Files
mercury/compiler/term_constr_fixpoint.m
Zoltan Somogyi 672f77c4ec Add a new compiler option. --inform-ite-instead-of-switch.
Estimated hours taken: 20
Branches: main

Add a new compiler option. --inform-ite-instead-of-switch. If this is enabled,
the compiler will generate informational messages about if-then-elses that
it thinks should be converted to switches for the sake of program reliability.

Act on the output generated by this option.

compiler/simplify.m:
	Implement the new option.

	Fix an old bug that could cause us to generate warnings about code
	that was OK in one duplicated copy but not in another (where a switch
	arm's code is duplicated due to the case being selected for more than
	one cons_id).

compiler/options.m:
	Add the new option.

	Add a way to test for the bug fix in simplify.

doc/user_guide.texi:
	Document the new option.

NEWS:
	Mention the new option.

library/*.m:
mdbcomp/*.m:
browser/*.m:
compiler/*.m:
deep_profiler/*.m:
	Convert if-then-elses to switches at most of the sites suggested by the
	new option. At the remaining sites, switching to switches would have
	nontrivial downsides. This typically happens with the switched-on type
	has many functors, and we treat one or two specially (e.g. cons/2 in
	the cons_id type).

	Perform misc cleanups in the vicinity of the if-then-else to switch
	conversions.

	In a few cases, improve the error messages generated.

compiler/accumulator.m:
compiler/hlds_goal.m:
	(Rename and) move insts for particular kinds of goal from
	accumulator.m to hlds_goal.m, to allow them to be used in other
	modules. Using these insts allowed us to eliminate some if-then-elses
	entirely.

compiler/exprn_aux.m:
	Instead of fixing some if-then-elses, delete the predicates containing
	them, since they aren't used, and (as pointed out by the new option)
	would need considerable other fixing if they were ever needed again.

compiler/lp_rational.m:
	Add prefixes to the names of the function symbols on some types,
	since without those prefixes, it was hard to figure out what type
	the switch corresponding to an old if-then-else was switching on.

tests/invalid/reserve_tag.err_exp:
	Expect a new, improved error message.
2007-11-23 07:36:01 +00:00

