Files
mercury/compiler/det_analysis.m
Zoltan Somogyi a86edd19c8 Bring comment syntax up to date. Other minor style fixes.
Estimated hours taken: 0.5
Branches: main

compiler/det_analysis.m:
	Bring comment syntax up to date. Other minor style fixes.
2005-04-08 04:59:59 +00:00

1414 lines
50 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1994-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% det_analysis.m - the determinism analysis pass.
% Main authors: conway, fjh, zs.
% This pass has three components:
%
% - Segregate the procedures into those that have determinism declarations,
% and those that don't.
%
% - A step of performing a local inference pass on each procedure
% without a determinism declaration is iterated until a fixpoint is reached.
%
% - A checking step is performed on all the procedures that have determinism
% declarations to ensure that they are at least as deterministic as their
% declaration. This uses a form of the local inference pass.
%
% If we are to avoid global inference for predicates with
% declarations, then it must be an error, not just a warning,
% if the determinism checking step detects that the determinism
% annotation was wrong. If we were to issue just a warning, then
% we would have to override the determinism annotation, and that
% would force us to re-check the inferred determinism for all
% calling predicates.
%
% Alternately, we could leave it as a warning, but then we would
% have to _make_ the predicate deterministic (or semideterministic)
% by inserting run-time checking code which calls error/1 if the
% predicate really isn't deterministic (semideterministic).
% Determinism has three components:
%
% whether a goal can fail
% whether a goal has more than one possible solution
% whether a goal occurs in a context where only the first solution
% is required
%
% The first two components are synthesized attributes: they are inferred
% bottom-up. The last component is an inherited attribute: it is
% propagated top-down.
%-----------------------------------------------------------------------------%
:- module check_hlds__det_analysis.
:- interface.
:- import_module check_hlds__det_report.
:- import_module check_hlds__det_util.
:- import_module hlds__hlds_data.
:- import_module hlds__hlds_goal.
:- import_module hlds__hlds_module.
:- import_module hlds__hlds_pred.
:- import_module hlds__instmap.
:- import_module libs__globals.
:- import_module parse_tree__prog_data.
:- import_module io.
:- import_module list.
:- import_module std_util.
% Perform determinism inference for local predicates with no
% determinism declarations, and determinism checking for all other
% predicates.
%
:- pred determinism_pass(module_info::in, module_info::out,
io::di, io::uo) is det.
% Check the determinism of a single procedure
% (only works if the determinism of the procedures it calls
% has already been inferred).
%
:- pred determinism_check_proc(proc_id::in, pred_id::in,
module_info::in, module_info::out, io::di, io::uo) is det.
% Infer the determinism of a procedure.
%
:- pred det_infer_proc(pred_id::in, proc_id::in, module_info::in,
module_info::out, globals::in, determinism::out, determinism::out,
list(det_msg)::out) is det.
% Infers the determinism of `Goal0' and returns this in `Detism'.
% It annotates the goal and all its subgoals with their determinism
% and returns the annotated goal in `Goal'.
%
:- pred det_infer_goal(hlds_goal::in, instmap::in, soln_context::in,
det_info::in, hlds_goal::out, determinism::out, list(det_msg)::out)
is det.
% Work out how many solutions are needed for a given determinism.
%
:- pred det_get_soln_context(determinism::in, soln_context::out) is det.
:- type soln_context
---> all_solns
; first_soln.
% The following predicates implement the tables for computing
% the determinism of compound goals from the determinism
% of their components.
:- pred det_conjunction_detism(determinism::in, determinism::in,
determinism::out) is det.
:- pred det_par_conjunction_detism(determinism::in, determinism::in,
determinism::out) is det.
:- pred det_switch_detism(determinism::in, determinism::in, determinism::out)
is det.
:- pred det_disjunction_maxsoln(soln_count::in, soln_count::in,
soln_count::out) is det.
:- pred det_disjunction_canfail(can_fail::in, can_fail::in, can_fail::out)
is det.
:- pred det_switch_maxsoln(soln_count::in, soln_count::in, soln_count::out)
is det.
:- pred det_switch_canfail(can_fail::in, can_fail::in, can_fail::out) is det.
:- pred det_negation_det(determinism::in, maybe(determinism)::out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds__mode_util.
:- import_module check_hlds__modecheck_call.
:- import_module check_hlds__purity.
:- import_module check_hlds__type_util.
:- import_module hlds__code_model.
:- import_module hlds__hlds_out.
:- import_module hlds__passes_aux.
:- import_module libs__options.
:- import_module parse_tree__mercury_to_mercury.
:- import_module parse_tree__prog_out.
:- import_module assoc_list.
:- import_module bool.
:- import_module map.
:- import_module require.
:- import_module set.
:- import_module string.
:- import_module term.
%-----------------------------------------------------------------------------%
determinism_pass(!ModuleInfo, !IO) :-
determinism_declarations(!.ModuleInfo, DeclaredProcs,
UndeclaredProcs, NoInferProcs),
list__foldl(set_non_inferred_proc_determinism, NoInferProcs,
!ModuleInfo),
globals__io_lookup_bool_option(verbose, Verbose, !IO),
globals__io_lookup_bool_option(debug_det, Debug, !IO),
(
UndeclaredProcs = []
;
UndeclaredProcs = [_ | _],
maybe_write_string(Verbose,
"% Doing determinism inference...\n", !IO),
global_inference_pass(!ModuleInfo, UndeclaredProcs, Debug,
!IO),
maybe_write_string(Verbose, "% done.\n", !IO)
),
maybe_write_string(Verbose, "% Doing determinism checking...\n", !IO),
global_final_pass(!ModuleInfo, DeclaredProcs, Debug, !IO),
maybe_write_string(Verbose, "% done.\n", !IO).
determinism_check_proc(ProcId, PredId, !ModuleInfo, !IO) :-
globals__io_lookup_bool_option(debug_det, Debug, !IO),
global_final_pass(!ModuleInfo, [proc(PredId, ProcId)], Debug, !IO).
%-----------------------------------------------------------------------------%
:- pred global_inference_pass(module_info::in, module_info::out,
pred_proc_list::in, bool::in, io::di, io::uo) is det.
% Iterate until a fixpoint is reached. This can be expensive
% if a module has many predicates with undeclared determinisms.
% If this ever becomes a problem, we should switch to doing
% iterations only on strongly connected components of the
% dependency graph.
%
global_inference_pass(!ModuleInfo, ProcList, Debug, !IO) :-
global_inference_single_pass(ProcList, Debug, !ModuleInfo, [], Msgs,
unchanged, Changed, !IO),
maybe_write_string(Debug, "% Inference pass complete\n", !IO),
( Changed = changed ->
global_inference_pass(!ModuleInfo, ProcList, Debug, !IO)
;
% We have arrived at a fixpoint. Therefore all the messages we
% have are based on the final determinisms of all procedures,
% which means it is safe to print them.
det_report_and_handle_msgs(Msgs, !ModuleInfo, !IO)
).
