Files
mercury/compiler/rbmm.points_to_analysis.m
Zoltan Somogyi 60f2bc0a44 Fix deviations from our style guides, including tabs, line lengths and
Estimated hours taken: 1
Branches: main

compiler/rbmm.*.m:
	Fix deviations from our style guides, including tabs, line lengths and
	inconsistent indentation.
2007-07-23 05:06:15 +00:00

1123 lines
44 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 2005-2007 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File rbmm.points_to_analysis.m.
% Main author: Quan Phan.
%
% This module implements the region points-to analysis (rpta), which collects
% for each procedure a region points-to graph representing the splitting of
% the heap used by the procedure into regions, i.e., which variables are
% stored in which regions. Because the region model is polymorphic, i.e., we
% can pass different actual regions for region arguments, the analysis also
% gathers the alpha mapping, which maps formal region parameters to actual
% ones at each call site in a procedure. So there are 2 sorts of information:
% region points-to graph (rptg) and alpha mapping.
%
% The analysis is composed of 2 phases:
%
% 1. intraprocedural analysis: only analyses unifications and compute only
% rptgs.
% 2. interprocedural analysis: only analyses (plain) procedure calls,
% compute both rptgs and alpha mappings.
%
% Currently the analysis ONLY collects the information, do NOT record it into
% the HLDS.
%
%-----------------------------------------------------------------------------%
:- module transform_hlds.rbmm.points_to_analysis.
:- interface.
:- import_module hlds.
:- import_module hlds.hlds_module.
:- import_module transform_hlds.rbmm.points_to_info.
%-----------------------------------------------------------------------------%
:- pred region_points_to_analysis(rpta_info_table::out,
module_info::in, module_info::out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds.
:- import_module check_hlds.goal_path.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_pred.
:- import_module libs.
:- import_module libs.compiler_util.
:- import_module parse_tree.
:- import_module parse_tree.prog_data.
:- import_module transform_hlds.dependency_graph.
:- import_module transform_hlds.rbmm.points_to_graph.
:- import_module transform_hlds.smm_common.
:- import_module transform_hlds.ctgc.
:- import_module transform_hlds.ctgc.fixpoint_table.
:- import_module bool.
:- import_module int.
:- import_module list.
:- import_module map.
:- import_module maybe.
:- import_module set.
:- import_module string.
:- import_module svmap.
:- import_module term.
%-----------------------------------------------------------------------------%
region_points_to_analysis(InfoTable, !ModuleInfo) :-
rpta_info_table_init = InfoTable0,
intra_proc_rpta(!.ModuleInfo, InfoTable0, InfoTable1),
inter_proc_rpta(!.ModuleInfo, InfoTable1, InfoTable).
%----------------------------------------------------------------------------%
%
% Phase 1: intraprocedural region points-to analysis
%
:- pred intra_proc_rpta(module_info::in,
rpta_info_table::in, rpta_info_table::out) is det.
intra_proc_rpta(ModuleInfo, !InfoTable) :-
module_info_predids(PredIds, ModuleInfo, _),
list.foldl(intra_proc_rpta_pred(ModuleInfo), PredIds, !InfoTable).
:- pred intra_proc_rpta_pred(module_info::in, pred_id::in,
rpta_info_table::in, rpta_info_table::out) is det.
intra_proc_rpta_pred(ModuleInfo, PredId, !InfoTable) :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
ProcIds = pred_info_non_imported_procids(PredInfo),
list.foldl(intra_proc_rpta_proc(ModuleInfo, PredId), ProcIds, !InfoTable).
:- pred intra_proc_rpta_proc(module_info::in, pred_id::in, proc_id::in,
rpta_info_table::in, rpta_info_table::out) is det.
intra_proc_rpta_proc(ModuleInfo, PredId, ProcId, !InfoTable) :-
PPId = proc(PredId, ProcId),
( some_are_special_preds([PPId], ModuleInfo) ->
true
;
module_info_proc_info(ModuleInfo, PPId, ProcInfo),
RptaInfo0 = rpta_info_init(ProcInfo),
proc_info_get_goal(ProcInfo, Goal),
intra_analyse_goal(Goal, RptaInfo0, RptaInfo),
rpta_info_table_set_rpta_info(PPId, RptaInfo, !InfoTable)
).
:- pred intra_analyse_goal(hlds_goal::in, rpta_info::in, rpta_info::out)
is det.
intra_analyse_goal(Goal, !RptaInfo) :-
Goal = hlds_goal(GoalExpr, _),
intra_analyse_goal_expr(GoalExpr, !RptaInfo).
:- pred intra_analyse_goal_expr(hlds_goal_expr::in,
rpta_info::in, rpta_info::out) is det.
intra_analyse_goal_expr(conj(_ConjType, Goals), !RptaInfo) :-
list.foldl(intra_analyse_goal, Goals, !RptaInfo).
% Calls (of all types) are not considered during the intraprocedural
% analysis.
%
intra_analyse_goal_expr(plain_call(_, _, _, _, _, _), !RptaInfo).
intra_analyse_goal_expr(generic_call(_, _, _, _), !RptaInfo).
intra_analyse_goal_expr(call_foreign_proc(_, _, _, _, _, _, _), !RptaInfo).
intra_analyse_goal_expr(switch(_, _, Cases), !RptaInfo) :-
list.foldl(intra_analyse_case, Cases, !RptaInfo).
intra_analyse_goal_expr(disj(Goals), !RptaInfo) :-
list.foldl(intra_analyse_goal, Goals, !RptaInfo).
intra_analyse_goal_expr(negation(Goal), !RptaInfo) :-
intra_analyse_goal(Goal, !RptaInfo).
intra_analyse_goal_expr(unify(_, _, _, Unification, _), !RptaInfo) :-
intra_analyse_unification(Unification, !RptaInfo).
% scope
% XXX: only analyse the goal. May need to take into account the Reason.
%
intra_analyse_goal_expr(scope(_Reason, Goal), !RptaInfo) :-
% (
% ( Reason = exist_quant(_)
% ; Reason = promise_solutions(_, _) % XXX ???