483 lines
18 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 2002, 2005-2007 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: term_constr_fixpoint.m.
% Main author: juliensf.
%
% TODO:
% * code for handling calls could do with a cleanup.
%
% NOTE: the code in this module should not refer to things in the HLDS
% (with the exception of the termination2_info slots in the
% proc_sub_info structure)
%
%-----------------------------------------------------------------------------%
:- module transform_hlds.term_constr_fixpoint.
:- interface.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module transform_hlds.term_constr_data.
:- import_module transform_hlds.term_constr_errors.
:- import_module io.
:- import_module list.
%-----------------------------------------------------------------------------%
% Derive the argument size constraints for the procedures in this SCC.
%
:- pred do_fixpoint_calculation(fixpoint_options::in, list(pred_proc_id)::in,
int::in, term2_errors::out, module_info::in, module_info::out,
io::di, io::uo) is det.
% This structure holds the values of options used to control
% the fixpoint calculation.
%
:- type fixpoint_options.
% fixpoint_options_init(Widening, MaxMatrixSize). Initialise the
% fixpoint_options structure. `Widening' is the threshold after
% which we invoke widening. `MaxMatrixSize' specifies the maximum
% number of constraints we allow a matrix to grow to before we abort
% and try other approximations.
%
:- func fixpoint_options_init(widening, int) = fixpoint_options.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module hlds.hlds_out.
:- import_module libs.compiler_util.
:- import_module libs.lp_rational.
:- import_module libs.polyhedron.
:- import_module parse_tree.prog_data.
:- import_module transform_hlds.term_constr_data.
:- import_module transform_hlds.term_constr_main.
:- import_module transform_hlds.term_constr_util.
:- import_module bool.
:- import_module int.
:- import_module maybe.
:- import_module set.
:- import_module string.
:- import_module term.
:- import_module varset.
%------------------------------------------------------------------------------%
:- type fixpoint_options
---> fixpoint_options(
widening :: widening,
max_size :: int
).
fixpoint_options_init(Widening, MaxMatrixSize) =
fixpoint_options(Widening, MaxMatrixSize).
%------------------------------------------------------------------------------%
%
% Perform the fixpoint calculation on the AR.
%
% The information for each procedure in the SCC returned by a single
% iteration of the fixpoint calculation.
%
:- type iteration_info
---> iteration_info(
pred_proc_id,
arg_size_poly :: polyhedron,
change_flag :: bool
).
:- type iteration_infos == list(iteration_info).
do_fixpoint_calculation(Options, SCC, Iteration, [], !ModuleInfo, !IO) :-
AbstractSCC = get_abstract_scc(!.ModuleInfo, SCC),
%
% Carry out one iteration of fixpoint computation. We need to
% do this for all SCCs at least once in order to obtain the argument
% size constraints for non-recursive procedures. We could do that
% during the build phase for non-recursive procedures (and in fact used
% to) but the code ends up being a horrible mess.
%
list.foldl2(traverse_abstract_proc(Iteration, Options, !.ModuleInfo),
AbstractSCC, [], IterationInfos, !IO),
ChangeFlag = or_flags(IterationInfos),
(
ChangeFlag = yes,
list.foldl(update_size_info, IterationInfos, !ModuleInfo),
do_fixpoint_calculation(Options, SCC, Iteration + 1,
_, !ModuleInfo, !IO)
;
ChangeFlag = no,
% If one of the polyhedra in the SCC has `false' as its
% argument size constraint then the analysis failed. In that
% case set the argument size constraints for every procedure
% in the SCC to `true'.
% XXX Should this be happening?
%
(
list.member(OneInfo, IterationInfos),
