mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-21 00:39:37 +00:00
Estimated hours taken: 12
Branches: main
Replace the some() HLDS goal with a more general scope() goal, which can be
used not just for existential quantification but also for other purposes.
The main such purposes are new goal types that allow the programmer
to annotate arbitrary goals, and not just whole procedure bodies, with the
equivalents of promise_pure/promise_semipure and promise_only_solution:
promise_pure ( <impure/semipure goal> )
promise_semipure ( <impure goal> )
promise_equivalent_solutions [OutVar1, OutVar2] (
<cc_multi/cc_nondet goal that computed OutVar1 & OutVar2>
)
Both are intended to be helpful in writing constraint solvers, as well as in
other situations.
doc/reference_manual.texi:
Document the new constructs.
library/ops.m:
Add the keywords of the new constructs to the list of operators.
Since they work similarly to the "some" operator, they have the same
precedence.
compiler/hlds_goal.m:
Replace the some(Vars, SubGoal) HLDS construct, with its optional
keep_this_commit attribute, with the new scope(Reason, SubGoal)
construct. The Reason argument may say that this scope is an
existential quantification, but it can also say that it represents
a purity promise, the introduction of a single-solution context
with promise_equivalent_solutions, or a decision by a compiler pass.
It can also say that the scope represents a set of goals that all arise
from the unraveling of a unification between a variable and a ground
term. This was intended to speed up mode checking by significantly
reducing the number of delays and wakeups, but the cost of the scopes
themselves turned out to be bigger than the gain in modechecking speed.
Update the goal_path_step type to refer to scope goals instead of just
existential quantification.
compiler/prog_data.m:
Add new function symbols to the type we use to represent goals in items
to stand for the new Mercury constructs.
compiler/prog_io_goal.m:
Add code to read in the new language constructs.
compiler/prog_io_util.m:
Add a utility predicate for use by the new code in prog_io_goal.m.
compiler/make_hlds.m:
Convert the item representation of the new constructs to the HLDS
representation.
Document how the from_ground_term scope reason would work, but do not
enable the code.
compiler/purity.m:
When checking the purity of goals, respect the new promise_pure and
promise_semipure scopes. Generate warnings if such scopes are
redundant.
compiler/det_analysis.m:
Make the insides of promise_equivalent_solutions goals single solution
contexts.
compiler/det_report.m:
Provide mechanisms for reporting inappropriate usage of
promise_equivalent_solutions goals.
compiler/instmap.m:
Add a utility predicate for use by one of the modules above.
compiler/deep_profiling.m:
Use one of the new scope reasons to prevent simplify from optimizing
away commits of goals that have been made impure, instead of the old
keep_this_commit goal feature.
compiler/modes.m:
Handle from_ground_term scopes when present; for now, they won't be
present, since make_hlds isn't creating them.
compiler/options.m:
Add two new compiler options, for use by implementors only, to allow
finer control over the amount of output one gets with --debug-modes.
(I used them when debugging the performance of the from_ground_term
scope reason.) The options are --debug-modes-minimal and
--debug-modes-verbose.
compiler/handle_options.m:
Make the options that are meaningful only in the presence of
--debug-modes imply --debug-modes, since this allows more convenient
(shorter) invocations.
compiler/mode_debug.m:
Respect the new options when deciding how much data to print
when debugging of the mode checking process is enabled.
compiler/switch_detect.m:
Rename a predicate to make it differ from another predicate by more
than just its arity.
compiler/passes_aux.m:
Bring this module up to date with our current style guidelines,
by using state variable syntax where appropriate.
compiler/*.m:
Minor changes to conform to the change in the HLDS and/or parse tree
goal type.
mdbcomp/program_representation.m:
Rename the some goal to the scope goal, and the same for path steps,
to keep them in sync with the HLDS.
browser/declarative_tree.m:
Conform to the change in goal representations.
tests/hard_coded/promise_equivalent_solutions_test.{m,exp}:
A new test case to test the handling of the
promise_equivalent_solutions construct.
tests/hard_coded/Mmakefile:
Enable the new test.
tests/hard_coded/purity/promise_pure_test.{m,exp}:
A new test case to test the handling of the promise_pure and
promise_semipure constructs.
tests/hard_coded/purity/Mmakefile:
Enable the new test.
tests/invalid/promise_equivalent_solutions.{m,err_exp}:
A new test case to test the error messages for improper use of the
promise_pure and promise_semipure constructs.
tests/invalid/Mmakefile:
Enable the new test.
1010 lines
35 KiB
Mathematica
1010 lines
35 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1994-2005 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Main author: conway.
|
|
|
|
:- module transform_hlds__inlining.
|
|
|
|
% This module inlines
|
|
%
|
|
% * (--inline-simple and --inline-simple-threshold N)
|
|
% procedures whose size is below the given threshold,
|
|
% PLUS
|
|
% procedures that are flat (ie contain no branched structures)
|
|
% and are composed of inline builtins (eg arithmetic),
|
|
% and whose size is less than three times the given threshold
|
|
% (XXX shouldn't hard-code 3)
|
|
%
|
|
% * (--inline-compound-threshold N)
|
|
% procedures where the product of the number of calls to them
|
|
% and their size is below a given threshold.
|
|
%
|
|
% * (--inline-single-use)
|
|
% procedures which are called only once
|
|
%
|
|
% * procedures which have a `:- pragma inline(name/arity).'
|
|
%
|
|
% It will not inline procedures which have a
|
|
% `:- pragma no_inline(name/arity).'
|
|
%
|
|
% If inlining a procedure takes the total number of variables over
|
|
% a given threshold (from a command-line option), then the procedure
|
|
% is not inlined - note that this means that some calls to a
|
|
% procedure may inlined while others are not.
|
|
%
|
|
% It builds the call-graph (if necessary) works from the bottom of
|
|
% the call-graph towards the top, first performing inlining on a
|
|
% procedure then deciding if calls to it (higher in the call-graph)
|
|
% should be inlined. SCCs get flattend and processed in the order
|
|
% returned by hlds_dependency_info_get_dependency_ordering.
|
|
%
|
|
% There are a couple of classes of procedure that we clearly want
|
|
% to inline because doing so *reduces* the size of the generated
|
|
% code:
|
|
%
|
|
% - access predicates that get or set one or more fields
|
|
% of a structure (Inlining these is almost always a win
|
|
% because the infrastructure for the call to the procedure
|
|
% is almost always larger than the code to do the access.