% ; Reason = promise_purity(_, _)
% ; Reason = commit(_) % XXX ???
% ; Reason = barrier(_)
% ; Reason = trace_goal(_, _, _, _, _)
% ; Reason = from_ground_term(_)
% ),
intra_analyse_goal(Goal, !RptaInfo).
% ;
% Msg = "intra_analyse_goal_expr: Scope's reason of from_ground_term "
% ++ "not handled",
% unexpected(this_file, Msg)
% ).
intra_analyse_goal_expr(if_then_else(_Vars, If, Then, Else), !RptaInfo) :-
intra_analyse_goal(If, !RptaInfo),
intra_analyse_goal(Then, !RptaInfo),
intra_analyse_goal(Else, !RptaInfo).
intra_analyse_goal_expr(shorthand(_), _, _) :-
unexpected(this_file, "intra_analyse_goal_expr: shorthand not handled").
:- pred intra_analyse_case(case::in, rpta_info::in, rpta_info::out) is det.
intra_analyse_case(Case, !RptaInfo) :-
Case = case(_, Goal),
intra_analyse_goal(Goal, !RptaInfo).
%-----------------------------------------------------------------------------%
% For construction and deconstruction unifications, add an edge from the
% variable on the LHS to each variable on the RHS.
%
% For assignment unifications we merge the nodes corresponding to
% the variables on either side.
%
% For simple test unifications we do nothing.
%
:- pred intra_analyse_unification(unification::in,
rpta_info::in, rpta_info::out) is det.
% For construction and deconstruction, add edges from LVar to
% each of RVars.
intra_analyse_unification(Unification, !RptaInfo) :-
( Unification = construct(LVar, ConsId, RVars, _, _, _, _)
; Unification = deconstruct(LVar, ConsId, RVars, _, _, _)
),
list.foldl2(process_cons_and_decons(LVar, ConsId), RVars, 1, _, !RptaInfo).
intra_analyse_unification(assign(ToVar, FromVar), !RptaInfo) :-
!.RptaInfo = rpta_info(Graph0, AlphaMapping),
get_node_by_variable(Graph0, ToVar, ToNode),
get_node_by_variable(Graph0, FromVar, FromNode),
( ToNode = FromNode ->
true
;
unify_operator(ToNode, FromNode, Graph0, Graph),
!:RptaInfo = rpta_info(Graph, AlphaMapping),
% After merging the two nodes, apply rule P1 to restore the
% RPTG's invariants.
apply_rule_1(ToNode, !RptaInfo)
).
intra_analyse_unification(simple_test(_, _), !RptaInfo).
intra_analyse_unification(complicated_unify(_, _, _), _, _) :-
unexpected(this_file,
"complicated_unify in region points-to analysis.").
:- pred process_cons_and_decons(prog_var::in, cons_id::in, prog_var::in,
int::in, int::out, rpta_info::in, rpta_info::out) is det.
process_cons_and_decons(LVar, ConsId, RVar, !Component, !RptaInfo) :-
!.RptaInfo = rpta_info(Graph0, AlphaMapping),
get_node_by_variable(Graph0, LVar, L_Node),
get_node_by_variable(Graph0, RVar, R_Node),
Sel = [termsel(ConsId, !.Component)],
EdgeLabel = rptg_arc_content(Sel),
% Only add the edge if it is not in the graph
% It is more suitable to the edge_operator's semantics if we check
% this inside the edge_operator. But we also want to know if the edge
% is actually added or not so it is convenient to check the edge's
% existence outside edge_operator. Otherwise we can extend edge_operator
% with one more argument to indicate that.
( edge_in_graph(L_Node, EdgeLabel, R_Node, Graph0) ->
true
;
edge_operator(L_Node, R_Node, EdgeLabel, Graph0, Graph1),
!:RptaInfo = rpta_info(Graph1, AlphaMapping),
% After an edge is added, rules P2 and P3 are applied to ensure
% the invariants of the graph.
apply_rule_2(L_Node, R_Node, ConsId, !.Component, !RptaInfo),
!.RptaInfo = rpta_info(Graph2, _),
get_node_by_variable(Graph2, RVar, RVarNode),
apply_rule_3(RVarNode, !RptaInfo)
),
!:Component = !.Component + 1.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% Phase 2: interprocedural region points-to analysis
%
% The interprocedural analysis requires fixpoint computation,
% so we will compute a fixpoint for each strongly connected component.
%
:- pred inter_proc_rpta(module_info::in,
rpta_info_table::in, rpta_info_table::out) is det.
inter_proc_rpta(ModuleInfo0, !InfoTable) :-
module_info_ensure_dependency_info(ModuleInfo0, ModuleInfo),
module_info_get_maybe_dependency_info(ModuleInfo, MaybeDepInfo),
(
MaybeDepInfo = yes(DepInfo),
hlds_dependency_info_get_dependency_ordering(DepInfo, DepOrdering),
run_with_dependencies(DepOrdering, ModuleInfo, !InfoTable)
;
MaybeDepInfo = no,
unexpected(this_file, "inter_proc_rpta: no dependency information")
).
:- pred run_with_dependencies(dependency_ordering::in, module_info::in,
rpta_info_table::in, rpta_info_table::out) is det.
run_with_dependencies(Deps, ModuleInfo, !InfoTable) :-
list.foldl(run_with_dependency(ModuleInfo), Deps, !InfoTable).
:- pred run_with_dependency(module_info::in, list(pred_proc_id)::in,
rpta_info_table::in, rpta_info_table::out) is det.
run_with_dependency(ModuleInfo, SCC, !InfoTable) :-
( some_are_special_preds(SCC, ModuleInfo) ->
% Analysis ignores special predicates.
true
;
% Run the fixpoint computation on the SCC.
FPTable = init_rpta_fixpoint_table(SCC, !.InfoTable),
run_with_dependency_until_fixpoint(SCC, FPTable, ModuleInfo,
!InfoTable)
).
