Files
mercury/compiler/polymorphism.m
1998-04-08 11:36:13 +00:00

2482 lines
88 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1995-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% file: polymorphism.m
% main author: fjh
% This module is a pass over the HLDS.
% It does a syntactic transformation to implement polymorphism, including
% typeclasses, using higher-order predicates, and also invokes
% `lambda__transform_lambda' to handle lambda expressions by creating new
% predicates for them.
%
%-----------------------------------------------------------------------------%
%
% Tranformation of polymorphic code:
%
% Every polymorphic predicate is transformed so that it takes one additional
% argument for every type variable in the predicate's type declaration.
% The argument gives information about the type, including higher-order
% predicate variables for each of the builtin polymorphic operations
% (currently unify/2, compare/3, index/2).
%
%-----------------------------------------------------------------------------%
%
% Representation of type information:
%
% IMPORTANT: ANY CHANGES TO THE DOCUMENTATION HERE MUST BE REFLECTED BY
% SIMILAR CHANGES TO THE #defines IN "runtime/type_info.h"
% AND VICE VERSA.
%
% Type information is represented using one or two cells. The cell which
% is always present is the base_type_info structure, laid out like this:
%
% word 0 <arity of type constructor>
% e.g. 0 for `int', 1 for `list(T)', 2 for `map(K, V)'.
% word 1 <=/2 predicate for type>
% word 2 <index/2 predicate for type>
% word 3 <compare/3 predicate for type>
% word 4 <base_type_layout for type>
% word 5 <base_type_functors for type>
% word 6 <string name of type constructor>
% e.g. "int" for `int', "list" for `list(T)',
% "map" for `map(K,V)'
% word 7 <string name of module>
%
% The other cell is the type_info structure, laid out like this:
%
% word 0 <pointer to the base_type_info structure>
% word 1+ <the type_infos for the type params, at least one>
%
% (but see note below for how higher order types differ)
%
%-----------------------------------------------------------------------------%
%
% Optimization of common case (zero arity types):
%
% The type_info structure itself is redundant if the type has no type
% parameters (i.e. its arity is zero). Therefore if the arity is zero,
% we pass the address of the base_type_info structure directly, instead of
% wrapping it up in another cell. The runtime system will look at the first
% field of the cell it is passed. If this field is zero, the cell is a
% base_type_info structure for an arity zero type. If this field is not zero,
% the cell is a new type_info structure, with the first field being the
% pointer to the base_type_info structure.
%
%-----------------------------------------------------------------------------%
%
% Higher order types:
%
% There is a slight variation on this for higher-order types. Higher
% order type_infos always have a pointer to the pred/0 base_type_info,
% regardless of their true arity, so we store the real arity in the
% type-info as well.
%
% word 0 <pointer to the base_type_info structure (pred/0)>
% word 1 <arity of predicate>
% word 2+ <the type_infos for the type params, at least one>
%
%-----------------------------------------------------------------------------%
%
% Sharing base_type_info structures:
%
% For compilation models that can put code addresses in static ground terms,
% we can arrange to create one copy of the base_type_info structure statically,
% avoiding the need to create other copies at runtime. For compilation models
% that cannot put code addresses in static ground terms, there are a couple
% of things we could do:
%
% 1. allocate all cells at runtime.
% 2. use a shared static base_type_info, but initialize its code
% addresses during startup (that is, during the module
% initialization code).
%
% Currently we use option 2.
%
%-----------------------------------------------------------------------------%
%
% Example of transformation:
%
% Take the following code as an example, ignoring the requirement for
% super-homogeneous form for clarity:
%
% :- pred p(T1).
% :- pred q(T2).
% :- pred r(T3).
%
% p(X) :- q([X]), r(0).
%
% We add an extra argument for each type variable:
%
% :- pred p(type_info(T1), T1).
% :- pred q(type_info(T2), T2).
% :- pred r(type_info(T3), T3).
%
% We transform the body of p to this:
%
% p(TypeInfoT1, X) :-
% BaseTypeInfoT2 = base_type_info(
% 1,
% '__Unify__'<list/1>,
% '__Index__'<list/1>,
% '__Compare__'<list/1>,
% <base_type_layout for list/1>,
% <base_type_functors for list/1>,
% "list",
% "list"),
% TypeInfoT2 = type_info(
% BaseTypeInfoT2,
% TypeInfoT1),
% q(TypeInfoT2, [X]),
% TypeInfoT3 = base_type_info(
% 0,
% builtin_unify_int,
% builtin_index_int,
% builtin_compare_int,
% <base_type_layout for int/0>,
% <base_type_functors for int/0>,
% "int",
% "mercury_builtin"),
% r(TypeInfoT3, 0).
%
% Note that base_type_infos are actually generated as references to a
% single shared base_type_info.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% Tranformation of code using typeclasses:
%
% Every predicate which has a typeclass constraint is given an extra
% argument for every constraint in the predicate's type declaration.
% The argument is the "dictionary", or "typeclass_info" for the typeclass.
% The dictionary contains pointers to each of the class methods.
%
%-----------------------------------------------------------------------------%
%
% Representation of a typeclass_info:
% The typeclass_info is represented in two parts (the typeclass_info
% itself, and a base_typeclass_info), in a similar fashion to the
% type_info being represented in two parts (the type_info and the
% base_type_info).
%
% The base_typeclass_info contains:
% * the number of constraints on the instance decl.
% * pointer to method #1
% ...
% * pointer to method #n
%
% The typeclass_info contains:
% * a pointer to the base typeclass info
% * typeclass info #1 for constraint on instance decl
% * ...
% * typeclass info #n for constraint on instance decl
% * typeclass info for superclass #1
% ...
% * typeclass info for superclass #n
% * type info #1
% * ...
% * type info #n
%
% The base_type_info is produced statically, and there is one for each instance
% declaration. For each constraint on the instance declaration, the
% corresponding typeclass info is stored in the second part.
%
% eg. for the following program:
%
% :- typeclass foo(T) where [...].
% :- instance foo(int) where [...].
% :- instance foo(list(T)) <= foo(T) where [...].
%
% The typeclass_info for foo(int) is:
% The base_type_info:
% * 0 (arity of the instance declaration)
% * pointer to method #1
% ...
% * pointer to method #n
%
% The type_info:
% * a pointer to the base typeclass info
% * type info for int
%
% The typeclass_info for foo(list(T)) is:
% The base_type_info:
% * 1 (arity of the instance declaration)
% * pointer to method #1
% ...
% * pointer to method #n
%
% The type_info contains:
% * a pointer to the base typeclass info
% * typeclass info for foo(T)
% * type info for list(T)
%
% If the "T" for the list is known, the whole typeclass_info will be static
% data. When we do not know until runtime, the typeclass_info is constructed
% dynamically.
%
%-----------------------------------------------------------------------------%
%
% Example of transformation:
%
% Take the following code as an example (assuming the declarations above),
% ignoring the requirement for super-homogeneous form for clarity:
%
% :- pred p(T1) <= foo(T1).
% :- pred q(T2, T3) <= foo(T2), bar(T3).
% :- pred r(T4, T5) <= foo(T4).
%
% p(X) :- q([X], 0), r(X, 0).
%
% We add an extra argument for each typeclass constraint, and one argument for
% each unconstrained type variable.
%
% :- pred p(typeclass_info(foo(T1)), T1).
% :- pred q(typeclass_info(foo(T2)), typeclass_info(bar(T3)), T2, T3).
% :- pred r(typeclass_info(foo(T4)), type_info(T5), T4, T5).
%
% We transform the body of p to this:
%
% p(TypeClassInfoT1, X) :-
% BaseTypeClassInfoT2 = base_typeclass_info(
% 1,
% ...
% ... (The methods for the foo class from the list
% ... instance)
% ...
% ),
% TypeClassInfoT2 = typeclass_info(
% BaseClassTypeInfoT2,
% TypeClassInfoT1,
% <type_info for list(T1)>),
% BaseTypeClassInfoT3 = base_typeclass_info(
% 0,
% ...
% ... (The methods for the bar class from the int
% ... instance)
% ...
% ),
% TypeClassInfoT3 = typeclass_info(
% BaseClassTypeInfoT3,
% <type_info for int>),
% q(TypeClassInfoT2, TypeClassInfoT3, [X], 0),
% BaseTypeClassInfoT4 = baseclass_type_info(
% 0,
% ...
% ... (The methods for the foo class from the int
% ... instance)
% ...
% ),
% TypeClassInfoT4 = typeclass_info(
% BaseTypeClassInfoT4,
% <type_info for int>),
% r(TypeClassInfoT1, <type_info for int>, X, 0).
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module polymorphism.
:- interface.
:- import_module hlds_module.
:- import_module io.
:- pred polymorphism__process_module(module_info, module_info,
io__state, io__state).
:- mode polymorphism__process_module(in, out, di, uo) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module hlds_pred, hlds_goal, hlds_data, llds, (lambda).
:- import_module prog_data, type_util, mode_util, quantification, instmap.
:- import_module code_util, unify_proc, special_pred, prog_util, make_hlds.
:- import_module (inst), hlds_out, base_typeclass_info, goal_util, passes_aux.
:- import_module bool, int, string, list, set, map.
:- import_module term, varset, std_util, require, assoc_list.
%-----------------------------------------------------------------------------%
% This whole section just traverses the module structure.
% We do two passes, the first to fix up the procedure bodies,
% (and in fact everything except the pred_info argtypes),
% the second to fix up the pred_info argtypes.
% The reason we need two passes is that the first pass looks at
% the argtypes of the called predicates, and so we need to make
% sure we don't muck them up before we've finished the first pass.
polymorphism__process_module(ModuleInfo0, ModuleInfo, IO0, IO) :-
module_info_preds(ModuleInfo0, Preds0),
map__keys(Preds0, PredIds0),
polymorphism__process_preds(PredIds0, ModuleInfo0, ModuleInfo1,
IO0, IO),
module_info_preds(ModuleInfo1, Preds1),
map__keys(Preds1, PredIds1),
polymorphism__fixup_preds(PredIds1, ModuleInfo1, ModuleInfo2),
polymorphism__expand_class_method_bodies(ModuleInfo2, ModuleInfo).
:- pred polymorphism__process_preds(list(pred_id), module_info, module_info,
io__state, io__state).
:- mode polymorphism__process_preds(in, in, out, di, uo) is det.
polymorphism__process_preds([], ModuleInfo, ModuleInfo) --> [].
polymorphism__process_preds([PredId | PredIds], ModuleInfo0, ModuleInfo) -->
polymorphism__process_pred(PredId, ModuleInfo0, ModuleInfo1),
polymorphism__process_preds(PredIds, ModuleInfo1, ModuleInfo).
:- pred polymorphism__process_pred(pred_id, module_info, module_info,
io__state, io__state).
:- mode polymorphism__process_pred(in, in, out, di, uo) is det.
polymorphism__process_pred(PredId, ModuleInfo0, ModuleInfo, IO0, IO) :-
module_info_pred_info(ModuleInfo0, PredId, PredInfo),
pred_info_module(PredInfo, PredModule),
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, PredArity),
(
polymorphism__no_type_info_builtin(PredModule,
PredName, PredArity)
->
ModuleInfo = ModuleInfo0,
IO = IO0
;
pred_info_procids(PredInfo, ProcIds),
polymorphism__process_procs(PredId, ProcIds,
ModuleInfo0, ModuleInfo, IO0, IO)
).
:- pred polymorphism__process_procs(pred_id, list(proc_id),
module_info, module_info,
io__state, io__state).
:- mode polymorphism__process_procs(in, in, in, out, di, uo) is det.
polymorphism__process_procs(_PredId, [], ModuleInfo, ModuleInfo, IO, IO).
polymorphism__process_procs(PredId, [ProcId | ProcIds], ModuleInfo0,
ModuleInfo, IO0, IO) :-
module_info_preds(ModuleInfo0, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(ProcTable0, ProcId, ProcInfo0),
write_proc_progress_message("% Transforming polymorphism for ",
PredId, ProcId, ModuleInfo0, IO0, IO1),
polymorphism__process_proc(ProcInfo0, PredInfo0, ModuleInfo0,
ProcInfo, PredInfo1, ModuleInfo1),
pred_info_procedures(PredInfo1, ProcTable1),
map__det_update(ProcTable1, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(PredInfo1, ProcTable, PredInfo),
module_info_preds(ModuleInfo1, PredTable1),
map__det_update(PredTable1, PredId, PredInfo, PredTable),
module_info_set_preds(ModuleInfo1, PredTable, ModuleInfo2),
polymorphism__process_procs(PredId, ProcIds, ModuleInfo2, ModuleInfo,
IO1, IO).
