SUCCEED()>
% ===>
% MR_bool succeeded;
%
% <succeeded = Goal>
% if (succeeded) SUCCEED()
%
ml_gen_test_success(!.Info, Succeeded),
ml_gen_call_current_success_cont(Context, CallCont, !Info),
IfStmt = if_then_else(Succeeded, CallCont, no),
IfStatement = mlds__statement(IfStmt, mlds__make_context(Context)),
!:Statements = list__append(!.Statements, [IfStatement]).
% If the inner code model is less precise than the outer code model,
% then simplify.m is supposed to wrap the goal inside a `some'
% to indicate that a commit is needed.
ml_gen_wrap_goal(model_det, model_semi, _, _, _, !Info) :-
error("ml_gen_wrap_goal: code model mismatch -- semi in det").
ml_gen_wrap_goal(model_det, model_non, _, _, _, !Info) :-
error("ml_gen_wrap_goal: code model mismatch -- nondet in det").
ml_gen_wrap_goal(model_semi, model_non, _, _, _, !Info) :-
error("ml_gen_wrap_goal: code model mismatch -- nondet in semi").
% Generate code for a commit.
%
:- pred ml_gen_commit(hlds_goal::in, code_model::in, prog_context::in,
mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_commit(Goal, CodeModel, Context, Decls, Statements, !Info) :-
Goal = _ - GoalInfo,
goal_info_get_code_model(GoalInfo, GoalCodeModel),
goal_info_get_context(GoalInfo, GoalContext),
(
GoalCodeModel = model_non,
CodeModel = model_semi
->
% model_non in semi context: (using try_commit/do_commit)
% <succeeded = Goal>
% ===>
% MR_bool succeeded;
% #ifdef NONDET_COPY_OUT
% <local var decls>
% #endif
% #ifdef PUT_COMMIT_IN_OWN_FUNC
% /*
% ** to avoid problems with setjmp() and non-volatile
% ** local variables, we need to put the call to
% ** setjmp() in its own nested function
% */
% void commit_func()
% {
% #endif
% MR_COMMIT_TYPE ref;
%
% void success() {
% MR_DO_COMMIT(ref);
% }
%
% MR_TRY_COMMIT(ref, {
% <Goal && success()>
% succeeded = MR_FALSE;
% }, {
% #ifdef NONDET_COPY_OUT
% <copy local vars to output args>
% #endif
% succeeded = MR_TRUE;
% })
% #ifdef PUT_COMMIT_IN_OWN_FUNC
%
% commit_func();
% #endif
ml_gen_maybe_make_locals_for_output_args(GoalInfo,
LocalVarDecls, CopyLocalsToOutputArgs,
OrigVarLvalMap, !Info),
% generate the `success()' function
ml_gen_new_func_label(no, SuccessFuncLabel,
SuccessFuncLabelRval, !Info),
/* push nesting level */
MLDS_Context = mlds__make_context(Context),
ml_gen_info_new_commit_label(CommitLabelNum, !Info),
CommitRef = mlds__var_name(string__format("commit_%d",
[i(CommitLabelNum)]), no),
ml_gen_var_lval(!.Info, CommitRef, mlds__commit_type,
CommitRefLval),
CommitRefDecl = ml_gen_commit_var_decl(MLDS_Context,
CommitRef),
DoCommitStmt = do_commit(lval(CommitRefLval)),
DoCommitStatement =
mlds__statement(DoCommitStmt, MLDS_Context),
/* pop nesting level */
ml_gen_nondet_label_func(!.Info, SuccessFuncLabel, Context,
DoCommitStatement, SuccessFunc),
ml_get_env_ptr(!.Info, EnvPtrRval),
SuccessCont = success_cont(SuccessFuncLabelRval,
EnvPtrRval, [], []),
ml_gen_info_push_success_cont(SuccessCont, !Info),
ml_gen_goal(model_non, Goal, GoalDecls, GoalStatements, !Info),
% hoist any static constant declarations for Goal
% out to the top level
list__filter(ml_decl_is_static_const, GoalDecls,
GoalStaticDecls, GoalOtherDecls),
GoalStatement = ml_gen_block(GoalOtherDecls,
GoalStatements, GoalContext),
ml_gen_info_pop_success_cont(!Info),
ml_gen_set_success(!.Info, const(false), Context,
SetSuccessFalse),
ml_gen_set_success(!.Info, const(true), Context,
SetSuccessTrue),
TryCommitStmt = try_commit(CommitRefLval,
ml_gen_block([], [GoalStatement, SetSuccessFalse],
Context),
ml_gen_block([], list__append(CopyLocalsToOutputArgs,
[SetSuccessTrue]), Context)),
TryCommitStatement = mlds__statement(TryCommitStmt,
MLDS_Context),
CommitFuncLocalDecls = [CommitRefDecl, SuccessFunc |
GoalStaticDecls],
maybe_put_commit_in_own_func(CommitFuncLocalDecls,
[TryCommitStatement], Context,
CommitFuncDecls, Statements, !Info),
Decls = LocalVarDecls ++ CommitFuncDecls,
ml_gen_info_set_var_lvals(OrigVarLvalMap, !Info)
;
GoalCodeModel = model_non,
CodeModel = model_det
->
% model_non in det context: (using try_commit/do_commit)
% <do Goal>
% ===>
% #ifdef NONDET_COPY_OUT
% <local var decls>
% #endif
% #ifdef PUT_COMMIT_IN_NESTED_FUNC
% /*
% ** to avoid problems with setjmp() and non-volatile
% ** local variables, we need to put the call to
% ** setjmp() in its own nested functions
% */
% void commit_func()
% {
% #endif
% MR_COMMIT_TYPE ref;
% void success() {
% MR_DO_COMMIT(ref);
% }
% MR_TRY_COMMIT(ref, {
% <Goal && success()>
% }, {
% #ifdef NONDET_COPY_OUT
% <copy local vars to output args>
% #endif
% })
% #ifdef PUT_COMMIT_IN_NESTED_FUNC
%
% commit_func();
% #endif
ml_gen_maybe_make_locals_for_output_args(GoalInfo,
LocalVarDecls, CopyLocalsToOutputArgs,
OrigVarLvalMap, !Info),
% generate the `success()' function
ml_gen_new_func_label(no,
SuccessFuncLabel, SuccessFuncLabelRval, !Info),
/* push nesting level */
MLDS_Context = mlds__make_context(Context),
ml_gen_info_new_commit_label(CommitLabelNum, !Info),
CommitRef = mlds__var_name(
string__format("commit_%d", [i(CommitLabelNum)]),
no),
ml_gen_var_lval(!.Info, CommitRef, mlds__commit_type,
CommitRefLval),
CommitRefDecl = ml_gen_commit_var_decl(MLDS_Context,
CommitRef),
DoCommitStmt = do_commit(lval(CommitRefLval)),
DoCommitStatement = mlds__statement(DoCommitStmt,
MLDS_Context),
/* pop nesting level */
ml_gen_nondet_label_func(!.Info, SuccessFuncLabel, Context,
DoCommitStatement, SuccessFunc),
ml_get_env_ptr(!.Info, EnvPtrRval),
SuccessCont = success_cont(SuccessFuncLabelRval,
EnvPtrRval, [], []),
ml_gen_info_push_success_cont(SuccessCont, !Info),
ml_gen_goal(model_non, Goal, GoalDecls, GoalStatements, !Info),
% hoist any static constant declarations for Goal
% out to the top level
list__filter(ml_decl_is_static_const, GoalDecls,
GoalStaticDecls, GoalOtherDecls),
GoalStatement = ml_gen_block(GoalOtherDecls,
GoalStatements, GoalContext),
ml_gen_info_pop_success_cont(!Info),
TryCommitStmt = try_commit(CommitRefLval, GoalStatement,
ml_gen_block([], CopyLocalsToOutputArgs, Context)),
TryCommitStatement = mlds__statement(TryCommitStmt,
MLDS_Context),
CommitFuncLocalDecls = [CommitRefDecl, SuccessFunc |
GoalStaticDecls],
maybe_put_commit_in_own_func(CommitFuncLocalDecls,
[TryCommitStatement], Context,
CommitFuncDecls, Statements, !Info),
Decls = LocalVarDecls ++ CommitFuncDecls,
ml_gen_info_set_var_lvals(OrigVarLvalMap, !Info)
;
% no commit required
ml_gen_goal(CodeModel, Goal, Decls, Statements, !Info)
).
% maybe_put_commit_in_own_func(Defns0, Stmts0, Defns, Stmts):
% if the --put-commit-in-own-func option is set, put
% the commit in its own function. This is needed for
% the high-level C back-end, to handle problems with
% setjmp()/longjmp() clobbering non-volatile local variables.
%
% Detailed explanation:
%
% For the high-level C back-end, we implement commits using
% setjmp()/longjmp(). Unfortunately for us, ANSI/ISO C says
% that longjmp() is allowed to clobber the values of any
% non-volatile local variables in the function that called
% setjmp() which have been modified between the setjmp()
% and the longjmp().
%
% To avoid this, whenever we generate a commit, we put
% it in its own nested function, with the local variables
% (e.g. `succeeded', plus any outputs from the goal that
% we're committing over) remaining in the containing function.
% This ensures that none of the variables which get modified
% between the setjmp() and the longjmp() and which get
% referenced after the longjmp() are local variables in the
% function containing the setjmp().
%
% [The obvious alternative of declaring the local variables in
% the function containing setjmp() as `volatile' doesn't work,
% since the assignments to those output variables may be deep
% in some function called indirectly from the goal that we're
% committing across, and assigning to a volatile-qualified
% variable via a non-volatile pointer is undefined behaviour.
% The only way to make it work would be to be to declare
% *every* output argument that we pass by reference as
% `volatile T *'. But that would impose distributed fat and
% would make interoperability difficult.]