:- pred global_inference_single_pass(pred_proc_list::in, bool::in,
module_info::in, module_info::out,
list(det_msg)::in, list(det_msg)::out,
maybe_changed::in, maybe_changed::out, io::di, io::uo) is det.
global_inference_single_pass([], _, !ModuleInfo, !Msgs, !Changed, !IO).
global_inference_single_pass([proc(PredId, ProcId) | PredProcs], Debug,
!ModuleInfo, !Msgs, !Changed, !IO) :-
globals__io_get_globals(Globals, !IO),
det_infer_proc(PredId, ProcId, !ModuleInfo, Globals, Detism0, Detism,
ProcMsgs),
( Detism = Detism0 ->
ChangeStr = "old"
;
ChangeStr = "new",
!:Changed = changed
),
(
Debug = yes,
io__write_string("% Inferred " ++ ChangeStr ++ " detism ",
!IO),
mercury_output_det(Detism, !IO),
io__write_string(" for ", !IO),
hlds_out__write_pred_proc_id(!.ModuleInfo,
PredId, ProcId, !IO),
io__write_string("\n", !IO)
;
Debug = no
),
list__append(ProcMsgs, !Msgs),
global_inference_single_pass(PredProcs, Debug, !ModuleInfo, !Msgs,
!Changed, !IO).
:- pred global_final_pass(module_info::in, module_info::out,
pred_proc_list::in, bool::in, io::di, io::uo) is det.
global_final_pass(!ModuleInfo, ProcList, Debug, !IO) :-
global_inference_single_pass(ProcList, Debug, !ModuleInfo,
[], Msgs, unchanged, _, !IO),
det_report_and_handle_msgs(Msgs, !ModuleInfo, !IO),
global_checking_pass(ProcList, !ModuleInfo, !IO).
%-----------------------------------------------------------------------------%
det_infer_proc(PredId, ProcId, !ModuleInfo, Globals, Detism0, Detism,
!:Msgs) :-
% Get the proc_info structure for this procedure
module_info_preds(!.ModuleInfo, Preds0),
map__lookup(Preds0, PredId, Pred0),
pred_info_procedures(Pred0, Procs0),
map__lookup(Procs0, ProcId, Proc0),
% Remember the old inferred determinism of this procedure
proc_info_inferred_determinism(Proc0, Detism0),
% Work out whether the procedure occurs in a single-solution
% context or not. Currently we only assume so if
% the predicate has an explicit determinism declaration
% that says so.
det_get_soln_context(Detism0, OldInferredSolnContext),
proc_info_declared_determinism(Proc0, MaybeDeclaredDetism),
(
MaybeDeclaredDetism = yes(DeclaredDetism),
det_get_soln_context(DeclaredDetism, DeclaredSolnContext)
;
MaybeDeclaredDetism = no,
DeclaredSolnContext = all_solns
),
(
( DeclaredSolnContext = first_soln
; OldInferredSolnContext = first_soln
)
->
SolnContext = first_soln
;
SolnContext = all_solns
),
% Infer the determinism of the goal
proc_info_goal(Proc0, Goal0),
proc_info_get_initial_instmap(Proc0, !.ModuleInfo, InstMap0),
proc_info_vartypes(Proc0, VarTypes),
det_info_init(!.ModuleInfo, VarTypes, PredId, ProcId, Globals,
DetInfo),
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, Detism1, !:Msgs),
% Take the worst of the old and new detisms. This is needed
% to prevent loops on p :- not(p), at least if the initial assumed
% detism is det. This may also be needed to ensure that we don't change
% the interface determinism of procedures, if we are re-running
% determinism analysis.
determinism_components(Detism0, CanFail0, MaxSoln0),
determinism_components(Detism1, CanFail1, MaxSoln1),
det_switch_canfail(CanFail0, CanFail1, CanFail),
det_switch_maxsoln(MaxSoln0, MaxSoln1, MaxSoln),
determinism_components(Detism2, CanFail, MaxSoln),
% Now see if the evaluation model can change the detism.
proc_info_eval_method(Proc0, EvalMethod),
Detism = eval_method_change_determinism(EvalMethod, Detism2),
(
proc_info_has_io_state_pair(!.ModuleInfo, Proc,
_InArgNum, _OutArgNum),
(
MaybeDeclaredDetism = yes(CheckDetism)
;
MaybeDeclaredDetism = no,
CheckDetism = Detism
),
determinism_to_code_model(CheckDetism, CheckCodeModel),
CheckCodeModel \= model_det
->
!:Msgs = [has_io_state_but_not_det(PredId, ProcId) | !.Msgs]
;
true
),
% Save the newly inferred information.
proc_info_set_goal(Goal, Proc0, Proc1),
proc_info_set_inferred_determinism(Detism, Proc1, Proc),
% Check to make sure that if this procedure is exported to
% C via a pragma export declaration then the determinism
% is not multi or nondet - pragma exported procs that have
% been declared to have these determinisms should have been
% picked up in make_hlds, so this is just to catch those whose
% determinisms need to be inferred.
module_info_get_pragma_exported_procs(!.ModuleInfo,
ExportedProcs),
(
list.member(pragma_exported_proc(PredId, ProcId, _, _),
ExportedProcs),
( Detism = multidet
; Detism = nondet
)
->
list.cons(export_model_non_proc(PredId, ProcId, Detism),
!Msgs)
;
true
),
% Put back the new proc_info structure.
map__det_update(Procs0, ProcId, Proc, Procs),
pred_info_set_procedures(Procs, Pred0, Pred),
map__det_update(Preds0, PredId, Pred, Preds),
module_info_set_preds(Preds, !ModuleInfo).
%-----------------------------------------------------------------------------%
det_infer_goal(Goal0 - GoalInfo0, InstMap0, SolnContext0, DetInfo,
Goal - GoalInfo, Detism, !:Msgs) :-
goal_info_get_nonlocals(GoalInfo0, NonLocalVars),
goal_info_get_instmap_delta(GoalInfo0, DeltaInstMap),
% If a pure or semipure goal has no output variables,
% then the goal is in a single-solution context.
(
det_no_output_vars(NonLocalVars, InstMap0, DeltaInstMap,
DetInfo),
(
goal_info_is_impure(GoalInfo0)
=>
goal_info_has_feature(GoalInfo0,
not_impure_for_determinism)
)
->
AddPruning = yes,
SolnContext = first_soln
;
AddPruning = no,
SolnContext = SolnContext0
),
(
Goal0 = scope(ScopeReason, _),
(
% Some other part of the compiler has determined
% that we need to keep the cut represented by this
% quantification. This can happen e.g. when deep
% profiling adds impure code to the goal inside the
% scope; it doesn't want to change the behavior of
% the scope, even though the addition of impurity
% would make the if-then-else treat it differently.