:- pred run_with_dependency_until_fixpoint(list(pred_proc_id)::in,
rpta_fixpoint_table::in, module_info::in, rpta_info_table::in,
rpta_info_table::out) is det.
run_with_dependency_until_fixpoint(SCC, FPTable0, ModuleInfo, !InfoTable) :-
list.foldl(inter_analyse_proc(ModuleInfo, !.InfoTable), SCC,
FPTable0, FPTable1),
( fixpoint_reached(FPTable1) ->
% If we have reached a fixpoint for this SCC then update the
% RPTA info table.
list.foldl(update_rpta_info_in_rpta_info_table(FPTable1), SCC,
!InfoTable)
;
% Otherwise, begin the next iteration.
new_run(FPTable1, FPTable),
run_with_dependency_until_fixpoint(SCC, FPTable, ModuleInfo,
!InfoTable)
).
:- pred inter_analyse_proc(module_info::in, rpta_info_table::in,
pred_proc_id::in, rpta_fixpoint_table::in, rpta_fixpoint_table::out)
is det.
inter_analyse_proc(ModuleInfo, InfoTable, PPId, !FPTable) :-
% Look up the procedure's rpta_info.
% If this is the first iteration then the rtpa_info we use is the
% one computed for this procedure during the intraprocedural analysis.
%
lookup_rpta_info(PPId, InfoTable, !FPTable, ProcRptaInfo0, _),
% Start the analysis of the procedure's body.
%
% We will need the information about program point for storing alpha
% mapping.
%
% XXX we should only fill goal path slots once, not once per iteration.
%
module_info_proc_info(ModuleInfo, PPId, ProcInfo0),
fill_goal_path_slots(ModuleInfo, ProcInfo0, ProcInfo),
proc_info_get_goal(ProcInfo, Goal),
inter_analyse_goal(ModuleInfo, InfoTable, Goal, !FPTable,
ProcRptaInfo0, ProcRptaInfo),
% Put the result of this iteration into the fixpoint table.
%
rpta_fixpoint_table_new_rpta_info(PPId, ProcRptaInfo, !FPTable).
%-----------------------------------------------------------------------------%
%
% Code for interprocedural analysis of goals
%
% Analyse a given goal, with module_info and fixpoint table
% to lookup extra information, starting from an initial abstract
% substitution, and creating a new one. During this process,
% the fixpoint table might change (when recursive predicates are
% encountered).
%
:- pred inter_analyse_goal(module_info::in,
rpta_info_table::in, hlds_goal::in,
rpta_fixpoint_table::in, rpta_fixpoint_table::out,
rpta_info::in, rpta_info::out) is det.
inter_analyse_goal(ModuleInfo, InfoTable, Goal, !FPtable, !RptaInfo) :-
Goal = hlds_goal(GoalExpr, GoalInfo),
inter_analyse_goal_expr(GoalExpr, GoalInfo, ModuleInfo, InfoTable,
!FPtable, !RptaInfo).
:- pred inter_analyse_goal_expr(hlds_goal_expr::in, hlds_goal_info::in,
module_info::in, rpta_info_table::in, rpta_fixpoint_table::in,
rpta_fixpoint_table::out, rpta_info::in, rpta_info::out) is det.
inter_analyse_goal_expr(conj(_ConjType, Goals), _, ModuleInfo,
InfoTable, !FPTable, !RptaInfo) :-
list.foldl2(inter_analyse_goal(ModuleInfo, InfoTable), Goals,
!FPTable, !RptaInfo).
% There are two rpta_info's:
% one is of the currently-analysed procedure (caller) which we are going
% to update, the other is of the called procedure (callee).
%
% The input RptaInfo is caller's, if the procedure calls itself then
% this is also that of the callee but we will retrieve it again from the
% InfoTable.
%
inter_analyse_goal_expr(Goal, GoalInfo, ModuleInfo, InfoTable,
!FPTable, !CallerRptaInfo) :-
Goal = plain_call(PredId, ProcId, ActualParams, _, _, _),
CalleePPId = proc(PredId, ProcId),
% Get callee's rpta_info.
% As what I assume now, after the intraprocedural analysis we have all
% the rpta_info's of all the procedures in the InfoTable, therefore
% this lookup cannot fail. But it sometimes fails because the callee
% can be imported procedures, built-ins and so forth which are not
% analysed by the intraprocedural analysis. In such cases, I assume that
% the rpta_info of the caller is not updated, because no information is
% available from the callee.
% When IsInit = no, the CalleeRptaInfo is dummy.
lookup_rpta_info(CalleePPId, InfoTable, !FPTable, CalleeRptaInfo, IsInit),
(
IsInit = yes
;
IsInit = no,
CallSite = program_point_init(GoalInfo),
CalleeRptaInfo = rpta_info(CalleeGraph, _),
% Collect alpha mapping at this call site.
module_info_proc_info(ModuleInfo, CalleePPId, CalleeProcInfo),
proc_info_get_headvars(CalleeProcInfo, FormalParams),
!.CallerRptaInfo = rpta_info(CallerGraph0, CallerAlphaMappings0),
alpha_mapping_at_call_site(FormalParams, ActualParams, CalleeGraph,
CallerGraph0, CallerGraph,
map.init, CallerAlphaMappingAtCallSite),
svmap.set(CallSite, CallerAlphaMappingAtCallSite,
CallerAlphaMappings0, CallerAlphaMappings),
CallerRptaInfo1 = rpta_info(CallerGraph, CallerAlphaMappings),
% Follow the edges from the nodes rooted at the formal parameters
% (in the callee's graph) and apply the interprocedural rules to
% complete the alpha mapping and update the caller's graph with
% the information from the callee's graph.
map.keys(CallerAlphaMappingAtCallSite, FormalNodes),
apply_rules(FormalNodes, CallSite, [], CalleeRptaInfo,
CallerRptaInfo1, !:CallerRptaInfo)
).
inter_analyse_goal_expr(generic_call(_, _, _, _), _, _, _, !FPTable,
!RptaInfo) :-
sorry(this_file,
"inter_analyse_goal_expr: generic_call not handled").
inter_analyse_goal_expr(switch(_, _, Cases), _, ModuleInfo, InfoTable,
!FPTable, !RptaInfo) :-
list.foldl2(inter_analyse_case(ModuleInfo, InfoTable), Cases,
!FPTable, !RptaInfo).