%
:- pred maybe_put_commit_in_own_func(mlds__defns::in, mlds__statements::in,
prog_context::in, mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
maybe_put_commit_in_own_func(CommitFuncLocalDecls, TryCommitStatements,
Context, Decls, Statements, !Info) :-
ml_gen_info_put_commit_in_own_func(!.Info, PutCommitInOwnFunc),
( PutCommitInOwnFunc = yes ->
%
% Generate the `void commit_func() { ... }' wrapper
% around the main body that we generated above
%
ml_gen_new_func_label(no, CommitFuncLabel,
CommitFuncLabelRval, !Info),
/* push nesting level */
CommitFuncBody = ml_gen_block(CommitFuncLocalDecls,
TryCommitStatements, Context),
/* pop nesting level */
ml_gen_nondet_label_func(!.Info, CommitFuncLabel, Context,
CommitFuncBody, CommitFunc),
%
% Generate the call to `commit_func();'
%
ml_gen_info_use_gcc_nested_functions(!.Info, UseNestedFuncs),
( UseNestedFuncs = yes ->
ArgRvals = [],
ArgTypes = []
;
ml_get_env_ptr(!.Info, EnvPtrRval),
ArgRvals = [EnvPtrRval],
ArgTypes = [mlds__generic_env_ptr_type]
),
RetTypes = [],
Signature = mlds__func_signature(ArgTypes, RetTypes),
CallKind = ordinary_call,
CallStmt = call(Signature, CommitFuncLabelRval, no,
ArgRvals, [], CallKind),
CallStatement = mlds__statement(CallStmt,
mlds__make_context(Context)),
% Package it all up
Statements = [CallStatement],
Decls = [CommitFunc]
;
Statements = TryCommitStatements,
Decls = CommitFuncLocalDecls
).
%
% In commits, you have model_non code called from a model_det or
% model_semi context. With --nondet-copy-out, when generating code
% for commits, if the context is a model_det or model_semi procedure
% with output arguments passed by reference, then we need to introduce
% local variables corresponding to those output arguments,
% and at the end of the commit we'll copy the local variables into
% the output arguments.
%
:- pred ml_gen_maybe_make_locals_for_output_args(hlds_goal_info::in,
mlds__defns::out, mlds__statements::out,
map(prog_var, mlds__lval)::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_maybe_make_locals_for_output_args(GoalInfo, LocalVarDecls,
CopyLocalsToOutputArgs, OrigVarLvalMap, !Info) :-
ml_gen_info_get_var_lvals(!.Info, OrigVarLvalMap),
ml_gen_info_get_globals(!.Info, Globals),
globals__lookup_bool_option(Globals, nondet_copy_out,
NondetCopyOut),
( NondetCopyOut = yes ->
goal_info_get_context(GoalInfo, Context),
goal_info_get_nonlocals(GoalInfo, NonLocals),
ml_gen_info_get_byref_output_vars(!.Info, ByRefOutputVars),
VarsToCopy = set__intersect(set__list_to_set(ByRefOutputVars),
NonLocals),
ml_gen_make_locals_for_output_args(
set__to_sorted_list(VarsToCopy), Context,
LocalVarDecls, CopyLocalsToOutputArgs, !Info)
;
LocalVarDecls = [],
CopyLocalsToOutputArgs = []
).
:- pred ml_gen_make_locals_for_output_args(list(prog_var)::in, prog_context::in,
mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_make_locals_for_output_args([], _, [], [], !Info).
ml_gen_make_locals_for_output_args([Var | Vars], Context,
LocalDefns, Assigns, !Info) :-
ml_gen_make_locals_for_output_args(Vars, Context,
LocalDefns0, Assigns0, !Info),
ml_variable_type(!.Info, Var, Type),
( type_util__is_dummy_argument_type(Type) ->
LocalDefns = LocalDefns0,
Assigns = Assigns0
;
ml_gen_make_local_for_output_arg(Var, Type, Context,
LocalDefn, Assign, !Info),
LocalDefns = [LocalDefn | LocalDefns0],
Assigns = [Assign | Assigns0]
).
:- pred ml_gen_make_local_for_output_arg(prog_var::in, prog_type::in,
prog_context::in, mlds__defn::out, mlds__statement::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_make_local_for_output_arg(OutputVar, Type, Context,
LocalVarDefn, Assign, !Info) :-
%
% Look up the name of the output variable
%
ml_gen_info_get_varset(!.Info, VarSet),
OutputVarName = ml_gen_var_name(VarSet, OutputVar),
%
% Generate a declaration for a corresponding local variable.
OutputVarName = mlds__var_name(OutputVarNameStr, MaybeNum),
LocalVarName = mlds__var_name(
string__append("local_", OutputVarNameStr), MaybeNum),
ml_gen_type(!.Info, Type, MLDS_Type),
ml_gen_maybe_gc_trace_code(LocalVarName, Type, Context, GC_TraceCode,
!Info),
LocalVarDefn = ml_gen_mlds_var_decl(var(LocalVarName), MLDS_Type,
GC_TraceCode, mlds__make_context(Context)),
%
% Generate code to assign from the local var to the output var
%
ml_gen_var(!.Info, OutputVar, OutputVarLval),
ml_gen_var_lval(!.Info, LocalVarName, MLDS_Type, LocalVarLval),
Assign = ml_gen_assign(OutputVarLval, lval(LocalVarLval), Context),
%
% Update the lval for this variable so that any references to it
% inside the commit refer to the local variable rather than
% to the output argument.
% (Note that we reset all the var lvals at the end of the commit.)
%
ml_gen_info_set_var_lval(OutputVar, LocalVarLval, !Info).
% Generate the declaration for the `commit' variable.
%
:- func ml_gen_commit_var_decl(mlds__context, mlds__var_name) = mlds__defn.
ml_gen_commit_var_decl(Context, VarName) =
ml_gen_mlds_var_decl(var(VarName), mlds__commit_type, no, Context).
% Generate MLDS code for the different kinds of HLDS goals.
%
:- pred ml_gen_goal_expr(hlds_goal_expr::in, code_model::in, prog_context::in,
mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_goal_expr(switch(Var, CanFail, CasesList), CodeModel, Context,
Decls, Statements, !Info) :-
ml_gen_switch(Var, CanFail, CasesList, CodeModel, Context,
Decls, Statements, !Info).
ml_gen_goal_expr(scope(_, Goal), CodeModel, Context, Decls, Statements,
!Info) :-
ml_gen_commit(Goal, CodeModel, Context, Decls, Statements, !Info).
ml_gen_goal_expr(if_then_else(_Vars, Cond, Then, Else),
CodeModel, Context, Decls, Statements, !Info) :-
ml_gen_ite(CodeModel, Cond, Then, Else, Context,
Decls, Statements, !Info).
ml_gen_goal_expr(not(Goal), CodeModel, Context,
Decls, Statements, !Info) :-
ml_gen_negation(Goal, CodeModel, Context, Decls, Statements, !Info).
ml_gen_goal_expr(conj(Goals), CodeModel, Context,
Decls, Statements, !Info) :-
ml_gen_conj(Goals, CodeModel, Context, Decls, Statements, !Info).
ml_gen_goal_expr(disj(Goals), CodeModel, Context,
Decls, Statements, !Info) :-
ml_gen_disj(Goals, CodeModel, Context, Decls, Statements, !Info).
ml_gen_goal_expr(par_conj(Goals), CodeModel, Context,
Decls, Statements, !Info) :-
%
% XXX currently we treat parallel conjunction the same as
% sequential conjunction -- parallelism is not yet implemented
%
ml_gen_conj(Goals, CodeModel, Context, Decls, Statements, !Info).
ml_gen_goal_expr(generic_call(GenericCall, Vars, Modes, Detism), CodeModel,
Context, Decls, Statements, !Info) :-
determinism_to_code_model(Detism, CallCodeModel),
require(unify(CodeModel, CallCodeModel),
"ml_gen_generic_call: code model mismatch"),
ml_gen_generic_call(GenericCall, Vars, Modes, Detism, Context,
Decls, Statements, !Info).
ml_gen_goal_expr(call(PredId, ProcId, ArgVars, BuiltinState, _, _),
CodeModel, Context, Decls, Statements, !Info) :-
( BuiltinState = not_builtin ->
ml_gen_var_list(!.Info, ArgVars, ArgLvals),
ml_gen_info_get_varset(!.Info, VarSet),
ArgNames = ml_gen_var_names(VarSet, ArgVars),
ml_variable_types(!.Info, ArgVars, ActualArgTypes),
ml_gen_call(PredId, ProcId, ArgNames, ArgLvals, ActualArgTypes,
CodeModel, Context, no, Decls, Statements, !Info)
;
ml_gen_builtin(PredId, ProcId, ArgVars, CodeModel, Context,
Decls, Statements, !Info)
).
ml_gen_goal_expr(unify(_LHS, _RHS, _Mode, Unification, _UnifyContext),
CodeModel, Context, Decls, Statements, !Info) :-
ml_gen_unification(Unification, CodeModel, Context,
Decls, Statements, !Info).
ml_gen_goal_expr(foreign_proc(Attributes, PredId, ProcId, Args, ExtraArgs,
PragmaImpl), CodeModel, OuterContext, Decls, Statements,
!Info) :-
(
PragmaImpl = ordinary(ForeignCode, MaybeContext),
(
MaybeContext = yes(Context)
;
MaybeContext = no,
Context = OuterContext
),
ml_gen_ordinary_pragma_foreign_proc(CodeModel, Attributes,
PredId, ProcId, Args, ExtraArgs, ForeignCode,
Context, Decls, Statements, !Info)
;
PragmaImpl = nondet(LocalVarsDecls, LocalVarsContext,
FirstCode, FirstContext, LaterCode, LaterContext,
_Treatment, SharedCode, SharedContext),
require(unify(ExtraArgs, []),
"ml_gen_goal_expr: extra args"),
ml_gen_nondet_pragma_foreign_proc(CodeModel, Attributes,
PredId, ProcId, Args, OuterContext,
LocalVarsDecls, LocalVarsContext,
FirstCode, FirstContext, LaterCode, LaterContext,
SharedCode, SharedContext, Decls, Statements, !Info)
;
PragmaImpl = import(Name, HandleReturn, Vars, _Context),
require(unify(ExtraArgs, []),
"ml_gen_goal_expr: extra args"),
ForeignCode = string__append_list([HandleReturn, " ",
Name, "(", Vars, ");"]),
ml_gen_ordinary_pragma_foreign_proc(CodeModel, Attributes,
PredId, ProcId, Args, ExtraArgs, ForeignCode,
OuterContext, Decls, Statements, !Info)
).
ml_gen_goal_expr(shorthand(_), _, _, _, _, !Info) :-
% these should have been expanded out by now
error("ml_gen_goal_expr: unexpected shorthand").
