Files
mercury/compiler/proc_gen.m
Peter Wang fa80b9a01a Make the parallel conjunction execution mechanism more efficient.
Branches: main

Make the parallel conjunction execution mechanism more efficient.

1. Don't allocate sync terms on the heap.  Sync terms are now allocated in
the stack frame of the procedure call which originates a parallel
conjunction.

2. Don't allocate individual sparks on the heap.  Sparks are now stored in
preallocated, growing arrays using an algorithm that doesn't use locks.

3. Don't have one mutex per sync term.  Just use one mutex to protect
concurrent accesses to all sync terms (it's is rarely needed anyway).  This
makes sync terms smaller and saves initialising a mutex for each parallel
conjunction encountered.

4. We don't bother to acquire the global sync term lock if we know a parallel
conjunction couldn't be executing in parallel.  In a highly parallel program,
the majority of parallel conjunctions will be executed sequentially so
protecting the sync terms from concurrent accesses is unnecessary.


par_fib(39) is ~8.4 times faster (user time) on my laptop (Linux 2.6, x86_64),
which is ~3.5 as slow as sequential execution.


configure.in:
	Update the configuration for a changed MR_SyncTerm structure.

compiler/llds.m:
	Make the fork instruction take a second argument, which is the base
	stack slot of the sync term.

	Rename it to fork_new_child to match the macro name in the runtime.

compiler/par_conj_gen.m:
	Change the generated code for parallel conjunctions to allocate sync
	terms on the stack and to pass the sync term to fork_new_child.

compiler/dupelim.m:
compiler/dupproc.m:
compiler/exprn_aux.m:
compiler/global_data.m:
compiler/jumpopt.m:
compiler/livemap.m:
compiler/llds_out.m:
compiler/llds_to_x86_64.m:
compiler/middle_rec.m:
compiler/opt_debug.m:
compiler/opt_util.m:
compiler/reassign.m:
compiler/use_local_vars.m:
	Conform to the change in the fork instruction.

compiler/liveness.m:
compiler/proc_gen.m:
	Disable use of the parallel conjunction operator in the compiler as
	older versions of the compiler will generate code incompatible with
	the new runtime.

runtime/mercury_context.c:
runtime/mercury_context.h:
	Remove the next pointer field from MR_Spark as it's no longer needed.

	Remove the mutex from MR_SyncTerm.  Add a field to record if a spark
	belonging to the sync term was scheduled globally, i.e. if the
	parallel conjunction might be executed in parallel.

	Define MR_SparkDeque and MR_SparkArray.

	Use MR_SparkDeques to hold per-context sparks and global sparks.

	Change the abstract machine instructions MR_init_sync_term,
	MR_fork_new_child, MR_join_and_continue as per the main change log.

	Use a preprocessor macro MR_LL_PARALLEL_CONJ as a shorthand for
	!MR_HIGHLEVEL_CODE && MR_THREAD_SAFE.

	Take the opportunity to clean things up a bit.

runtime/mercury_wsdeque.c:
runtime/mercury_wsdeque.h:
	New files containing an implementation of work-stealing deques.  We
	don't do work stealing yet but we use the underlying data structure.

runtime/mercury_atomic.c:
runtime/mercury_atomic.h:
	New files to contain atomic operations.  Currently it just contains
	compare-and-swap for gcc/x86_64, gcc/x86 and gcc-4.1.

runtime/Mmakefile:
	Add the new files.

runtime/mercury_engine.h:
runtime/mercury_mm_own_stacks.c:
runtime/mercury_wrapper.c:
	Conform to runtime changes.

runtime/mercury_conf_param.h:
	Update an outdated comment.
2007-10-11 11:45:22 +00:00