:- pred inter_analyse_case(module_info::in,
rpta_info_table::in, case::in, rpta_fixpoint_table::in,
rpta_fixpoint_table::out, rpta_info::in, rpta_info::out) is det.
inter_analyse_case(ModuleInfo, InfoTable, Case, !FPtable, !RptaInfo) :-
Case = case(_, Goal),
inter_analyse_goal(ModuleInfo, InfoTable, Goal, !FPtable, !RptaInfo).
% Unifications are ignored in interprocedural analysis
%
inter_analyse_goal_expr(unify(_, _, _, _, _), _, _, _, !FPTable, !RptaInfo).
inter_analyse_goal_expr(disj(Disjs), _, ModuleInfo, InfoTable,
!FPTable, !RptaInfo) :-
list.foldl2(inter_analyse_goal(ModuleInfo, InfoTable), Disjs,
!FPTable, !RptaInfo).
inter_analyse_goal_expr(negation(Goal), _, ModuleInfo, InfoTable,
!FPTable, !RptaInfo) :-
inter_analyse_goal(ModuleInfo, InfoTable, Goal, !FPTable, !RptaInfo).
% XXX: may need to take into account the Reason.
% for now just analyse the goal.
%
inter_analyse_goal_expr(scope(_Reason, Goal), _, ModuleInfo, InfoTable,
!FPTable, !RptaInfo) :-
% (
% ( Reason = exist_quant(_)
% ; Reason = promise_solutions(_, _) % XXX ???
% ; Reason = promise_purity(_, _)
% ; Reason = commit(_) % XXX ???
% ; Reason = barrier(_)
% ; Reason = trace_goal(_, _, _, _, _)
% ; Reason = from_ground_term(_)
% ),
inter_analyse_goal(ModuleInfo, InfoTable, Goal, !FPTable, !RptaInfo).
% ;
% Msg = "inter_analyse_goal_expr: Scope's reason of from_ground_term "
% ++ "not handled",
% unexpected(this_file, Msg)
% ).
inter_analyse_goal_expr(if_then_else(_Vars, If, Then, Else), _, ModuleInfo,
InfoTable, !FPTable, !RptaInfo) :-
inter_analyse_goal(ModuleInfo, InfoTable, If, !FPTable, !RptaInfo),
inter_analyse_goal(ModuleInfo, InfoTable, Then, !FPTable, !RptaInfo),
inter_analyse_goal(ModuleInfo, InfoTable, Else, !FPTable, !RptaInfo).
inter_analyse_goal_expr(GoalExpr, _, _, _, !FPTable, !RptaInfo) :-
GoalExpr = call_foreign_proc(_, _, _, _, _, _, _),
sorry(this_file,
"inter_analyse_goal_expr: foreign code not handled").
inter_analyse_goal_expr(shorthand(_), _, _, _, !FPTable, !RptaInfo) :-
unexpected(this_file,
"inter_analyse_goal_expr: shorthand goal not handled").
%-----------------------------------------------------------------------------%
% As said above, the rpta_info of a procedure when it is looked
% up in interprocedural analysis is either in the InfoTable or in the
% fixpoint table. If the procedure happens to be imported ones, built-ins,
% and so on, we returns no and initialize the lookup value to a dummy
% value.
%
:- pred lookup_rpta_info(pred_proc_id::in, rpta_info_table::in,
rpta_fixpoint_table::in, rpta_fixpoint_table::out,
rpta_info::out, bool::out) is det.
lookup_rpta_info(PPId, InfoTable, !FPtable, RptaInfo, Init) :-
( if
% First look up in the current fixpoint table,
get_from_fixpoint_table(PPId, RptaInfo0, !.FPtable, FPtable1)
then
RptaInfo = RptaInfo0,
!:FPtable = FPtable1,
Init = bool.no
else
% ... second look up among already recorded rpta_info.
( if
RptaInfo0 = rpta_info_table_search_rpta_info(PPId, InfoTable)
then
RptaInfo = RptaInfo0,
Init = bool.no
else
% Initialize a dummy.
RptaInfo = rpta_info(rpt_graph_init, map.init),
Init = bool.yes
)
).
:- pred update_rpta_info_in_rpta_info_table(rpta_fixpoint_table::in,
pred_proc_id::in, rpta_info_table::in, rpta_info_table::out) is det.
update_rpta_info_in_rpta_info_table(FPTable, PPId, !InfoTable) :-
RptaInfo = get_from_fixpoint_table_final(PPId, FPTable),
rpta_info_table_set_rpta_info(PPId, RptaInfo, !InfoTable).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% Invariants for RPTGs
%
%-----------------------------------------------------------------------------%
%
% Rule P1
%
:- pred apply_rule_1(rptg_node::in, rpta_info::in, rpta_info::out) is det.
apply_rule_1(Node, !RptaInfo) :-
some [!Graph] (
!.RptaInfo = rpta_info(!:Graph, AlphaMapping),
rptg_node_contents(!.Graph, Node, Content),
Vars = Content ^ varset, % XXX varset is not a good name.
rule_1(Vars, !Graph),
!:RptaInfo = rpta_info(!.Graph, AlphaMapping)
).
% Rule 1:
% After two nodes are unified, it can happen that the unified node has
% two edges with the same label pointing to 2 different nodes. This rule
% ensures that it happens the 2 nodes will also be unified.
%
% After a node is unified, the node itself was probably removed from
% the graph so we need to trace "it" by the variables assigned to it.
% That is why the first argument is the set of variables associated
% with the unified node.
%
% The algorithm is as follows.
% 1. If the node has no or one out-arc we have to do nothing and the
% predicate quits.