% :- module ml_foreign.
%
% ml_foreign creates MLDS code to execute foreign language code.
%
%
:- pred ml_gen_nondet_pragma_foreign_proc(code_model::in,
pragma_foreign_proc_attributes::in,
pred_id::in, proc_id::in, list(foreign_arg)::in,
prog_context::in, string::in, maybe(prog_context)::in, string::in,
maybe(prog_context)::in, string::in, maybe(prog_context)::in,
string::in, maybe(prog_context)::in,
mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
% For model_non pragma c_code,
% we generate code of the following form:
%
% #define MR_PROC_LABEL <procedure name>
% <declaration of locals needed for boxing/unboxing>
% {
% <declaration of one local variable for each arg>
% struct {
% <user's local_vars decls>
% } MR_locals;
% MR_bool MR_done = MR_FALSE;
% MR_bool MR_succeeded = MR_FALSE;
%
% #define FAIL (MR_done = MR_TRUE)
% #define SUCCEED (MR_succeeded = MR_TRUE)
% #define SUCCEED_LAST (MR_succeeded = MR_TRUE, \
% MR_done = MR_TRUE)
% #define LOCALS (&MR_locals)
%
% <assign input args>
% <obtain global lock>
% <user's first_code C code>
% while (true) {
% <user's shared_code C code>
% <release global lock>
% if (MR_succeeded) {
% <assign output args>
% <boxing/unboxing of outputs>
% CONT();
% }
% if (MR_done) break;
% MR_succeeded = MR_FALSE;
% <obtain global lock>
% <user's later_code C code>
% }
%
% #undef FAIL
% #undef SUCCEED
% #undef SUCCEED_LAST
% #undef LOCALS
% }
% #undef MR_PROC_LABEL
%
% We insert a #define for MR_PROC_LABEL, so that the C code in
% the Mercury standard library that allocates memory manually
% can use MR_PROC_LABEL as the procname argument to
% incr_hp_msg(), for memory profiling. Hard-coding the procname
% argument in the C code would be wrong, since it wouldn't
% handle the case where the original pragma c_code procedure
% gets inlined and optimized away. Of course we also need to
% #undef it afterwards.
%
ml_gen_nondet_pragma_foreign_proc(CodeModel, Attributes, PredId, _ProcId,
Args, Context, LocalVarsDecls, LocalVarsContext,
FirstCode, FirstContext, LaterCode, LaterContext,
SharedCode, SharedContext, Decls, Statements, !Info) :-
Lang = foreign_language(Attributes),
( Lang = csharp ->
sorry(this_file, "nondet pragma foreign_proc for C#")
;
true
),
%
% Generate <declaration of one local variable for each arg>
%
ml_gen_pragma_c_decls(!.Info, Lang, Args, ArgDeclsList),
%
% Generate definitions of the FAIL, SUCCEED, SUCCEED_LAST,
% and LOCALS macros
%
string__append_list([
" #define FAIL (MR_done = MR_TRUE)\n",
" #define SUCCEED (MR_succeeded = MR_TRUE)\n",
" #define SUCCEED_LAST (MR_succeeded = MR_TRUE, MR_done = MR_TRUE)\n",
" #define LOCALS (&MR_locals)\n"
], HashDefines),
string__append_list([
" #undef FAIL\n",
" #undef SUCCEED\n",
" #undef SUCCEED_LAST\n",
" #undef LOCALS\n"
], HashUndefs),
%
% Generate code to set the values of the input variables.
%
ml_gen_pragma_c_input_arg_list(Lang, Args, AssignInputsList, !Info),
%
% Generate code to assign the values of the output variables.
%
ml_gen_pragma_c_output_arg_list(Lang, Args, Context,
AssignOutputsList, ConvDecls, ConvStatements, !Info),
%
% Generate code fragments to obtain and release the global lock
%
ThreadSafe = thread_safe(Attributes),
ml_gen_obtain_release_global_lock(!.Info, ThreadSafe, PredId,
ObtainLock, ReleaseLock),
%
% Generate the MR_PROC_LABEL #define
%
ml_gen_hash_define_mr_proc_label(!.Info, HashDefine),
%
% Put it all together
%
Starting_C_Code = list__condense([
[raw_target_code("{\n", [])],
HashDefine,
ArgDeclsList,
[raw_target_code("\tstruct {\n", []),
user_target_code(LocalVarsDecls, LocalVarsContext, []),
raw_target_code("\n", []),
raw_target_code("\t} MR_locals;\n", []),
raw_target_code("\tMR_bool MR_succeeded = MR_FALSE;\n", []),
raw_target_code("\tMR_bool MR_done = MR_FALSE;\n", []),
raw_target_code("\n", []),
raw_target_code(HashDefines, []),
raw_target_code("\n", [])],
AssignInputsList,
[raw_target_code(ObtainLock, []),
raw_target_code("\t{\n", []),
user_target_code(FirstCode, FirstContext, []),
raw_target_code("\n\t;}\n", []),
raw_target_code("\twhile (1) {\n", []),
raw_target_code("\t\t{\n", []),
user_target_code(SharedCode, SharedContext, []),
raw_target_code("\n\t\t;}\n", []),
raw_target_code("#undef MR_PROC_LABEL\n", []),
raw_target_code(ReleaseLock, []),
raw_target_code("\t\tif (MR_succeeded) {\n", [])],
AssignOutputsList
]),
ml_gen_info_get_module_info(!.Info, ModuleInfo),
module_info_globals(ModuleInfo, Globals),
globals__get_target(Globals, Target),
( CodeModel = model_non ->
% For IL code, we can't call continutations because there is
% no syntax for calling managed function pointers in
% managed C++. Instead we have to call back into IL and make
% the continuation call in IL. This is called an "indirect"
% success continuation call.
( Target = il ->
ml_gen_call_current_success_cont_indirectly(Context,
CallCont, !Info)
;
ml_gen_call_current_success_cont(Context, CallCont,
!Info)
)
;
error("ml_gen_nondet_pragma_c_code: unexpected code model")
),
Ending_C_Code = [
raw_target_code("\t\t}\n", []),
raw_target_code("\t\tif (MR_done) break;\n", []),
raw_target_code("\tMR_succeeded = MR_FALSE;\n", []),
raw_target_code(ObtainLock, []),
raw_target_code("\t\t{\n", []),
user_target_code(LaterCode, LaterContext, []),
raw_target_code("\n\t\t;}\n", []),
raw_target_code("\t}\n", []),
raw_target_code("\n", []),
raw_target_code(HashUndefs, []),
raw_target_code("}\n", [])
],
Starting_C_Code_Stmt = inline_target_code(lang_C, Starting_C_Code),
Starting_C_Code_Statement = mlds__statement(
atomic(Starting_C_Code_Stmt), mlds__make_context(Context)),
Ending_C_Code_Stmt = inline_target_code(lang_C, Ending_C_Code),
Ending_C_Code_Statement = mlds__statement(
atomic(Ending_C_Code_Stmt), mlds__make_context(Context)),
Statements = list__condense([
[Starting_C_Code_Statement],
ConvStatements,
[CallCont,
Ending_C_Code_Statement]
]),
Decls = ConvDecls.
:- pred ml_gen_ordinary_pragma_foreign_proc(code_model::in,
pragma_foreign_proc_attributes::in, pred_id::in, proc_id::in,
list(foreign_arg)::in, list(foreign_arg)::in, string::in,
prog_context::in, mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_ordinary_pragma_foreign_proc(CodeModel, Attributes, PredId, ProcId,
Args, ExtraArgs, Foreign_Code, Context, Decls, Statements,
!Info) :-
Lang = foreign_language(Attributes),
(
CodeModel = model_det,
OrdinaryKind = kind_det
;
CodeModel = model_semi,
ml_gen_info_get_module_info(!.Info, ModuleInfo),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
_PredInfo, ProcInfo),
proc_info_interface_determinism(ProcInfo, Detism),
determinism_components(Detism, _, MaxSoln),
( MaxSoln = at_most_zero ->
OrdinaryKind = kind_failure
;
OrdinaryKind = kind_semi
)
;
CodeModel = model_non,
OrdinaryDespiteDetism = ordinary_despite_detism(Attributes),
(
OrdinaryDespiteDetism = no,
error("ml_gen_ordinary_pragma_foreign_proc: " ++
"unexpected code model")
;
OrdinaryDespiteDetism = yes,
OrdinaryKind = kind_semi
)
),
(
Lang = c,
ml_gen_ordinary_pragma_c_proc(OrdinaryKind, Attributes,
PredId, ProcId, Args, ExtraArgs,
Foreign_Code, Context, Decls, Statements, !Info)
;
Lang = managed_cplusplus,
ml_gen_ordinary_pragma_managed_proc(OrdinaryKind, Attributes,
PredId, ProcId, Args, ExtraArgs,
Foreign_Code, Context, Decls, Statements, !Info)
;
Lang = csharp,
ml_gen_ordinary_pragma_managed_proc(OrdinaryKind, Attributes,
PredId, ProcId, Args, ExtraArgs,
Foreign_Code, Context, Decls, Statements, !Info)
;
Lang = il,
% XXX should pass OrdinaryKind
ml_gen_ordinary_pragma_il_proc(CodeModel, Attributes,
PredId, ProcId, Args, ExtraArgs,
Foreign_Code, Context, Decls, Statements, !Info)
;
Lang = java,
% XXX should pass OrdinaryKind
ml_gen_ordinary_pragma_java_proc(CodeModel, Attributes,
PredId, ProcId, Args, ExtraArgs,
Foreign_Code, Context, Decls, Statements, !Info)
).