ScopeReason = commit(force_pruning)
;
% If all solutions are promised to be equivalent
% according to the relevant equality theory, we want
% to prune away all but one of those solutions.
ScopeReason = promise_equivalent_solutions(_)
)
->
Prune = yes
;
Prune = AddPruning
),
det_infer_goal_2(Goal0, GoalInfo0, InstMap0, SolnContext, DetInfo,
NonLocalVars, DeltaInstMap, Goal1, InternalDetism0, !:Msgs),
determinism_components(InternalDetism0, InternalCanFail,
InternalSolns0),
(
% If mode analysis notices that a goal cannot succeed,
% then determinism analysis should notice this too.
instmap_delta_is_unreachable(DeltaInstMap)
->
InternalSolns = at_most_zero
;
InternalSolns = InternalSolns0
),
(
( InternalSolns = at_most_many
; InternalSolns = at_most_many_cc
),
Prune = yes
->
Solns = at_most_one
;
% If a goal with multiple solutions occurs in a
% single-solution context, then we will need to do pruning.
InternalSolns = at_most_many,
SolnContext = first_soln
->
Solns = at_most_many_cc
;
Solns = InternalSolns
),
determinism_components(Detism, InternalCanFail, Solns),
goal_info_set_determinism(GoalInfo0, Detism, GoalInfo),
% The code generators assume that conjunctions containing
% multi or nondet goals and if-then-elses containing
% multi or nondet conditions can only occur inside other
% multi or nondet goals. simplify.m modifies the code to make
% these invariants hold. Determinism analysis can be rerun
% after simplification, and without this code here the
% invariants would not hold after determinism analysis
% (the number of solutions of the inner goal would be changed
% back from at_most_many to at_most_one or at_most_zero).
(
%
% If-then-elses that are det or semidet may
% nevertheless contain nondet or multidet
% conditions. If this happens, the if-then-else
% must be put inside a `some' to appease the
% code generator. (Both the MLDS and LLDS
% back-ends rely on this.)
%
Goal1 = if_then_else(_, _ - CondInfo, _, _),
goal_info_get_determinism(CondInfo, CondDetism),
determinism_components(CondDetism, _, at_most_many),
Solns \= at_most_many
->
FinalInternalSolns = at_most_many
;
% Conjunctions that cannot produce solutions may nevertheless
% contain nondet and multidet goals. If this happens, the
% conjunction is put inside a scope goal to appease the code
% generator.
Goal1 = conj(ConjGoals),
Solns = at_most_zero,
some [ConjGoalInfo] (
list__member(_ - ConjGoalInfo, ConjGoals),
goal_info_get_determinism(ConjGoalInfo,
ConjGoalDetism),
determinism_components(ConjGoalDetism, _, at_most_many)
)
->
FinalInternalSolns = at_most_many
;
FinalInternalSolns = InternalSolns
),
determinism_components(FinalInternalDetism, InternalCanFail,
FinalInternalSolns),
% See how we should introduce the commit operator, if one is needed.
(
% do we need a commit?
Detism \= FinalInternalDetism,
% for disjunctions, we want to use a semidet
% or cc_nondet disjunction which avoids creating a
% choice point at all, rather than wrapping a
% some [] around a nondet disj, which would
% create a choice point and then prune it.
Goal1 \= disj(_),
% do we already have a commit?
Goal1 \= scope(_, _)
->
% a commit needed - we must introduce an explicit `commit'
% so that the code generator knows to insert the appropriate
% code for pruning
goal_info_set_determinism(GoalInfo0, FinalInternalDetism,
InnerInfo),
Goal = scope(commit(dont_force_pruning), Goal1 - InnerInfo)
;
% either no commit needed, or a `scope' already present
Goal = Goal1
).
%-----------------------------------------------------------------------------%
:- pred det_infer_goal_2(hlds_goal_expr::in, hlds_goal_info::in, instmap::in,
soln_context::in, det_info::in, set(prog_var)::in, instmap_delta::in,
hlds_goal_expr::out, determinism::out, list(det_msg)::out) is det.
det_infer_goal_2(conj(Goals0), _, InstMap0, SolnContext, DetInfo, _, _,
conj(Goals), Detism, !:Msgs) :-
% The determinism of a conjunction is the worst case of the elements
% of that conjuction.
det_infer_conj(Goals0, InstMap0, SolnContext, DetInfo,
Goals, Detism, !:Msgs).
det_infer_goal_2(par_conj(Goals0), GoalInfo, InstMap0, SolnContext,
DetInfo, _, _, par_conj(Goals), Detism, !:Msgs) :-
det_infer_par_conj(Goals0, InstMap0, SolnContext, DetInfo,
Goals, Detism, !:Msgs),
(
determinism_components(Detism, CanFail, Solns),
CanFail = cannot_fail,
Solns \= at_most_many
->
true
;
det_info_get_pred_id(DetInfo, PredId),
det_info_get_proc_id(DetInfo, ProcId),
Msg = par_conj_not_det(Detism, PredId, ProcId, GoalInfo, Goals),
!:Msgs = [Msg | !.Msgs]
).
det_infer_goal_2(disj(Goals0), _, InstMap0, SolnContext, DetInfo, _, _,
disj(Goals), Detism, !:Msgs) :-
det_infer_disj(Goals0, InstMap0, SolnContext, DetInfo,
can_fail, at_most_zero, Goals, Detism, !:Msgs).
det_infer_goal_2(switch(Var, SwitchCanFail, Cases0), GoalInfo,
InstMap0, SolnContext, DetInfo, _, _,
switch(Var, SwitchCanFail, Cases), Detism, !:Msgs) :-
% The determinism of a switch is the worst of the determinism of each
% of the cases. Also, if only a subset of the constructors are handled,
% then it is semideterministic or worse - this is determined
% in switch_detection.m and handled via the SwitchCanFail field.
det_infer_switch(Cases0, InstMap0, SolnContext, DetInfo,
cannot_fail, at_most_zero, Cases, CasesDetism, !:Msgs),
determinism_components(CasesDetism, CasesCanFail, CasesSolns),
% The switch variable tests are in a first_soln context if and only
% if the switch goal as a whole was in a first_soln context and the
% cases cannot fail.