1338 lines
54 KiB
Mathematica

%---------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%---------------------------------------------------------------------------%
% Copyright (C) 1994-2007 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: code_gen.m.
% Main authors: conway, zs.
%
% Code generation - convert from HLDS to LLDS.
%
% The two main tasks of this module are
%
% 1 to look after the aspects of generating code for a procedure
% that do not involve generating code for a specific goal, and
%
% 2 to provide a generic predicate that can be called from anywhere in
% the code generator to generate code for a goal.
%
% Code_gen forwards most of the actual construction of code for particular
% goals to other modules. The generation of code for unifications is done
% by unify_gen, for calls, higher-order calls and method calls by call_gen,
% for commits by commit_gen, for if-then-elses and negations by ite_gen,
% for switches by switch_gen and its subsidiary modules, for disjunctions
% by disj_gen, and for pragma_c_codes by pragma_c_gen. The only kind of goal
% handled directly by code_gen is the conjunction.
%
%---------------------------------------------------------------------------%
:- module ll_backend.proc_gen.
:- interface.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module ll_backend.global_data.
:- import_module ll_backend.llds.
:- import_module io.
:- import_module list.
%---------------------------------------------------------------------------%
% Translate a HLDS module to LLDS.
%
:- pred generate_module_code(module_info::in, module_info::out,
global_data::in, global_data::out,
list(c_procedure)::out, io::di, io::uo) is det.
% Translate a HLDS procedure to LLDS, threading through the data structure
% that records information about layout structures.
%
:- pred generate_proc_code(pred_info::in, proc_info::in,
proc_id::in, pred_id::in, module_info::in,
global_data::in, global_data::out, c_procedure::out) is det.
% Return the message that identifies the procedure to pass to
% the incr_sp_push_msg macro in the generated C code.
%
:- func push_msg(module_info, pred_id, proc_id) = string.
% Add all the global variables required for tabling by the procedures
% of the module.
%
:- pred add_all_tabling_info_structs(module_info::in,
global_data::in, global_data::out) is det.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
:- import_module backend_libs.builtin_ops.
:- import_module backend_libs.proc_label.
:- import_module backend_libs.rtti.
:- import_module hlds.code_model.
:- import_module hlds.goal_util.
:- import_module hlds.hlds_clauses.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_llds.
:- import_module hlds.hlds_out.
:- import_module hlds.hlds_rtti.
:- import_module hlds.instmap.
:- import_module libs.compiler_util.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module libs.trace_params.
:- import_module libs.tree.
:- import_module ll_backend.code_gen.
:- import_module ll_backend.code_info.
:- import_module ll_backend.code_util.
:- import_module ll_backend.continuation_info.
:- import_module ll_backend.layout.
:- import_module ll_backend.llds_out.
:- import_module ll_backend.middle_rec.
:- import_module ll_backend.pragma_c_gen.
:- import_module ll_backend.stack_layout.
:- import_module ll_backend.trace_gen.
:- import_module mdbcomp.prim_data.
:- import_module mdbcomp.program_representation.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_out.
:- import_module assoc_list.
:- import_module bool.
:- import_module counter.
:- import_module int.
:- import_module map.
:- import_module maybe.
:- import_module pair.
:- import_module set.
:- import_module solutions.
:- import_module string.
:- import_module term.
%---------------------------------------------------------------------------%
generate_module_code(!ModuleInfo, !GlobalData, Procedures, !IO) :-
% Get a list of all the predicate ids for which we will generate code.
module_info_predids(PredIds, !ModuleInfo),
% Check if we want to use parallel code generation.
module_info_get_globals(!.ModuleInfo, Globals),
globals.lookup_bool_option(Globals, parallel_code_gen, ParallelCodeGen),
globals.lookup_bool_option(Globals, very_verbose, VeryVerbose),
globals.lookup_bool_option(Globals, detailed_statistics, Statistics),
(
ParallelCodeGen = yes,
% Can't do parallel code generation if I/O is required.
VeryVerbose = no,
Statistics = no
->
generate_code_parallel(!.ModuleInfo, PredIds, !GlobalData,
Procedures)
;
generate_code_sequential(!.ModuleInfo, PredIds, !GlobalData,
Procedures, !IO)
).
:- pred generate_code_sequential(module_info::in, list(pred_id)::in,
global_data::in, global_data::out, list(c_procedure)::out, io::di, io::uo)
is det.
generate_code_sequential(ModuleInfo0, PredIds, !GlobalData, Procedures, !IO) :-
list.map_foldl2(generate_maybe_pred_code(ModuleInfo0),
PredIds, PredProcedures, !GlobalData, !IO),
list.condense(PredProcedures, Procedures).