|
|
% In the case of `get' accessors, the call usually becomes
|
|
% a single `field' expression to get the relevant field of
|
|
% the structure. In the case of `set' accessors, it is a bit
|
|
% more complicated since the code to copy the fields can be
|
|
% quite big if there are lots of fields, however in the case
|
|
% where several `set' accessors get called one after the other,
|
|
% inlining them enables the code generator to avoid creating
|
|
% the intermediate structures which is often a win).
|
|
%
|
|
% - arithmetic predicates where as above, the cost of the
|
|
% call will often outweigh the cost of the arithmetic.
|
|
%
|
|
% - det or semi pragma C code, where often the C operation is
|
|
% very small, inlining avoids a call and allows the C compiler
|
|
% to do a better job of optimizing it.
|
|
%
|
|
% The threshold on the size of simple goals (which covers both of the
|
|
% first two cases above), is to prevent the inlining of large goals
|
|
% such as those that construct big terms where the duplication is
|
|
% usually inappropriate (for example in nrev).
|
|
%
|
|
% The threshold on the number of variables in a procedure is to prevent
|
|
% the problem of inlining lots of calls and having a resulting
|
|
% procedure with so many variables that the back end of the compiler
|
|
% gets bogged down (for example in the pseudoknot benchmark).
|
|
%
|
|
% Due to the way in which we generate code for model_non
|
|
% pragma_foreign_code, procedures whose body is such a
|
|
% pragma_foreign_code must NOT be inlined.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- interface.
|
|
|
|
:- import_module hlds__hlds_goal.
|
|
:- import_module hlds__hlds_module.
|
|
:- import_module hlds__hlds_pred.
|
|
:- import_module parse_tree__prog_data.
|
|
|
|
:- import_module bool.
|
|
:- import_module io.
|
|
:- import_module list.
|
|
:- import_module map.
|
|
|
|
:- pred inlining(module_info::in, module_info::out, io::di, io::uo) is det.
|
|
|
|
:- pred inlining__is_simple_clause_list(list(clause)::in, int::in) is semidet.
|
|
|
|
:- pred inlining__is_simple_goal(hlds_goal::in, int::in) is semidet.
|
|
|
|
% inlining__do_inline_call(UnivQVars, Args,
|
|
% CalledPredInfo, CalledProcInfo,
|
|
% VarSet0, VarSet, VarTypes0, VarTypes, TVarSet0, TVarSet,
|
|
% TypeInfoMap0, TypeInfoMap).
|
|
%
|
|
% Given the universally quantified type variables in the caller's
|
|
% type, the arguments to the call, the pred_info and proc_info
|
|
% for the called goal and various information about the variables
|
|
% and types in the procedure currently being analysed, rename the
|
|
% goal for the called procedure so that it can be inlined.
|
|
:- pred inlining__do_inline_call(list(tvar)::in, list(prog_var)::in,
|
|
pred_info::in, proc_info::in, prog_varset::in, prog_varset::out,
|
|
vartypes::in, vartypes::out, tvarset::in, tvarset::out,
|
|
map(tvar, type_info_locn)::in, map(tvar, type_info_locn)::out,
|
|
hlds_goal::out) is det.
|
|
|
|
% inlining__get_type_substitution(CalleeArgTypes, CallerArgTypes,
|
|
% HeadTypeParams, CalleeExistQTVars, TypeSubn).
|
|
%
|
|
% Work out a type substitution to map the callee's argument
|
|
% types into the caller's.
|
|
:- pred inlining__get_type_substitution(list(type)::in, list(type)::in,
|
|
head_type_params::in, list(tvar)::in, map(tvar, type)::out) is det.
|
|
|
|
% inlining__rename_goal(CalledProcHeadVars, CallArgs,
|
|
% CallerVarSet0, CalleeVarSet, CallerVarSet,
|
|
% CallerVarTypes0, CalleeVarTypes, CallerVarTypes,
|
|
% VarRenaming, CalledGoal, RenamedGoal).
|
|
:- pred inlining__rename_goal(list(prog_var)::in, list(prog_var)::in,
|
|
prog_varset::in, prog_varset::in, prog_varset::out,
|
|
vartypes::in, vartypes::in, vartypes::out,
|
|
map(prog_var, prog_var)::out, hlds_goal::in, hlds_goal::out) is det.
|
|
|
|
% inlining__can_inline_proc(PredId, ProcId, BuiltinState,
|
|
% InlinePromisedPure, CallingPredMarkers, ModuleInfo).
|
|
%
|
|
% Determine whether a predicate can be inlined.
|
|
:- pred inlining__can_inline_proc(pred_id::in, proc_id::in, builtin_state::in,
|
|
bool::in, pred_markers::in, module_info::in) is semidet.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
% Parse tree modules
|
|
:- import_module parse_tree__prog_data.
|
|
|
|
% HLDS modules
|
|
:- import_module check_hlds__det_analysis.
|
|
:- import_module check_hlds__mode_util.
|
|
:- import_module check_hlds__purity.
|
|
:- import_module check_hlds__type_util.
|
|
:- import_module hlds__goal_util.
|
|
:- import_module hlds__hlds_data.
|
|
:- import_module hlds__passes_aux.
|
|
:- import_module hlds__quantification.
|
|
:- import_module transform_hlds__complexity.
|
|
:- import_module transform_hlds__dead_proc_elim.
|
|
:- import_module transform_hlds__dependency_graph.
|
|
|
|
% Misc
|
|
:- import_module libs__globals.
|
|
:- import_module libs__options.
|
|
:- import_module libs__trace_params.
|
|
:- import_module mdbcomp__prim_data.
|
|
|
|
% Standard library modules
|
|
:- import_module assoc_list.
|
|
:- import_module bool.
|
|
:- import_module int.
|
|
:- import_module list.
|
|
:- import_module require.
|
|
:- import_module set.
|
|
:- import_module std_util.
|
|
:- import_module term.
|
|
:- import_module varset.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% this structure holds option values, extracted from the globals
|
|
:- type inline_params
|
|
---> params(
|
|
simple :: bool,
|
|
single_use :: bool,
|
|
size_threshold :: int,
|
|
simple_goal_threshold :: int,
|
|
var_threshold :: int,
|
|
highlevel_code :: bool,
|
|
any_tracing :: bool
|
|
% Is any procedure being traced
|
|
% in the module?