(
CasesCanFail = cannot_fail,
SolnContext = first_soln
->
SwitchSolnContext = first_soln
;
SwitchSolnContext = all_solns
),
ExaminesRep = yes,
det_check_for_noncanonical_type(Var, ExaminesRep, SwitchCanFail,
SwitchSolnContext, GoalInfo, switch, DetInfo, SwitchSolns,
!Msgs),
det_conjunction_canfail(SwitchCanFail, CasesCanFail, CanFail),
det_conjunction_maxsoln(SwitchSolns, CasesSolns, NumSolns),
determinism_components(Detism, CanFail, NumSolns).
det_infer_goal_2(call(PredId, ModeId0, A, B, C, N), GoalInfo, _,
SolnContext, DetInfo, _, _,
call(PredId, ModeId, A, B, C, N), Detism, !:Msgs) :-
% For calls, just look up the determinism entry associated with
% the called predicate.
% This is the point at which annotations start changing
% when we iterate to fixpoint for global determinism inference.
det_lookup_detism(DetInfo, PredId, ModeId0, Detism0),
% Make sure we don't try to call a committed-choice pred
% from a non-committed-choice context.
determinism_components(Detism0, CanFail, NumSolns),
(
NumSolns = at_most_many_cc,
SolnContext \= first_soln
->
(
det_find_matching_non_cc_mode(DetInfo, PredId, ModeId0,
ModeIdPrime)
->
ModeId = ModeIdPrime,
!:Msgs = [],
determinism_components(Detism, CanFail, at_most_many)
;
!:Msgs = [cc_pred_in_wrong_context(GoalInfo, Detism0,
PredId, ModeId0)],
ModeId = ModeId0,
% Code elsewhere relies on the assumption that
% SolnContext \= first_soln =>
% NumSolns \= at_most_many_cc,
% so we need to enforce that here.
determinism_components(Detism, CanFail, at_most_many)
)
;
!:Msgs = [],
ModeId = ModeId0,
Detism = Detism0
).
det_infer_goal_2(generic_call(GenericCall, ArgVars, Modes, Det0),
GoalInfo, _InstMap0, SolnContext,
_MiscInfo, _NonLocalVars, _DeltaInstMap,
generic_call(GenericCall, ArgVars, Modes, Det0), Det, Msgs) :-
determinism_components(Det0, CanFail, NumSolns),
(
NumSolns = at_most_many_cc,
SolnContext \= first_soln
->
% This error can only occur for higher-order calls.
% class_method calls are only introduced by polymorphism,
% and the aditi_builtins are all det (for the updates)
% or introduced later (for calls).
Msgs = [higher_order_cc_pred_in_wrong_context(GoalInfo, Det0)],
% Code elsewhere relies on the assumption that
% SolnContext \= first_soln => NumSolns \= at_most_many_cc,
% so we need to enforce that here.
determinism_components(Det, CanFail, at_most_many)
;
Msgs = [],
Det = Det0
).
det_infer_goal_2(unify(LHS, RHS0, Mode, Unify, Context), GoalInfo, InstMap0,
SolnContext, DetInfo, _, _,
unify(LHS, RHS, Mode, Unify, Context), UnifyDet, !:Msgs) :-
% unifications are either deterministic or semideterministic.
% (see det_infer_unify).
(
RHS0 = lambda_goal(Purity, PredOrFunc, EvalMethod, FixModes,
NonLocalVars, Vars, Modes, LambdaDeclaredDet, Goal0)
->
(
determinism_components(LambdaDeclaredDet, _,
at_most_many_cc)
->
LambdaSolnContext = first_soln
;
LambdaSolnContext = all_solns
),
det_info_get_module_info(DetInfo, ModuleInfo),
instmap__pre_lambda_update(ModuleInfo, Vars, Modes,
InstMap0, InstMap1),
det_infer_goal(Goal0, InstMap1, LambdaSolnContext, DetInfo,
Goal, LambdaInferredDet, Msgs1),
det_check_lambda(LambdaDeclaredDet, LambdaInferredDet,
Goal, GoalInfo, DetInfo, Msgs2),
list__append(Msgs1, Msgs2, !:Msgs),
RHS = lambda_goal(Purity, PredOrFunc, EvalMethod, FixModes,
NonLocalVars, Vars, Modes, LambdaDeclaredDet, Goal)
;
RHS = RHS0,
!:Msgs = []
),
det_infer_unify_canfail(Unify, UnifyCanFail),
det_infer_unify_examines_rep(Unify, ExaminesRepresentation),
det_check_for_noncanonical_type(LHS, ExaminesRepresentation,
UnifyCanFail, SolnContext, GoalInfo, unify(Context), DetInfo,
UnifyNumSolns, !Msgs),
determinism_components(UnifyDet, UnifyCanFail, UnifyNumSolns).
det_infer_goal_2(if_then_else(Vars, Cond0, Then0, Else0), _GoalInfo0,
InstMap0, SolnContext, DetInfo, _NonLocalVars, _DeltaInstMap,
if_then_else(Vars, Cond, Then, Else), Detism, Msgs) :-
% We process the goal right-to-left, doing the `then' before
% the condition of the if-then-else, so that we can propagate
% the SolnContext correctly.
% First process the `then' part
update_instmap(Cond0, InstMap0, InstMap1),
det_infer_goal(Then0, InstMap1, SolnContext, DetInfo,
Then, ThenDetism, ThenMsgs),
determinism_components(ThenDetism, ThenCanFail, ThenMaxSoln),
% Next, work out the right soln_context to use for the condition.
% The condition is in a first_soln context if and only if the goal
% as a whole was in a first_soln context and the `then' part
% cannot fail.
(
ThenCanFail = cannot_fail,
SolnContext = first_soln
->
CondSolnContext = first_soln
;
CondSolnContext = all_solns
),
% Process the `condition' part
det_infer_goal(Cond0, InstMap0, CondSolnContext, DetInfo,
Cond, CondDetism, CondMsgs),
determinism_components(CondDetism, CondCanFail, CondMaxSoln),
% Process the `else' part
det_infer_goal(Else0, InstMap0, SolnContext, DetInfo,
Else, ElseDetism, ElseMsgs),
determinism_components(ElseDetism, ElseCanFail, ElseMaxSoln),
% Finally combine the results from the three parts
( CondCanFail = cannot_fail ->
% A -> B ; C is equivalent to A, B if A cannot fail
det_conjunction_detism(CondDetism, ThenDetism, Detism)
; CondMaxSoln = at_most_zero ->
% A -> B ; C is equivalent to ~A, C if A cannot succeed
det_negation_det(CondDetism, MaybeNegDetism),
(
MaybeNegDetism = no,
error("cannot find determinism of negated condition")
;
MaybeNegDetism = yes(NegDetism)
),
det_conjunction_detism(NegDetism, ElseDetism, Detism)
;
det_conjunction_maxsoln(CondMaxSoln, ThenMaxSoln, CTMaxSoln),
det_switch_maxsoln(CTMaxSoln, ElseMaxSoln, MaxSoln),
det_switch_canfail(ThenCanFail, ElseCanFail, CanFail),
determinism_components(Detism, CanFail, MaxSoln)
),
Msgs = CondMsgs ++ ThenMsgs ++ ElseMsgs.
det_infer_goal_2(not(Goal0), _, InstMap0, _SolnContext, DetInfo, _, _,
not(Goal), Det, Msgs) :-
% Negations are almost always semideterministic. It is an error for
% a negation to further instantiate any non-local variable. Such
% errors will be reported by the mode analysis.