:- pred ml_gen_ordinary_pragma_java_proc(code_model::in,
pragma_foreign_proc_attributes::in, pred_id::in, proc_id::in,
list(foreign_arg)::in, list(foreign_arg)::in, string::in,
prog_context::in, mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_ordinary_pragma_java_proc(_CodeModel, Attributes, _PredId, _ProcId,
Args, ExtraArgs, JavaCode, Context, Decls, Statements,
!Info) :-
Lang = foreign_language(Attributes),
%
% Generate <declaration of one local variable for each arg>
%
ml_gen_pragma_c_decls(!.Info, Lang, Args, ArgDeclsList),
require(unify(ExtraArgs, []),
"ml_gen_ordinary_pragma_java_proc: extra args"),
%
% Generate code to set the values of the input variables.
%
ml_gen_pragma_c_input_arg_list(Lang, Args, AssignInputsList, !Info),
%
% Generate MLDS statements to assign the values of the output
% variables.
%
ml_gen_pragma_java_output_arg_list(Lang, Args, Context,
AssignOutputsList, ConvDecls, ConvStatements, !Info),
%
% Put it all together
% XXX FIXME need to handle model_semi code here,
% i.e. provide some equivalent to SUCCESS_INDICATOR.
%
Java_Code = list__condense([
ArgDeclsList,
AssignInputsList,
[user_target_code(JavaCode, yes(Context), [])]
]),
Java_Code_Stmt = inline_target_code(lang_java, Java_Code),
Java_Code_Statement = mlds__statement(
atomic(Java_Code_Stmt),
mlds__make_context(Context)),
Statements = list__condense([
[Java_Code_Statement],
AssignOutputsList,
ConvStatements
]),
Decls = ConvDecls.
:- type ordinary_pragma_kind
---> kind_det
; kind_semi
; kind_failure.
% For ordinary (not model_non) pragma foreign_code in C# or MC++,
% we generate a call to an out-of-line procedure that contains
% the user's code.
:- pred ml_gen_ordinary_pragma_managed_proc(ordinary_pragma_kind::in,
pragma_foreign_proc_attributes::in, pred_id::in, proc_id::in,
list(foreign_arg)::in, list(foreign_arg)::in, string::in,
prog_context::in, mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_ordinary_pragma_managed_proc(OrdinaryKind, Attributes, _PredId, _ProcId,
Args, ExtraArgs, ForeignCode, Context, Decls, Statements,
!Info) :-
ml_gen_outline_args(Args, OutlineArgs, !Info),
require(unify(ExtraArgs, []),
"ml_gen_ordinary_pragma_managed_proc: extra args"),
ForeignLang = foreign_language(Attributes),
MLDSContext = mlds__make_context(Context),
ml_gen_info_get_value_output_vars(!.Info, OutputVars),
ml_gen_var_list(!.Info, OutputVars, OutputVarLvals),
OutlineStmt = outline_foreign_proc(ForeignLang, OutlineArgs,
OutputVarLvals, ForeignCode),
ml_gen_info_get_module_info(!.Info, ModuleInfo),
module_info_name(ModuleInfo, ModuleName),
MLDSModuleName = mercury_module_name_to_mlds(ModuleName),
ml_success_lval(!.Info, SucceededLval),
(
OrdinaryKind = kind_det,
SuccessVarLocals = [],
SuccessIndicatorStatements = []
;
OrdinaryKind = kind_semi,
% If the code is semidet, we should copy SUCCESS_INDICATOR
% out into "success".
SuccessIndicatorVarName = var_name("SUCCESS_INDICATOR", no),
SuccessIndicatorDecl = ml_gen_mlds_var_decl(
var(SuccessIndicatorVarName),
mlds__native_bool_type,
no_initializer, no, MLDSContext),
SuccessIndicatorLval = var(qual(MLDSModuleName, module_qual,
SuccessIndicatorVarName), mlds__native_bool_type),
SuccessIndicatorStatement = ml_gen_assign(SucceededLval,
lval(SuccessIndicatorLval), Context),
SuccessVarLocals = [SuccessIndicatorDecl],
SuccessIndicatorStatements = [SuccessIndicatorStatement]
;
OrdinaryKind = kind_failure,
error("ml_gen_ordinary_pragma_managed_proc: " ++
"kind_failure not yet implemented")
),
Statements = [
mlds__statement(atomic(OutlineStmt), MLDSContext) |
SuccessIndicatorStatements
],
Decls = SuccessVarLocals.
:- pred ml_gen_outline_args(list(foreign_arg)::in, list(outline_arg)::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_outline_args([], [], !Info).
ml_gen_outline_args([foreign_arg(Var, MaybeVarMode, OrigType) | Args],
[OutlineArg | OutlineArgs], !Info) :-
ml_gen_outline_args(Args, OutlineArgs, !Info),
ml_gen_info_get_module_info(!.Info, ModuleInfo),
ml_gen_var(!.Info, Var, VarLval),
ml_gen_type(!.Info, OrigType, MldsType),
(
MaybeVarMode = yes(ArgName - Mode),
\+ type_util__is_dummy_argument_type(OrigType),
\+ var_is_singleton(ArgName)
->
mode_to_arg_mode(ModuleInfo, Mode, OrigType, ArgMode),
( ArgMode = top_in,
OutlineArg = in(MldsType, ArgName, lval(VarLval))
; ArgMode = top_out,
OutlineArg = out(MldsType, ArgName, VarLval)
; ArgMode = top_unused,
OutlineArg = unused
)
;
OutlineArg = unused
).
:- pred ml_gen_ordinary_pragma_il_proc(code_model::in,
pragma_foreign_proc_attributes::in, pred_id::in, proc_id::in,
list(foreign_arg)::in, list(foreign_arg)::in, string::in,
prog_context::in, mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_ordinary_pragma_il_proc(_CodeModel, Attributes, PredId, ProcId,
Args, ExtraArgs, ForeignCode, Context, Decls, Statements,
!Info) :-
require(unify(ExtraArgs, []),
"ml_gen_ordinary_pragma_managed_proc: extra args"),
% XXX FIXME need to handle model_semi code here,
% i.e. provide some equivalent to SUCCESS_INDICATOR.
% XXX FIXME do we handle top_unused mode correctly?
MLDSContext = mlds__make_context(Context),
ml_gen_info_get_module_info(!.Info, ModuleInfo),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
_PredInfo, ProcInfo),
proc_info_varset(ProcInfo, VarSet),
% proc_info_vartypes(ProcInfo, VarTypes),
% note that for headvars we must use the types from
% the procedure interface, not from the procedure body
ml_gen_info_get_byref_output_vars(!.Info, ByRefOutputVars),
ml_gen_info_get_value_output_vars(!.Info, CopiedOutputVars),
module_info_name(ModuleInfo, ModuleName),
MLDSModuleName = mercury_module_name_to_mlds(ModuleName),
% XXX in the code to marshall parameters, fjh says:
% We need to handle the case where the types in the procedure interface
% are polymorphic, but the types of the vars in the `foreign_proc' HLDS
% goal are concrete instances of those types, which can happen when the
% procedure is inlined or specialized. The assignment that you
% generate here with ml_gen_assign won't be type-correct. In general
% you may need to box/unbox the arguments.
build_arg_map(Args, map__init, ArgMap),
% Generate statements to assign by-ref output arguments
list__filter_map(ml_gen_pragma_il_proc_assign_output(ModuleInfo,
MLDSModuleName, ArgMap, VarSet, Context, yes),
ByRefOutputVars, ByRefAssignStatements),
% Generate statements to assign copied output arguments
list__filter_map(ml_gen_pragma_il_proc_assign_output(ModuleInfo,
MLDSModuleName, ArgMap, VarSet, Context, no),
CopiedOutputVars, CopiedOutputStatements),
ArgVars = list__map(foreign_arg_var, Args),
% Generate declarations for all the variables, and
% initializers for input variables.
list__map(ml_gen_pragma_il_proc_var_decl_defn(ModuleInfo,
MLDSModuleName, ArgMap, VarSet, MLDSContext,
ByRefOutputVars, CopiedOutputVars),
ArgVars, VarLocals),
OutlineStmt = inline_target_code(lang_il, [
user_target_code(ForeignCode, yes(Context),
get_target_code_attributes(il,
Attributes ^ extra_attributes))
]),
ILCodeFragment = mlds__statement(atomic(OutlineStmt), MLDSContext),
Statements = [statement(block(VarLocals,
[ILCodeFragment] ++ ByRefAssignStatements
++ CopiedOutputStatements),
mlds__make_context(Context))],
Decls = [].
:- pred build_arg_map(list(foreign_arg)::in, map(prog_var, foreign_arg)::in,
map(prog_var, foreign_arg)::out) is det.
build_arg_map([], !ArgMap).
build_arg_map([ForeignArg | ForeignArgs], !ArgMap) :-
ForeignArg = foreign_arg(Var, _, _),
map__det_insert(!.ArgMap, Var, ForeignArg, !:ArgMap),
build_arg_map(ForeignArgs, !ArgMap).