% 2. The node has > 1 out-arc, take one of them, find in the rest
% another arc that has a same label, unify the end nodes of the two arcs.
% Because of this unification of the end nodes, more unifications are
% probably triggered.
% 3. Start all over again with the same node and the *updated* graph.
%
:- pred rule_1(set(prog_var)::in, rpt_graph::in, rpt_graph::out) is det.
rule_1(VarSet, !Graph) :-
get_node_by_varset(!.Graph, VarSet, UnifiedNode),
rptg_get_edgemap(!.Graph, EdgeMap),
map.lookup(EdgeMap, UnifiedNode, OutEdgesOfUnifiedNode),
map.keys(OutEdgesOfUnifiedNode, OutArcsUnifiedNode),
(
OutArcsUnifiedNode = [A | As],
merge_nodes_reached_by_same_labelled_arcs(A, As, As, !Graph,
Happened),
(
Happened = bool.no
;
% Some nodes have been merged, so size of !:Graph is strictly
% smaller than that of !.Graph and at some point this predicate
% will end up in the then-branch.
Happened = bool.yes,
rule_1(VarSet, !Graph)
)
;
OutArcsUnifiedNode = []
).
% This predicate unifies the end nodes of the input arc and of an arc
% in the list which has the same label as the input arc. When one such
% an arc found, the predicate will not look further in the list.
% The unification of nodes, if happends, will be propagated by calling
% rule_1 predicate mutually recursively.
%
:- pred merge_nodes_reached_by_same_labelled_arcs(rptg_arc::in,
list(rptg_arc)::in, list(rptg_arc)::in, rpt_graph::in, rpt_graph::out,
bool::out) is det.
% The loop in this predicate is similar to
% for i = ... to N - 1
% for j = i+1 to N ...
% ...
% this clause is reached at the end of the inner loop. No unification
% has happened so far therefore the list of arcs (Rest = [A | As])
% are still safe to use.
%
% reach this clause means that no unification of nodes happened and
% all the out-arcs have been processed (Rest = []).
%
merge_nodes_reached_by_same_labelled_arcs(_, [], [], !Graph, bool.no).
% Some out-arcs still need to be processed
%
merge_nodes_reached_by_same_labelled_arcs(_, [], [A | As], !Graph,
Happened) :-
merge_nodes_reached_by_same_labelled_arcs(A, As, As, !Graph, Happened).
merge_nodes_reached_by_same_labelled_arcs(Arc, [A | As], Rest, !Graph,
Happened) :-
% For a node, we do not allow two arcs with the same label to another
% node. So End and E below must be definitely different nodes and we
% only need to compare labels.
rptg_arc_contents(!.Graph, Arc, _Start, End, ArcContent),
rptg_arc_contents(!.Graph, A, _S, E, AC),
( if
ArcContent = AC
then
% Unify the two end nodes.
unify_operator(End, E, !.Graph, Graph1),
% Apply rule 1 after the above unification.
rptg_node_contents(Graph1, End, Content),
rule_1(Content^varset, Graph1, !:Graph),
Happened = bool.yes
else
% Still not found an arc with the same label, continue the
% inner loop.
merge_nodes_reached_by_same_labelled_arcs(Arc, As, Rest, !Graph,
Happened)
).
%-----------------------------------------------------------------------------%
%
% Rule P2
%
% This predicate wraps rule_2 to work with rpta_info type.
%
:- pred apply_rule_2(rptg_node::in, rptg_node::in, cons_id::in, int::in,
rpta_info::in, rpta_info::out) is det.
apply_rule_2(Start, End, ConsId, Component, !RptaInfo) :-
some [!Graph] (
!.RptaInfo = rpta_info(!:Graph, AlphaMapping),
rptg_node_contents(!.Graph, Start, StartContent),
rptg_node_contents(!.Graph, End, EndContent),
StartVars = StartContent ^ varset,
EndVars = EndContent ^ varset,
rule_2(StartVars, EndVars, ConsId, Component, !Graph),
!:RptaInfo = rpta_info(!.Graph, AlphaMapping)
).
% Rule 2:
% After an edge <N, Label, M) is added to a graph, it may happen
% that there exists another edge from N with the same label but
% pointing to a node different from M. This rule ensures that if that
% the case the node will be unified with M.
%
% This predicate is called whenever a new edge has been added to the
% graph. So when it is called there is at most one existing edge with
% the same label to a different node. Because of that the predicate
% need not be recursive.
%
:- pred rule_2(set(prog_var)::in, set(prog_var)::in, cons_id::in, int::in,
rpt_graph::in, rpt_graph::out) is det.
rule_2(SVarSet, EVarSet, ConsId, Component, !Graph) :-
get_node_by_varset(!.Graph, SVarSet, N),
get_node_by_varset(!.Graph, EVarSet, M),
Sel = [termsel(ConsId, Component)],
rptg_get_edgemap(!.Graph, EdgeMap),
map.lookup(EdgeMap, N, OutEdgesN),
map.keys(OutEdgesN, OutArcsN),
merge_nodes_reached_by_same_labelled_arc(Sel, M, OutArcsN, !Graph).
% If an A(rc) in OutArcsN has the same label Sel then merge M
% with the node (MPrime) that the A(rc) points to.
%
:- pred merge_nodes_reached_by_same_labelled_arc(selector::in,
rptg_node::in, list(rptg_arc)::in, rpt_graph::in, rpt_graph::out) is det.
merge_nodes_reached_by_same_labelled_arc(_, _, [], !Graph).
merge_nodes_reached_by_same_labelled_arc(Sel, M, [A | As], !Graph) :-
rptg_arc_contents(!.Graph, A, _, MPrime, ArcContent),
( if
ArcContent = rptg_arc_content(Selector),
Selector = Sel,
MPrime \= M
then
unify_operator(M, MPrime, !.Graph, Graph1),
rptg_node_contents(Graph1, M, Content),
rule_1(Content^varset, Graph1, !:Graph)
else
% still not found an arc with the same label, continue the loop
merge_nodes_reached_by_same_labelled_arc(Sel, M, As, !Graph)
).