% unsafe_type_cast and unsafe_promise_unique are polymorphic
% builtins which do not need their type_infos. unsafe_type_cast
% can be introduced by common.m after polymorphism is run, so it
% is much simpler to avoid introducing type_info arguments for it.
% Since both of these are really just assignment unifications, it
% is desirable to generate them inline.
:- pred polymorphism__no_type_info_builtin(module_name, string, int).
:- mode polymorphism__no_type_info_builtin(in, in, out) is semidet.
polymorphism__no_type_info_builtin(MercuryBuiltin, "unsafe_type_cast", 2) :-
mercury_private_builtin_module(MercuryBuiltin).
polymorphism__no_type_info_builtin(MercuryBuiltin,
"unsafe_promise_unique", 2) :-
mercury_private_builtin_module(MercuryBuiltin).
%---------------------------------------------------------------------------%
:- pred polymorphism__fixup_preds(list(pred_id), module_info, module_info).
:- mode polymorphism__fixup_preds(in, in, out) is det.
polymorphism__fixup_preds([], ModuleInfo, ModuleInfo).
polymorphism__fixup_preds([PredId | PredIds], ModuleInfo0, ModuleInfo) :-
%
% Recompute the arg types by finding the headvars and the var->type
% mapping (from the first procedure for the predicate) and
% applying the type mapping to the extra headvars to get the new
% arg types. Note that we are careful to only apply the mapping
% to the extra head vars, not to the originals, because otherwise
% we would stuff up the arg types for unification predicates for
% equivalence types.
%
module_info_preds(ModuleInfo0, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
pred_info_procids(PredInfo0, ProcIds),
( ProcIds = [ProcId | _] ->
map__lookup(ProcTable0, ProcId, ProcInfo),
proc_info_vartypes(ProcInfo, VarTypes),
proc_info_headvars(ProcInfo, HeadVars),
pred_info_arg_types(PredInfo0, TypeVarSet, ArgTypes0),
list__length(ArgTypes0, NumOldArgs),
list__length(HeadVars, NumNewArgs),
NumExtraArgs is NumNewArgs - NumOldArgs,
(
list__split_list(NumExtraArgs, HeadVars, ExtraHeadVars,
_OldHeadVars)
->
map__apply_to_list(ExtraHeadVars, VarTypes,
ExtraArgTypes),
list__append(ExtraArgTypes, ArgTypes0, ArgTypes)
;
error("polymorphism.m: list__split_list failed")
),
pred_info_set_arg_types(PredInfo0, TypeVarSet, ArgTypes,
PredInfo),
map__det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(ModuleInfo0, PredTable, ModuleInfo1)
;
ModuleInfo1 = ModuleInfo0
),
polymorphism__fixup_preds(PredIds, ModuleInfo1, ModuleInfo).
%---------------------------------------------------------------------------%
:- type poly_info --->
poly_info(
varset, % from the proc_info
map(var, type), % from the proc_info
tvarset, % from the proc_info
map(tvar, type_info_locn),
% specifies the location of
% the type_info var
% for each of the pred's type
% parameters
map(class_constraint, var),
% specifies the location of
% the typeclass_info var
% for each of the pred's class
% constraints
map(class_constraint, constraint_proof),
% specifies why each constraint
% that was eliminated from the
% pred was able to be eliminated
% (this allows us to efficiently
% construct the dictionary)
% Note that the two maps above
% are separate since the second
% is the information calculated
% by typecheck.m, while the
% first is the information
% calculated here in
% polymorphism.m
string, % pred name
module_info
).
:- pred polymorphism__process_proc(proc_info, pred_info, module_info,
proc_info, pred_info, module_info).
:- mode polymorphism__process_proc(in, in, in, out, out, out) is det.
polymorphism__process_proc(ProcInfo0, PredInfo0, ModuleInfo0,
ProcInfo, PredInfo, ModuleInfo) :-
% grab the appropriate fields from the pred_info and proc_info
pred_info_arg_types(PredInfo0, ArgTypeVarSet, ArgTypes),
pred_info_typevarset(PredInfo0, TypeVarSet0),
pred_info_get_class_context(PredInfo0, ClassContext),
pred_info_get_constraint_proofs(PredInfo0, Proofs),
pred_info_name(PredInfo0, PredName),
proc_info_headvars(ProcInfo0, HeadVars0),
proc_info_varset(ProcInfo0, VarSet0),
proc_info_vartypes(ProcInfo0, VarTypes0),
proc_info_goal(ProcInfo0, Goal0),
proc_info_argmodes(ProcInfo0, ArgModes0),
% Insert extra head variables to hold the address of the
% type_infos and typeclass_infos.
% We insert one variable for each unconstrained type variable
% (for the type_info) and one variable for each constraint (for
% the typeclass_info).
term__vars_list(ArgTypes, HeadTypeVars0),
% Make a fresh variable for each class constraint, returning
% a list of variables that appear in the constraints, along
% with the location of the type infos for them.
polymorphism__make_typeclass_info_head_vars(ClassContext, ModuleInfo0,
VarSet0, VarTypes0, ExtraHeadTypeclassInfoVars,
TypeClassInfoMap, ConstrainedTVars,
VarSet1, VarTypes1),
list__delete_elems(HeadTypeVars0, ConstrainedTVars,
UnconstrainedTVars0),
list__remove_dups(UnconstrainedTVars0, UnconstrainedTVars),
polymorphism__make_head_vars(UnconstrainedTVars, ArgTypeVarSet,
VarSet1, VarTypes1, ExtraHeadTypeInfoVars, VarSet2, VarTypes2),
% First the type_infos, then the typeclass_infos,
% but we have to do it in reverse because we're appending...
list__append(ExtraHeadTypeclassInfoVars, HeadVars0, HeadVars1),
list__append(ExtraHeadTypeInfoVars, HeadVars1, HeadVars),
% Work out the total number of new vars
list__length(ExtraHeadTypeInfoVars, NumExtraVars0),
list__length(ExtraHeadTypeclassInfoVars, NumExtraVars1),
NumExtraVars is NumExtraVars1 + NumExtraVars0,
in_mode(In),
list__duplicate(NumExtraVars, In, ExtraModes),
list__append(ExtraModes, ArgModes0, ArgModes),
% Make a map of the locations of the unconstrained typeinfos
AddLocn = lambda([TVarAndVar::in, TIM0::in, TIM::out] is det,
(
TVarAndVar = TVar - TheVar,
map__det_insert(TIM0, TVar, type_info(TheVar), TIM)
)),
assoc_list__from_corresponding_lists(UnconstrainedTVars,
ExtraHeadTypeInfoVars, TVarsAndVars),
list__foldl(AddLocn, TVarsAndVars, TypeClassInfoMap, TypeInfoMap1),
% Make a map of the locations of the typeclass_infos
map__from_corresponding_lists(ClassContext, ExtraHeadTypeclassInfoVars,
TypeclassInfoLocations0),
Info0 = poly_info(VarSet2, VarTypes2, TypeVarSet0,
TypeInfoMap1, TypeclassInfoLocations0,
Proofs, PredName, ModuleInfo0),
% process any polymorphic calls inside the goal
polymorphism__process_goal(Goal0, Goal1, Info0, Info1),
polymorphism__fixup_quantification(Goal1, Goal, _, Info1, Info),
Info = poly_info(VarSet, VarTypes, TypeVarSet,
TypeInfoMap, TypeclassInfoLocations,
_Proofs, _PredName, ModuleInfo),
% set the new values of the fields in proc_info and pred_info
proc_info_set_headvars(ProcInfo0, HeadVars, ProcInfo1),
proc_info_set_goal(ProcInfo1, Goal, ProcInfo2),
proc_info_set_varset(ProcInfo2, VarSet, ProcInfo3),
proc_info_set_vartypes(ProcInfo3, VarTypes, ProcInfo4),
proc_info_set_argmodes(ProcInfo4, ArgModes, ProcInfo5),
proc_info_set_typeinfo_varmap(ProcInfo5, TypeInfoMap, ProcInfo6),
proc_info_set_typeclass_info_varmap(ProcInfo6, TypeclassInfoLocations,
ProcInfo),
pred_info_set_typevarset(PredInfo0, TypeVarSet, PredInfo).
:- pred polymorphism__process_goal(hlds_goal, hlds_goal,
poly_info, poly_info).
:- mode polymorphism__process_goal(in, out, in, out) is det.
polymorphism__process_goal(Goal0 - GoalInfo0, Goal) -->
polymorphism__process_goal_expr(Goal0, GoalInfo0, Goal).
:- pred polymorphism__process_goal_expr(hlds_goal_expr, hlds_goal_info,
hlds_goal, poly_info, poly_info).
:- mode polymorphism__process_goal_expr(in, in, out, in, out) is det.
% We don't need to add type-infos for higher-order calls,
% since the type-infos are added when the closures are
% constructed, not when they are called. (Or at least I
% think we don't... -fjh.)
polymorphism__process_goal_expr(higher_order_call(A, B, C, D, E, F),
GoalInfo, higher_order_call(A, B, C, D, E, F) - GoalInfo)
--> [].
% The same goes for class method calls
polymorphism__process_goal_expr(class_method_call(A, B, C, D, E, F),
GoalInfo, class_method_call(A, B, C, D, E, F) - GoalInfo)
--> [].
polymorphism__process_goal_expr(call(PredId0, ProcId0, ArgVars0,
Builtin, Context, Name0), GoalInfo, Goal) -->
% Check for a call to a special predicate like compare/3
% for which the type is known at compile-time.
% Replace such calls with calls to the particular version
% for that type.
(
{ Name0 = unqualified(PredName0) },
{ list__length(ArgVars0, Arity) },
{ special_pred_name_arity(SpecialPredId, PredName0,
MangledPredName, Arity) },
=(poly_info(_, VarTypes, _, _, _, _, _, ModuleInfo)),
{ special_pred_get_type(MangledPredName, ArgVars0, MainVar) },
{ map__lookup(VarTypes, MainVar, Type) },
{ Type \= term__variable(_) },
% don't try this for any special preds if they're not
% implemented
{ special_pred_list(SpecialPredIds) },
{ list__member(SpecialPredId, SpecialPredIds) }
->
{ classify_type(Type, ModuleInfo, TypeCategory) },
{ polymorphism__get_special_proc(TypeCategory, Type,
SpecialPredId, ModuleInfo, Name, PredId1, ProcId1) }
;
{ PredId1 = PredId0 },
{ ProcId1 = ProcId0 },
{ Name = Name0 }
),
polymorphism__process_call(PredId1, ProcId1, ArgVars0,
PredId, ProcId, ArgVars, ExtraVars, ExtraGoals),
{ goal_info_get_nonlocals(GoalInfo, NonLocals0) },
{ set__insert_list(NonLocals0, ExtraVars, NonLocals) },
{ goal_info_set_nonlocals(GoalInfo, NonLocals, CallGoalInfo) },
{ Call = call(PredId, ProcId, ArgVars, Builtin, Context, Name)
- CallGoalInfo },
{ list__append(ExtraGoals, [Call], GoalList) },
{ conj_list_to_goal(GoalList, GoalInfo, Goal) }.
polymorphism__process_goal_expr(unify(XVar, Y, Mode, Unification, Context),
GoalInfo, Goal) -->
(
{ Unification = complicated_unify(UniMode, CanFail) },
{ Y = var(YVar) }
->
=(poly_info(_, VarTypes, _, TypeInfoMap, _, _, _, ModuleInfo)),
{ map__lookup(VarTypes, XVar, Type) },
( { Type = term__variable(TypeVar) } ->
% Convert polymorphic unifications into calls to
% `unify/2', the general unification predicate, passing
% the appropriate Type_info
% =(TypeInfoVar, X, Y)
% where TypeInfoVar is the type_info variable
% associated with the type of the variables that
% are being unified.