:- pred ml_gen_pragma_il_proc_assign_output(module_info::in,
mlds_module_name::in, map(prog_var, foreign_arg)::in, prog_varset::in,
prog_context::in, bool::in, prog_var::in, mlds__statement::out)
is semidet.
ml_gen_pragma_il_proc_assign_output(ModuleInfo, MLDSModuleName, ArgMap,
VarSet, Context, IsByRef, Var, Statement) :-
map__lookup(ArgMap, Var, ForeignArg),
ForeignArg = foreign_arg(_, MaybeNameMode, Type),
not type_util__is_dummy_argument_type(Type),
MLDSType = mercury_type_to_mlds_type(ModuleInfo, Type),
VarName = ml_gen_var_name(VarSet, Var),
QualVarName = qual(MLDSModuleName, module_qual, VarName),
(
IsByRef = yes,
OutputVarLval = mem_ref(lval(var(QualVarName, MLDSType)),
MLDSType)
;
IsByRef = no,
OutputVarLval = var(QualVarName, MLDSType)
),
MaybeNameMode = yes(UserVarNameString - _),
NonMangledVarName = mlds__var_name(UserVarNameString, no),
QualLocalVarName= qual(MLDSModuleName, module_qual, NonMangledVarName),
LocalVarLval = var(QualLocalVarName, MLDSType),
Statement = ml_gen_assign(OutputVarLval, lval(LocalVarLval), Context).
:- pred ml_gen_pragma_il_proc_var_decl_defn(module_info::in,
mlds_module_name::in, map(prog_var, foreign_arg)::in, prog_varset::in,
mlds__context::in, list(prog_var)::in, list(prog_var)::in,
prog_var::in, mlds__defn::out) is det.
ml_gen_pragma_il_proc_var_decl_defn(ModuleInfo, MLDSModuleName, ArgMap, VarSet,
MLDSContext, ByRefOutputVars, CopiedOutputVars, Var, Defn) :-
map__lookup(ArgMap, Var, ForeignArg),
ForeignArg = foreign_arg(_, MaybeNameMode, Type),
VarName = ml_gen_var_name(VarSet, Var),
( MaybeNameMode = yes(UserVarNameString - _) ->
NonMangledVarName = mlds__var_name(UserVarNameString, no)
;
sorry(this_file, "no variable name for var")
),
% Dummy arguments are just mapped to integers,
% since they shouldn't be used in any
% way that requires them to have a real value.
( type_util__is_dummy_argument_type(Type) ->
Initializer = no_initializer,
MLDSType = mlds__native_int_type
; list__member(Var, ByRefOutputVars) ->
Initializer = no_initializer,
MLDSType = mercury_type_to_mlds_type(ModuleInfo, Type)
; list__member(Var, CopiedOutputVars) ->
Initializer = no_initializer,
MLDSType = mercury_type_to_mlds_type(ModuleInfo, Type)
;
MLDSType = mercury_type_to_mlds_type(
ModuleInfo, Type),
QualVarName = qual(MLDSModuleName, module_qual, VarName),
Initializer = init_obj(
lval(var(QualVarName, MLDSType)))
),
% XXX Accurate GC is not supported for IL foreign code;
% this would only be useful if interfacing to
% IL when compiling to C, which is not yet supported.
GC_TraceCode = no,
Defn = ml_gen_mlds_var_decl(var(NonMangledVarName), MLDSType,
Initializer, GC_TraceCode, MLDSContext).
% For ordinary (not model_non) pragma c_proc,
% we generate code of the following form:
%
% model_det pragma_c_proc:
%
% #define MR_PROC_LABEL <procedure name>
% <declaration of locals needed for boxing/unboxing>
% {
% <declaration of one local variable for each arg>
%
% <assign input args>
% <obtain global lock>
% <c code>
% <boxing/unboxing of outputs>
% <release global lock>
% <assign output args>
% }
% #undef MR_PROC_LABEL
%
% model_semi pragma_c_proc:
%
% #define MR_PROC_LABEL <procedure name>
% <declaration of locals needed for boxing/unboxing>
% {
% <declaration of one local variable for each arg>
% MR_bool SUCCESS_INDICATOR;
%
% <assign input args>
% <obtain global lock>
% <c code>
% <release global lock>
% if (SUCCESS_INDICATOR) {
% <assign output args>
% <boxing/unboxing of outputs>
% }
%
% <succeeded> = SUCCESS_INDICATOR;
% }
% #undef MR_PROC_LABEL
%
% We insert a #define for MR_PROC_LABEL, so that the C code in
% the Mercury standard library that allocates memory manually
% can use MR_PROC_LABEL as the procname argument to
% incr_hp_msg(), for memory profiling. Hard-coding the procname
% argument in the C code would be wrong, since it wouldn't
% handle the case where the original pragma c_code procedure
% gets inlined and optimized away. Of course we also need to
% #undef it afterwards.
%
% Note that we generate this code directly as
% `target_code(lang_C, <string>)' instructions in the MLDS.
% It would probably be nicer to encode more of the structure
% in the MLDS, so that (a) we could do better MLDS optimization
% and (b) so that the generation of C code strings could be
% isolated in mlds_to_c.m. Also we will need to do something
% different for targets other than C, e.g. when compiling to
% Java.
%
:- pred ml_gen_ordinary_pragma_c_proc(ordinary_pragma_kind::in,
pragma_foreign_proc_attributes::in, pred_id::in, proc_id::in,
list(foreign_arg)::in, list(foreign_arg)::in, string::in,
prog_context::in, mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_ordinary_pragma_c_proc(OrdinaryKind, Attributes, PredId, _ProcId,
OrigArgs, ExtraArgs, C_Code, Context, Decls, Statements,
!Info) :-
Lang = foreign_language(Attributes),
%
% Generate <declaration of one local variable for each arg>
%
list__append(OrigArgs, ExtraArgs, Args),
ml_gen_pragma_c_decls(!.Info, Lang, Args, ArgDeclsList),
%
% Generate code to set the values of the input variables.
%
ml_gen_pragma_c_input_arg_list(Lang, Args, AssignInputsList, !Info),
%
% Generate code to assign the values of the output variables.
%
ml_gen_pragma_c_output_arg_list(Lang, Args, Context,
AssignOutputsList, ConvDecls, ConvStatements, !Info),
%
% Generate code fragments to obtain and release the global lock
%
ThreadSafe = thread_safe(Attributes),
ml_gen_obtain_release_global_lock(!.Info, ThreadSafe, PredId,
ObtainLock, ReleaseLock),
%
% Generate the MR_PROC_LABEL #define
%
ml_gen_hash_define_mr_proc_label(!.Info, HashDefine),
%
% Put it all together
%
(
OrdinaryKind = kind_det,
Starting_C_Code = list__condense([
[raw_target_code("{\n", [])],
HashDefine,
ArgDeclsList,
[raw_target_code("\n", [])],
AssignInputsList,
[raw_target_code(ObtainLock, []),
raw_target_code("\t\t{\n", []),
user_target_code(C_Code, yes(Context), []),
raw_target_code("\n\t\t;}\n", []),
raw_target_code("#undef MR_PROC_LABEL\n", []),
raw_target_code(ReleaseLock, [])],
AssignOutputsList
]),
Ending_C_Code = [raw_target_code("}\n", [])]
;
OrdinaryKind = kind_failure,
% We need to treat this case separately, because for these
% foreign_procs the C code fragment won't assign anything
% SUCCESS_INDICATOR; the code we generate for CanSucceed = yes
% would test an undefined value.
ml_success_lval(!.Info, SucceededLval),
Starting_C_Code = list__condense([
[raw_target_code("{\n", [])],
HashDefine,
ArgDeclsList,
[raw_target_code("\n", [])],
AssignInputsList,
[raw_target_code(ObtainLock, []),
raw_target_code("\t\t{\n", []),
user_target_code(C_Code, yes(Context), []),
raw_target_code("\n\t\t;}\n", []),
raw_target_code("#undef MR_PROC_LABEL\n", []),
raw_target_code(ReleaseLock, [])]
]),
Ending_C_Code = [
target_code_output(SucceededLval),
raw_target_code(" = MR_FALSE;\n", []),
raw_target_code("}\n", [])
]
;
OrdinaryKind = kind_semi,
ml_success_lval(!.Info, SucceededLval),
Starting_C_Code = list__condense([
[raw_target_code("{\n", [])],
HashDefine,
ArgDeclsList,
[raw_target_code("\tMR_bool SUCCESS_INDICATOR;\n", []),
raw_target_code("\n", [])],
AssignInputsList,
[raw_target_code(ObtainLock, []),
raw_target_code("\t\t{\n", []),
user_target_code(C_Code, yes(Context), []),
raw_target_code("\n\t\t;}\n", []),
raw_target_code("#undef MR_PROC_LABEL\n", []),
raw_target_code(ReleaseLock, []),
raw_target_code("\tif (SUCCESS_INDICATOR) {\n", [])],
AssignOutputsList
]),
Ending_C_Code = [
raw_target_code("\t}\n", []),
target_code_output(SucceededLval),
raw_target_code(" = SUCCESS_INDICATOR;\n", []),
raw_target_code("}\n", [])
]
),
Starting_C_Code_Stmt = inline_target_code(lang_C, Starting_C_Code),
Ending_C_Code_Stmt = inline_target_code(lang_C, Ending_C_Code),
Starting_C_Code_Statement = mlds__statement(
atomic(Starting_C_Code_Stmt), mlds__make_context(Context)),
Ending_C_Code_Statement = mlds__statement(atomic(Ending_C_Code_Stmt),
mlds__make_context(Context)),
Statements = list__condense([
[Starting_C_Code_Statement],
ConvStatements,
[Ending_C_Code_Statement]
]),
Decls = ConvDecls.