%-----------------------------------------------------------------------------%
%
% Rule P3
%
% Rule 3:
% This rule is applied after an edge is added TO the Node to enforce
% the invariant that a subterm of the same type as the compounding
% term is stored in the same region as the compounding term. In
% the context of region points-to graph it means that there exists
% a path between 2 nodes of the same type. In that case, this rule
% will unify the 2 nodes.
%
% This algorithm may not be an efficient one because it checks all
% the nodes in the graph one by one to see if a node can reach the
% node or not.
%
% We enforce the invariant (in the sense that whenever the invariant
% is made invalid this rule will correct it) therefore whenever we
% find a satisfied node and unify it with Node we can stop. This is
% indicated by Happened.
%
:- pred rule_3(rptg_node::in, rpt_graph::in, rpt_graph::out) is det.
rule_3(Node, !Graph) :-
rptg_get_nodemap(!.Graph, NodeMap),
map.keys(NodeMap, Nodes),
(
Nodes = [_N | _NS],
% The graph has some node(s), so check each node to see if it
% satisfies the condition of rule 3 or not, if yes unify it
% with NY (NY is the node that Node may be merged into.)
get_node_by_node(!.Graph, Node, NY),
rule_3_2(Nodes, NY, !Graph, Happened),
% This predicate will quit when Happened = no, i.e. no more
% nodes need to be unified.
(
Happened = bool.yes,
% A node in Nodes has been unified with NY, so we start all
% over again. Note that the node that has been unified has
% been removed, so it will not be in the Graph1 in the below
% call. So this predicate can terminate at some point (due
% to the fact that the "size" of !.Graph is smaller than that
% of !:Graph).
rule_3(Node, !Graph)
;
% no node in Nodes has been unified with NY, which means that
% no more nodes need to be unified, so just quit.
Happened = bool.no
)
;
Nodes = [],
% no node in the graph, impossible
unexpected(this_file, "rule_3: impossible having no node in graph")
).
% Check each node in the list to see if it satisfies the condition of
% rule 3 or not, i.e., link to another node with the same type.
% 1. If the predicate finds out such a node, it unifies it with NY
% (also apply rule 1 here) and quit with Happend = 1.
% 2. if no such a node found, it processes the rest of the list. The
% process continues like that until either 1. happens (the case above)
% or the list becomes empty and the predicate quits with Happened = 0.
%
:- pred rule_3_2(list(rptg_node)::in, rptg_node::in, rpt_graph::in,
rpt_graph::out, bool::out) is det.
rule_3_2([], _, !Graph, bool.no).
rule_3_2([NZ | NZs], NY, !Graph, Happened) :-
( if
rule_3_condition(NZ, NY, !.Graph, NZ1)
then
unify_operator(NZ, NZ1, !.Graph, Graph1),
% apply rule 1
rptg_node_contents(Graph1, NZ, Content),
rule_1(Content^varset, Graph1, !:Graph),
Happened = bool.yes
else
% try with the rest, namely NS
rule_3_2(NZs, NY, !Graph, Happened)
).
:- pred rule_3_condition(rptg_node::in, rptg_node::in, rpt_graph::in,
rptg_node::out) is semidet.
rule_3_condition(NZ, NY, Graph, NZ1) :-
rptg_path(Graph, NZ, NY, _),
rptg_lookup_node_type(Graph, NZ) = NZType,
% A node reachable from NY, with the same type as NZ, the node can
% be exactly NY
reachable_and_having_type(Graph, NY, NZType, NZ1),
NZ \= NZ1.
% This predicate is just to wrap the call to rule_3 so that the
% changed graph is put into rpta_info structure.
%
:- pred apply_rule_3(rptg_node::in, rpta_info::in, rpta_info::out) is det.
apply_rule_3(Node, !RptaInfo) :-
!.RptaInfo = rpta_info(Graph0, AlphaMapping),
rule_3(Node, Graph0, Graph),
!:RptaInfo = rpta_info(Graph, AlphaMapping).
%-----------------------------------------------------------------------------%
%
% Rule P4 and alpha mapping
%
% Build up the alpha mapping (node -> node) and apply rule P4
% to ensure that it is actually a function.
%
:- pred alpha_mapping_at_call_site(list(prog_var)::in, list(prog_var)::in,
rpt_graph::in, rpt_graph::in, rpt_graph::out,
map(rptg_node, rptg_node)::in, map(rptg_node, rptg_node)::out) is det.
alpha_mapping_at_call_site([], [], _, !CallerGraph, !AlphaMap).
alpha_mapping_at_call_site([], [_ | _], _, _, _, _, _) :-
unexpected(this_file,
"alpha_mapping_at_call_site: actuals and formals do not match.").
alpha_mapping_at_call_site([_ | _], [], _, _, _, _, _) :-
unexpected(this_file,
"alpha_mapping_at_call_site: actuals and formals do not match.").
% Xi's are formal arguments, Yi's are actual arguments at the call site
%
alpha_mapping_at_call_site([Xi | Xs], [Yi | Ys], CalleeGraph,
!CallerGraph, !AlphaMap) :-
get_node_by_variable(CalleeGraph, Xi, N_Xi),
get_node_by_variable(!.CallerGraph, Yi, N_Yi),
( map.search(!.AlphaMap, N_Xi, N_Y) ->
% alpha(N_Xi) = N_Y, alpha(N_Xi) = N_Yi, N_Y != N_Yi.
%
( N_Y \= N_Yi ->
% Apply rule P4.
unify_operator(N_Y, N_Yi, !CallerGraph),
% Apply rule P1 after some nodes are unified.
rptg_node_contents(!.CallerGraph, N_Y, Content),
N_Y_Vars = Content ^ varset,
rule_1(N_Y_Vars, !CallerGraph)
;
true
)
;
svmap.set(N_Xi, N_Yi, !AlphaMap)
),
alpha_mapping_at_call_site(Xs, Ys, CalleeGraph, !CallerGraph, !AlphaMap).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% Rules P5-P8 complete the alpha mapping at a call site and integrate the
% parts rooted at the formal parameters in the callee's graph into the
% caller's graph.