{ module_info_get_predicate_table(ModuleInfo,
PredicateTable) },
{ mercury_public_builtin_module(MercuryBuiltin) },
{ predicate_table_search_pred_m_n_a(PredicateTable,
MercuryBuiltin, "unify", 2, [CallPredId])
->
PredId = CallPredId
;
error("polymorphism.m: can't find `mercury_builtin:unify/2'")
},
% XXX Bug! - we should check that the mode is (in, in),
% and report an error (e.g. "unification of
% polymorphically typed variables in partially
% instantiated mode") if it isn't
{ hlds_pred__in_in_unification_proc_id(ProcId) },
{ map__lookup(TypeInfoMap, TypeVar, TypeInfoLocn) },
{ SymName = unqualified("unify") },
{ code_util__builtin_state(ModuleInfo, PredId, ProcId,
BuiltinState) },
{ CallContext = call_unify_context(XVar, Y, Context) },
(
% If the typeinfo is available in a
% variable, just use it
{ TypeInfoLocn = type_info(TypeInfoVar) },
{ ArgVars = [TypeInfoVar, XVar, YVar] },
{ Goal = call(PredId, ProcId, ArgVars,
BuiltinState, yes(CallContext), SymName)
- GoalInfo }
;
% If the typeinfo is in a
% typeclass_info, first extract it,
% then use it
{ TypeInfoLocn =
typeclass_info(TypeClassInfoVar,
Index) },
extract_type_info(Type, TypeVar,
TypeClassInfoVar, Index,
Goals, TypeInfoVar),
{ ArgVars = [TypeInfoVar, XVar, YVar] },
{ Call = call(PredId, ProcId, ArgVars,
BuiltinState, yes(CallContext), SymName)
- GoalInfo },
{ list__append(Goals, [Call], TheGoals) },
{ Goal = conj(TheGoals) - GoalInfo }
)
; { type_is_higher_order(Type, _, _) } ->
{ SymName = unqualified("builtin_unify_pred") },
{ ArgVars = [XVar, YVar] },
{ module_info_get_predicate_table(ModuleInfo,
PredicateTable) },
{
mercury_private_builtin_module(PrivateBuiltin),
predicate_table_search_pred_m_n_a(
PredicateTable,
PrivateBuiltin, "builtin_unify_pred", 2,
[PredId0])
->
PredId = PredId0
;
error("can't locate mercury_builtin:builtin_unify_pred/2")
},
{ hlds_pred__in_in_unification_proc_id(ProcId) },
{ CallContext = call_unify_context(XVar, Y, Context) },
{ Call = call(PredId, ProcId, ArgVars, not_builtin,
yes(CallContext), SymName) },
polymorphism__process_goal_expr(Call, GoalInfo, Goal)
; { type_to_type_id(Type, TypeId, _) } ->
% Convert other complicated unifications into
% calls to specific unification predicates, and then
% recursively call polymorphism__process_goal_expr
% to insert extra arguments if necessary.
{ module_info_get_special_pred_map(ModuleInfo,
SpecialPredMap) },
{ map__lookup(SpecialPredMap, unify - TypeId, PredId) },
{ determinism_components(Det, CanFail, at_most_one) },
{ unify_proc__lookup_mode_num(ModuleInfo, TypeId,
UniMode, Det, ProcId) },
{ SymName = unqualified("__Unify__") },
{ ArgVars = [XVar, YVar] },
{ CallContext = call_unify_context(XVar, Y, Context) },
{ Call = call(PredId, ProcId, ArgVars, not_builtin,
yes(CallContext), SymName) },
polymorphism__process_goal_expr(Call, GoalInfo, Goal)
;
{ error("polymorphism: type_to_type_id failed") }
)
;
{ Y = lambda_goal(PredOrFunc, ArgVars, Vars,
Modes, Det, LambdaGoal0) }
->
% for lambda expressions, we must recursively traverse the
% lambda goal and then convert the lambda expression
% into a new predicate
polymorphism__process_goal(LambdaGoal0, LambdaGoal1),
polymorphism__fixup_quantification(LambdaGoal1,
LambdaGoal, NonLocalTypeInfos),
polymorphism__process_lambda(PredOrFunc, Vars, Modes,
Det, ArgVars, NonLocalTypeInfos, LambdaGoal,
Unification, Y1, Unification1),
{ Goal = unify(XVar, Y1, Mode, Unification1, Context)
- GoalInfo }
;
% ordinary unifications are left unchanged,
{ Goal = unify(XVar, Y, Mode, Unification, Context) - GoalInfo }
).
% the rest of the clauses just process goals recursively
polymorphism__process_goal_expr(conj(Goals0), GoalInfo,
conj(Goals) - GoalInfo) -->
polymorphism__process_goal_list(Goals0, Goals).
polymorphism__process_goal_expr(disj(Goals0, SM), GoalInfo,
disj(Goals, SM) - GoalInfo) -->
polymorphism__process_goal_list(Goals0, Goals).
polymorphism__process_goal_expr(not(Goal0), GoalInfo, not(Goal) - GoalInfo) -->
polymorphism__process_goal(Goal0, Goal).
polymorphism__process_goal_expr(switch(Var, CanFail, Cases0, SM), GoalInfo,
switch(Var, CanFail, Cases, SM) - GoalInfo) -->
polymorphism__process_case_list(Cases0, Cases).
polymorphism__process_goal_expr(some(Vars, Goal0), GoalInfo,
some(Vars, Goal) - GoalInfo) -->
polymorphism__process_goal(Goal0, Goal).
polymorphism__process_goal_expr(if_then_else(Vars, A0, B0, C0, SM), GoalInfo,
if_then_else(Vars, A, B, C, SM) - GoalInfo) -->
polymorphism__process_goal(A0, A),
polymorphism__process_goal(B0, B),
polymorphism__process_goal(C0, C).
polymorphism__process_goal_expr(pragma_c_code(IsRecursive, PredId0, ProcId0,
ArgVars0, ArgInfo0, OrigArgTypes0, PragmaCode),
GoalInfo, Goal) -->
polymorphism__process_call(PredId0, ProcId0, ArgVars0,
PredId, ProcId, ArgVars, ExtraVars, ExtraGoals),
%
% update the non-locals
%
{ goal_info_get_nonlocals(GoalInfo, NonLocals0) },
{ set__insert_list(NonLocals0, ExtraVars, NonLocals) },
{ goal_info_set_nonlocals(GoalInfo, NonLocals, CallGoalInfo) },
%
% insert the type_info vars into the arg-name map,
% so that the c_code can refer to the type_info variable
% for type T as `TypeInfo_for_T'.
%
=(poly_info(_, _, _, _, _, _, _, ModuleInfo)),
{ module_info_pred_info(ModuleInfo, PredId, PredInfo) },
{ pred_info_arg_types(PredInfo, PredTypeVarSet, PredArgTypes) },
{ term__vars_list(PredArgTypes, PredTypeVars0) },
{ list__remove_dups(PredTypeVars0, PredTypeVars) },
{ polymorphism__c_code_add_typeinfos(ExtraVars, PredTypeVars,
PredTypeVarSet, ArgInfo0, ArgInfo) },
%
% insert type_info types for all the inserted type_info vars
% into the arg-types list
%
{ mercury_private_builtin_module(PrivateBuiltin) },
{ MakeType = lambda([TypeVar::in, TypeInfoType::out] is det,
construct_type(qualified(PrivateBuiltin, "type_info") - 1,
[term__variable(TypeVar)], TypeInfoType)) },
{ list__map(MakeType, PredTypeVars, TypeInfoTypes) },
{ list__append(TypeInfoTypes, OrigArgTypes0, OrigArgTypes) },
%
% plug it all back together
%
{ Call = pragma_c_code(IsRecursive, PredId, ProcId, ArgVars,
ArgInfo, OrigArgTypes, PragmaCode) - CallGoalInfo },
{ list__append(ExtraGoals, [Call], GoalList) },
{ conj_list_to_goal(GoalList, GoalInfo, Goal) }.
:- pred polymorphism__c_code_add_typeinfos(list(var), list(tvar), tvarset,
list(maybe(pair(string, mode))), list(maybe(pair(string, mode)))).
:- mode polymorphism__c_code_add_typeinfos(in, in, in, in, out) is det.
polymorphism__c_code_add_typeinfos([], [], _, ArgNames, ArgNames).
polymorphism__c_code_add_typeinfos([_Var|Vars], [TVar|TVars], TypeVarSet,
ArgNames0, ArgNames) :-
polymorphism__c_code_add_typeinfos(Vars, TVars, TypeVarSet,
ArgNames0, ArgNames1),
( varset__search_name(TypeVarSet, TVar, TypeVarName) ->
string__append("TypeInfo_for_", TypeVarName, C_VarName),
in_mode(Input),
ArgNames = [yes(C_VarName - Input) | ArgNames1]
;
ArgNames = [no | ArgNames1]
).
polymorphism__c_code_add_typeinfos([], [_|_], _, _, _) :-
error("polymorphism__c_code_add_typeinfos: length mismatch").
polymorphism__c_code_add_typeinfos([_|_], [], _, _, _) :-
error("polymorphism__c_code_add_typeinfos: length mismatch").
:- pred polymorphism__process_goal_list(list(hlds_goal), list(hlds_goal),
poly_info, poly_info).
:- mode polymorphism__process_goal_list(in, out, in, out) is det.
polymorphism__process_goal_list([], []) --> [].
polymorphism__process_goal_list([Goal0 | Goals0], [Goal | Goals]) -->
polymorphism__process_goal(Goal0, Goal),
polymorphism__process_goal_list(Goals0, Goals).
:- pred polymorphism__process_case_list(list(case), list(case),
poly_info, poly_info).
:- mode polymorphism__process_case_list(in, out, in, out) is det.
polymorphism__process_case_list([], []) --> [].
polymorphism__process_case_list([Case0 | Cases0], [Case | Cases]) -->
{ Case0 = case(ConsId, Goal0) },
polymorphism__process_goal(Goal0, Goal),
{ Case = case(ConsId, Goal) },
polymorphism__process_case_list(Cases0, Cases).
%-----------------------------------------------------------------------------%
:- pred polymorphism__process_call(pred_id, proc_id, list(var),
pred_id, proc_id, list(var),
list(var), list(hlds_goal),
poly_info, poly_info).
:- mode polymorphism__process_call(in, in, in, out, out, out, out, out,
in, out) is det.
polymorphism__process_call(PredId0, ProcId0, ArgVars0, PredId, ProcId, ArgVars,
ExtraVars, ExtraGoals, Info0, Info) :-
Info0 = poly_info(A, VarTypes, TypeVarSet0, D, E, F, G, ModuleInfo),
module_info_pred_info(ModuleInfo, PredId0, PredInfo),
pred_info_arg_types(PredInfo, PredTypeVarSet, PredArgTypes0),
pred_info_get_class_context(PredInfo, PredClassContext0),
% rename apart
% (this merge might be a performance bottleneck?)
varset__merge_subst(TypeVarSet0, PredTypeVarSet, TypeVarSet, Subst),
term__apply_substitution_to_list(PredArgTypes0, Subst,
PredArgTypes),
term__vars_list(PredArgTypes, PredTypeVars0),
pred_info_module(PredInfo, PredModule),
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, PredArity),
(
(
% optimize for common case of non-polymorphic call
PredTypeVars0 = []
;
% some builtins don't need the type_info
polymorphism__no_type_info_builtin(PredModule,
PredName, PredArity)
)
->
PredId = PredId0,
ProcId = ProcId0,
ArgVars = ArgVars0,
ExtraGoals = [],
ExtraVars = [],
Info = Info0
;
list__remove_dups(PredTypeVars0, PredTypeVars1),
map__apply_to_list(ArgVars0, VarTypes, ActualArgTypes),
( type_list_subsumes(PredArgTypes, ActualArgTypes,
TypeSubst1) ->
TypeSubst = TypeSubst1
;
error("polymorphism__process_goal_expr: type unification failed")
),
apply_subst_to_constraints(Subst, PredClassContext0,
PredClassContext),
Info1 = poly_info(A, VarTypes, TypeVarSet, D, E, F, G,
ModuleInfo),
% Make the typeclass_infos for the call, and return
% a list of which variables were constrained by the
% context
polymorphism__make_typeclass_info_vars(
PredClassContext, Subst, TypeSubst,
hlds_class_proc(PredId0, ProcId0),
hlds_class_proc(PredId, ProcId),
ExtraTypeClassVars, ExtraTypeClassGoals,
ConstrainedVars, Info1, Info2),
% No need to make typeinfos for the constrained vars
list__delete_elems(PredTypeVars1, ConstrainedVars,
PredTypeVars),
term__var_list_to_term_list(PredTypeVars, PredTypes0),
term__apply_rec_substitution_to_list(PredTypes0, TypeSubst,
PredTypes),
polymorphism__make_type_info_vars(PredTypes,
ExtraTypeInfoVars, ExtraTypeInfoGoals,
Info2, Info),
list__append(ExtraTypeClassVars, ArgVars0, ArgVars1),
list__append(ExtraTypeInfoVars, ArgVars1, ArgVars),
list__append(ExtraTypeClassGoals, ExtraTypeInfoGoals,
ExtraGoals),
list__append(ExtraTypeClassVars, ExtraTypeInfoVars,
ExtraVars)
).