% Generate code fragments to obtain and release the global lock
% (this is used for ensuring thread safety in a concurrent
% implementation)
%
:- pred ml_gen_obtain_release_global_lock(ml_gen_info::in, thread_safe::in,
pred_id::in, string::out, string::out) is det.
ml_gen_obtain_release_global_lock(Info, ThreadSafe, PredId,
ObtainLock, ReleaseLock) :-
ml_gen_info_get_module_info(Info, ModuleInfo),
module_info_globals(ModuleInfo, Globals),
globals__lookup_bool_option(Globals, parallel, Parallel),
(
Parallel = yes,
ThreadSafe = not_thread_safe
->
module_info_pred_info(ModuleInfo, PredId, PredInfo),
Name = pred_info_name(PredInfo),
c_util__quote_string(Name, MangledName),
string__append_list(["\tMR_OBTAIN_GLOBAL_LOCK(""",
MangledName, """);\n"], ObtainLock),
string__append_list(["\tMR_RELEASE_GLOBAL_LOCK(""",
MangledName, """);\n"], ReleaseLock)
;
ObtainLock = "",
ReleaseLock = ""
).
:- pred ml_gen_hash_define_mr_proc_label(ml_gen_info::in,
list(target_code_component)::out) is det.
ml_gen_hash_define_mr_proc_label(Info, HashDefine) :-
ml_gen_info_get_module_info(Info, ModuleInfo),
% Note that we use the pred_id and proc_id of the current procedure,
% not the one that the pragma foreign_code originally came from.
% There may not be any function address for the latter, e.g. if it
% has been inlined and the original definition optimized away.
ml_gen_info_get_pred_id(Info, PredId),
ml_gen_info_get_proc_id(Info, ProcId),
ml_gen_proc_label(ModuleInfo, PredId, ProcId, Name, Module),
HashDefine = [raw_target_code("#define MR_PROC_LABEL ", []),
name(qual(Module, module_qual, Name)),
raw_target_code("\n", [])].
:- func get_target_code_attributes(foreign_language,
pragma_foreign_proc_extra_attributes) = target_code_attributes.
get_target_code_attributes(_, []) = [].
get_target_code_attributes(Lang, [backend(_Backend) | Attrs]) =
get_target_code_attributes(Lang, Attrs).
get_target_code_attributes(Lang, [max_stack_size(N) | Attrs]) =
( Lang = il ->
[max_stack_size(N) | get_target_code_attributes(Lang, Attrs)]
;
[]
).
%---------------------------------------------------------------------------%
% ml_gen_pragma_c_decls generates C code to declare the arguments
% for a `pragma foreign_proc' declaration.
%
:- pred ml_gen_pragma_c_decls(ml_gen_info::in, foreign_language::in,
list(foreign_arg)::in, list(target_code_component)::out) is det.
% XXX Maybe this ought to be renamed as it works for, and
% is used by the Java back-end as well.
%
ml_gen_pragma_c_decls(_, _, [], []).
ml_gen_pragma_c_decls(Info, Lang, [Arg | Args], [Decl | Decls]) :-
ml_gen_pragma_c_decl(Info, Lang, Arg, Decl),
ml_gen_pragma_c_decls(Info, Lang, Args, Decls).
% ml_gen_pragma_c_decl generates C code to declare an argument
% of a `pragma foreign_proc' declaration.
%
:- pred ml_gen_pragma_c_decl(ml_gen_info::in, foreign_language::in,
foreign_arg::in, target_code_component::out) is det.
ml_gen_pragma_c_decl(Info, Lang, foreign_arg(_Var, MaybeNameAndMode, Type),
Decl) :-
ml_gen_info_get_module_info(Info, ModuleInfo),
(
MaybeNameAndMode = yes(ArgName - _Mode),
\+ var_is_singleton(ArgName)
->
TypeString = foreign__to_type_string(Lang, ModuleInfo, Type),
string__format("\t%s %s;\n", [s(TypeString), s(ArgName)],
DeclString)
;
% if the variable doesn't occur in the ArgNames list,
% it can't be used, so we just ignore it
DeclString = ""
),
Decl = raw_target_code(DeclString, []).
%-----------------------------------------------------------------------------%
% var_is_singleton determines whether or not a given pragma_c variable
% is singleton (i.e. starts with an underscore)
%
% Singleton vars should be ignored when generating the declarations for
% pragma_c arguments because:
%
% - they should not appear in the C code
% - they could clash with the system name space
%
:- pred var_is_singleton(string::in) is semidet.
var_is_singleton(Name) :-
string__first_char(Name, '_', _).
%-----------------------------------------------------------------------------%
% XXX Maybe this ought to be renamed as it works for, and
% is used by the Java back-end as well.
%
:- pred ml_gen_pragma_c_input_arg_list(foreign_language::in,
list(foreign_arg)::in, list(target_code_component)::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_pragma_c_input_arg_list(Lang, ArgList, AssignInputs, !Info) :-
list__map_foldl(ml_gen_pragma_c_input_arg(Lang), ArgList,
AssignInputsList, !Info),
list__condense(AssignInputsList, AssignInputs).
% ml_gen_pragma_c_input_arg generates C code to assign the value of an
% input arg for a `pragma foreign_proc' declaration.
%
:- pred ml_gen_pragma_c_input_arg(foreign_language::in, foreign_arg::in,
list(target_code_component)::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_pragma_c_input_arg(Lang, ForeignArg, AssignInput, !Info) :-
ml_gen_info_get_module_info(!.Info, ModuleInfo),
(
ForeignArg = foreign_arg(Var, MaybeNameAndMode, OrigType),
MaybeNameAndMode = yes(ArgName - Mode),
\+ var_is_singleton(ArgName),
mode_to_arg_mode(ModuleInfo, Mode, OrigType, top_in)
->
ml_gen_pragma_c_gen_input_arg(Lang, Var, ArgName, OrigType,
AssignInput, !Info)
;
% If the variable doesn't occur in the ArgNames list,
% it can't be used, so we just ignore it.
AssignInput = []
).
:- pred ml_gen_pragma_c_gen_input_arg(foreign_language::in, prog_var::in,
string::in, prog_type::in, list(target_code_component)::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_pragma_c_gen_input_arg(Lang, Var, ArgName, OrigType, AssignInput,
!Info) :-
ml_variable_type(!.Info, Var, VarType),
ml_gen_var(!.Info, Var, VarLval),
( type_util__is_dummy_argument_type(VarType) ->
% The variable may not have been declared, so we need
% to generate a dummy value for it. Using `0' here
% is more efficient than using private_builtin__dummy_var,
% which is what ml_gen_var will have generated for this
% variable.
ArgRval = const(int_const(0))
;
ml_gen_box_or_unbox_rval(VarType, OrigType, lval(VarLval),
ArgRval, !Info)
),
% At this point we have an rval with the right type for
% *internal* use in the code generated by the Mercury
% compiler's MLDS back-end. We need to convert this to
% the appropriate type to use for the C interface.
ml_gen_info_get_module_info(!.Info, ModuleInfo),
ExportedType = foreign__to_exported_type(ModuleInfo, OrigType),
TypeString = foreign__to_type_string(Lang, ExportedType),
IsForeign = foreign__is_foreign_type(ExportedType),
(
(
Lang = java,
MaybeCast = no
;
Lang = c,
IsForeign = no,
MaybeCast = no
;
Lang = c,
IsForeign = yes(Assertions),
list__member(can_pass_as_mercury_type, Assertions),
MaybeCast = yes("(" ++ TypeString ++ ") ")
)
->
% In the usual case, we can just use an assignment
% and perhaps a cast.
module_info_globals(ModuleInfo, Globals),
globals__lookup_bool_option(Globals, highlevel_data,
HighLevelData),
(
HighLevelData = yes,
% In general, the types used for the C
% interface are not the same as the types
% used by --high-level-data, so we always
% use a cast here.
% (Strictly speaking the cast is not needed for
% a few cases like `int', but it doesn't do
% any harm.)
string__format("(%s)", [s(TypeString)], Cast)
;
HighLevelData = no,
% For --no-high-level-data, we only need to use
% a cast is for polymorphic types, which are
% `Word' in the C interface but `MR_Box' in the
% MLDS back-end.
% Except for MC++, where polymorphic types
% are MR_Box.
(
prog_type__var(OrigType, _),
Lang \= managed_cplusplus
->
Cast = "(MR_Word) "
;
MaybeCast = yes(CastPrime)
->
Cast = CastPrime
;
Cast = ""
)
),
string__format("\t%s = %s\n", [s(ArgName), s(Cast)],
AssignToArgName),
AssignInput = [
raw_target_code(AssignToArgName, []),
target_code_input(ArgRval),
raw_target_code(";\n", [])
]
;
% For foreign types,
% we need to call MR_MAYBE_UNBOX_FOREIGN_TYPE
% XXX not if can_pass_as_mercury_type is set
AssignInput = [
raw_target_code("\tMR_MAYBE_UNBOX_FOREIGN_TYPE("
++ TypeString ++ ", ", []),
target_code_input(ArgRval),
raw_target_code(", " ++ ArgName ++ ");\n", [])
]
).
:- pred ml_gen_pragma_java_output_arg_list(foreign_language::in,
list(foreign_arg)::in, prog_context::in, mlds__statements::out,
mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_pragma_java_output_arg_list(_, [], _, [], [], [], !Info).
ml_gen_pragma_java_output_arg_list(Lang, [Java_Arg | Java_Args], Context,
Statements, ConvDecls, ConvStatements, !Info) :-
ml_gen_pragma_java_output_arg(Lang, Java_Arg, Context, Statements1,
ConvDecls1, ConvStatements1, !Info),
ml_gen_pragma_java_output_arg_list(Lang, Java_Args, Context,
Statements2, ConvDecls2, ConvStatements2, !Info),
Statements = Statements1 ++ Statements2,
ConvDecls = ConvDecls1 ++ ConvDecls2,
ConvStatements = ConvStatements1 ++ ConvStatements2.