|
|
|
|
).
|
|
|
|
inlining(!ModuleInfo, !IO) :-
|
|
%
|
|
% Package up all the inlining options
|
|
% - whether to inline simple conj's of builtins
|
|
% - whether to inline predicates that are
|
|
% only called once
|
|
% - the threshold for determining whether to
|
|
% inline more complicated goals
|
|
% - the threshold for determining whether to
|
|
% inline the simple conj's
|
|
% - the upper limit on the number of variables
|
|
% we want in procedures - if inlining a procedure
|
|
% would cause the number of variables to exceed
|
|
% this threshold then we don't inline it.
|
|
% - whether we're in an MLDS grade
|
|
%
|
|
globals__io_get_globals(Globals, !IO),
|
|
globals__lookup_bool_option(Globals, inline_simple, Simple),
|
|
globals__lookup_bool_option(Globals, inline_single_use, SingleUse),
|
|
globals__lookup_int_option(Globals, inline_compound_threshold,
|
|
CompoundThreshold),
|
|
globals__lookup_int_option(Globals, inline_simple_threshold,
|
|
SimpleThreshold),
|
|
globals__lookup_int_option(Globals, inline_vars_threshold,
|
|
VarThreshold),
|
|
globals__lookup_bool_option(Globals, highlevel_code, HighLevelCode),
|
|
globals__io_get_trace_level(TraceLevel, !IO),
|
|
AnyTracing = bool__not(given_trace_level_is_none(TraceLevel)),
|
|
Params = params(Simple, SingleUse, CompoundThreshold,
|
|
SimpleThreshold, VarThreshold, HighLevelCode, AnyTracing),
|
|
|
|
%
|
|
% Get the usage counts for predicates
|
|
% (but only if needed, i.e. only if --inline-single-use
|
|
% or --inline-compound-threshold has been specified)
|
|
%
|
|
(
|
|
( SingleUse = yes
|
|
; CompoundThreshold > 0
|
|
)
|
|
->
|
|
dead_proc_elim__analyze(!.ModuleInfo, NeededMap)
|
|
;
|
|
map__init(NeededMap)
|
|
),
|
|
|
|
% build the call graph and extract the topological sort
|
|
% Note: the topological sort returns a list of SCCs.
|
|
% Clearly, we want to process the SCCs bottom to top
|
|
% (which is the order that they are returned), but it
|
|
% is not easy to guess the best way to flatten each SCC
|
|
% to achieve the best result. The current implementation
|
|
% just uses the ordering of the list returned by the
|
|
% topological sort. A more sophisticated approach would be
|
|
% to break the cycle so that the procedure(s) that are called
|
|
% by higher SCCs are processed last, but we do not implement
|
|
% that yet.
|
|
module_info_ensure_dependency_info(!ModuleInfo),
|
|
module_info_dependency_info(!.ModuleInfo, DepInfo),
|
|
hlds_dependency_info_get_dependency_ordering(DepInfo, SCCs),
|
|
list__condense(SCCs, PredProcs),
|
|
set__init(InlinedProcs0),
|
|
inlining__do_inlining(PredProcs, NeededMap, Params, InlinedProcs0,
|
|
!ModuleInfo, !IO),
|
|
|
|
% The dependency graph is now out of date and
|
|
% needs to be rebuilt.
|
|
module_info_clobber_dependency_info(!ModuleInfo).
|
|
|
|
:- pred inlining__do_inlining(list(pred_proc_id)::in, needed_map::in,
|
|
inline_params::in, set(pred_proc_id)::in,
|
|
module_info::in, module_info::out, io::di, io::uo) is det.
|
|
|
|
inlining__do_inlining([], _Needed, _Params, _Inlined, !Module, !IO).
|
|
inlining__do_inlining([PPId | PPIds], Needed, Params, !.Inlined, !Module,
|
|
!IO) :-
|
|
inlining__in_predproc(PPId, !.Inlined, Params, !Module, !IO),
|
|
inlining__mark_predproc(PPId, Needed, Params, !.Module, !Inlined, !IO),
|
|
inlining__do_inlining(PPIds, Needed, Params, !.Inlined, !Module, !IO).
|
|
|
|
:- pred inlining__mark_predproc(pred_proc_id::in, needed_map::in,
|
|
inline_params::in, module_info::in,
|
|
set(pred_proc_id)::in, set(pred_proc_id)::out, io::di, io::uo) is det.
|
|
|
|
%
|
|
% This predicate effectively adds implicit `pragma inline'
|
|
% directives for procedures that match its heuristic.
|
|
%
|
|
|
|
inlining__mark_predproc(PredProcId, NeededMap, Params, ModuleInfo,
|
|
!InlinedProcs, !IO) :-
|
|
(
|
|
Simple = Params ^ simple,
|
|
SingleUse = Params ^ single_use,
|
|
CompoundThreshold = Params ^ size_threshold,
|
|
SimpleThreshold = Params ^ simple_goal_threshold,
|
|
PredProcId = proc(PredId, ProcId),
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
pred_info_procedures(PredInfo, Procs),
|
|
map__lookup(Procs, ProcId, ProcInfo),
|
|
proc_info_goal(ProcInfo, CalledGoal),
|
|
Entity = proc(PredId, ProcId),
|
|
|
|
%
|
|
% the heuristic represented by the following code
|
|
% could be improved
|
|
%
|
|
(
|
|
Simple = yes,
|
|
inlining__is_simple_goal(CalledGoal,
|
|
SimpleThreshold)
|
|
;
|
|
CompoundThreshold > 0,
|
|
map__search(NeededMap, Entity, Needed),
|
|
Needed = yes(NumUses),
|
|
goal_size(CalledGoal, Size),
|
|
Size * NumUses =< CompoundThreshold
|
|
;
|
|
SingleUse = yes,
|
|
map__search(NeededMap, Entity, Needed),
|
|
Needed = yes(NumUses),
|
|
NumUses = 1
|
|
),
|
|
% Don't inline recursive predicates
|
|
% (unless explicitly requested)
|
|
\+ goal_calls(CalledGoal, PredProcId)
|
|
->
|
|
inlining__mark_proc_as_inlined(PredProcId, ModuleInfo,
|
|
!InlinedProcs, !IO)
|
|
;
|
|
true
|
|
).