polyhedron.is_empty(OneInfo ^ arg_size_poly)
->
ChangePoly = (func(Info0) = Info :-
Identity = polyhedron.universe,
Info = Info0 ^ arg_size_poly := Identity
),
list.foldl(update_size_info, list.map(ChangePoly, IterationInfos),
!ModuleInfo)
;
list.foldl(update_size_info, IterationInfos, !ModuleInfo)
)
).
:- func or_flags(iteration_infos) = bool.
or_flags([]) = no.
or_flags([Info | Infos]) = bool.or(Info ^ change_flag, or_flags(Infos)).
:- pred update_size_info(iteration_info::in, module_info::in, module_info::out)
is det.
update_size_info(Info, !ModuleInfo) :-
Info = iteration_info(PPId, Poly, _),
update_arg_size_info(PPId, Poly, !ModuleInfo).
%------------------------------------------------------------------------------%
:- pred traverse_abstract_proc(int::in, fixpoint_options::in,
module_info::in, abstract_proc::in, iteration_infos::in,
iteration_infos::out, io::di, io::uo) is det.
traverse_abstract_proc(Iteration, Options, ModuleInfo, Proc, !IterationInfo,
!IO) :-
WideningInfo = Options ^ widening,
MaxMatrixSize = Options ^ max_size,
AbstractPPId = Proc ^ ppid,
AbstractPPId = real(PPId),
Varset = Proc ^ varset,
Zeros = Proc ^ zeros,
HeadVars = Proc ^ head_vars,
%
% Print out the debugging traces.
%
maybe_write_trace(io.write(PPId), !IO),
maybe_write_trace(io.write_string(": "), !IO),
maybe_write_trace(hlds_out.write_pred_proc_id(ModuleInfo, PPId), !IO),
maybe_write_trace(io.write_string(" "), !IO),
maybe_write_trace(write_size_vars(Varset, HeadVars), !IO),
maybe_write_trace(io.format("\nIteration %d:\n", [i(Iteration)]), !IO),
%
% Begin by traversing the procedure and calculating the
% IR approximation for this iteration.
%
Info = init_fixpoint_info(ModuleInfo, Varset, PPId, MaxMatrixSize,
HeadVars, Zeros),
some [!Polyhedron] (
traverse_abstract_goal(Info, Proc ^ body, polyhedron.universe,
!:Polyhedron),
polyhedron.optimize(Varset, !Polyhedron),
%
% XXX Bug workaround - the build pass sometimes stuffs up
% the local variable set for if-then-elses.
% (See comments in term_constr_build.m).
%
BugConstrs0 = polyhedron.constraints(!.Polyhedron),
ConstrVarsSet = get_vars_from_constraints(BugConstrs0),
HeadVarSet = set.from_list(HeadVars),
BadVarsSet = set.difference(ConstrVarsSet, HeadVarSet),
BadVars = set.to_sorted_list(BadVarsSet),
!:Polyhedron = polyhedron.project(BadVars, Varset, !.Polyhedron),
polyhedron.optimize(Varset, !Polyhedron),
%
% XXX End of bug workaround.
% Print out the polyhedron obtained during this iteration.
%
maybe_write_trace(polyhedron.write_polyhedron(!.Polyhedron, Varset),
!IO),
maybe_write_trace(io.nl, !IO),
%
% Look up the constraints obtained during the previous
% iteration.
%
ArgSizeInfo = lookup_proc_constr_arg_size_info(ModuleInfo, PPId),
%
% NOTE: `!.Polyhedron' is the set of constraints obtained by
% *this* iteration. `OldPolyhedron' is the set of constraints
% obtained by the *previous* iteration -- which may in fact
% be `empty' (false).
%
(
% If there were no constraints for the procedure then
% we are at the beginning of the analysis.
%
ArgSizeInfo = no,
OldPolyhedron = polyhedron.empty
;
ArgSizeInfo = yes(SizeInfo),
OldPolyhedron = SizeInfo
),
( polyhedron.is_empty(!.Polyhedron) ->
( if polyhedron.is_empty(OldPolyhedron)
then ChangeFlag = no
else unexpected(this_file, "old polyhedron is empty.")
)
;
% If the procedure is not recursive then we need only perform one
% pass over the AR - subsequent iterations will yield the same result.
%
( if Proc ^ recursion = none then ChangeFlag = no
else if polyhedron.is_empty(OldPolyhedron) then ChangeFlag = yes
else test_fixpoint_and_perhaps_widen(WideningInfo, Varset,
Iteration, OldPolyhedron, !Polyhedron, ChangeFlag)
)
),
ThisIterationInfo = iteration_info(PPId, !.Polyhedron, ChangeFlag)
),
list.cons(ThisIterationInfo, !IterationInfo).