:- pred polymorphism__fixup_quantification(hlds_goal, hlds_goal,
set(var), poly_info, poly_info).
:- mode polymorphism__fixup_quantification(in, out, out, in, out) is det.
%
% If the predicate we are processing is a polymorphic predicate,
% or contains polymorphically-typed goals, we
% may need to fix up the quantification (non-local variables)
% so that it includes the type-info variables in the non-locals set.
%
polymorphism__fixup_quantification(Goal0, Goal, NewOutsideVars, Info0, Info) :-
Info0 = poly_info(VarSet0, VarTypes0, TypeVarSet, TypeVarMap,
TypeClassVarMap, Proofs, PredName, ModuleInfo),
( map__is_empty(TypeVarMap) ->
set__init(NewOutsideVars),
Info = Info0,
Goal = Goal0
;
goal_util__extra_nonlocal_typeinfos(TypeVarMap,
VarTypes0, Goal0, NewOutsideVars),
Goal0 = _ - GoalInfo0,
goal_info_get_nonlocals(GoalInfo0, NonLocals),
set__union(NewOutsideVars, NonLocals, OutsideVars),
implicitly_quantify_goal(Goal0, VarSet0, VarTypes0,
OutsideVars, Goal, VarSet, VarTypes, _Warnings),
Info = poly_info(VarSet, VarTypes, TypeVarSet, TypeVarMap,
TypeClassVarMap, Proofs, PredName, ModuleInfo)
).
:- pred polymorphism__process_lambda(pred_or_func, list(var),
list(mode), determinism, list(var), set(var),
hlds_goal, unification, unify_rhs, unification,
poly_info, poly_info).
:- mode polymorphism__process_lambda(in, in, in, in, in, in, in, in, out, out,
in, out) is det.
polymorphism__process_lambda(PredOrFunc, Vars, Modes, Det, OrigNonLocals,
NonLocalTypeInfos, LambdaGoal, Unification0, Functor,
Unification, PolyInfo0, PolyInfo) :-
PolyInfo0 = poly_info(VarSet, VarTypes, TVarSet, TVarMap,
TCVarMap, Proofs, PredName, ModuleInfo0),
% Calculate the constraints which apply to this lambda
% expression.
map__keys(TCVarMap, AllConstraints),
map__apply_to_list(Vars, VarTypes, LambdaVarTypes),
list__map(type_util__vars, LambdaVarTypes, LambdaTypeVarsList),
list__condense(LambdaTypeVarsList, LambdaTypeVars),
list__filter(polymorphism__constraint_contains_vars(LambdaTypeVars),
AllConstraints, Constraints),
lambda__transform_lambda(PredOrFunc, PredName, Vars, Modes, Det,
OrigNonLocals, NonLocalTypeInfos, LambdaGoal, Unification0,
VarSet, VarTypes, Constraints, TVarSet, TVarMap, TCVarMap,
ModuleInfo0, Functor, Unification, ModuleInfo),
PolyInfo = poly_info(VarSet, VarTypes, TVarSet, TVarMap,
TCVarMap, Proofs, PredName, ModuleInfo).
:- pred polymorphism__constraint_contains_vars(list(var), class_constraint).
:- mode polymorphism__constraint_contains_vars(in, in) is semidet.
polymorphism__constraint_contains_vars(LambdaVars, ClassConstraint) :-
ClassConstraint = constraint(_, ConstraintTypes),
list__map(type_util__vars, ConstraintTypes, ConstraintVarsList),
list__condense(ConstraintVarsList, ConstraintVars),
% Probably not the most efficient way of doing it, but I
% wouldn't think that it matters.
set__list_to_set(LambdaVars, LambdaVarsSet),
set__list_to_set(ConstraintVars, ConstraintVarsSet),
set__subset(ConstraintVarsSet, LambdaVarsSet).
%---------------------------------------------------------------------------%
% Given the list of constraints for a called predicate, create a list of
% variables to hold the typeclass_info for those constraints,
% and create a list of goals to initialize those typeclass_info variables
% to the appropriate typeclass_info structures for the constraints.
% If the called predicate is a class method, and we know which instance
% it is, then instead of creating a type_info variable for the type class
% instance, just return the pred_proc_id for that instance.
% Otherwise return the original pred_proc_id unchanged.
:- pred polymorphism__make_typeclass_info_vars(list(class_constraint),
substitution, tsubst, hlds_class_proc, hlds_class_proc,
list(var), list(hlds_goal), list(var),
poly_info, poly_info).
:- mode polymorphism__make_typeclass_info_vars(in, in, in, in, out,
out, out, out, in, out) is det.
polymorphism__make_typeclass_info_vars(PredClassContext, Subst, TypeSubst,
PredProcId0, PredProcId,
ExtraVars, ExtraGoals, ConstrainedVars, Info0, Info) :-
% initialise the accumulators
ExtraVars0 = [],
ExtraGoals0 = [],
ConstrainedVars0 = [],
% The PredProcId is set to `yes(_)' for the first call only,
% because we can only specialize method calls if we know
% which instance of the method's type class it is; knowing
% the instances for any of the other type class constraints
% on a method doesn't help us specialize the call.
MaybePredProcId0 = yes(PredProcId0),
% do the work
polymorphism__make_typeclass_info_vars_2(PredClassContext,
Subst, TypeSubst, MaybePredProcId0, MaybePredProcId,
ExtraVars0, ExtraVars1,
ExtraGoals0, ExtraGoals1,
ConstrainedVars0, ConstrainedVars,
Info0, Info),
% We build up the vars and goals in reverse order
list__reverse(ExtraVars1, ExtraVars),
list__reverse(ExtraGoals1, ExtraGoals),
% If we succeeded in specializing this call, then use
% the specialization, otherwise use the original call.
( MaybePredProcId = yes(PredProcId1) ->
PredProcId = PredProcId1
;
PredProcId = PredProcId0
).
% Accumulator version of the above.
:- pred polymorphism__make_typeclass_info_vars_2(
list(class_constraint), substitution, tsubst,
maybe(hlds_class_proc), maybe(hlds_class_proc),
list(var), list(var),
list(hlds_goal), list(hlds_goal),
list(var), list(var),
poly_info, poly_info).
:- mode polymorphism__make_typeclass_info_vars_2(in, in, in,
in, out, in, out, in, out, in, out, in, out) is det.
polymorphism__make_typeclass_info_vars_2([], _Subst, _TypeSubst,
MaybePredProcId, MaybePredProcId,
ExtraVars, ExtraVars,
ExtraGoals, ExtraGoals,
ConstrainedVars, ConstrainedVars,
Info, Info).
polymorphism__make_typeclass_info_vars_2([C|Cs], Subst, TypeSubst,
MaybePredProcId0, MaybePredProcId,
ExtraVars0, ExtraVars,
ExtraGoals0, ExtraGoals,
ConstrainedVars0, ConstrainedVars,
Info0, Info) :-
polymorphism__make_typeclass_info_var(C, Subst, TypeSubst,
MaybePredProcId0, MaybePredProcId,
ExtraGoals0, ExtraGoals1,
ConstrainedVars0, ConstrainedVars1,
Info0, Info1, MaybeExtraVar),
maybe_insert_var(MaybeExtraVar, ExtraVars0, ExtraVars1),
polymorphism__make_typeclass_info_vars_2(Cs, Subst, TypeSubst,
no, _,
ExtraVars1, ExtraVars,
ExtraGoals1, ExtraGoals,
ConstrainedVars1, ConstrainedVars,
Info1, Info).
:- pred polymorphism__make_typeclass_info_var(class_constraint,
substitution, tsubst, maybe(hlds_class_proc), maybe(hlds_class_proc),
list(hlds_goal), list(hlds_goal),
list(var), list(var),
poly_info, poly_info,
maybe(var)).
:- mode polymorphism__make_typeclass_info_var(in, in, in, in, out,
in, out, in, out, in, out, out) is det.
polymorphism__make_typeclass_info_var(Constraint, Subst, TypeSubst,
MaybePredProcId0, MaybePredProcId,
ExtraGoals0, ExtraGoals,
ConstrainedVars0, ConstrainedVars,
Info0, Info, MaybeVar) :-
Constraint = constraint(ClassName, NewConstrainedTypes),
list__length(NewConstrainedTypes, ClassArity),
ClassId = class_id(ClassName, ClassArity),
term__vars_list(NewConstrainedTypes, NewConstrainedVars),
list__append(NewConstrainedVars, ConstrainedVars0, ConstrainedVars),
term__apply_rec_substitution_to_list(NewConstrainedTypes, TypeSubst,
ConstrainedTypes),
NewC = constraint(ClassName, ConstrainedTypes),
Info0 = poly_info(VarSet0, VarTypes0, TypeVarSet0, TypeInfoMap0,
TypeClassInfoMap0, Proofs, PredName, ModuleInfo),
(
map__search(TypeClassInfoMap0, NewC, Location)
->
% We already have a typeclass_info for this constraint
ExtraGoals = ExtraGoals0,
Var = Location,
MaybeVar = yes(Var),
MaybePredProcId = no,
Info = Info0
;
% We don't have the typeclass_info as a parameter to
% the pred, so we must be able to create it from
% somewhere else
% Work out how to make it
map__lookup(Proofs, NewC, Proof),
(
% We have to construct the typeclass_info
% using an instance declaration
Proof = apply_instance(ProofInstanceDefn, InstanceNum),
% The subst has already been applied to these
% constraints in typecheck.m
ProofInstanceDefn = hlds_instance_defn(_,
InstanceConstraints, _, _, _, _, _),
%
% Check whether the callee is a class method,
% and that this contraint is the first constraint
% in that callee's constraint list (the one for
% its own type class).
% If so, specialize the call by replacing the
% generic class method call with a direct call
% to the class method for this instance.
%
(
% check that this constraint is the
% first constraint in the callee's
% constraint list
MaybePredProcId0 = yes(PredProcId0),
% check that the called pred is a class method
PredProcId0 = hlds_class_proc(PredId0, _),
module_info_pred_info(ModuleInfo, PredId0,
PredInfo),
pred_info_get_markers(PredInfo, Markers),
check_marker(Markers, class_method),
% enabling this optimisation causes a bug
% where implied instances are concerned.
% When the class method call is inlined, the
% extra typeclass_infos from the instance
% declaration are not included. Until that
% bug is fixed, we will disable the
% optimisation.
semidet_fail
->
% Get the class methods, and figure out
% the method number of this class method.
module_info_classes(ModuleInfo, ClassTable),
map__lookup(ClassTable, ClassId, ClassDefn),
ClassDefn = hlds_class_defn(_, _, ClassMethods,
_, _),
( list__nth_member_search(ClassMethods,
PredProcId0, MethodNum0) ->
MethodNum = MethodNum0
;
error("poly: nth_member_search failed")
),
% Get the instance methods, and lookup
% the pred for the corresponding method number.