|
|
|
|
% this heuristic is used for both local and intermodule inlining
|
|
|
|
inlining__is_simple_clause_list(Clauses, SimpleThreshold) :-
|
|
clause_list_size(Clauses, Size),
|
|
(
|
|
Size < SimpleThreshold
|
|
;
|
|
Clauses = [clause(_, Goal, _, _)],
|
|
Size < SimpleThreshold * 3,
|
|
%
|
|
% For flat goals, we are more likely to be able to
|
|
% optimize stuff away, so we use a higher threshold.
|
|
% XXX this should be a separate option, we shouldn't
|
|
% hardcode the number `3' (which is just a guess).
|
|
%
|
|
inlining__is_flat_simple_goal(Goal)
|
|
).
|
|
|
|
inlining__is_simple_goal(CalledGoal, SimpleThreshold) :-
|
|
goal_size(CalledGoal, Size),
|
|
(
|
|
Size < SimpleThreshold
|
|
;
|
|
%
|
|
% For flat goals, we are more likely to be able to
|
|
% optimize stuff away, so we use a higher threshold.
|
|
% XXX this should be a separate option, we shouldn't
|
|
% hardcode the number `3' (which is just a guess).
|
|
%
|
|
Size < SimpleThreshold * 3,
|
|
inlining__is_flat_simple_goal(CalledGoal)
|
|
).
|
|
|
|
:- pred inlining__is_flat_simple_goal(hlds_goal::in) is semidet.
|
|
|
|
inlining__is_flat_simple_goal(conj(Goals) - _) :-
|
|
inlining__is_flat_simple_goal_list(Goals).
|
|
inlining__is_flat_simple_goal(not(Goal) - _) :-
|
|
inlining__is_flat_simple_goal(Goal).
|
|
inlining__is_flat_simple_goal(scope(_, Goal) - _) :-
|
|
inlining__is_flat_simple_goal(Goal).
|
|
inlining__is_flat_simple_goal(call(_, _, _, BuiltinState, _, _) - _) :-
|
|
BuiltinState = inline_builtin.
|
|
inlining__is_flat_simple_goal(unify(_, _, _, _, _) - _).
|
|
|
|
:- pred inlining__is_flat_simple_goal_list(hlds_goals::in) is semidet.
|
|
|
|
inlining__is_flat_simple_goal_list([]).
|
|
inlining__is_flat_simple_goal_list([Goal | Goals]) :-
|
|
inlining__is_flat_simple_goal(Goal),
|
|
inlining__is_flat_simple_goal_list(Goals).
|
|
|
|
:- pred inlining__mark_proc_as_inlined(pred_proc_id::in, module_info::in,
|
|
set(pred_proc_id)::in, set(pred_proc_id)::out, io::di, io::uo) is det.
|
|
|
|
inlining__mark_proc_as_inlined(proc(PredId, ProcId), ModuleInfo,
|
|
!InlinedProcs, !IO) :-
|
|
set__insert(!.InlinedProcs, proc(PredId, ProcId), !:InlinedProcs),
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
( pred_info_requested_inlining(PredInfo) ->
|
|
true
|
|
;
|
|
write_proc_progress_message("% Inlining ", PredId, ProcId,
|
|
ModuleInfo, !IO)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% inline_info contains the information that is changed
|
|
% as a result of inlining. It is threaded through the
|
|
% inlining process, and when finished, contains the
|
|
% updated information associated with the new goal.
|
|
%
|
|
% It also stores some necessary information that is not
|
|
% updated.
|
|
|
|
:- type inline_info
|
|
---> inline_info(
|
|
int, % variable threshold for inlining
|
|
bool, % highlevel_code option
|
|
bool, % is executing tracing enabled
|
|
set(pred_proc_id), % inlined procs
|
|
module_info, % module_info
|
|
list(tvar), % universally quantified type vars
|
|
% occurring in the argument types
|
|
% for this predicate (the caller,
|
|
% not the callee). These are the
|
|
% ones that must not be bound.
|
|
pred_markers, % markers for the current predicate
|
|
|
|
% the following fields are updated as a result
|
|
% of inlining
|
|
prog_varset, % varset
|
|
vartypes, % variable types
|
|
tvarset, % type variables
|
|
map(tvar, type_info_locn),% type_info varset, a mapping from
|
|
% type variables to variables
|
|
% where their type_info is
|
|
% stored.
|
|
bool, % Did we do any inlining in the proc?
|
|
bool, % Does the goal need to be
|
|
% requantified?
|
|
bool, % Did we change the determinism
|
|
% of any subgoal?
|
|
bool % Did we change the purity of
|
|
% any subgoal.
|
|
).
|
|
|
|
:- pred inlining__in_predproc(pred_proc_id::in, set(pred_proc_id)::in,
|
|
inline_params::in, module_info::in, module_info::out,
|
|
io::di, io::uo) is det.