%------------------------------------------------------------------------------%
:- type fixpoint_info
---> fixpoint_info(
module_info :: module_info,
varset :: size_varset,
ppid :: pred_proc_id,
max_matrix_size :: int,
curr_head_vars :: head_vars,
zeros :: zero_vars
).
:- func init_fixpoint_info(module_info, size_varset, pred_proc_id, int,
head_vars, zero_vars) = fixpoint_info.
init_fixpoint_info(ModuleInfo, Varset, PPId, MaxMatrixSize, HeadVars, Zeros) =
fixpoint_info(ModuleInfo, Varset, PPId, MaxMatrixSize, HeadVars, Zeros).
%------------------------------------------------------------------------------%
:- pred traverse_abstract_goal(fixpoint_info::in, abstract_goal::in,
polyhedron::in, polyhedron::out) is det.
traverse_abstract_goal(Info, term_disj(Goals, _Size, Locals, _),
!Polyhedron) :-
%
% There are number of possible improvements that should be made here:
%
% - Take the intersection each disjunct with the constraints
% before the disjunction and compute the convex hull of that.
% This is more accurate but slower. (XXX There is some code for this
% in term_constr_data.m but it needs to be moved here). To do
% this you need to add the constraints that occur to
% left of the disjunctions to `PriorConstraints'.
%
% - Try computing the convex hull of large disjunctions
% pairwise rather than linearly. There is code to do this
% below but we currently don't use it.
%
PriorConstraints = polyhedron.universe,
traverse_abstract_disj_linearly(Goals, Locals, Info, PriorConstraints,
Polyhedron0),
post_process_abstract_goal(Locals, Info, Polyhedron0, !Polyhedron).
traverse_abstract_goal(Info, term_conj(Goals, Locals, _), !Polyhedron) :-
list.foldl(traverse_abstract_goal(Info), Goals, polyhedron.universe,
Polyhedron0),
post_process_abstract_goal(Locals, Info, Polyhedron0, !Polyhedron).
traverse_abstract_goal(Info, AbstractGoal, !Polyhedron) :-
AbstractGoal = term_call(CallPPId0, _, CallVars, CallZeros, Locals, _,
CallArgsPoly),
CallPPId0 = real(CallPPId),
module_info_pred_proc_info(Info ^ module_info, CallPPId, _,
CallProcInfo),
proc_info_get_termination2_info(CallProcInfo, CallTerm2Info),
CallArgSizeInfo = CallTerm2Info ^ success_constrs,
(
CallArgSizeInfo = no,
!:Polyhedron = polyhedron.empty
;
CallArgSizeInfo = yes(SizeInfo),
( polyhedron.is_empty(SizeInfo) ->
!:Polyhedron = polyhedron.empty
;
( not polyhedron.is_universe(SizeInfo) ->
HeadVars = CallTerm2Info ^ head_vars,
SubstMap = create_var_substitution(CallVars,
HeadVars),
Polyhedron0 = polyhedron.substitute_vars(
SubstMap, SizeInfo),
Polyhedron1 = intersection(Polyhedron0,
CallArgsPoly),
%
% Set any zero_vars in the constraints
% to zero (ie. delete the terms). We need
% to do this when polymorphic arguments
% are zero sized.
%
Polyhedron2 = polyhedron.zero_vars(CallZeros,
Polyhedron1),
post_process_abstract_goal(Locals, Info,
Polyhedron2, !Polyhedron)
;
true % Constraint store += true
)
)
).
traverse_abstract_goal(Info, term_primitive(Poly, Locals, _), !Polyhedron) :-
post_process_abstract_goal(Locals, Info, Poly, !Polyhedron).
%------------------------------------------------------------------------------%
:- pred post_process_abstract_goal(size_vars::in, fixpoint_info::in,
polyhedron::in, polyhedron::in, polyhedron::out) is det.
post_process_abstract_goal(Locals, Info, GoalPolyhedron0, !Polyhedron) :-
( if polyhedron.is_empty(GoalPolyhedron0)
then GoalPolyhedron = polyhedron.empty
else GoalPolyhedron = polyhedron.project(Locals, Info ^ varset,
GoalPolyhedron0)
),
polyhedron.intersection(GoalPolyhedron, !Polyhedron).
%------------------------------------------------------------------------------%
%
% Predicates for handling disjunctions.
%
% This version computes the convex hull linearly.
% That is, ( A ; B ; C ; D) is processed as:
%
% ((((empty \/ A ) \/ B ) \/ C ) \/ D)
%