%
% Question: should we warn about the negation of goals that either
% cannot succeed or cannot fail?
% Answer: yes, probably, but it's not a high priority.
det_infer_goal(Goal0, InstMap0, first_soln, DetInfo,
Goal, NegDet, Msgs),
det_negation_det(NegDet, MaybeDet),
(
MaybeDet = no,
error("inappropriate determinism inside a negation")
;
MaybeDet = yes(Det)
).
% Existential quantification may require a cut to throw away solutions,
% but we cannot rely on explicit quantification to detect this.
% Therefore cuts are handled in det_infer_goal.
det_infer_goal_2(scope(Reason, Goal0), GoalInfo0, InstMap0, SolnContext0,
DetInfo, _, _, scope(Reason, Goal), Det, Msgs) :-
( Reason = promise_equivalent_solutions(Vars) ->
SolnContext = first_soln,
goal_info_get_instmap_delta(GoalInfo0, InstmapDelta),
instmap_delta_changed_vars(InstmapDelta, ChangedVars),
det_info_get_module_info(DetInfo, ModuleInfo),
set__divide(var_is_ground_in_instmap(ModuleInfo, InstMap0),
ChangedVars, _GroundAtStartVars, BoundVars),
goal_info_get_context(GoalInfo0, Context),
det_get_proc_info(DetInfo, ProcInfo),
proc_info_varset(ProcInfo, VarSet),
% Which vars were bound inside the scope but not listed
% in the promise_equivalent_solutions?
set__difference(BoundVars, set__list_to_set(Vars), BugVars),
( set__empty(BugVars) ->
ScopeMsgs1 = []
;
ScopeMsg1 = promise_equivalent_solutions_missing_vars(
Context, VarSet, BugVars),
ScopeMsgs1 = [ScopeMsg1]
),
% Which vars were listed in the promise_equivalent_solutions
% but not bound inside the scope?
set__difference(set__list_to_set(Vars), BoundVars, ExtraVars),
( set__empty(ExtraVars) ->
ScopeMsgs2 = []
;
ScopeMsg2 = promise_equivalent_solutions_extra_vars(
Context, VarSet, ExtraVars),
ScopeMsgs2 = [ScopeMsg2]
),
ScopeMsgs = ScopeMsgs1 ++ ScopeMsgs2
;
SolnContext = SolnContext0,
ScopeMsgs = []
),
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, Det, SubMsgs),
list__append(SubMsgs, ScopeMsgs, Msgs).
det_infer_goal_2(foreign_proc(Attributes, PredId, ProcId, Args, ExtraArgs,
PragmaCode),
GoalInfo, _, SolnContext, DetInfo, _, _,
foreign_proc(Attributes, PredId, ProcId, Args, ExtraArgs,
PragmaCode),
Detism, Msgs) :-
% Foreign_procs are handled in the same way as predicate calls.
det_info_get_module_info(DetInfo, ModuleInfo),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo),
proc_info_declared_determinism(ProcInfo, MaybeDetism),
(
MaybeDetism = yes(Detism0),
determinism_components(Detism0, CanFail, NumSolns0),
(
may_throw_exception(Attributes) =
will_not_throw_exception,
Detism0 = erroneous
->
Msgs0 = [will_not_throw_with_erroneous(PredId, ProcId)]
;
Msgs0 = []
),
( PragmaCode = nondet(_, _, _, _, _, _, _, _, _) ->
% pragma C codes of this form
% can have more than one solution
NumSolns1 = at_most_many
;
NumSolns1 = NumSolns0
),
(
NumSolns1 = at_most_many_cc,
SolnContext \= first_soln
->
Msgs = [cc_pred_in_wrong_context(GoalInfo, Detism0,
PredId, ProcId) | Msgs0 ],
NumSolns = at_most_many
;
Msgs = Msgs0,
NumSolns = NumSolns1
),
determinism_components(Detism, CanFail, NumSolns)
;
MaybeDetism = no,
Msgs = [pragma_c_code_without_det_decl(PredId, ProcId)],
Detism = erroneous
).
det_infer_goal_2(shorthand(_), _, _, _, _, _, _, _, _, _) :-
% these should have been expanded out by now
error("det_infer_goal_2: unexpected shorthand").
%-----------------------------------------------------------------------------%
:- pred det_infer_conj(list(hlds_goal)::in, instmap::in, soln_context::in,
det_info::in, list(hlds_goal)::out, determinism::out,
list(det_msg)::out) is det.
det_infer_conj([], _InstMap0, _SolnContext, _DetInfo, [], det, []).
det_infer_conj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo,
[Goal | Goals], Detism, Msgs) :-
% We should look to see when we get to a not_reached point
% and optimize away the remaining elements of the conjunction.
% But that optimization is done in the code generation anyway.
% We infer the determinisms right-to-left, so that we can propagate
% the SolnContext properly.
%
% First, process the second and subsequent conjuncts.
%
update_instmap(Goal0, InstMap0, InstMap1),
det_infer_conj(Goals0, InstMap1, SolnContext, DetInfo,
Goals, DetismB, MsgsB),
determinism_components(DetismB, CanFailB, _MaxSolnsB),
%
% Next, work out whether the first conjunct is in a first_soln context
% or not. We obviously need all its solutions if we need all the
% solutions of the conjunction. However, even if we need only the
% first solution of the conjunction, we may need to generate more
% than one solution of the first conjunct if the later conjuncts
% may possibly fail.
%
(
CanFailB = cannot_fail,
SolnContext = first_soln
->
SolnContextA = first_soln
;
SolnContextA = all_solns
),
%
% Process the first conjunct.
%
det_infer_goal(Goal0, InstMap0, SolnContextA, DetInfo,
Goal, DetismA, MsgsA),
%
% Finally combine the results computed above.
%
det_conjunction_detism(DetismA, DetismB, Detism),
Msgs = MsgsA ++ MsgsB.