%
% The application of those rules happens at a call site, so related to a
% caller and a callee.
%
% We will start from the rooted nodes, follow each outcoming edge in the
% callee's graph exactly once and apply the rules.
%
:- pred apply_rules(list(rptg_node)::in, program_point::in,
list(rptg_node)::in, rpta_info::in, rpta_info::in,
rpta_info::out) is det.
apply_rules([], _, _, _, !CallerRptaInfo).
apply_rules([CalleeNode | CalleeNodes0], CallSite, Processed, CalleeRptaInfo,
!CallerRptaInfo) :-
% The caller node corresponding to the callee node at this call site.
!.CallerRptaInfo = rpta_info(_, CallerAlphaMapping0),
map.lookup(CallerAlphaMapping0, CallSite, AlphaAtCallSite),
map.lookup(AlphaAtCallSite, CalleeNode, CallerNode),
% Follow CalleeNode and apply rules when traversing its edges.
apply_rules_node(CallSite, CalleeNode, CalleeRptaInfo, CallerNode,
!CallerRptaInfo),
% Continue with the nodes reached from Callee Node.
CalleeRptaInfo = rpta_info(CalleeGraph, _),
rptg_successors(CalleeGraph, CalleeNode, SuccessorsCalleeNode),
set.to_sorted_list(SuccessorsCalleeNode, SsList),
list.delete_elems(SsList, Processed, ToBeProcessed),
CalleeNodes = ToBeProcessed ++ CalleeNodes0,
apply_rules(CalleeNodes, CallSite, [CalleeNode | Processed],
CalleeRptaInfo, !CallerRptaInfo).
:- pred apply_rules_node(program_point::in, rptg_node::in, rpta_info::in,
rptg_node::in, rpta_info::in, rpta_info::out) is det.
apply_rules_node(CallSite, CalleeNode, CalleeRptaInfo, CallerNode,
!CallerRptaInfo) :-
CalleeRptaInfo = rpta_info(CalleeGraph, _),
% Apply rules P5-P8 for each out-edge of CalleeNode.
rptg_get_edgemap(CalleeGraph, EdgeMap),
map.lookup(EdgeMap, CalleeNode, CalleeNodeOutEdges),
map.keys(CalleeNodeOutEdges, CalleeNodeOutArcs),
apply_rules_arcs(CalleeNodeOutArcs, CallerNode, CallSite,
CalleeRptaInfo, !CallerRptaInfo).
:- pred apply_rules_arcs(list(rptg_arc)::in, rptg_node::in,
program_point::in, rpta_info::in, rpta_info::in, rpta_info::out) is det.
apply_rules_arcs([], _, _, _, !RptaInfoR).
apply_rules_arcs([Arc | Arcs], CallerNode, CallSite, CalleeRptaInfo,
!CallerRptaInfo) :-
rule_5(Arc, CallSite, CalleeRptaInfo, CallerNode, !CallerRptaInfo),
rule_6(Arc, CallSite, CalleeRptaInfo, CallerNode, !CallerRptaInfo),
rule_7(Arc, CallSite, CalleeRptaInfo, CallerNode, !CallerRptaInfo),
rule_8(Arc, CallSite, CalleeRptaInfo, CallerNode, !CallerRptaInfo),
apply_rules_arcs(Arcs, CallerNode, CallSite, CalleeRptaInfo,
!CallerRptaInfo).
:- pred rule_5(rptg_arc::in, program_point::in, rpta_info::in,
rptg_node::in, rpta_info::in, rpta_info::out) is det.
rule_5(Arc, CallSite, CalleeRptaInfo, CallerNode, !CallerRptaInfo) :-
% Find an out-arc in the caller's graph that has a same label
% the label of the out-arc in callee's graph
CalleeRptaInfo = rpta_info(CalleeGraph, _),
rptg_arc_contents(CalleeGraph, Arc, _CalleeNode, CalleeM, Label),
!.CallerRptaInfo = rpta_info(CallerGraph0, CallerAlphaMapping0),
get_node_by_node(CallerGraph0, CallerNode, RealCallerNode),
( if
find_arc_from_node_with_same_label(RealCallerNode, Label,
CallerGraph0, CallerMPrime),
map.search(CallerAlphaMapping0, CallSite, AlphaAtCallSite),
map.search(AlphaAtCallSite, CalleeM, CallerM),
get_node_by_node(CallerGraph0, CallerM, RealCallerM),
CallerMPrime \= RealCallerM
then
% When the premises of rule P5 are satisfied, nodes are unified and
% rule P1 applied to ensure invariants.
unify_operator(RealCallerM, CallerMPrime,
CallerGraph0, CallerGraph1),
CallerRptaInfo1 = rpta_info(CallerGraph1, CallerAlphaMapping0),
apply_rule_1(RealCallerM, CallerRptaInfo1, !:CallerRptaInfo)
else
true
).
:- pred rule_6(rptg_arc::in, program_point::in, rpta_info::in,
rptg_node::in, rpta_info::in, rpta_info::out) is det.
rule_6(Arc, CallSite, CalleeRptaInfo, CallerNode, !CallerRptaInfo) :-
% Find an out-arc in the caller's graph that has a same label
% the label of the out-arc in callee's graph.
CalleeRptaInfo = rpta_info(CalleeGraph, _),
rptg_arc_contents(CalleeGraph, Arc, _CalleeNode, CalleeM, Label),
!.CallerRptaInfo = rpta_info(CallerGraph, CallerAlphaMapping0),
get_node_by_node(CallerGraph, CallerNode, RealCallerNode),
( if
find_arc_from_node_with_same_label(RealCallerNode, Label,
CallerGraph, CallerM)
then
% (CallerNode, sel, CallerM) in the graph.
map.lookup(CallerAlphaMapping0, CallSite, AlphaAtCallSite0),
( if
map.search(AlphaAtCallSite0, CalleeM, _)
then
% alpha(CalleeM) = CallerM so ignore.
true
else
% Apply rule P6 when its premises are satisfied
% record alpha(CalleeM) = CallerM.
svmap.set(CalleeM, CallerM, AlphaAtCallSite0, AlphaAtCallSite1),
svmap.set(CallSite, AlphaAtCallSite1, CallerAlphaMapping0,
CallerAlphaMapping),
!:CallerRptaInfo = rpta_info(CallerGraph, CallerAlphaMapping)
)
else
true
).