:- pred traverse_abstract_disj_linearly(abstract_goals::in,
size_vars::in, fixpoint_info::in, polyhedron::in, polyhedron::out)
is det.
traverse_abstract_disj_linearly(Goals, Locals, Info, !Polyhedron) :-
list.foldl(traverse_abstract_disj_linearly_2(Info, Locals),
Goals, polyhedron.empty, ConvexUnion),
polyhedron.intersection(ConvexUnion, !Polyhedron).
:- pred traverse_abstract_disj_linearly_2(fixpoint_info::in,
size_vars::in, abstract_goal::in, polyhedron::in, polyhedron::out)
is det.
traverse_abstract_disj_linearly_2(Info, Locals, Goal, !Polyhedron) :-
Varset = Info ^ varset,
traverse_abstract_goal(Info, Goal, polyhedron.universe, Polyhedron0),
Polyhedron1 = polyhedron.project(Locals, Varset, Polyhedron0),
polyhedron.convex_union(Varset, yes(Info ^ max_matrix_size),
Polyhedron1, !Polyhedron).
% This version computes the convex hull pairwise. That is
% ( A ; B ; C ; D) is processed as: (( A \/ B ) \/ ( C \/ D)).
%
% XXX This code is currently unused.
%
:- pred traverse_abstract_disj_pairwise(abstract_goals::in, size_vars::in,
fixpoint_info::in, polyhedron::in, polyhedron::out) is det.
traverse_abstract_disj_pairwise(Goals, Locals, Info, !Polyhedron) :-
Varset = Info ^ varset,
% XXX at the moment, could be !.Poly...
PolyToLeft = polyhedron.universe,
%
% First convert the list of goals into their corresponding
% polyhedra
%
ToPoly = (func(Goal) = Poly :-
traverse_abstract_goal(Info, Goal, PolyToLeft, Poly0),
Poly = polyhedron.project(Locals, Varset, Poly0)
),
Polyhedra0 = list.map(ToPoly, Goals),
%
% Now pairwise convex hull them.
%
HullOp = (func(A, B) = C :-
polyhedron.convex_union(Varset, yes(Info ^ max_matrix_size),
A, B, C)
),
ConvexUnion = pairwise_map(HullOp, [ polyhedron.empty | Polyhedra0]),
polyhedron.intersection(ConvexUnion, !Polyhedron).
% This assumes that the operation in question is associative and
% commutative.
%
:- func pairwise_map(func(T, T) = T, list(T)) = T.
pairwise_map(_, []) = _ :- unexpected(this_file, "pairwise_map: empty list").
pairwise_map(_, [X]) = X.
pairwise_map(Op, List @ [_, _ | _]) = X :-
pairwise_map_2(Op, List, [], X0),
X = pairwise_map(Op, X0).
:- pred pairwise_map_2(func(T, T) = T, list(T), list(T), list(T)).
:- mode pairwise_map_2(func(in, in) = out is det, in, in, out) is det.
pairwise_map_2(_, [], !Acc).
pairwise_map_2(_, [X], Acc, [X | Acc]).
pairwise_map_2(Op, [X, Y | Rest], !Acc) :-
list.cons(Op(X, Y), !Acc),
pairwise_map_2(Op, Rest, !Acc).
%------------------------------------------------------------------------------%
%
% Fixpoint test.
%
:- pred test_fixpoint_and_perhaps_widen(widening::in, size_varset::in, int::in,
polyhedron::in, polyhedron::in, polyhedron::out, bool::out) is det.
test_fixpoint_and_perhaps_widen(after_fixed_cutoff(Threshold), Varset,
Iteration, OldPoly, NewPoly, ResultPoly, ChangeFlag) :-
( Iteration > Threshold ->
ResultPoly = widen(OldPoly, NewPoly, Varset)
;
ResultPoly = NewPoly
),
ChangeFlag = test_fixpoint(NewPoly, OldPoly, Varset).
:- func test_fixpoint(polyhedron, polyhedron, size_varset) = bool.
test_fixpoint(NewPoly, OldPoly, Varset) = ChangeFlag :-
%
% Constraints from this iteration.
%
NewConstraints = polyhedron.non_false_constraints(NewPoly),
%
% Constraints from previous iteration.
%
OldConstraints = polyhedron.non_false_constraints(OldPoly),
(
some [OldConstraint] (
list.member(OldConstraint, OldConstraints),
not entailed(Varset, NewConstraints, OldConstraint)
)
->
ChangeFlag = yes
;
ChangeFlag = no
).
%-----------------------------------------------------------------------------
:- func this_file = string.
this_file = "term_constr_fixpoint.m".
%-----------------------------------------------------------------------------%
:- end_module transform_hlds.term_constr_fixpoint.
%-----------------------------------------------------------------------------%