:- pred det_infer_par_conj(list(hlds_goal)::in, instmap::in, soln_context::in,
det_info::in, list(hlds_goal)::out, determinism::out,
list(det_msg)::out) is det.
det_infer_par_conj([], _InstMap0, _SolnContext, _DetInfo, [], det, []).
det_infer_par_conj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo,
[Goal | Goals], Detism, Msgs) :-
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, DetismA, MsgsA),
determinism_components(DetismA, CanFailA, MaxSolnsA),
det_infer_par_conj(Goals0, InstMap0, SolnContext, DetInfo,
Goals, DetismB, MsgsB),
determinism_components(DetismB, CanFailB, MaxSolnsB),
det_conjunction_maxsoln(MaxSolnsA, MaxSolnsB, MaxSolns),
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
determinism_components(Detism, CanFail, MaxSolns),
Msgs = MsgsA ++ MsgsB.
:- pred det_infer_disj(list(hlds_goal)::in, instmap::in, soln_context::in,
det_info::in, can_fail::in, soln_count::in, list(hlds_goal)::out,
determinism::out, list(det_msg)::out) is det.
det_infer_disj([], _InstMap0, _SolnContext, _DetInfo, CanFail, MaxSolns,
[], Detism, []) :-
determinism_components(Detism, CanFail, MaxSolns).
det_infer_disj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo, CanFail0,
MaxSolns0, [Goal | Goals1], Detism, Msgs) :-
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo, Goal, Detism1,
Msgs1),
determinism_components(Detism1, CanFail1, MaxSolns1),
Goal = _ - GoalInfo,
% If a disjunct cannot succeed but is marked with the
% preserve_backtrack_into feature, treat it as being able to succeed
% when computing the max number of solutions of the disjunction as a
% whole, *provided* that some earlier disjuct could succeed. The idea
% is that ( marked failure ; det ) should be treated as det, since all
% backtracking is local within it, while disjunctions of the form
% ( det ; marked failure ) should be treated as multi, since we want
% to be able to backtrack to the second disjunct from *outside*
% the disjunction. This is useful for program transformation that want
% to get control on exits to and redos into model_non procedures.
% Deep profiling is one such transformation.
(
MaxSolns0 \= at_most_zero,
MaxSolns1 = at_most_zero,
goal_info_has_feature(GoalInfo, preserve_backtrack_into)
->
AdjMaxSolns1 = at_most_one
;
AdjMaxSolns1 = MaxSolns1
),
det_disjunction_canfail(CanFail0, CanFail1, CanFail2),
det_disjunction_maxsoln(MaxSolns0, AdjMaxSolns1, MaxSolns2),
% if we're in a single-solution context,
% convert `at_most_many' to `at_most_many_cc'
( SolnContext = first_soln, MaxSolns2 = at_most_many ->
MaxSolns3 = at_most_many_cc
;
MaxSolns3 = MaxSolns2
),
det_infer_disj(Goals0, InstMap0, SolnContext, DetInfo, CanFail2,
MaxSolns3, Goals1, Detism, Msgs2),
Msgs = Msgs1 ++ Msgs2.
:- pred det_infer_switch(list(case)::in, instmap::in, soln_context::in,
det_info::in, can_fail::in, soln_count::in, list(case)::out,
determinism::out, list(det_msg)::out) is det.
det_infer_switch([], _InstMap0, _SolnContext, _DetInfo, CanFail, MaxSolns,
[], Detism, []) :-
determinism_components(Detism, CanFail, MaxSolns).
det_infer_switch([Case0 | Cases0], InstMap0, SolnContext, DetInfo, CanFail0,
MaxSolns0, [Case | Cases], Detism, Msgs) :-
% Technically, we should update the instmap to reflect the
% knowledge that the var is bound to this particular
% constructor, but we wouldn't use that information here anyway,
% so we don't bother.
Case0 = case(ConsId, Goal0),
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, Detism1, Msgs1),
Case = case(ConsId, Goal),
determinism_components(Detism1, CanFail1, MaxSolns1),
det_switch_canfail(CanFail0, CanFail1, CanFail2),
det_switch_maxsoln(MaxSolns0, MaxSolns1, MaxSolns2),
det_infer_switch(Cases0, InstMap0, SolnContext, DetInfo, CanFail2,
MaxSolns2, Cases, Detism, Msgs2),
Msgs = Msgs1 ++ Msgs2.
%-----------------------------------------------------------------------------%
% det_find_matching_non_cc_mode(DetInfo, PredId, ProcId0, ProcId):
%
% Search for a mode of the given predicate that is identical
% to the mode ProcId0, except that its determinism is non-cc
% whereas ProcId0's detism is cc. Let ProcId be the first such mode.
%
:- pred det_find_matching_non_cc_mode(det_info::in, pred_id::in, proc_id::in,
proc_id::out) is semidet.
det_find_matching_non_cc_mode(DetInfo, PredId, !ProcId) :-
det_info_get_module_info(DetInfo, ModuleInfo),
module_info_preds(ModuleInfo, PredTable),
map__lookup(PredTable, PredId, PredInfo),
pred_info_procedures(PredInfo, ProcTable),
map__to_assoc_list(ProcTable, ProcList),
det_find_matching_non_cc_mode_2(ProcList, ModuleInfo, PredInfo,
!ProcId).
:- pred det_find_matching_non_cc_mode_2(assoc_list(proc_id, proc_info)::in,
module_info::in, pred_info::in, proc_id::in, proc_id::out) is semidet.
det_find_matching_non_cc_mode_2([TestProcId - ProcInfo | Rest],
ModuleInfo, PredInfo, !ProcId) :-
(
TestProcId \= !.ProcId,
proc_info_interface_determinism(ProcInfo, Detism),
determinism_components(Detism, _CanFail, MaxSoln),
MaxSoln = at_most_many,
modes_are_identical_bar_cc(!.ProcId, TestProcId, PredInfo,
ModuleInfo)
->
!:ProcId = TestProcId
;
det_find_matching_non_cc_mode_2(Rest, ModuleInfo, PredInfo,
!ProcId)
).
%-----------------------------------------------------------------------------%
:- pred det_check_for_noncanonical_type(prog_var::in, bool::in, can_fail::in,
soln_context::in, hlds_goal_info::in, cc_unify_context::in,
det_info::in, soln_count::out, list(det_msg)::in, list(det_msg)::out)
is det.
det_check_for_noncanonical_type(Var, ExaminesRepresentation, CanFail,
SolnContext, GoalInfo, GoalContext, DetInfo, NumSolns,
!Msgs) :-
(
% check for unifications that attempt to examine
% the representation of a type that does not have
% a single representation for each abstract value
ExaminesRepresentation = yes,
det_get_proc_info(DetInfo, ProcInfo),
proc_info_vartypes(ProcInfo, VarTypes),
map__lookup(VarTypes, Var, Type),
det_type_has_user_defined_equality_pred(DetInfo, Type)
->
( CanFail = can_fail ->
proc_info_varset(ProcInfo, VarSet),
!:Msgs = [cc_unify_can_fail(GoalInfo, Var, Type,
VarSet, GoalContext) | !.Msgs]
; SolnContext \= first_soln ->
proc_info_varset(ProcInfo, VarSet),
!:Msgs = [cc_unify_in_wrong_context(GoalInfo, Var,
Type, VarSet, GoalContext) | !.Msgs]
;
true
),
( SolnContext = first_soln ->
NumSolns = at_most_many_cc
;
NumSolns = at_most_many
)
;
NumSolns = at_most_one
).