% (NB. We can't use ProofInstanceDefn,
% because its MaybeInstanceMethods field
% has not been updated (is still `no').)
module_info_instances(ModuleInfo,
InstanceTable),
map__lookup(InstanceTable, ClassId,
InstanceDefns),
list__index1_det(InstanceDefns, InstanceNum,
InstanceDefn),
InstanceDefn = hlds_instance_defn(_, _, _, _,
MaybeInstanceMethods, _, _),
( MaybeInstanceMethods = yes(InstanceMethods0)
->
InstanceMethods = InstanceMethods0
;
error("poly: no instance methods")
),
list__index1_det(InstanceMethods, MethodNum,
InstanceMethod),
MaybePredProcId = yes(InstanceMethod),
MaybeVar = no,
ExtraGoals = ExtraGoals0,
Info = Info0
;
% Make the type_infos for the types
% that are constrained by this. These
% are packaged in the typeclass_info
polymorphism__make_type_info_vars(
ConstrainedTypes,
InstanceExtraTypeInfoVars,
TypeInfoGoals,
Info0, Info1),
% Make the typeclass_infos for the
% constraints from the context of the
% instance decl.
polymorphism__make_typeclass_info_vars_2(
InstanceConstraints, Subst, TypeSubst,
no, _,
[], InstanceExtraTypeClassInfoVars,
ExtraGoals0, ExtraGoals1,
[], _,
Info1, Info2),
polymorphism__construct_typeclass_info(
InstanceExtraTypeInfoVars,
InstanceExtraTypeClassInfoVars,
ClassId, InstanceNum, Var, NewGoals,
Info2, Info),
MaybeVar = yes(Var),
MaybePredProcId = no,
% Oh, yuck. The type_info goals have
% already been reversed, so lets
% reverse them back.
list__reverse(TypeInfoGoals, RevTypeInfoGoals),
list__append(ExtraGoals1, RevTypeInfoGoals,
ExtraGoals2),
list__append(NewGoals, ExtraGoals2, ExtraGoals)
)
;
% We have to extract the typeclass_info from
% another one
Proof = superclass(SubClassConstraint0),
% First create a variable to hold the new
% typeclass_info
unqualify_name(ClassName, ClassNameString),
polymorphism__new_typeclass_info_var(VarSet0, VarTypes0,
ClassNameString, Var, VarSet1, VarTypes1),
MaybeVar = yes(Var),
MaybePredProcId = no,
% Then work out where to extract it from
SubClassConstraint0 =
constraint(SubClassName, SubClassTypes0),
term__apply_substitution_to_list(SubClassTypes0, Subst,
SubClassTypes),
SubClassConstraint =
constraint(SubClassName, SubClassTypes),
list__length(SubClassTypes, SubClassArity),
SubClassId = class_id(SubClassName, SubClassArity),
Info1 = poly_info(VarSet1, VarTypes1, TypeVarSet0,
TypeInfoMap0, TypeClassInfoMap0, Proofs,
PredName, ModuleInfo),
% Make the typeclass_info for the subclass
polymorphism__make_typeclass_info_var(
SubClassConstraint, Subst, TypeSubst,
no, _,
ExtraGoals0, ExtraGoals1,
[], _,
Info1, Info2,
MaybeSubClassVar),
( MaybeSubClassVar = yes(SubClassVar0) ->
SubClassVar = SubClassVar0
;
error("MaybeSubClassVar = no")
),
% Look up the definition of the subclass
module_info_classes(ModuleInfo, ClassTable),
map__lookup(ClassTable, SubClassId, SubClassDefn),
SubClassDefn = hlds_class_defn(SuperClasses0,
SubClassVars, _, _, _),
% Work out which superclass typeclass_info to
% take
ToTerm = lambda([TheVar::in, TheTerm::out] is det,
(
TheTerm = term__variable(TheVar)
)),
list__map(ToTerm, SubClassVars, SubClassVarTerms),
(
type_list_subsumes(SubClassVarTerms,
SubClassTypes, SubTypeSubst0)
->
SubTypeSubst0 = SubTypeSubst
;
error("polymorphism__make_typeclass_info_var")
),
apply_rec_subst_to_constraints(SubTypeSubst,
SuperClasses0, SuperClasses),
(
list__nth_member_search(SuperClasses,
Constraint, SuperClassIndex0)
->
SuperClassIndex0 = SuperClassIndex
;
% We shouldn't have got this far if
% the constraints were not satifsied
error("polymorphism.m: constraint not in constraint list")
),
Info2 = poly_info(VarSet2, VarTypes2, TypeVarSet2,
TypeInfoMap2, TypeClassInfoMap2, Proofs2,
PredName2, ModuleInfo2),
polymorphism__make_count_var(SuperClassIndex, VarSet2,
VarTypes2, IndexVar, IndexGoal, VarSet,
VarTypes),
Info = poly_info(VarSet, VarTypes, TypeVarSet2,
TypeInfoMap2, TypeClassInfoMap2, Proofs2,
PredName2, ModuleInfo2),
% We extract the superclass typeclass_info by
% inserting a call to
% superclass_from_typeclass_info in
% mercury_builtin.
% Make the goal for the call
varset__init(Empty),
mercury_private_builtin_module(PrivateBuiltin),
ExtractSuperClass = qualified(PrivateBuiltin,
"superclass_from_typeclass_info"),
construct_type(qualified(PrivateBuiltin,
"typeclass_info") - 0,
[], TypeClassInfoType),
construct_type(unqualified("int") - 0, [], IntType),
get_pred_id_and_proc_id(ExtractSuperClass, predicate,
Empty,
[TypeClassInfoType, IntType, TypeClassInfoType],
ModuleInfo, PredId, ProcId),
Call = call(PredId, ProcId,
[SubClassVar, IndexVar, Var],
not_builtin, no,
ExtractSuperClass
),
% Make the goal info for the call
set__list_to_set([SubClassVar, IndexVar, Var],
NonLocals),
instmap_delta_from_assoc_list(
[Var - ground(shared, no)],
InstmapDelta),
goal_info_init(NonLocals, InstmapDelta, det, GoalInfo),
% Put them together
SuperClassGoal = Call - GoalInfo,
% Add it to the accumulator
ExtraGoals = [SuperClassGoal,IndexGoal|ExtraGoals1]
)
).
:- pred polymorphism__construct_typeclass_info(list(var), list(var), class_id,
int, var, list(hlds_goal), poly_info, poly_info).
:- mode polymorphism__construct_typeclass_info(in, in, in, in, out, out,
in, out) is det.
polymorphism__construct_typeclass_info(ArgTypeInfoVars, ArgTypeClassInfoVars,
ClassId, InstanceNum, NewVar, NewGoals, Info0, Info) :-
Info0 = poly_info(_, _, _, _, _, _, _, ModuleInfo),
module_info_instances(ModuleInfo, InstanceTable),
map__lookup(InstanceTable, ClassId, InstanceList),
list__index1_det(InstanceList, InstanceNum, InstanceDefn),
InstanceDefn = hlds_instance_defn(_, _, InstanceTypes, _, _, _,
SuperClassProofs),
module_info_classes(ModuleInfo, ClassTable),
map__lookup(ClassTable, ClassId, ClassDefn),
polymorphism__get_arg_superclass_vars(ClassDefn, InstanceTypes,
SuperClassProofs, ArgSuperClassVars, SuperClassGoals,
Info0, Info1),
Info1 = poly_info(VarSet0, VarTypes0, TVarSet, TVarMap, TCVarMap,
Proofs, PredName, _),
% lay out the argument variables as expected in the
% typeclass_info
list__append(ArgTypeClassInfoVars, ArgSuperClassVars, ArgVars0),
list__append(ArgVars0, ArgTypeInfoVars, ArgVars),
ClassId = class_id(ClassName, _Arity),
unqualify_name(ClassName, ClassNameString),
polymorphism__new_typeclass_info_var(VarSet0, VarTypes0,
ClassNameString, BaseVar, VarSet1, VarTypes1),
base_typeclass_info__make_instance_string(InstanceTypes,
InstanceString),
% XXX I don't think we actually need to carry the module name
% around.
ModuleName = unqualified("some bogus module name"),
ConsId = base_typeclass_info_const(ModuleName, ClassId, InstanceString),
BaseTypeClassInfoTerm = functor(ConsId, []),
% create the construction unification to initialize the variable
BaseUnification = construct(BaseVar, ConsId, [], []),
BaseUnifyMode = (free -> ground(shared, no)) -
(ground(shared, no) -> ground(shared, no)),
BaseUnifyContext = unify_context(explicit, []),
% XXX the UnifyContext is wrong
BaseUnify = unify(BaseVar, BaseTypeClassInfoTerm, BaseUnifyMode,
BaseUnification, BaseUnifyContext),
% create a goal_info for the unification
set__list_to_set([BaseVar], NonLocals),
instmap_delta_from_assoc_list([BaseVar - ground(shared, no)],
InstmapDelta),
goal_info_init(NonLocals, InstmapDelta, det, BaseGoalInfo),
BaseGoal = BaseUnify - BaseGoalInfo,
% build a unification to add the argvars to the
% base_typeclass_info
mercury_private_builtin_module(PrivateBuiltin),
NewConsId = cons(qualified(PrivateBuiltin, "typeclass_info"), 1),
NewArgVars = [BaseVar|ArgVars],
TypeClassInfoTerm = functor(NewConsId, NewArgVars),
% introduce a new variable
polymorphism__new_typeclass_info_var(VarSet1, VarTypes1,
ClassNameString, NewVar, VarSet, VarTypes),
% create the construction unification to initialize the
% variable
UniMode = (free - ground(shared, no) ->
ground(shared, no) - ground(shared, no)),
list__length(NewArgVars, NumArgVars),
list__duplicate(NumArgVars, UniMode, UniModes),
Unification = construct(NewVar, NewConsId, NewArgVars,
UniModes),
UnifyMode = (free -> ground(shared, no)) -
(ground(shared, no) -> ground(shared, no)),
UnifyContext = unify_context(explicit, []),
% XXX the UnifyContext is wrong
Unify = unify(NewVar, TypeClassInfoTerm, UnifyMode,
Unification, UnifyContext),
% create a goal_info for the unification
goal_info_init(GoalInfo0),
set__list_to_set([NewVar | NewArgVars], TheNonLocals),
goal_info_set_nonlocals(GoalInfo0, TheNonLocals, GoalInfo1),
list__duplicate(NumArgVars, ground(shared, no), ArgInsts),
% note that we could perhaps be more accurate than
% `ground(shared)', but it shouldn't make any
% difference.
InstConsId = cons( qualified(PrivateBuiltin, "typeclass_info"),
NumArgVars),
instmap_delta_from_assoc_list(
[NewVar -
bound(unique, [functor(InstConsId, ArgInsts)])],
InstMapDelta),
goal_info_set_instmap_delta(GoalInfo1, InstMapDelta, GoalInfo2),
goal_info_set_determinism(GoalInfo2, det, GoalInfo),
TypeClassInfoGoal = Unify - GoalInfo,
NewGoals0 = [TypeClassInfoGoal, BaseGoal],
list__append(SuperClassGoals, NewGoals0, NewGoals),
Info = poly_info(VarSet, VarTypes, TVarSet, TVarMap,
TCVarMap, Proofs, PredName, ModuleInfo).
%---------------------------------------------------------------------------%
:- pred polymorphism__get_arg_superclass_vars(hlds_class_defn, list(type),
map(class_constraint, constraint_proof), list(var), list(hlds_goal),
poly_info, poly_info).
:- mode polymorphism__get_arg_superclass_vars(in, in, in, out, out,
in, out) is det.
polymorphism__get_arg_superclass_vars(ClassDefn, InstanceTypes,
SuperClassProofs, NewVars, NewGoals, Info0, Info) :-
Info0 = poly_info(VarSet0, VarTypes0, TVarSet, TVarMap0, TCVarMap0,
Proofs, PredName, ModuleInfo),
ClassDefn = hlds_class_defn(SuperClasses, ClassVars, _, ClassVarSet, _),
map__from_corresponding_lists(ClassVars, InstanceTypes, TypeSubst),
varset__merge_subst(VarSet0, ClassVarSet, VarSet1, Subst),
Info1 = poly_info(VarSet1, VarTypes0, TVarSet, TVarMap0, TCVarMap0,
SuperClassProofs, PredName, ModuleInfo),
polymorphism__make_superclasses_from_proofs(SuperClasses, Subst,
TypeSubst, [], NewGoals, Info1, Info2, [], NewVars),
Info2 = poly_info(VarSet, VarTypes, _, TVarMap, TCVarMap, _, _, _),
Info = poly_info(VarSet, VarTypes, TVarSet, TVarMap, TCVarMap,
Proofs, PredName, ModuleInfo) .
:- pred polymorphism__make_superclasses_from_proofs(list(class_constraint),
substitution, tsubst, list(hlds_goal), list(hlds_goal),
poly_info, poly_info, list(var), list(var)).
:- mode polymorphism__make_superclasses_from_proofs(in, in, in, in, out,
in, out, in, out) is det.
polymorphism__make_superclasses_from_proofs([], _, _,
Goals, Goals, Info, Info, Vars, Vars).
polymorphism__make_superclasses_from_proofs([C|Cs], Subst, TypeSubst,
Goals0, Goals, Info0, Info, Vars0, Vars) :-
polymorphism__make_superclasses_from_proofs(Cs, Subst, TypeSubst,
Goals0, Goals1, Info0, Info1, Vars0, Vars1),
polymorphism__make_typeclass_info_var(C, Subst, TypeSubst,
no, _, Goals1, Goals, [], _, Info1, Info, MaybeVar),
maybe_insert_var(MaybeVar, Vars1, Vars).
:- pred maybe_insert_var(maybe(var), list(var), list(var)).
:- mode maybe_insert_var(in, in, out) is det.
maybe_insert_var(no, Vars, Vars).
maybe_insert_var(yes(Var), Vars, [Var | Vars]).