% ml_gen_pragma_java_output_arg generates MLDS statements to
% assign the value of an output arg for a `pragma foreign_proc'
% declaration.
%
:- pred ml_gen_pragma_java_output_arg(foreign_language::in,
foreign_arg::in, prog_context::in, mlds__statements::out,
mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_pragma_java_output_arg(_Lang, ForeignArg, Context, AssignOutput,
ConvDecls, ConvOutputStatements, !Info) :-
ForeignArg = foreign_arg(Var, MaybeNameAndMode, OrigType),
ml_gen_info_get_module_info(!.Info, ModuleInfo),
(
MaybeNameAndMode = yes(ArgName - Mode),
not var_is_singleton(ArgName),
not type_util__is_dummy_argument_type(OrigType),
mode_to_arg_mode(ModuleInfo, Mode, OrigType, top_out)
->
% Create a target lval with the right type for *internal*
% use in the code generated by the Mercury compiler's
% MLDS back-end.
ml_variable_type(!.Info, Var, VarType),
ml_gen_var(!.Info, Var, VarLval),
ml_gen_box_or_unbox_lval(VarType, OrigType, VarLval,
mlds__var_name(ArgName, no), Context, no, 0,
ArgLval, ConvDecls, _ConvInputStatements,
ConvOutputStatements, !Info),
% This is the MLDS type of the original argument, which
% we need to cast the local (Java) representation of
% the argument back to.
MLDSType = mercury_type_to_mlds_type(ModuleInfo, OrigType),
% Construct an MLDS lval for the local Java representation
% of the argument.
module_info_name(ModuleInfo, ModuleName),
MLDSModuleName = mercury_module_name_to_mlds(ModuleName),
NonMangledVarName = mlds__var_name(ArgName, no),
QualLocalVarName = qual(MLDSModuleName, module_qual,
NonMangledVarName),
% XXX MLDSType is the incorrect type for this variable.
% It should have the Java foreign language representation
% of that type. Unfortunately this is not easily expressed
% as an mlds__type.
LocalVarLval = var(QualLocalVarName, MLDSType),
% We cast this variable back to the corresponding
% MLDS type before assigning it to the lval
Rval = unop(cast(MLDSType), lval(LocalVarLval)),
AssignOutput = [ml_gen_assign(ArgLval, Rval, Context)]
;
% if the variable doesn't occur in the ArgNames list,
% it can't be used, so we just ignore it
AssignOutput = [],
ConvDecls = [],
ConvOutputStatements = []
).
:- pred ml_gen_pragma_c_output_arg_list(foreign_language::in,
list(foreign_arg)::in, prog_context::in,
list(target_code_component)::out, mlds__defns::out,
mlds__statements::out, ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_pragma_c_output_arg_list(_, [], _, [], [], [], !Info).
ml_gen_pragma_c_output_arg_list(Lang, [ForeignArg | ForeignArgs], Context,
Components, ConvDecls, ConvStatements, !Info) :-
ml_gen_pragma_c_output_arg(Lang, ForeignArg, Context, Components1,
ConvDecls1, ConvStatements1, !Info),
ml_gen_pragma_c_output_arg_list(Lang, ForeignArgs, Context,
Components2, ConvDecls2, ConvStatements2, !Info),
Components = list__append(Components1, Components2),
ConvDecls = list__append(ConvDecls1, ConvDecls2),
ConvStatements = list__append(ConvStatements1, ConvStatements2).
% ml_gen_pragma_c_output_arg generates C code to assign the value of an output
% arg for a `pragma foreign_proc' declaration.
%
:- pred ml_gen_pragma_c_output_arg(foreign_language::in, foreign_arg::in,
prog_context::in, list(target_code_component)::out,
mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_pragma_c_output_arg(Lang, foreign_arg(Var, MaybeNameAndMode, OrigType),
Context, AssignOutput, ConvDecls, ConvOutputStatements,
!Info) :-
ml_gen_info_get_module_info(!.Info, ModuleInfo),
(
MaybeNameAndMode = yes(ArgName - Mode),
\+ var_is_singleton(ArgName),
\+ type_util__is_dummy_argument_type(OrigType),
mode_to_arg_mode(ModuleInfo, Mode, OrigType, top_out)
->
ml_gen_pragma_c_gen_output_arg(Lang, Var, ArgName, OrigType,
Context, AssignOutput, ConvDecls, ConvOutputStatements,
!Info)
;
% if the variable doesn't occur in the ArgNames list,
% it can't be used, so we just ignore it
AssignOutput = [],
ConvDecls = [],
ConvOutputStatements = []
).
:- pred ml_gen_pragma_c_gen_output_arg(foreign_language::in, prog_var::in,
string::in, prog_type::in, prog_context::in,
list(target_code_component)::out, mlds__defns::out,
mlds__statements::out, ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_pragma_c_gen_output_arg(Lang, Var, ArgName, OrigType, Context,
AssignOutput, ConvDecls, ConvOutputStatements, !Info) :-
ml_variable_type(!.Info, Var, VarType),
ml_gen_var(!.Info, Var, VarLval),
ml_gen_box_or_unbox_lval(VarType, OrigType, VarLval,
mlds__var_name(ArgName, no), Context, no, 0,
ArgLval, ConvDecls, _ConvInputStatements,
ConvOutputStatements, !Info),
% At this point we have an lval with the right type for
% *internal* use in the code generated by the Mercury
% compiler's MLDS back-end. We need to convert this to
% the appropriate type to use for the C interface.
ml_gen_info_get_module_info(!.Info, ModuleInfo),
ExportedType = foreign__to_exported_type(ModuleInfo, OrigType),
TypeString = foreign__to_type_string(Lang, ExportedType),
IsForeign = foreign__is_foreign_type(ExportedType),
(
(
Lang = java,
IsForeign = no,
Cast = no
;
Lang = c,
IsForeign = no,
Cast = no
;
Lang = c,
IsForeign = yes(Assertions),
list__member(can_pass_as_mercury_type, Assertions),
Cast = yes
)
->
% In the usual case, we can just use an assignment,
% perhaps with a cast.
module_info_globals(ModuleInfo, Globals),
globals__lookup_bool_option(Globals, highlevel_data,
HighLevelData),
(
HighLevelData = yes,
% In general, the types used for the C interface
% are not the same as the types used by
% --high-level-data, so we always use a cast here.
% (Strictly speaking the cast is not needed for
% a few cases like `int', but it doesn't do any harm.)
% Note that we can't easily obtain the type string
% for the RHS of the assignment, so instead we cast
% the LHS.
string__format("*(%s *)&", [s(TypeString)], LHS_Cast),
RHS_Cast = ""
;
HighLevelData = no,
% For --no-high-level-data, we only need to use
% a cast is for polymorphic types, which are
% `Word' in the C interface but `MR_Box' in the
% MLDS back-end.
(
( prog_type__var(OrigType, _)
; Cast = yes
)
->
RHS_Cast = "(MR_Box) "
;
RHS_Cast = ""
),
LHS_Cast = ""
),
string__format(" = %s%s;\n", [s(RHS_Cast),
s(ArgName)], AssignFromArgName),
string__format("\t%s\n", [s(LHS_Cast)], AssignTo),
AssignOutput = [
raw_target_code(AssignTo, []),
target_code_output(ArgLval),
raw_target_code(AssignFromArgName, [])
]
;
% For foreign types, we need to call MR_MAYBE_BOX_FOREIGN_TYPE.
AssignOutput = [
raw_target_code("\tMR_MAYBE_BOX_FOREIGN_TYPE("
++ TypeString ++ ", " ++ ArgName ++
", ", []),
target_code_output(ArgLval),
raw_target_code(");\n", [])
]
).
% :- end_module ml_foreign.
%-----------------------------------------------------------------------------%
%
% Code for if-then-else
%
:- pred ml_gen_ite(code_model::in, hlds_goal::in, hlds_goal::in, hlds_goal::in,
prog_context::in, mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_ite(CodeModel, Cond, Then, Else, Context, Decls, Statements, !Info) :-
Cond = _ - CondGoalInfo,
goal_info_get_code_model(CondGoalInfo, CondCodeModel),
(
% model_det Cond:
% <(Cond -> Then ; Else)>
% ===>
% <Cond>
% <Then>
CondCodeModel = model_det,
ml_gen_goal(model_det, Cond, CondStatement, !Info),
ml_gen_goal(CodeModel, Then, ThenStatement, !Info),
Decls = [],
Statements = [CondStatement, ThenStatement]
;
% model_semi cond:
% <(Cond -> Then ; Else)>
% ===>
% MR_bool succeeded;
%
% <succeeded = Cond>
% if (succeeded) {
% <Then>
% } else {
% <Else>
% }
CondCodeModel = model_semi,
ml_gen_goal(model_semi, Cond, CondDecls, CondStatements, !Info),
ml_gen_test_success(!.Info, Succeeded),
ml_gen_goal(CodeModel, Then, ThenStatement, !Info),
ml_gen_goal(CodeModel, Else, ElseStatement, !Info),
IfStmt = if_then_else(Succeeded, ThenStatement,
yes(ElseStatement)),
IfStatement = mlds__statement(IfStmt,
mlds__make_context(Context)),
Decls = CondDecls,
Statements = list__append(CondStatements,
[IfStatement])
;
% /*
% ** XXX The following transformation does not do as
% ** good a job of GC as it could. Ideally we ought
% ** to ensure that stuff used only in the `Else' part
% ** will be reclaimed if a GC occurs during the `Then'
% ** part. But that is a bit tricky to achieve.