% Return true iff the principal type constructor of the given type
% has user-defined equality.
%
:- pred det_type_has_user_defined_equality_pred(det_info::in,
(type)::in) is semidet.
det_type_has_user_defined_equality_pred(DetInfo, Type) :-
det_info_get_module_info(DetInfo, ModuleInfo),
type_has_user_defined_equality_pred(ModuleInfo, Type, _).
% Return yes iff the results of the specified unification might depend
% on the concrete representation of the abstract values involved.
%
:- pred det_infer_unify_examines_rep(unification::in, bool::out) is det.
det_infer_unify_examines_rep(assign(_, _), no).
det_infer_unify_examines_rep(construct(_, _, _, _, _, _, _), no).
det_infer_unify_examines_rep(deconstruct(_, _, _, _, _, _), yes).
det_infer_unify_examines_rep(simple_test(_, _), yes).
% Some complicated modes of complicated unifications _do_
% examine the representation...
% but we will catch those by reporting errors in the
% compiler-generated code for the complicated unification.
det_infer_unify_examines_rep(complicated_unify(_, _, _), no).
% Deconstruction unifications cannot fail if the type
% only has one constructor, or if the variable is known to be
% already bound to the appropriate functor.
%
% This is handled (modulo bugs) by modes.m, which sets
% the appropriate field in the deconstruct(...) to can_fail for
% those deconstruction unifications which might fail.
% But switch_detection.m may set it back to cannot_fail again,
% if it moves the functor test into a switch instead.
%
:- pred det_infer_unify_canfail(unification::in, can_fail::out) is det.
det_infer_unify_canfail(deconstruct(_, _, _, _, CanFail, _), CanFail).
det_infer_unify_canfail(assign(_, _), cannot_fail).
det_infer_unify_canfail(construct(_, _, _, _, _, _, _), cannot_fail).
det_infer_unify_canfail(simple_test(_, _), can_fail).
det_infer_unify_canfail(complicated_unify(_, CanFail, _), CanFail).
%-----------------------------------------------------------------------------%
det_get_soln_context(DeclaredDetism, SolnContext) :-
(
determinism_components(DeclaredDetism, _, at_most_many_cc)
->
SolnContext = first_soln
;
SolnContext = all_solns
).
det_conjunction_detism(DetismA, DetismB, Detism) :-
% When figuring out the determinism of a conjunction,
% if the second goal is unreachable, then then the
% determinism of the conjunction is just the determinism
% of the first goal.
determinism_components(DetismA, CanFailA, MaxSolnA),
( MaxSolnA = at_most_zero ->
Detism = DetismA
;
determinism_components(DetismB, CanFailB, MaxSolnB),
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
determinism_components(Detism, CanFail, MaxSoln)
).
det_par_conjunction_detism(DetismA, DetismB, Detism) :-
% Figuring out the determinism of a parallel conjunction is much
% easier than for a sequential conjunction, since you simply
% ignore the case where the second goal is unreachable. Just do
% a normal solution count.
determinism_components(DetismA, CanFailA, MaxSolnA),
determinism_components(DetismB, CanFailB, MaxSolnB),
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
determinism_components(Detism, CanFail, MaxSoln).
det_switch_detism(DetismA, DetismB, Detism) :-
determinism_components(DetismA, CanFailA, MaxSolnA),
determinism_components(DetismB, CanFailB, MaxSolnB),
det_switch_canfail(CanFailA, CanFailB, CanFail),
det_switch_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
determinism_components(Detism, CanFail, MaxSoln).
% These predicates do abstract interpretation to count
% the number of solutions and the possible number of failures.
%
% If the num_solns is at_most_many_cc, this means that
% the goal might have many logical solutions if there were no
% pruning, but that the goal occurs in a single-solution
% context, so only the first solution will be returned.
%
% The reason why we don't throw an exception in det_switch_maxsoln and
% det_disjunction_maxsoln is given in the documentation of the
% test case invalid/magicbox.m.
:- pred det_conjunction_maxsoln(soln_count::in, soln_count::in,
soln_count::out) is det.
det_conjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_one, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_many, at_most_zero).
det_conjunction_maxsoln(at_most_one, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_one, at_most_one, at_most_one).
det_conjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
det_conjunction_maxsoln(at_most_one, at_most_many, at_most_many).
det_conjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
det_conjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
det_conjunction_maxsoln(at_most_many_cc, at_most_many, _) :-
% if the first conjunct could be cc pruned,
% the second conj ought to have been cc pruned too
error("det_conjunction_maxsoln: many_cc , many").
det_conjunction_maxsoln(at_most_many, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_many, at_most_one, at_most_many).
det_conjunction_maxsoln(at_most_many, at_most_many_cc, at_most_many).
det_conjunction_maxsoln(at_most_many, at_most_many, at_most_many).
:- pred det_conjunction_canfail(can_fail::in, can_fail::in, can_fail::out)
is det.
det_conjunction_canfail(can_fail, can_fail, can_fail).
det_conjunction_canfail(can_fail, cannot_fail, can_fail).
det_conjunction_canfail(cannot_fail, can_fail, can_fail).
det_conjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
det_disjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_disjunction_maxsoln(at_most_zero, at_most_one, at_most_one).
det_disjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_zero, at_most_many, at_most_many).
det_disjunction_maxsoln(at_most_one, at_most_zero, at_most_one).
det_disjunction_maxsoln(at_most_one, at_most_one, at_most_many).
det_disjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_one, at_most_many, at_most_many).
det_disjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
det_disjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
det_disjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_many_cc, at_most_many, at_most_many_cc).
det_disjunction_maxsoln(at_most_many, at_most_zero, at_most_many).
det_disjunction_maxsoln(at_most_many, at_most_one, at_most_many).
det_disjunction_maxsoln(at_most_many, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_many, at_most_many, at_most_many).
det_disjunction_canfail(can_fail, can_fail, can_fail).
det_disjunction_canfail(can_fail, cannot_fail, cannot_fail).
det_disjunction_canfail(cannot_fail, can_fail, cannot_fail).
det_disjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
det_switch_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_switch_maxsoln(at_most_zero, at_most_one, at_most_one).
det_switch_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_zero, at_most_many, at_most_many).
det_switch_maxsoln(at_most_one, at_most_zero, at_most_one).
det_switch_maxsoln(at_most_one, at_most_one, at_most_one).