%---------------------------------------------------------------------------%
% Given a list of types, create a list of variables to hold the type_info
% for those types, and create a list of goals to initialize those type_info
% variables to the appropriate type_info structures for the types.
% Update the varset and vartypes accordingly.
:- pred polymorphism__make_type_info_vars(list(type),
list(var), list(hlds_goal), poly_info, poly_info).
:- mode polymorphism__make_type_info_vars(in, out, out, in, out) is det.
polymorphism__make_type_info_vars([], [], [], Info, Info).
polymorphism__make_type_info_vars([Type | Types],
ExtraVars, ExtraGoals, Info0, Info) :-
polymorphism__make_type_info_var(Type,
Var, ExtraGoals1, Info0, Info1),
polymorphism__make_type_info_vars(Types,
ExtraVars2, ExtraGoals2, Info1, Info),
ExtraVars = [Var | ExtraVars2],
list__append(ExtraGoals1, ExtraGoals2, ExtraGoals).
:- pred polymorphism__make_type_info_var(type, var, list(hlds_goal),
poly_info, poly_info).
:- mode polymorphism__make_type_info_var(in, out, out, in, out) is det.
polymorphism__make_type_info_var(Type, Var, ExtraGoals, Info0, Info) :-
(
type_is_higher_order(Type, PredOrFunc, TypeArgs)
->
% This occurs for code where a predicate calls a polymorphic
% predicate with a known higher-order value of the type
% variable.
% The transformation we perform is basically the same as
% in the first-order case below, except that we map
% pred/func types to builtin pred/0 or func/0 for the
% purposes of creating type_infos.
% To allow univ_to_type to check the type_infos
% correctly, the actual arity of the pred is added to
% the type_info of higher-order types.
hlds_out__pred_or_func_to_str(PredOrFunc, PredOrFuncStr),
TypeId = unqualified(PredOrFuncStr) - 0,
polymorphism__construct_type_info(Type, TypeId, TypeArgs,
yes, Var, ExtraGoals, Info0, Info)
;
type_to_type_id(Type, TypeId, TypeArgs)
->
% This occurs for code where a predicate calls a polymorphic
% predicate with a known value of the type variable.
% The transformation we perform is shown in the comment
% at the top of the module.
polymorphism__construct_type_info(Type, TypeId, TypeArgs,
no, Var, ExtraGoals, Info0, Info)
;
Type = term__variable(TypeVar1),
Info0 = poly_info(_, _, _, TypeInfoMap0, _, _, _, _),
map__search(TypeInfoMap0, TypeVar1, TypeInfoLocn)
->
% This occurs for code where a predicate calls a polymorphic
% predicate with a bound but unknown value of the type variable.
% For example, in
%
% :- pred p(T1).
% :- pred q(T2).
%
% p(X) :- q(X).
%
% we know that `T2' is bound to `T1', and we translate it into
%
% :- pred p(TypeInfo(T1), T1).
% :- pred q(TypeInfo(T2), T2).
%
% p(TypeInfo, X) :- q(TypeInfo, X).
(
% If the typeinfo is available in a variable,
% just use it
TypeInfoLocn = type_info(TypeInfoVar),
Var = TypeInfoVar,
ExtraGoals = [],
Info = Info0
;
% If the typeinfo is in a typeclass_info, first
% extract it, then use it
TypeInfoLocn = typeclass_info(TypeClassInfoVar, Index),
extract_type_info(Type, TypeVar1, TypeClassInfoVar,
Index, ExtraGoals, Var, Info0, Info)
)
;
Type = term__variable(_TypeVar1)
->
% This occurs for code where a predicate calls a polymorphic
% predicate with an unbound type variable, for example
%
% :- pred p.
% :- pred q(list(T)).
% p :- q([]).
% this case is now treated as an error;
% it should be caught by purity.m.
error("polymorphism__make_var: unbound type variable")
/************
This is what we used to do... but this didn't handle the case of type
variables used by lambda expressions properly.
Binding unbound type variables to `void' is now done in purity.m,
because it is easier to do it correctly there.
% In this case T is unbound, so there cannot be any objects
% of type T, and so q/1 cannot possibly use the unification
% predicate for type T. We pass the type-info for the
% type `void'/0.
%
% :- pred p.
% :- pred q(type_info(T), list(T)).
% p :- q(<void/0>, []).
%
% Passing `void'/0 should ensure that we get a runtime
% error if the special predicates for this type are
% ever used (void has its special predicates set to
% `unused'/0).
%
% XXX what about io__read_anything/3?
% e.g.
% foo --> io__read_anything(_).
% ?
% introduce a new variable, and
% create a construction unification which initializes the
% variable to zero
TypeId = unqualified("void") - 0,
polymorphism__construct_type_info(Type, TypeId, [],
no, Var, ExtraGoals, Info0, Info1),
Info1 = poly_info(A, B, C, TypeInfoMap1, E, F, G, H),
map__det_insert(TypeInfoMap1, TypeVar1, type_info(Var),
TypeInfoMap),
Info = poly_info(A, B, C, TypeInfoMap, E, F, G, H)
***************/
;
error("polymorphism__make_var: unknown type")
).
:- pred polymorphism__construct_type_info(type, type_id, list(type),
bool, var, list(hlds_goal), poly_info, poly_info).
:- mode polymorphism__construct_type_info(in, in, in, in, out, out,
in, out) is det.
polymorphism__construct_type_info(Type, TypeId, TypeArgs, IsHigherOrder,
Var, ExtraGoals, Info0, Info) :-
% Create the typeinfo vars for the arguments
polymorphism__make_type_info_vars(TypeArgs, ArgTypeInfoVars,
ArgTypeInfoGoals, Info0, Info1),
Info1 = poly_info(VarSet1, VarTypes1, C, D, E, F, G, ModuleInfo),
polymorphism__init_const_base_type_info_var(Type,
TypeId, ModuleInfo, VarSet1, VarTypes1,
BaseVar, BaseGoal, VarSet2, VarTypes2),
polymorphism__maybe_init_second_cell(ArgTypeInfoVars,
ArgTypeInfoGoals, Type, IsHigherOrder,
BaseVar, VarSet2, VarTypes2, [BaseGoal],
Var, VarSet, VarTypes, ExtraGoals),
Info = poly_info(VarSet, VarTypes, C, D, E, F, G, ModuleInfo).
% Create a unification for the two-cell type_info
% variable for this type if the type arity is not zero:
% TypeInfoVar = type_info(BaseVar,
% ArgTypeInfoVars...).
% For closures, we add the actual arity before the
% arguments, because all closures have a BaseVar
% of "pred/0".
% TypeInfoVar = type_info(BaseVar, Arity,
% ArgTypeInfoVars...).
:- pred polymorphism__maybe_init_second_cell(list(var), list(hlds_goal), type,
bool, var, varset, map(var, type), list(hlds_goal),
var, varset, map(var, type), list(hlds_goal)).
:- mode polymorphism__maybe_init_second_cell(in, in, in, in, in, in, in, in,
out, out, out, out) is det.
polymorphism__maybe_init_second_cell(ArgTypeInfoVars, ArgTypeInfoGoals, Type,
IsHigherOrder, BaseVar, VarSet0, VarTypes0, ExtraGoals0,
Var, VarSet, VarTypes, ExtraGoals) :-
(
ArgTypeInfoVars = [],
IsHigherOrder = no
->
Var = BaseVar,
% Since this base_type_info is pretending to be
% a type_info, we need to adjust its type.
% Since base_type_info_const cons_ids are handled
% specially, this should not cause problems.
mercury_private_builtin_module(MercuryBuiltin),
construct_type(qualified(MercuryBuiltin, "type_info") - 1,
[Type], NewBaseVarType),
map__det_update(VarTypes0, BaseVar, NewBaseVarType, VarTypes),
VarSet = VarSet0,
ExtraGoals = ExtraGoals0
;
% Unfortunately, if we have higher order terms, we
% can no longer just optimise them to be the actual
% base_type_info
(
IsHigherOrder = yes
->
list__length(ArgTypeInfoVars, PredArity),
polymorphism__make_count_var(PredArity, VarSet0,
VarTypes0, ArityVar, ArityGoal, VarSet1,
VarTypes1),
TypeInfoArgVars = [BaseVar, ArityVar | ArgTypeInfoVars],
TypeInfoArgGoals = [ArityGoal | ArgTypeInfoGoals]
;
TypeInfoArgVars = [BaseVar | ArgTypeInfoVars],
TypeInfoArgGoals = ArgTypeInfoGoals,
VarTypes1 = VarTypes0,
VarSet1 = VarSet0
),
polymorphism__init_type_info_var(Type,
TypeInfoArgVars, "type_info",
VarSet1, VarTypes1, Var, TypeInfoGoal,
VarSet, VarTypes),
list__append(TypeInfoArgGoals, [TypeInfoGoal], ExtraGoals1),
list__append(ExtraGoals0, ExtraGoals1, ExtraGoals)
).
% Create a unification `CountVar = <NumTypeArgs>'
:- pred polymorphism__make_count_var(int, varset, map(var, type),
var, hlds_goal, varset, map(var, type)).
:- mode polymorphism__make_count_var(in, in, in, out, out, out, out) is det.
polymorphism__make_count_var(NumTypeArgs, VarSet0, VarTypes0,
CountVar, CountGoal, VarSet, VarTypes) :-
varset__new_var(VarSet0, CountVar, VarSet1),
varset__name_var(VarSet1, CountVar, "TypeArity", VarSet),
construct_type(unqualified("int") - 0, [], IntType),
map__set(VarTypes0, CountVar, IntType, VarTypes),
polymorphism__init_with_int_constant(CountVar, NumTypeArgs, CountGoal).
% Create a construction unification `Var = <Num>'
% where Var is a freshly introduced variable and Num is an
% integer constant.
:- pred polymorphism__init_with_int_constant(var, int, hlds_goal).
:- mode polymorphism__init_with_int_constant(in, in, out) is det.
polymorphism__init_with_int_constant(CountVar, Num, CountUnifyGoal) :-
CountConsId = int_const(Num),
CountUnification = construct(CountVar, CountConsId, [], []),
CountTerm = functor(CountConsId, []),
CountInst = bound(unique, [functor(int_const(Num), [])]),
CountUnifyMode = (free -> CountInst) - (CountInst -> CountInst),
CountUnifyContext = unify_context(explicit, []),
% XXX the UnifyContext is wrong
CountUnify = unify(CountVar, CountTerm, CountUnifyMode,
CountUnification, CountUnifyContext),
% create a goal_info for the unification
set__singleton_set(CountNonLocals, CountVar),
instmap_delta_from_assoc_list([CountVar - CountInst], InstmapDelta),
goal_info_init(CountNonLocals, InstmapDelta, det, CountGoalInfo),
CountUnifyGoal = CountUnify - CountGoalInfo.
% Create the unifications to initialize the special pred
% variables for this type:
%
% SpecialPred1 = __Unify__<type>,
% SpecialPred2 = __Index__<type>,
% SpecialPred3 = __Compare__<type>.
:- pred polymorphism__get_special_proc_list(
type, module_info, varset, map(var, type),
list(var), list(hlds_goal), varset, map(var, type)).
:- mode polymorphism__get_special_proc_list(in, in, in, in,
out, out, out, out) is det.
polymorphism__get_special_proc_list(Type, ModuleInfo, VarSet0, VarTypes0,
SpecialPredVars, SpecialPredGoals, VarSet, VarTypes) :-
special_pred_list(SpecialPreds),
polymorphism__get_special_proc_list_2(SpecialPreds,
Type, ModuleInfo, VarSet0, VarTypes0,
SpecialPredVars, SpecialPredGoals, VarSet, VarTypes).
:- pred polymorphism__get_special_proc_list_2(list(special_pred_id),
type, module_info, varset, map(var, type),
list(var), list(hlds_goal), varset, map(var, type)).