|
|
|
|
inlining__in_predproc(PredProcId, InlinedProcs, Params, !ModuleInfo, !IO) :-
|
|
VarThresh = Params ^ var_threshold,
|
|
HighLevelCode = Params ^ highlevel_code,
|
|
AnyTracing = Params ^ any_tracing,
|
|
|
|
PredProcId = proc(PredId, ProcId),
|
|
|
|
module_info_preds(!.ModuleInfo, PredTable0),
|
|
map__lookup(PredTable0, PredId, PredInfo0),
|
|
pred_info_procedures(PredInfo0, ProcTable0),
|
|
map__lookup(ProcTable0, ProcId, ProcInfo0),
|
|
|
|
pred_info_get_univ_quant_tvars(PredInfo0, UnivQTVars),
|
|
pred_info_typevarset(PredInfo0, TypeVarSet0),
|
|
pred_info_get_markers(PredInfo0, Markers),
|
|
|
|
proc_info_goal(ProcInfo0, Goal0),
|
|
proc_info_varset(ProcInfo0, VarSet0),
|
|
proc_info_vartypes(ProcInfo0, VarTypes0),
|
|
proc_info_typeinfo_varmap(ProcInfo0, TypeInfoVarMap0),
|
|
|
|
DidInlining0 = no,
|
|
Requantify0 = no,
|
|
DetChanged0 = no,
|
|
PurityChanged0 = no,
|
|
|
|
InlineInfo0 = inline_info(VarThresh, HighLevelCode, AnyTracing,
|
|
InlinedProcs, !.ModuleInfo, UnivQTVars, Markers,
|
|
VarSet0, VarTypes0, TypeVarSet0, TypeInfoVarMap0,
|
|
DidInlining0, Requantify0, DetChanged0, PurityChanged0),
|
|
|
|
inlining__inlining_in_goal(Goal0, Goal, InlineInfo0, InlineInfo),
|
|
|
|
InlineInfo = inline_info(_, _, _, _, _, _, _, VarSet, VarTypes,
|
|
TypeVarSet, TypeInfoVarMap, DidInlining, Requantify,
|
|
DetChanged, PurityChanged),
|
|
|
|
pred_info_set_typevarset(TypeVarSet, PredInfo0, PredInfo1),
|
|
|
|
proc_info_set_varset(VarSet, ProcInfo0, ProcInfo1),
|
|
proc_info_set_vartypes(VarTypes, ProcInfo1, ProcInfo2),
|
|
proc_info_set_typeinfo_varmap(TypeInfoVarMap, ProcInfo2, ProcInfo3),
|
|
proc_info_set_goal(Goal, ProcInfo3, ProcInfo4),
|
|
|
|
(
|
|
Requantify = yes,
|
|
requantify_proc(ProcInfo4, ProcInfo5)
|
|
;
|
|
Requantify = no,
|
|
ProcInfo5 = ProcInfo4
|
|
),
|
|
|
|
(
|
|
DidInlining = yes,
|
|
recompute_instmap_delta_proc(yes, ProcInfo5, ProcInfo,
|
|
!ModuleInfo)
|
|
;
|
|
DidInlining = no,
|
|
ProcInfo = ProcInfo5
|
|
),
|
|
|
|
map__det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
|
|
pred_info_set_procedures(ProcTable, PredInfo1, PredInfo2),
|
|
|
|
(
|
|
PurityChanged = yes,
|
|
repuritycheck_proc(!.ModuleInfo, PredProcId,
|
|
PredInfo2, PredInfo)
|
|
;
|
|
PurityChanged = no,
|
|
PredInfo = PredInfo2
|
|
),
|
|
|
|
map__det_update(PredTable0, PredId, PredInfo, PredTable),
|
|
module_info_set_preds(PredTable, !ModuleInfo),
|
|
|
|
% If the determinism of some sub-goals has changed,
|
|
% then we re-run determinism analysis, because
|
|
% propagating the determinism information through
|
|
% the procedure may lead to more efficient code.
|
|
globals__io_get_globals(Globals, !IO),
|
|
(
|
|
DetChanged = yes,
|
|
det_infer_proc(PredId, ProcId, !ModuleInfo, Globals, _, _, _)
|
|
;
|
|
DetChanged = no
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred inlining__inlining_in_goal(hlds_goal::in, hlds_goal::out,
|
|
inline_info::in, inline_info::out) is det.
|
|
|
|
inlining__inlining_in_goal(Goal0 - GoalInfo0, Goal - GoalInfo, !Info) :-
|
|
(
|
|
Goal0 = conj(Goals0),
|
|
inlining__inlining_in_conj(Goals0, Goals, !Info),
|
|
Goal = conj(Goals),
|
|
GoalInfo = GoalInfo0
|
|
;
|
|
Goal0 = par_conj(Goals0),
|
|
inlining__inlining_in_disj(Goals0, Goals, !Info),
|
|
Goal = par_conj(Goals),
|
|
GoalInfo = GoalInfo0
|
|
;
|
|
Goal0 = disj(Goals0),
|
|
inlining__inlining_in_disj(Goals0, Goals, !Info),
|
|
Goal = disj(Goals),
|
|
GoalInfo = GoalInfo0
|
|
;
|
|
Goal0 = switch(Var, Det, Cases0),
|
|
inlining__inlining_in_cases(Cases0, Cases, !Info),
|
|
Goal = switch(Var, Det, Cases),
|
|
GoalInfo = GoalInfo0
|
|
;
|
|
Goal0 = if_then_else(Vars, Cond0, Then0, Else0),
|
|
inlining__inlining_in_goal(Cond0, Cond, !Info),
|
|
inlining__inlining_in_goal(Then0, Then, !Info),
|
|
inlining__inlining_in_goal(Else0, Else, !Info),
|
|
Goal = if_then_else(Vars, Cond, Then, Else),
|
|
GoalInfo = GoalInfo0
|
|
;
|
|
Goal0 = not(SubGoal0),
|
|
inlining__inlining_in_goal(SubGoal0, SubGoal, !Info),
|
|
Goal = not(SubGoal),
|
|
GoalInfo = GoalInfo0
|
|
;
|
|
Goal0 = scope(Reason, SubGoal0),
|
|
inlining__inlining_in_goal(SubGoal0, SubGoal, !Info),
|
|
Goal = scope(Reason, SubGoal),
|
|
GoalInfo = GoalInfo0
|
|
;
|
|
Goal0 = generic_call(_, _, _, _),
|
|
Goal = Goal0,
|
|
GoalInfo = GoalInfo0
|
|
;
|
|
Goal0 = unify(_, _, _, _, _),
|
|
Goal = Goal0,
|
|
GoalInfo = GoalInfo0
|
|
;
|
|
Goal0 = foreign_proc(_, _, _, _, _, _),
|
|
Goal = Goal0,
|
|
GoalInfo = GoalInfo0
|
|
;
|
|
Goal0 = shorthand(_),
|
|
% these should have been expanded out by now
|
|
error("inlining__inlining_in_goal: unexpected shorthand")
|
|
;
|
|
Goal0 = call(PredId, ProcId, ArgVars, Builtin, Context, Sym),
|
|
inlining__inlining_in_call(PredId, ProcId, ArgVars, Builtin,
|
|
Context, Sym, Goal, GoalInfo0, GoalInfo, !Info)
|
|
).
|
|
|
|
:- pred inlining__inlining_in_call(pred_id::in, proc_id::in,
|
|
list(prog_var)::in, builtin_state::in, maybe(call_unify_context)::in,
|
|
sym_name::in, hlds_goal_expr::out,
|
|
hlds_goal_info::in, hlds_goal_info::out,
|
|
inline_info::in, inline_info::out) is det.
|
|
|
|
inlining__inlining_in_call(PredId, ProcId, ArgVars, Builtin,
|
|
Context, Sym, Goal, GoalInfo0, GoalInfo, !Info) :-
|
|
!.Info = inline_info(VarThresh, HighLevelCode, AnyTracing,
|
|
InlinedProcs, ModuleInfo, HeadTypeParams, Markers,
|
|
VarSet0, VarTypes0, TypeVarSet0, TypeInfoVarMap0,
|
|
_DidInlining0, Requantify0, DetChanged0, PurityChanged0),
|
|
|
|
% should we inline this call?