% */
%
% model_non cond:
% <(Cond -> Then ; Else)>
% ===>
% MR_bool cond_<N>;
%
% void then_func() {
% cond_<N> = MR_TRUE;
% <Then>
% }
%
% cond_<N> = MR_FALSE;
% <Cond && then_func()>
% if (!cond_<N>) {
% <Else>
% }
% except that we hoist any declarations generated
% for <Cond> to the top of the scope, so that they
% are in scope for the <Then> goal
% (this is needed for declarations of static consts)
CondCodeModel = model_non,
% generate the `cond_<N>' var and the code to initialize it to false
ml_gen_info_new_cond_var(CondVar, !Info),
MLDS_Context = mlds__make_context(Context),
CondVarDecl = ml_gen_cond_var_decl(CondVar, MLDS_Context),
ml_gen_set_cond_var(!.Info, CondVar, const(false), Context,
SetCondFalse),
% allocate a name for the `then_func'
ml_gen_new_func_label(no, ThenFuncLabel, ThenFuncLabelRval,
!Info),
% generate <Cond && then_func()>
ml_get_env_ptr(!.Info, EnvPtrRval),
SuccessCont = success_cont(ThenFuncLabelRval, EnvPtrRval,
[], []),
ml_gen_info_push_success_cont(SuccessCont, !Info),
ml_gen_goal(model_non, Cond, CondDecls, CondStatements, !Info),
ml_gen_info_pop_success_cont(!Info),
% generate the `then_func'
/* push nesting level */
Then = _ - ThenGoalInfo,
goal_info_get_context(ThenGoalInfo, ThenContext),
ml_gen_set_cond_var(!.Info, CondVar, const(true), ThenContext,
SetCondTrue),
ml_gen_goal(CodeModel, Then, ThenStatement, !Info),
ThenFuncBody = ml_gen_block([],
[SetCondTrue, ThenStatement], ThenContext),
/* pop nesting level */
ml_gen_nondet_label_func(!.Info, ThenFuncLabel, ThenContext,
ThenFuncBody, ThenFunc),
% generate `if (!cond_<N>) { <Else> }'
ml_gen_test_cond_var(!.Info, CondVar, CondSucceeded),
ml_gen_goal(CodeModel, Else, ElseStatement, !Info),
IfStmt = if_then_else(unop(std_unop(not), CondSucceeded),
ElseStatement, no),
IfStatement = mlds__statement(IfStmt, MLDS_Context),
% package it all up in the right order
Decls = list__append([CondVarDecl | CondDecls], [ThenFunc]),
Statements = list__append(
[SetCondFalse | CondStatements], [IfStatement])
).
%-----------------------------------------------------------------------------%
%
% Code for negation
%
:- pred ml_gen_negation(hlds_goal::in, code_model::in, prog_context::in,
mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_negation(Cond, CodeModel, Context, Decls, Statements, !Info) :-
Cond = _ - CondGoalInfo,
goal_info_get_code_model(CondGoalInfo, CondCodeModel),
(
% model_det negation:
% <not(Goal)>
% ===>
% {
% MR_bool succeeded;
% <succeeded = Goal>
% /* now ignore the value of succeeded,
% which we know will be MR_FALSE */
% }
CodeModel = model_det,
ml_gen_goal(model_semi, Cond, Decls, Statements, !Info)
;
% model_semi negation, model_det goal:
% <succeeded = not(Goal)>
% ===>
% <do Goal>
% succeeded = MR_FALSE;
CodeModel = model_semi, CondCodeModel = model_det,
ml_gen_goal(model_det, Cond, CondDecls, CondStatements, !Info),
ml_gen_set_success(!.Info, const(false), Context,
SetSuccessFalse),
Decls = CondDecls,
Statements = list__append(CondStatements, [SetSuccessFalse])
;
% model_semi negation, model_semi goal:
% <succeeded = not(Goal)>
% ===>
% <succeeded = Goal>
% succeeded = !succeeded;
CodeModel = model_semi, CondCodeModel = model_semi,
ml_gen_goal(model_semi, Cond, CondDecls, CondStatements,
!Info),
ml_gen_test_success(!.Info, Succeeded),
ml_gen_set_success(!.Info, unop(std_unop(not), Succeeded),
Context, InvertSuccess),
Decls = CondDecls,
Statements = list__append(CondStatements, [InvertSuccess])
;
CodeModel = model_semi, CondCodeModel = model_non,
error("ml_gen_negation: nondet cond")
;
CodeModel = model_non,
error("ml_gen_negation: nondet negation")
).
%-----------------------------------------------------------------------------%
%
% Code for conjunctions
%
:- pred ml_gen_conj(hlds_goals::in, code_model::in, prog_context::in,
mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
ml_gen_conj([], CodeModel, Context, [], Statements, !Info) :-
ml_gen_success(CodeModel, Context, Statements, !Info).
ml_gen_conj([SingleGoal], CodeModel, _Context, Decls, Statements, !Info) :-
ml_gen_goal(CodeModel, SingleGoal, Decls, Statements, !Info).
ml_gen_conj([First | Rest], CodeModel, Context, Decls, Statements, !Info) :-
Rest = [_ | _],
First = _ - FirstGoalInfo,
goal_info_get_determinism(FirstGoalInfo, FirstDeterminism),
( determinism_components(FirstDeterminism, _, at_most_zero) ->
% the `Rest' code is unreachable
ml_gen_goal(CodeModel, First, Decls, Statements, !Info)
;
determinism_to_code_model(FirstDeterminism, FirstCodeModel),
DoGenFirst = ml_gen_goal(FirstCodeModel, First),
DoGenRest = ml_gen_conj(Rest, CodeModel, Context),
ml_combine_conj(FirstCodeModel, Context, DoGenFirst, DoGenRest,
Decls, Statements, !Info)
).
%-----------------------------------------------------------------------------%
%
% Code for disjunctions
%
:- pred ml_gen_disj(hlds_goals::in, code_model::in, prog_context::in,
mlds__defns::out, mlds__statements::out,
ml_gen_info::in, ml_gen_info::out) is det.
%
% handle empty disjunctions (a.ka. `fail')
%
ml_gen_disj([], CodeModel, Context, [], Statements, !Info) :-
ml_gen_failure(CodeModel, Context, Statements, !Info).
%
% handle singleton disjunctions
% (the HLDS should not contain singleton disjunctions,
% but this code is needed to handle recursive calls to ml_gen_disj)
% Note that each arm of the model_non disjunction is placed into
% a block. This avoids a problem where ml_join_decls can create
% block nesting proportional to the size of the disjunction.
% The nesting can hit fixed limit problems in some C compilers.
%
ml_gen_disj([SingleGoal], CodeModel, Context, [], [Statement], !Info) :-
ml_gen_goal(CodeModel, SingleGoal, Goal_Decls, Goal_Statements, !Info),
Statement = ml_gen_block(Goal_Decls, Goal_Statements, Context).
ml_gen_disj([First | Rest], CodeModel, Context, Decls, Statements, !Info) :-
Rest = [_ | _],
( CodeModel = model_non ->
%
% model_non disj:
%
% <(Goal ; Goals) && SUCCEED()>
% ===>
% <Goal && SUCCEED()>
% <Goals && SUCCEED()>
%
ml_gen_goal(model_non, First, FirstDecls, FirstStatements,
!Info),
ml_gen_disj(Rest, model_non, Context,
RestDecls, RestStatements, !Info),
(
RestDecls = []
->
FirstBlock = ml_gen_block(FirstDecls,
FirstStatements, Context),
Decls = [],
Statements = [FirstBlock | RestStatements]
;
error("ml_gen_disj: RestDecls not empty.")
)
; /* CodeModel is model_det or model_semi */
%
% model_det/model_semi disj:
%
% model_det goal:
% <Goal ; Goals>
% ===>
% <Goal>
% /* <Goals> will never be reached */
%
% model_semi goal:
% <Goal ; Goals>
% ===>
% {
% MR_bool succeeded;
%
% <succeeded = Goal>;
% if (!succeeded) {
% <Goals>;
% }
% }
%
First = _ - FirstGoalInfo,
goal_info_get_code_model(FirstGoalInfo, FirstCodeModel),
(
FirstCodeModel = model_det,
ml_gen_goal(model_det, First, Decls, Statements, !Info)
;
FirstCodeModel = model_semi,
ml_gen_goal(model_semi, First,
FirstDecls, FirstStatements, !Info),
ml_gen_test_success(!.Info, Succeeded),
ml_gen_disj(Rest, CodeModel, Context,
RestDecls, RestStatements, !Info),
RestStatement = ml_gen_block(RestDecls,
RestStatements, Context),
IfStmt = if_then_else(unop(std_unop(not), Succeeded),
RestStatement, no),
IfStatement = mlds__statement(IfStmt,
mlds__make_context(Context)),
Decls = FirstDecls,
Statements = list__append(FirstStatements,
[IfStatement])
;
FirstCodeModel = model_non,
% simplify.m should get wrap commits around these
error("model_non disj in model_det disjunction")
)
).
%-----------------------------------------------------------------------------%
%
% Code for handling attributes
%
:- func attributes_to_mlds_attributes(module_info, list(hlds_pred__attribute))
= list(mlds__attribute).
attributes_to_mlds_attributes(ModuleInfo, Attrs) =
list__map(attribute_to_mlds_attribute(ModuleInfo), Attrs).
:- func attribute_to_mlds_attribute(module_info, hlds_pred__attribute)
= mlds__attribute.
attribute_to_mlds_attribute(ModuleInfo, custom(Type)) =
custom(mercury_type_to_mlds_type(ModuleInfo, Type)).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "ml_code_gen.m".
:- end_module ml_code_gen.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%