:- mode polymorphism__get_special_proc_list_2(in, in, in, in, in,
out, out, out, out) is det.
polymorphism__get_special_proc_list_2([],
_Type, _ModuleInfo, VarSet, VarTypes,
[], [], VarSet, VarTypes).
polymorphism__get_special_proc_list_2([Id | Ids],
Type, ModuleInfo, VarSet0, VarTypes0,
[Var | Vars], [Goal | Goals], VarSet, VarTypes) :-
% introduce a fresh variable of the appropriate higher-order pred type
special_pred_info(Id, Type, PredName, TypeArgs, _Modes, _Det),
varset__new_var(VarSet0, Var, VarSet1a),
string__append("Var__", PredName, VarName),
varset__name_var(VarSet1a, Var, VarName, VarSet1),
term__context_init(Context),
PredType = term__functor(term__atom("pred"), TypeArgs, Context),
map__set(VarTypes0, Var, PredType, VarTypes1),
% get the ConsId for the address of the appropriate pred
% for the operation specified by Id applied to Type.
classify_type(Type, ModuleInfo, TypeCategory),
polymorphism__get_special_proc(TypeCategory, Type, Id, ModuleInfo,
PredName2, PredId, ProcId),
ConsId = code_addr_const(PredId, ProcId),
% create a construction unification which unifies the fresh
% variable with the address constant obtained above
Unification = construct(Var, ConsId, [], []),
Term = functor(cons(PredName2, 0), []),
Inst = bound(unique, [functor(cons(PredName2, 0), [])]),
UnifyMode = (free -> Inst) - (Inst -> Inst),
UnifyContext = unify_context(explicit, []),
% XXX the UnifyContext is wrong
Unify = unify(Var, Term, UnifyMode, Unification, UnifyContext),
% create a goal_info for the unification
set__singleton_set(NonLocals, Var),
instmap_delta_from_assoc_list([Var - Inst], InstMapDelta),
goal_info_init(NonLocals, InstMapDelta, det, GoalInfo),
Goal = Unify - GoalInfo,
polymorphism__get_special_proc_list_2(Ids,
Type, ModuleInfo, VarSet1, VarTypes1,
Vars, Goals, VarSet, VarTypes).
:- pred polymorphism__get_special_proc(builtin_type, type, special_pred_id,
module_info, sym_name, pred_id, proc_id).
:- mode polymorphism__get_special_proc(in, in, in, in, out, out, out) is det.
polymorphism__get_special_proc(TypeCategory, Type, SpecialPredId, ModuleInfo,
PredName, PredId, ProcId) :-
( TypeCategory = user_type ->
module_info_get_special_pred_map(ModuleInfo, SpecialPredMap),
( type_to_type_id(Type, TypeId, _TypeArgs) ->
map__lookup(SpecialPredMap, SpecialPredId - TypeId,
PredId)
;
error(
"polymorphism__get_special_proc: type_to_type_id failed")
),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_module(PredInfo, Module),
pred_info_name(PredInfo, Name),
PredName = qualified(Module, Name)
;
polymorphism__get_category_name(TypeCategory, CategoryName),
special_pred_name_arity(SpecialPredId, SpecialName, _, Arity),
string__append_list(
["builtin_", SpecialName, "_", CategoryName], Name),
polymorphism__get_builtin_pred_id(Name, Arity, ModuleInfo,
PredId),
PredName = unqualified(Name)
),
special_pred_mode_num(SpecialPredId, ProcInt),
proc_id_to_int(ProcId, ProcInt).
:- pred polymorphism__get_category_name(builtin_type, string).
:- mode polymorphism__get_category_name(in, out) is det.
polymorphism__get_category_name(int_type, "int").
polymorphism__get_category_name(char_type, "int").
polymorphism__get_category_name(enum_type, "int").
polymorphism__get_category_name(float_type, "float").
polymorphism__get_category_name(str_type, "string").
polymorphism__get_category_name(pred_type, "pred").
polymorphism__get_category_name(polymorphic_type, _) :-
error("polymorphism__get_category_name: polymorphic type").
polymorphism__get_category_name(user_type, _) :-
error("polymorphism__get_category_name: user_type").
% find the builtin predicate with the specified name
:- pred polymorphism__get_builtin_pred_id(string, int, module_info, pred_id).
:- mode polymorphism__get_builtin_pred_id(in, in, in, out) is det.
polymorphism__get_builtin_pred_id(Name, Arity, ModuleInfo, PredId) :-
module_info_get_predicate_table(ModuleInfo, PredicateTable),
(
mercury_private_builtin_module(PrivateBuiltin),
predicate_table_search_pred_m_n_a(PredicateTable,
PrivateBuiltin, Name, Arity, [PredId1])
->
PredId = PredId1
;
error("polymorphism__get_pred_id: pred_id lookup failed")
).
% Create a unification for a type_info or base_type_info variable:
%
% TypeInfoVar = type_info(CountVar,
% SpecialPredVars...,
% ArgTypeInfoVars...)
%
% or
%
% BaseTypeInfoVar = base_type_type_info(CountVar,
% SpecialPredVars...)
%
% These unifications WILL lead to the creation of cells on the
% heap at runtime.
:- pred polymorphism__init_type_info_var(type, list(var), string,
varset, map(var, type), var, hlds_goal, varset, map(var, type)).
:- mode polymorphism__init_type_info_var(in, in, in, in, in, out, out, out, out)
is det.
polymorphism__init_type_info_var(Type, ArgVars, Symbol, VarSet0, VarTypes0,
TypeInfoVar, TypeInfoGoal, VarSet, VarTypes) :-
mercury_private_builtin_module(PrivateBuiltin),
ConsId = cons(qualified(PrivateBuiltin, Symbol), 1),
TypeInfoTerm = functor(ConsId, ArgVars),
% introduce a new variable
polymorphism__new_type_info_var(Type, Symbol, VarSet0, VarTypes0,
TypeInfoVar, VarSet, VarTypes),
% create the construction unification to initialize the variable
UniMode = (free - ground(shared, no) ->
ground(shared, no) - ground(shared, no)),
list__length(ArgVars, NumArgVars),
list__duplicate(NumArgVars, UniMode, UniModes),
Unification = construct(TypeInfoVar, ConsId, ArgVars, UniModes),
UnifyMode = (free -> ground(shared, no)) -
(ground(shared, no) -> ground(shared, no)),
UnifyContext = unify_context(explicit, []),
% XXX the UnifyContext is wrong
Unify = unify(TypeInfoVar, TypeInfoTerm, UnifyMode,
Unification, UnifyContext),
% create a goal_info for the unification
set__list_to_set([TypeInfoVar | ArgVars], NonLocals),
list__duplicate(NumArgVars, ground(shared, no), ArgInsts),
% note that we could perhaps be more accurate than
% `ground(shared)', but it shouldn't make any
% difference.
InstConsId = cons(qualified(PrivateBuiltin, Symbol), NumArgVars),
instmap_delta_from_assoc_list(
[TypeInfoVar - bound(unique, [functor(InstConsId, ArgInsts)])],
InstMapDelta),
goal_info_init(NonLocals, InstMapDelta, det, GoalInfo),
TypeInfoGoal = Unify - GoalInfo.
% Create a unification for a type_info or base_type_info variable:
%
% BaseTypeInfoVar = base_type_type_info(CountVar,
% SpecialPredVars...)
%
% This unification will NOT lead to the creation of a cell on the
% heap at runtime; it will cause BaseTypeInfoVar to refer to the
% statically allocated base_type_info cell for the type, allocated
% in the module that defines the type.
:- pred polymorphism__init_const_base_type_info_var(type, type_id,
module_info, varset, map(var, type), var, hlds_goal,
varset, map(var, type)).
:- mode polymorphism__init_const_base_type_info_var(in, in, in, in, in,
out, out, out, out) is det.
polymorphism__init_const_base_type_info_var(Type, TypeId,
ModuleInfo, VarSet0, VarTypes0, BaseTypeInfoVar,
BaseTypeInfoGoal, VarSet, VarTypes) :-
type_util__type_id_module(ModuleInfo, TypeId, ModuleName),
type_util__type_id_name(ModuleInfo, TypeId, TypeName),
TypeId = _ - Arity,
ConsId = base_type_info_const(ModuleName, TypeName, Arity),
TypeInfoTerm = functor(ConsId, []),
% introduce a new variable
polymorphism__new_type_info_var(Type, "base_type_info",
VarSet0, VarTypes0, BaseTypeInfoVar, VarSet, VarTypes),
% create the construction unification to initialize the variable
Unification = construct(BaseTypeInfoVar, ConsId, [], []),
UnifyMode = (free -> ground(shared, no)) -
(ground(shared, no) -> ground(shared, no)),
UnifyContext = unify_context(explicit, []),
% XXX the UnifyContext is wrong
Unify = unify(BaseTypeInfoVar, TypeInfoTerm, UnifyMode,
Unification, UnifyContext),
% create a goal_info for the unification
set__list_to_set([BaseTypeInfoVar], NonLocals),
instmap_delta_from_assoc_list([BaseTypeInfoVar - ground(shared, no)],
InstmapDelta),
goal_info_init(NonLocals, InstmapDelta, det, GoalInfo),
BaseTypeInfoGoal = Unify - GoalInfo.
%---------------------------------------------------------------------------%
:- pred polymorphism__make_head_vars(list(tvar), tvarset,
varset, map(var, type),
list(var), varset, map(var, type)).
:- mode polymorphism__make_head_vars(in, in, in, in, out, out, out) is det.
polymorphism__make_head_vars([], _, VarSet, VarTypes, [], VarSet, VarTypes).
polymorphism__make_head_vars([TypeVar|TypeVars], TypeVarSet,
VarSet0, VarTypes0,
TypeInfoVars, VarSet, VarTypes) :-
Type = term__variable(TypeVar),
polymorphism__new_type_info_var(Type, "type_info", VarSet0, VarTypes0,
Var, VarSet1, VarTypes1),
( varset__search_name(TypeVarSet, TypeVar, TypeVarName) ->
string__append("TypeInfo_for_", TypeVarName, VarName),
varset__name_var(VarSet1, Var, VarName, VarSet2)
;
VarSet2 = VarSet1
),
TypeInfoVars = [Var | TypeInfoVars1],
polymorphism__make_head_vars(TypeVars, TypeVarSet,
VarSet2, VarTypes1,
TypeInfoVars1, VarSet, VarTypes).
:- pred polymorphism__new_type_info_var(type, string, varset, map(var, type),
var, varset, map(var, type)).
:- mode polymorphism__new_type_info_var(in, in, in, in, out, out, out) is det.
polymorphism__new_type_info_var(Type, Symbol, VarSet0, VarTypes0,
Var, VarSet, VarTypes) :-
% introduce new variable
varset__new_var(VarSet0, Var, VarSet1),
term__var_to_int(Var, VarNum),
string__int_to_string(VarNum, VarNumStr),
string__append("TypeInfo_", VarNumStr, Name),
varset__name_var(VarSet1, Var, Name, VarSet),
mercury_private_builtin_module(PrivateBuiltin),
construct_type(qualified(PrivateBuiltin, Symbol) - 1, [Type],
UnifyPredType),
map__set(VarTypes0, Var, UnifyPredType, VarTypes).
%---------------------------------------------------------------------------%
:- pred extract_type_info(type, tvar, var, int, list(hlds_goal),
var, poly_info, poly_info).
:- mode extract_type_info(in, in, in, in, out, out, in, out) is det.
extract_type_info(Type, TypeVar, TypeClassInfoVar, Index, Goals,
TypeInfoVar, PolyInfo0, PolyInfo) :-
PolyInfo0 = poly_info(VarSet0, VarTypes0, C, TypeInfoLocns0,
E, F, G, ModuleInfo),
extract_type_info_2(Type, TypeVar, TypeClassInfoVar, Index, ModuleInfo,
Goals, TypeInfoVar, VarSet0, VarTypes0, TypeInfoLocns0,
VarSet, VarTypes, TypeInfoLocns),
PolyInfo = poly_info(VarSet, VarTypes, C, TypeInfoLocns, E, F, G,
ModuleInfo).
:- pred extract_type_info_2(type, tvar, var, int, module_info, list(hlds_goal),
var, varset, map(var, type), map(tvar, type_info_locn),
varset, map(var, type), map(tvar, type_info_locn)).