:- pred rule_7(rptg_arc::in, program_point::in, rpta_info::in,
rptg_node::in, rpta_info::in, rpta_info::out) is det.
rule_7(Arc, CallSite, CalleeRptaInfo, CallerNode, !CallerRptaInfo) :-
% Find an out-arc in the caller's graph that has a same label
% the label of the out-arc in callee's graph.
CalleeRptaInfo = rpta_info(CalleeGraph, _),
rptg_arc_contents(CalleeGraph, Arc, _CalleeNode, CalleeM, Label),
!.CallerRptaInfo = rpta_info(CallerGraph0, CallerAlphaMapping),
get_node_by_node(CallerGraph0, CallerNode, RealCallerNode),
( if
find_arc_from_node_with_same_label(RealCallerNode, Label,
CallerGraph0, _)
then
true
else
% No edge from CallerNode with the label exists.
( if
map.lookup(CallerAlphaMapping, CallSite, AlphaAtCallSite),
map.search(AlphaAtCallSite, CalleeM, CallerM)
then
% Reach here means all the premises of rule P7 are satisfied,
% add (CallerNode, sel, CallerM).
get_node_by_node(CallerGraph0, CallerM, RealCallerM),
edge_operator(RealCallerNode, RealCallerM, Label,
CallerGraph0, CallerGraph1),
% Need to apply rule 3.
rule_3(RealCallerM, CallerGraph1, CallerGraph2),
!:CallerRptaInfo = rpta_info(CallerGraph2, CallerAlphaMapping)
else
true
)
).
:- pred rule_8(rptg_arc::in, program_point::in, rpta_info::in,
rptg_node::in, rpta_info::in, rpta_info::out) is det.
rule_8(Arc, CallSite, CalleeRptaInfo, CallerNode, !CallerRptaInfo) :-
% Find an out-arc in the caller's graph that has a same label
% the label of the out-arc in callee's graph
CalleeRptaInfo = rpta_info(CalleeGraph, _),
rptg_arc_contents(CalleeGraph, Arc, _CalleeNode, CalleeM, Label),
!.CallerRptaInfo = rpta_info(CallerGraph0, CallerAlphaMapping0),
get_node_by_node(CallerGraph0, CallerNode, RealCallerNode),
( if
find_arc_from_node_with_same_label(RealCallerNode, Label,
CallerGraph0, _)
then
true
else
% No edge from CallerNode with the label exists.
( if
map.lookup(CallerAlphaMapping0, CallSite, AlphaAtCallSite0),
map.search(AlphaAtCallSite0, CalleeM, _)
then
true
else
% rule 8: add node CallerM, alpha(CalleeM) = CallerM,
% edge(CallerNode, sel, CallerM)
%
rptg_get_node_supply(CallerGraph0, NS0),
string.append("R", string.int_to_string(NS0 + 1), RegName),
CallerMContent = rptg_node_content(set.init, RegName, set.init,
rptg_lookup_node_type(CalleeGraph, CalleeM)),
rptg_set_node(CallerMContent, CallerM,
CallerGraph0, CallerGraph1),
edge_operator(RealCallerNode, CallerM, Label,
CallerGraph1, CallerGraph2),
map.lookup(CallerAlphaMapping0, CallSite, AlphaAtCallSite0),
svmap.set(CalleeM, CallerM, AlphaAtCallSite0, AlphaAtCallSite),
svmap.set(CallSite, AlphaAtCallSite,
CallerAlphaMapping0, CallerAlphaMapping),
rule_3(CallerM, CallerGraph2, CallerGraph),
!:CallerRptaInfo = rpta_info(CallerGraph, CallerAlphaMapping)
)
).
%-----------------------------------------------------------------------------%
%
% Fixpoint table used in region points-to analysis
%
% The fixpoint table used by the region points-to analysis.
%
:- type rpta_fixpoint_table == fixpoint_table(pred_proc_id, rpta_info).
% Initialise the fixpoint table for the given set of pred_proc_ids.
%
:- func init_rpta_fixpoint_table(list(pred_proc_id), rpta_info_table)
= rpta_fixpoint_table.
init_rpta_fixpoint_table(Keys, InfoTable) = Table :-
Table = init_fixpoint_table(wrapped_init(InfoTable), Keys).
% Enter the newly computed region points-to information for a given
% procedure.
% If the description is different from the one that was already stored
% for that procedure, the stability of the fixpoint table is set to
% "unstable".
% Aborts if the procedure is not already in the fixpoint table.
%
:- pred rpta_fixpoint_table_new_rpta_info(
pred_proc_id::in, rpta_info::in,
rpta_fixpoint_table::in, rpta_fixpoint_table::out) is det.
rpta_fixpoint_table_new_rpta_info(PPId, RptaInfo, !Table) :-
EqualityTest = (pred(TabledElem::in, Elem::in) is semidet :-
rpta_info_equal(Elem, TabledElem)
),
add_to_fixpoint_table(EqualityTest, PPId, RptaInfo, !Table).
:- func wrapped_init(rpta_info_table, pred_proc_id) = rpta_info.
wrapped_init(InfoTable, PPId) = Entry :-
( Entry0 = rpta_info_table_search_rpta_info(PPId, InfoTable) ->
Entry = Entry0
;
% The information we are looking for should be there after the
% intraprocedural analysis.
unexpected(this_file, "wrapper_init: rpta_info should exist.")
).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "rbmm.points_to_analysis.m".
%-----------------------------------------------------------------------------%
:- end_module rbmm.points_to_analysis.
%-----------------------------------------------------------------------------%