|
|
(
|
|
inlining__should_inline_proc(PredId, ProcId, Builtin,
|
|
HighLevelCode, AnyTracing, InlinedProcs, Markers,
|
|
ModuleInfo),
|
|
% okay, but will we exceed the number-of-variables
|
|
% threshold?
|
|
varset__vars(VarSet0, ListOfVars),
|
|
list__length(ListOfVars, ThisMany),
|
|
% We need to find out how many variables the
|
|
% Callee has
|
|
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
|
|
PredInfo, ProcInfo),
|
|
proc_info_varset(ProcInfo, CalleeVarSet),
|
|
varset__vars(CalleeVarSet, CalleeListOfVars),
|
|
list__length(CalleeListOfVars, CalleeThisMany),
|
|
TotalVars = ThisMany + CalleeThisMany,
|
|
TotalVars =< VarThresh
|
|
->
|
|
inlining__do_inline_call(HeadTypeParams, ArgVars, PredInfo,
|
|
ProcInfo, VarSet0, VarSet, VarTypes0, VarTypes,
|
|
TypeVarSet0, TypeVarSet, TypeInfoVarMap0,
|
|
TypeInfoVarMap, Goal - GoalInfo),
|
|
|
|
%
|
|
% If some of the output variables are not used in
|
|
% the calling procedure, requantify the procedure.
|
|
%
|
|
goal_info_get_nonlocals(GoalInfo0, NonLocals),
|
|
( set__list_to_set(ArgVars) = NonLocals ->
|
|
Requantify = Requantify0
|
|
;
|
|
Requantify = yes
|
|
),
|
|
|
|
(
|
|
infer_goal_info_purity(GoalInfo0, Purity),
|
|
infer_goal_info_purity(GoalInfo, Purity)
|
|
->
|
|
PurityChanged = PurityChanged0
|
|
;
|
|
PurityChanged = yes
|
|
),
|
|
|
|
% If the inferred determinism of the called
|
|
% goal differs from the declared determinism,
|
|
% flag that we should re-run determinism analysis
|
|
% on this proc.
|
|
goal_info_get_determinism(GoalInfo0, Determinism0),
|
|
goal_info_get_determinism(GoalInfo, Determinism),
|
|
DidInlining = yes,
|
|
( Determinism0 = Determinism ->
|
|
DetChanged = DetChanged0
|
|
;
|
|
DetChanged = yes
|
|
),
|
|
!:Info = inline_info(VarThresh, HighLevelCode, AnyTracing,
|
|
InlinedProcs, ModuleInfo, HeadTypeParams, Markers,
|
|
VarSet, VarTypes, TypeVarSet, TypeInfoVarMap,
|
|
DidInlining, Requantify, DetChanged, PurityChanged)
|
|
;
|
|
Goal = call(PredId, ProcId, ArgVars, Builtin, Context, Sym),
|
|
GoalInfo = GoalInfo0
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
inlining__do_inline_call(HeadTypeParams, ArgVars, PredInfo, ProcInfo,
|
|
VarSet0, VarSet, VarTypes0, VarTypes, TypeVarSet0, TypeVarSet,
|
|
TypeInfoVarMap0, TypeInfoVarMap, Goal) :-
|
|
|
|
proc_info_goal(ProcInfo, CalledGoal),
|
|
|
|
% look up the rest of the info for the called procedure.
|
|
|
|
pred_info_typevarset(PredInfo, CalleeTypeVarSet),
|
|
proc_info_headvars(ProcInfo, HeadVars),
|
|
proc_info_vartypes(ProcInfo, CalleeVarTypes0),
|
|
proc_info_varset(ProcInfo, CalleeVarSet),
|
|
proc_info_typeinfo_varmap(ProcInfo, CalleeTypeInfoVarMap0),
|
|
|
|
% Substitute the appropriate types into the type
|
|
% mapping of the called procedure. For example, if we
|
|
% call `:- pred foo(T)' with an argument of type
|
|
% `int', then we need to replace all occurrences of
|
|
% type `T' with type `int' when we inline it.
|
|
% Conversely, in the case of existentially typed preds,
|
|
% we may need to bind type variables in the caller.
|
|
% For example, if we call `:- pred some [T] foo(T)',
|
|
% and the definition of `foo' binds `T' to `int',
|
|
% then we need to replace all occurrences of type `T'
|
|
% with type `int' in the caller.
|
|
|
|
% first, rename apart the type variables in the callee.
|
|
% (we can almost throw away the new typevarset, since we
|
|
% are about to substitute away any new type variables,
|
|
% but any unbound type variables in the callee will not
|
|
% be substituted away)
|
|
|
|
varset__merge_subst(TypeVarSet0, CalleeTypeVarSet,
|
|
TypeVarSet, TypeRenaming),
|
|
apply_substitution_to_type_map(CalleeVarTypes0, TypeRenaming,
|
|
CalleeVarTypes1),
|
|
|
|
% next, compute the type substitution and then apply it
|
|
|
|
% Note: there's no need to update the type_info locations maps,
|
|
% either for the caller or callee, since for any type vars in the
|
|
% callee which get bound to type vars in the caller, the type_info
|
|
% location will be given by the entry in the caller's
|
|
% type_info locations map (and vice versa). It doesn't matter if the
|
|
% final type_info locations map contains some entries
|
|
% for type variables which have been substituted away,
|
|
% because those entries simply won't be used.
|
|
|
|
map__apply_to_list(HeadVars, CalleeVarTypes1, HeadTypes),
|
|
map__apply_to_list(ArgVars, VarTypes0, ArgTypes),
|
|
|
|
pred_info_get_exist_quant_tvars(PredInfo, CalleeExistQVars),
|
|
inlining__get_type_substitution(HeadTypes, ArgTypes, HeadTypeParams,
|
|
CalleeExistQVars, TypeSubn),
|
|
|
|
% handle the common case of non-existentially typed preds specially,
|
|
% since we can do things more efficiently in that case
|
|
( CalleeExistQVars = [] ->
|
|
% update types in callee only
|
|
apply_rec_substitution_to_type_map(CalleeVarTypes1,
|
|
TypeSubn, CalleeVarTypes),
|
|
VarTypes1 = VarTypes0
|
|
;
|
|
% update types in callee
|
|
apply_rec_substitution_to_type_map(CalleeVarTypes1,
|
|
TypeSubn, CalleeVarTypes),
|
|
% update types in caller
|
|
apply_rec_substitution_to_type_map(VarTypes0,
|
|
TypeSubn, VarTypes1)
|
|
),
|
|
|
|
% Now rename apart the variables in the called goal.