det_switch_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_one, at_most_many, at_most_many).
det_switch_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
det_switch_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
det_switch_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_many_cc, at_most_many, at_most_many_cc).
det_switch_maxsoln(at_most_many, at_most_zero, at_most_many).
det_switch_maxsoln(at_most_many, at_most_one, at_most_many).
det_switch_maxsoln(at_most_many, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_many, at_most_many, at_most_many).
det_switch_canfail(can_fail, can_fail, can_fail).
det_switch_canfail(can_fail, cannot_fail, can_fail).
det_switch_canfail(cannot_fail, can_fail, can_fail).
det_switch_canfail(cannot_fail, cannot_fail, cannot_fail).
det_negation_det(det, yes(failure)).
det_negation_det(semidet, yes(semidet)).
det_negation_det(multidet, no).
det_negation_det(nondet, no).
det_negation_det(cc_multidet, no).
det_negation_det(cc_nondet, no).
det_negation_det(erroneous, yes(erroneous)).
det_negation_det(failure, yes(det)).
%-----------------------------------------------------------------------------%
% Determinism_declarations takes a module_info as input and
% returns two lists of procedure ids, the first being those
% with determinism declarations, and the second being those without.
%
:- pred determinism_declarations(module_info::in, pred_proc_list::out,
pred_proc_list::out, pred_proc_list::out) is det.
determinism_declarations(ModuleInfo, DeclaredProcs,
UndeclaredProcs, NoInferProcs) :-
get_all_pred_procs(ModuleInfo, PredProcs),
segregate_procs(ModuleInfo, PredProcs, DeclaredProcs,
UndeclaredProcs, NoInferProcs).
% Get_all_pred_procs takes a module_info and returns a list of all
% the procedures ids for that module (except class methods, which
% do not need to be checked since we generate the code ourselves).
%
:- pred get_all_pred_procs(module_info::in, pred_proc_list::out) is det.
get_all_pred_procs(ModuleInfo, PredProcs) :-
module_info_predids(ModuleInfo, PredIds),
module_info_preds(ModuleInfo, Preds),
get_all_pred_procs_2(Preds, PredIds, [], PredProcs).
:- pred get_all_pred_procs_2(pred_table::in, list(pred_id)::in,
pred_proc_list::in, pred_proc_list::out) is det.
get_all_pred_procs_2(_Preds, [], !PredProcs).
get_all_pred_procs_2(Preds, [PredId | PredIds], !PredProcs) :-
map__lookup(Preds, PredId, Pred),
ProcIds = pred_info_procids(Pred),
fold_pred_modes(PredId, ProcIds, !PredProcs),
get_all_pred_procs_2(Preds, PredIds, !PredProcs).
:- pred fold_pred_modes(pred_id::in, list(proc_id)::in, pred_proc_list::in,
pred_proc_list::out) is det.
fold_pred_modes(_PredId, [], !PredProcs).
fold_pred_modes(PredId, [ProcId | ProcIds], !PredProcs) :-
!:PredProcs = [proc(PredId, ProcId) | !.PredProcs],
fold_pred_modes(PredId, ProcIds, !PredProcs).
% segregate_procs(ModuleInfo, PredProcs,
% DeclaredProcs, UndeclaredProcs, NoInferProcs):
%
% The predicate partitions the pred_proc_ids in PredProcs into three
% categories:
%
% - DeclaredProcs holds the procedures that have declarations that need
% to be checked.
%
% - UndeclaredProcs holds the procedures that don't have declarations
% whose determinism needs to be inferred.
%
% - NoInferProcs holds the procedures whose determinism is already
% known, and which should not be processed further.
%
:- pred segregate_procs(module_info::in, pred_proc_list::in,
pred_proc_list::out, pred_proc_list::out, pred_proc_list::out) is det.
segregate_procs(ModuleInfo, PredProcs, DeclaredProcs, UndeclaredProcs,
NoInferProcs) :-
segregate_procs_2(ModuleInfo, PredProcs, [], DeclaredProcs,
[], UndeclaredProcs, [], NoInferProcs).
:- pred segregate_procs_2(module_info::in, pred_proc_list::in,
pred_proc_list::in, pred_proc_list::out,
pred_proc_list::in, pred_proc_list::out,
pred_proc_list::in, pred_proc_list::out) is det.
segregate_procs_2(_ModuleInfo, [], !DeclaredProcs,
!UndeclaredProcs, !NoInferProcs).
segregate_procs_2(ModuleInfo, [PredProcId | PredProcIds],
!DeclaredProcs, !UndeclaredProcs, !NoInferProcs) :-
PredProcId = proc(PredId, ProcId),
module_info_preds(ModuleInfo, Preds),
map__lookup(Preds, PredId, Pred),
(
(
pred_info_is_imported(Pred)
;
pred_info_is_pseudo_imported(Pred),
hlds_pred__in_in_unification_proc_id(ProcId)
;
pred_info_get_markers(Pred, Markers),
check_marker(Markers, class_method)
)
->
!:NoInferProcs = [PredProcId | !.NoInferProcs]
;
pred_info_procedures(Pred, Procs),
map__lookup(Procs, ProcId, Proc),
proc_info_declared_determinism(Proc, MaybeDetism),
(
MaybeDetism = no,
!:UndeclaredProcs = [PredProcId | !.UndeclaredProcs]
;
MaybeDetism = yes(_),
!:DeclaredProcs = [PredProcId | !.DeclaredProcs]
)
),
segregate_procs_2(ModuleInfo, PredProcIds, !DeclaredProcs,
!UndeclaredProcs, !NoInferProcs).
% We can't infer a tighter determinism for imported procedures or
% for class methods, so set the inferred determinism to be the
% same as the declared determinism. This can't be done easily in
% make_hlds.m since inter-module optimization means that the
% import_status of procedures isn't determined until after all
% items are processed.
%
:- pred set_non_inferred_proc_determinism(pred_proc_id::in,
module_info::in, module_info::out) is det.
set_non_inferred_proc_determinism(proc(PredId, ProcId), !ModuleInfo) :-
module_info_pred_info(!.ModuleInfo, PredId, PredInfo0),
pred_info_procedures(PredInfo0, Procs0),
map__lookup(Procs0, ProcId, ProcInfo0),
proc_info_declared_determinism(ProcInfo0, MaybeDet),
(
MaybeDet = yes(Det),
proc_info_set_inferred_determinism(Det, ProcInfo0, ProcInfo),
map__det_update(Procs0, ProcId, ProcInfo, Procs),
pred_info_set_procedures(Procs, PredInfo0, PredInfo),
module_info_set_pred_info(PredId, PredInfo, !ModuleInfo)
;
MaybeDet = no
).
%-----------------------------------------------------------------------------%