:- mode extract_type_info_2(in, in, in, in, in, out, out, in, in, in, out, out,
out) is det.
extract_type_info_2(Type, _TypeVar, TypeClassInfoVar, Index, ModuleInfo, Goals,
TypeInfoVar, VarSet0, VarTypes0, TypeInfoLocns0,
VarSet, VarTypes, TypeInfoLocns) :-
% We need a tvarset to pass to get_pred_id_and_proc_id
varset__init(TVarSet0),
varset__new_var(TVarSet0, TVar, TVarSet),
mercury_private_builtin_module(PrivateBuiltin),
ExtractTypeInfo = qualified(PrivateBuiltin,
"type_info_from_typeclass_info"),
construct_type(qualified(PrivateBuiltin, "typeclass_info") - 0, [],
TypeClassInfoType),
construct_type(unqualified("int") - 0, [], IntType),
construct_type(qualified(PrivateBuiltin, "type_info") - 1,
[term__variable(TVar)], TypeInfoType),
get_pred_id_and_proc_id(ExtractTypeInfo, predicate, TVarSet,
[TypeClassInfoType, IntType, TypeInfoType],
ModuleInfo, PredId, ProcId),
polymorphism__make_count_var(Index, VarSet0, VarTypes0, IndexVar,
IndexGoal, VarSet1, VarTypes1),
polymorphism__new_type_info_var(Type, "type_info", VarSet1, VarTypes1,
TypeInfoVar, VarSet2, VarTypes2),
% We have to put an extra type_info at the front of the call to
% type_info_from_typeclass_info, and pass it a bogus value
% because the pred has a type parameter... even though we are
% actually _extracting_ the type_info. Existential typing of
% type_info_from_typeclass_info would fix this.
polymorphism__new_type_info_var(Type, "type_info", VarSet2, VarTypes2,
DummyTypeInfoVar, VarSet, VarTypes),
% Now we put a dummy value in the dummy type-info variable.
polymorphism__init_with_int_constant(DummyTypeInfoVar, 0,
DummyTypeInfoGoal),
% Make the goal info for the call
set__list_to_set([DummyTypeInfoVar, TypeClassInfoVar, IndexVar,
TypeInfoVar], NonLocals),
instmap_delta_from_assoc_list([TypeInfoVar - ground(shared, no)],
InstmapDelta),
goal_info_init(NonLocals, InstmapDelta, det, GoalInfo),
Call = call(PredId, ProcId,
[DummyTypeInfoVar, TypeClassInfoVar, IndexVar, TypeInfoVar],
not_builtin, no, ExtractTypeInfo) - GoalInfo,
Goals = [IndexGoal, DummyTypeInfoGoal, Call],
/* We should do this, except that makes us incorrectly compute the
* non-locals for the goal, since it appears to fixup_quantification
* that the type-info is non-local, but the typeclass-info is not.
% Update the location of the type_info so that we don't go to
% the bother of re-extracting it.
map__det_update(TypeInfoLocns0, TypeVar, type_info(TypeInfoVar),
TypeInfoLocns).
*/
TypeInfoLocns = TypeInfoLocns0.
%---------------------------------------------------------------------------%
% Add a head var for each class constraint, and make an entry in the
% typeinfo locations map for each constrained type var.
:- pred polymorphism__make_typeclass_info_head_vars(list(class_constraint),
module_info, varset, map(var, type), list(var),
map(var, type_info_locn), list(var), varset, map(var, type)).
:- mode polymorphism__make_typeclass_info_head_vars(in, in, in, in,
out, out, out, out, out) is det.
polymorphism__make_typeclass_info_head_vars(ClassContext, ModuleInfo, VarSet0,
VarTypes0, ExtraHeadVars, TypeClassInfoMap, ConstrainedTVars,
VarSet, VarTypes) :-
% initialise the new accumulators
ExtraHeadVars0 = [],
map__init(TypeClassInfoMap0),
% do the work
polymorphism__make_typeclass_info_head_vars_2(ClassContext, ModuleInfo,
VarSet0, VarSet,
VarTypes0, VarTypes,
ExtraHeadVars0, ExtraHeadVars1,
TypeClassInfoMap0, TypeClassInfoMap),
% A type var has a location in a typeclass info iff it is
% constrained
map__keys(TypeClassInfoMap, ConstrainedTVars),
% The ExtraHeadVars are built up in reverse
list__reverse(ExtraHeadVars1, ExtraHeadVars).
:- pred polymorphism__make_typeclass_info_head_vars_2(list(class_constraint),
module_info, varset, varset,
map(var, type), map(var, type),
list(var), list(var),
map(var, type_info_locn), map(var, type_info_locn)).
:- mode polymorphism__make_typeclass_info_head_vars_2(in, in, in, out, in, out,
in, out, in, out) is det.
polymorphism__make_typeclass_info_head_vars_2([], _,
VarSet, VarSet,
VarTypes, VarTypes,
ExtraHeadVars, ExtraHeadVars,
TypeInfoLocations, TypeInfoLocations).
polymorphism__make_typeclass_info_head_vars_2([C|Cs], ModuleInfo,
VarSet0, VarSet,
VarTypes0, VarTypes,
ExtraHeadVars0, ExtraHeadVars,
TypeClassInfoMap0, TypeClassInfoMap) :-
C = constraint(ClassName0, ClassTypes),
% Work out how many superclass the class has
list__length(ClassTypes, ClassArity),
ClassId = class_id(ClassName0, ClassArity),
module_info_classes(ModuleInfo, ClassTable),
map__lookup(ClassTable, ClassId, ClassDefn),
ClassDefn = hlds_class_defn(SuperClasses, _, _, _, _),
list__length(SuperClasses, NumSuperClasses),
unqualify_name(ClassName0, ClassName),
% Make a new variable to contain the dictionary for this
% typeclass constraint
polymorphism__new_typeclass_info_var(VarSet0, VarTypes0, ClassName,
Var, VarSet1, VarTypes1),
ExtraHeadVars1 = [Var | ExtraHeadVars0],
% Find all the type variables in the constraint, and remember
% what index they appear in in the typeclass info.
% The first type_info will be just after the superclass infos
First is NumSuperClasses + 1,
term__vars_list(ClassTypes, ClassTypeVars0),
MakeIndex = lambda([Elem0::in, Elem::out,
Index0::in, Index::out] is det,
(
Elem = Elem0 - Index0,
Index is Index0 + 1,
% the following call is a work-around for a compiler
% bug with intermodule optimization: it is needed to
% resolve a type ambiguity
is_pair(Elem)
)),
list__map_foldl(MakeIndex, ClassTypeVars0, ClassTypeVars, First, _),
% Work out which ones haven't been seen before
IsNew = lambda([TypeVar0::in] is semidet,
(
TypeVar0 = TypeVar - _Index,
\+ map__search(TypeClassInfoMap0, TypeVar, _)
)),
list__filter(IsNew, ClassTypeVars, NewClassTypeVars),
% Make an entry in the TypeInfo locations map for each new
% type variable. The type variable can be found at the
% previously calculated offset with the new typeclass_info
MakeEntry = lambda([IndexedTypeVar::in,
LocnMap0::in, LocnMap::out] is det,
(
IndexedTypeVar = TheTypeVar - Location,
map__det_insert(LocnMap0, TheTypeVar,
typeclass_info(Var, Location), LocnMap)
)),
list__foldl(MakeEntry, NewClassTypeVars,
TypeClassInfoMap0, TypeClassInfoMap1),
% Handle the rest of the constraints
polymorphism__make_typeclass_info_head_vars_2(Cs, ModuleInfo,
VarSet1, VarSet,
VarTypes1, VarTypes,
ExtraHeadVars1, ExtraHeadVars,
TypeClassInfoMap1, TypeClassInfoMap).
:- pred is_pair(pair(_, _)::in) is det.
is_pair(_).
:- pred polymorphism__new_typeclass_info_var(varset, map(var, type),
string, var,
varset, map(var, type)).
:- mode polymorphism__new_typeclass_info_var(in, in, in, out, out, out) is det.
polymorphism__new_typeclass_info_var(VarSet0, VarTypes0, ClassName,
Var, VarSet, VarTypes) :-
% introduce new variable
varset__new_var(VarSet0, Var, VarSet1),
string__append("TypeClassInfo_for_", ClassName, Name),
varset__name_var(VarSet1, Var, Name, VarSet),
mercury_private_builtin_module(PrivateBuiltin),
construct_type(qualified(PrivateBuiltin, "typeclass_info") - 0,
[], DictionaryType),
map__set(VarTypes0, Var, DictionaryType, VarTypes).
%---------------------------------------------------------------------------%
% Expand the bodies of all class methods for typeclasses which
% were defined in this module. The expansion involves inserting a
% class_method_call with the appropriate arguments, which is
% responsible for extracting the appropriate part of the dictionary.
:- pred polymorphism__expand_class_method_bodies(module_info, module_info).
:- mode polymorphism__expand_class_method_bodies(in, out) is det.
polymorphism__expand_class_method_bodies(ModuleInfo0, ModuleInfo) :-
module_info_classes(ModuleInfo0, Classes),
module_info_name(ModuleInfo0, ModuleName),
map__keys(Classes, ClassIds0),
% Don't expand classes from other modules
FromThisModule = lambda([ClassId::in] is semidet,
(
ClassId = class_id(qualified(ModuleName, _), _)
)),
list__filter(FromThisModule, ClassIds0, ClassIds),
map__apply_to_list(ClassIds, Classes, ClassDefns),
list__foldl(expand_bodies, ClassDefns, ModuleInfo0, ModuleInfo).
:- pred expand_bodies(hlds_class_defn, module_info, module_info).
:- mode expand_bodies(in, in, out) is det.
expand_bodies(hlds_class_defn(_, _, Interface, _, _),
ModuleInfo0, ModuleInfo) :-
list__foldl2(expand_one_body, Interface, 1, _, ModuleInfo0, ModuleInfo).
:- pred expand_one_body(hlds_class_proc, int, int, module_info, module_info).
:- mode expand_one_body(in, in, out, in, out) is det.
expand_one_body(hlds_class_proc(PredId, ProcId), ProcNum0, ProcNum,
ModuleInfo0, ModuleInfo) :-
module_info_preds(ModuleInfo0, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(ProcTable0, ProcId, ProcInfo0),
% Find which of the constraints on the pred is the one
% introduced because it is a class method.
pred_info_get_class_context(PredInfo0, ClassContext),
(
ClassContext = [Head|_]
->
InstanceConstraint = Head
;
error("expand_one_body: class method is not constrained")
),
proc_info_typeclass_info_varmap(ProcInfo0, VarMap),
map__lookup(VarMap, InstanceConstraint, TypeClassInfoVar),
proc_info_headvars(ProcInfo0, HeadVars0),
proc_info_vartypes(ProcInfo0, Types0),
proc_info_argmodes(ProcInfo0, Modes0),
proc_info_declared_determinism(ProcInfo0, Detism0),
(
Detism0 = yes(Detism1)
->
Detism = Detism1
;
error("missing determinism decl. How did we get this far?")
),
% Work out which argument corresponds to the constraint which
% is introduced because this is a class method, then delete it
% from the list of args to the class_method_call. That variable
% becomes the "dictionary" variable for the class_method_call.
% (cf. the closure for a higher order call).
(
list__nth_member_search(HeadVars0, TypeClassInfoVar, N),
delete_nth(HeadVars0, N, HeadVars1),
delete_nth(Modes0, N, Modes1)
->
HeadVars = HeadVars1,
map__apply_to_list(HeadVars1, Types0, Types),
Modes = Modes1
;
error("expand_one_body: typeclass_info var not found")
),
BodyGoalExpr = class_method_call(TypeClassInfoVar, ProcNum0,
HeadVars, Types, Modes, Detism),
% Make the goal info for the call.
set__list_to_set(HeadVars0, NonLocals),
instmap_delta_from_mode_list(HeadVars0, Modes0, ModuleInfo0,
InstmapDelta),
goal_info_init(NonLocals, InstmapDelta, Detism, GoalInfo),
BodyGoal = BodyGoalExpr - GoalInfo,
proc_info_set_goal(ProcInfo0, BodyGoal, ProcInfo),
map__det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(PredInfo0, ProcTable, PredInfo),
map__det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(ModuleInfo0, PredTable, ModuleInfo),
ProcNum is ProcNum0 + 1.
:- pred delete_nth(list(T)::in, int::in, list(T)::out) is semidet.
delete_nth([X|Xs], N0, Result) :-
(
N0 > 1
->
N is N0 - 1,
delete_nth(Xs, N, TheRest),
Result = [X|TheRest]
;
Result = Xs
).
%---------------------------------------------------------------------------%
:- pred polymorphism__get_module_info(module_info, poly_info, poly_info).
:- mode polymorphism__get_module_info(out, in, out) is det.
polymorphism__get_module_info(ModuleInfo, PolyInfo, PolyInfo) :-
PolyInfo = poly_info(_, _, _, _, _, _, _, ModuleInfo).
:- pred polymorphism__set_module_info(module_info, poly_info, poly_info).
:- mode polymorphism__set_module_info(in, in, out) is det.
polymorphism__set_module_info(ModuleInfo, PolyInfo0, PolyInfo) :-
PolyInfo0 = poly_info(A, B, C, D, E, F, G, _),
PolyInfo = poly_info(A, B, C, D, E, F, G, ModuleInfo).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%