|
|
inlining__rename_goal(HeadVars, ArgVars, VarSet0, CalleeVarSet,
|
|
VarSet, VarTypes1, CalleeVarTypes, VarTypes, Subn,
|
|
CalledGoal, Goal),
|
|
|
|
apply_substitutions_to_var_map(CalleeTypeInfoVarMap0,
|
|
TypeRenaming, TypeSubn, Subn, CalleeTypeInfoVarMap1),
|
|
|
|
% Prefer the type_info_locn from the caller.
|
|
% The type_infos or typeclass_infos passed to the callee may
|
|
% have been produced by extracting type_infos or typeclass_infos
|
|
% from typeclass_infos in the caller, so they won't necessarily
|
|
% be the same.
|
|
map__overlay(CalleeTypeInfoVarMap1, TypeInfoVarMap0,
|
|
TypeInfoVarMap).
|
|
|
|
inlining__get_type_substitution(HeadTypes, ArgTypes,
|
|
HeadTypeParams, CalleeExistQVars, TypeSubn) :-
|
|
( CalleeExistQVars = [] ->
|
|
( type_list_subsumes(HeadTypes, ArgTypes, TypeSubn0) ->
|
|
TypeSubn = TypeSubn0
|
|
;
|
|
% The head types should always be unifiable with the
|
|
% actual argument types, otherwise it is a type error
|
|
% that should have been detected by typechecking.
|
|
% But polymorphism.m introduces type-incorrect code --
|
|
% e.g. compare(Res, EnumA, EnumB) gets converted
|
|
% into builtin_compare_int(Res, EnumA, EnumB), which
|
|
% is a type error since it assumes that an enumeration
|
|
% is an int. In those cases, we don't need to
|
|
% worry about the type substitution.
|
|
% (Perhaps it would be better if polymorphism introduced
|
|
% calls to unsafe_type_cast/2 for such cases.)
|
|
map__init(TypeSubn)
|
|
)
|
|
;
|
|
% for calls to existentially type preds, we may need to
|
|
% bind type variables in the caller, not just those in
|
|
% the callee
|
|
(
|
|
map__init(TypeSubn0),
|
|
type_unify_list(HeadTypes, ArgTypes, HeadTypeParams,
|
|
TypeSubn0, TypeSubn1)
|
|
->
|
|
TypeSubn = TypeSubn1
|
|
;
|
|
error("inlining.m: type unification failed")
|
|
)
|
|
).
|
|
|
|
inlining__rename_goal(HeadVars, ArgVars, VarSet0, CalleeVarSet,
|
|
VarSet, VarTypes1, CalleeVarTypes, VarTypes, Subn,
|
|
CalledGoal, Goal) :-
|
|
map__from_corresponding_lists(HeadVars, ArgVars, Subn0),
|
|
varset__vars(CalleeVarSet, CalleeListOfVars),
|
|
goal_util__create_variables(CalleeListOfVars,
|
|
CalleeVarSet, CalleeVarTypes,
|
|
VarSet0, VarSet, VarTypes1, VarTypes, Subn0, Subn),
|
|
goal_util__must_rename_vars_in_goal(CalledGoal, Subn, Goal).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% inlining__inlining_in_disj is used for both disjunctions and
|
|
% parallel conjunctions.
|
|
|
|
:- pred inlining__inlining_in_disj(list(hlds_goal)::in, list(hlds_goal)::out,
|
|
inline_info::in, inline_info::out) is det.
|
|
|
|
inlining__inlining_in_disj([], [], !Info).
|
|
inlining__inlining_in_disj([Goal0 | Goals0], [Goal | Goals], !Info) :-
|
|
inlining__inlining_in_goal(Goal0, Goal, !Info),
|
|
inlining__inlining_in_disj(Goals0, Goals, !Info).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred inlining__inlining_in_cases(list(case)::in, list(case)::out,
|
|
inline_info::in, inline_info::out) is det.
|
|
|
|
inlining__inlining_in_cases([], [], !Info).
|
|
inlining__inlining_in_cases([case(Cons, Goal0) | Goals0],
|
|
[case(Cons, Goal) | Goals], !Info) :-
|
|
inlining__inlining_in_goal(Goal0, Goal, !Info),
|
|
inlining__inlining_in_cases(Goals0, Goals, !Info).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred inlining__inlining_in_conj(list(hlds_goal)::in, list(hlds_goal)::out,
|
|
inline_info::in, inline_info::out) is det.
|
|
|
|
% Since a single goal may become a conjunction,
|
|
% we flatten the conjunction as we go.
|
|
|
|
inlining__inlining_in_conj([], [], !Info).
|
|
inlining__inlining_in_conj([Goal0 | Goals0], Goals, !Info) :-
|
|
inlining__inlining_in_goal(Goal0, Goal1, !Info),
|
|
goal_to_conj_list(Goal1, Goal1List),
|
|
inlining__inlining_in_conj(Goals0, Goals1, !Info),
|
|
list__append(Goal1List, Goals1, Goals).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Check to see if we should inline a call.
|
|
%
|
|
% Fails if the called predicate cannot be inlined,
|
|
% e.g. because it is a builtin, we don't have code for it,
|
|
% it uses nondet pragma c_code, etc.
|
|
%
|
|
% It succeeds if the called procedure is inlinable,
|
|
% and in addition either there was a `pragma inline'
|
|
% for this procedure, or the procedure was marked by
|
|
% inlining__mark_predproc as having met its heuristic.
|
|
|
|
:- pred inlining__should_inline_proc(pred_id::in, proc_id::in,
|
|
builtin_state::in, bool::in, bool::in, set(pred_proc_id)::in,
|
|
pred_markers::in, module_info::in) is semidet.
|
|
|
|
inlining__should_inline_proc(PredId, ProcId, BuiltinState, HighLevelCode,
|
|
_Tracing, InlinedProcs, CallingPredMarkers, ModuleInfo) :-
|
|
InlinePromisedPure = yes,
|
|
inlining__can_inline_proc(PredId, ProcId, BuiltinState,
|
|
HighLevelCode, InlinePromisedPure,
|
|
CallingPredMarkers, ModuleInfo),
|
|
|
|
% OK, we could inline it - but should we? Apply our heuristic.
|
|
|
|
(
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
pred_info_requested_inlining(PredInfo)
|
|
;
|
|
set__member(proc(PredId, ProcId), InlinedProcs)
|
|
).
|
|
|
|
inlining__can_inline_proc(PredId, ProcId, BuiltinState, InlinePromisedPure,
|
|
CallingPredMarkers, ModuleInfo) :-
|
|
module_info_globals(ModuleInfo, Globals),
|
|
globals__lookup_bool_option(Globals, highlevel_code, HighLevelCode),
|
|
inlining__can_inline_proc(PredId, ProcId, BuiltinState,
|
|
HighLevelCode, InlinePromisedPure,
|
|
CallingPredMarkers, ModuleInfo).
|
|
|
|
:- pred inlining__can_inline_proc(pred_id::in, proc_id::in, builtin_state::in,
|
|
bool::in, bool::in, pred_markers::in, module_info::in) is semidet.
|
|
|
|
inlining__can_inline_proc(PredId, ProcId, BuiltinState, HighLevelCode,
|
|
InlinePromisedPure, CallingPredMarkers, ModuleInfo) :-
|
|
|
|
% don't inline builtins, the code generator will handle them
|
|
BuiltinState = not_builtin,
|
|
|
|
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, PredInfo,
|
|
ProcInfo),
|
|
|
|
% don't try to inline imported predicates, since we don't
|
|
% have the code for them.
|
|
\+ pred_info_is_imported(PredInfo),
|
|
|
|
% this next line catches the case of locally defined
|
|
% unification predicates for imported types.
|
|
\+ (
|
|
pred_info_is_pseudo_imported(PredInfo),
|
|
hlds_pred__in_in_unification_proc_id(ProcId)
|
|
),
|
|
|
|
% Only try to inline procedures which are evaluated using
|
|
% normal evaluation. Currently we can't inline procs evaluated
|
|
% using any of the other methods because the code generator for
|
|
% the methods can only handle whole procedures not code
|
|
% fragments.
|
|
proc_info_eval_method(ProcInfo, eval_normal),
|
|
|
|
% Don't inline anything we have been specifically requested
|
|
% not to inline.
|
|
\+ pred_info_requested_no_inlining(PredInfo),
|
|
|
|
% Don't inline any procedure whose complexity we are trying to
|
|
% determine, since the complexity transformation can't transform
|
|
% *part* of a procedure.
|
|
module_info_get_maybe_complexity_proc_map(ModuleInfo,
|
|
MaybeComplexityProcMap),
|
|
(
|
|
MaybeComplexityProcMap = no
|
|
;
|
|
MaybeComplexityProcMap = yes(_ - ComplexityProcMap),
|
|
IsInComplexityMap = is_in_complexity_proc_map(
|
|
ComplexityProcMap, ModuleInfo, PredId, ProcId),
|
|
IsInComplexityMap = no
|
|
),
|
|
|
|
% For the LLDS back-end,
|
|
% under no circumstances inline model_non pragma c codes.
|
|
% The resulting code would not work properly.
|
|
proc_info_goal(ProcInfo, CalledGoal),
|
|
\+ (
|
|
HighLevelCode = no,
|
|
CalledGoal = foreign_proc(_, _, _, _, _, _) - _,
|
|
proc_info_interface_determinism(ProcInfo, Detism),
|
|
( Detism = nondet ; Detism = multidet )
|
|
),
|
|
|
|
% Only inline foreign_code if it is appropriate for
|
|
% the target language.
|
|
module_info_globals(ModuleInfo, Globals),
|
|
globals__get_target(Globals, Target),
|
|
(
|
|
(
|
|
CalledGoal = foreign_proc(ForeignAttributes,
|
|
_, _, _, _, _) - _,
|
|
ForeignLanguage = foreign_language(ForeignAttributes)
|
|
)
|
|
=>
|
|
ok_to_inline_language(ForeignLanguage, Target)
|
|
),
|
|
|
|
% Don't inline memoed Aditi predicates.
|
|
pred_info_get_markers(PredInfo, CalledPredMarkers),
|
|
\+ check_marker(CalledPredMarkers, aditi_memo),
|
|
|
|
% Don't inline Aditi procedures into non-Aditi procedures,
|
|
% since this could result in joins being performed by
|
|
% backtracking rather than by more efficient methods in
|
|
% the database.
|
|
pred_info_get_markers(PredInfo, CalledPredMarkers),
|
|
\+ (
|
|
\+ check_marker(CallingPredMarkers, aditi),
|
|
check_marker(CalledPredMarkers, aditi)
|
|
),
|
|
|
|
(
|
|
InlinePromisedPure = yes
|
|
;
|
|
%
|
|
% For some optimizations (such as deforestation)
|
|
% we don't want to inline predicates which are
|
|
% promised pure because the extra impurity propagated
|
|
% through the goal will defeat any attempts at
|
|
% optimization.
|
|
%
|
|
InlinePromisedPure = no,
|
|
pred_info_get_promised_purity(PredInfo, (impure))
|
|
).
|
|
|
|
% Succeed iff it is appropriate to inline `pragma foreign_code'
|
|
% in the specified language for the given compilation_target.
|
|
% Generally that will only be the case if the target directly
|
|
% supports inline code in that language.
|
|
:- pred ok_to_inline_language(foreign_language::in, compilation_target::in)
|
|
is semidet.
|
|
|
|
ok_to_inline_language(c, c).
|
|
|
|
% ok_to_inline_language(il, il). %
|
|
% XXX we need to fix the handling of parameter marhsalling for inlined code
|
|
% before we can enable this -- see the comments in
|
|
% ml_gen_ordinary_pragma_il_proc in ml_code_gen.m.
|
|
%
|
|
% ok_to_inline_language(java, java). % foreign_language = java not implemented
|
|
% ok_to_inline_language(asm, asm). % foreign_language = asm not implemented
|
|
% We could define a language "C/C++" (c_slash_cplusplus) which was the
|
|
% intersection of "C" and "C++", and then we'd have
|
|
% ok_to_inline_language(c_slash_cplusplus, c).
|
|
% ok_to_inline_language(c_slash_cplusplus, cplusplus).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|