%-----------------------------------------------------------------------------%
:- pred generate_code_parallel(module_info::in, list(pred_id)::in,
global_data::in, global_data::out, list(c_procedure)::out) is det.
generate_code_parallel(ModuleInfo0, PredIds, !GlobalData, Procedures) :-
% Split up the list of predicates into pieces for processing in parallel.
% Splitting the list in the middle does not work well as the load will be
% unbalanced. Splitting the list in any other way (as we do) does mean
% that the generated code will be slightly different due to the static
% data being reordered.
%
% We only try to make use of two processors (threads) for now. Using more
% processors efficiently probably requires knowing how many processors are
% available, so we can divide the pred list whilst minimise the time
% merging global_datas and updating static cell references.
%
list.chunk(PredIds, pred_list_chunk_size, ListsOfPredIds),
interleave(ListsOfPredIds, ListsOfPredIdsA, ListsOfPredIdsB),
GlobalData0 = !.GlobalData,
(
list.condense(ListsOfPredIdsA, PredIdsA),
list.map_foldl(generate_pred_code_par(ModuleInfo0),
PredIdsA, PredProceduresA, GlobalData0, GlobalDataA),
list.condense(PredProceduresA, ProceduresA)
% XXX the following should be a parallel conjunction
,
list.condense(ListsOfPredIdsB, PredIdsB),
GlobalData1 = bump_type_num_counter(GlobalData0, type_num_skip),
list.map_foldl(generate_pred_code_par(ModuleInfo0),
PredIdsB, PredProceduresB0, GlobalData1, GlobalDataB),
list.condense(PredProceduresB0, ProceduresB0)
),
merge_global_datas(GlobalDataA, GlobalDataB, !:GlobalData,
StaticCellRemapInfo),
list.map(remap_static_cell_references(StaticCellRemapInfo),
ProceduresB0, ProceduresB),
Procedures = ProceduresA ++ ProceduresB.
% These numbers are rather arbitrary.
%
:- func pred_list_chunk_size = int.
pred_list_chunk_size = 50.
:- func type_num_skip = int.
type_num_skip = 10000.
:- pred interleave(list(T)::in, list(T)::out, list(T)::out) is det.
:- pred interleave_2(list(T)::in, list(T)::in, list(T)::out,
list(T)::in, list(T)::out) is det.
interleave(L, reverse(As), reverse(Bs)) :-
interleave_2(L, [], As, [], Bs).
interleave_2([], !As, !Bs).
interleave_2([H|T], As0, As, Bs0, Bs) :-
interleave_2(T, Bs0, Bs, [H|As0], As).
%-----------------------------------------------------------------------------%
:- pred generate_maybe_pred_code(module_info::in,
pred_id::in, list(c_procedure)::out,
global_data::in, global_data::out, io::di, io::uo) is det.
% Note that some of the logic of generate_maybe_pred_code is duplicated
% by mercury_compile.backend_pass_by_preds, so modifications here may
% also need to be repeated there.
%
generate_maybe_pred_code(ModuleInfo, PredId, Predicates, !GlobalData, !IO) :-
module_info_preds(ModuleInfo, PredInfos),
map.lookup(PredInfos, PredId, PredInfo),
ProcIds = pred_info_non_imported_procids(PredInfo),
(
ProcIds = [],
Predicates = []
;
ProcIds = [_ | _],
module_info_get_globals(ModuleInfo, Globals),
globals.lookup_bool_option(Globals, very_verbose, VeryVerbose),
(
VeryVerbose = yes,
io.write_string("% Generating code for ", !IO),
hlds_out.write_pred_id(ModuleInfo, PredId, !IO),
io.write_string("\n", !IO),
globals.lookup_bool_option(Globals, detailed_statistics,
Statistics),
maybe_report_stats(Statistics, !IO)
;
VeryVerbose = no
),
generate_pred_code(ModuleInfo, PredId, PredInfo, ProcIds, Predicates,
!GlobalData)
).
:- pred generate_pred_code_par(module_info::in, pred_id::in,
list(c_procedure)::out, global_data::in, global_data::out) is det.
generate_pred_code_par(ModuleInfo, PredId, Predicates, !GlobalData) :-
module_info_preds(ModuleInfo, PredInfos),
map.lookup(PredInfos, PredId, PredInfo),
ProcIds = pred_info_non_imported_procids(PredInfo),
generate_pred_code(ModuleInfo, PredId, PredInfo, ProcIds, Predicates,
!GlobalData).
% Translate a HLDS predicate to LLDS.
%
:- pred generate_pred_code(module_info::in,
pred_id::in, pred_info::in, list(proc_id)::in, list(c_procedure)::out,
global_data::in, global_data::out) is det.
generate_pred_code(ModuleInfo, PredId, PredInfo, ProcIds, Code, !GlobalData) :-
generate_proc_list_code(ProcIds, PredId, PredInfo, ModuleInfo,
!GlobalData, [], Code).
% Translate all the procedures of a HLDS predicate to LLDS.
%
:- pred generate_proc_list_code(list(proc_id)::in, pred_id::in, pred_info::in,
module_info::in, global_data::in, global_data::out,
list(c_procedure)::in, list(c_procedure)::out) is det.
generate_proc_list_code([], _PredId, _PredInfo, _ModuleInfo,
!GlobalData, !Procs).
generate_proc_list_code([ProcId | ProcIds], PredId, PredInfo, ModuleInfo0,
!GlobalData, !Procs) :-
pred_info_get_procedures(PredInfo, ProcInfos),
map.lookup(ProcInfos, ProcId, ProcInfo),
generate_proc_code(PredInfo, ProcInfo, ProcId, PredId, ModuleInfo0,
!GlobalData, Proc),
!:Procs = [Proc | !.Procs],
generate_proc_list_code(ProcIds, PredId, PredInfo, ModuleInfo0,
!GlobalData, !Procs).
%---------------------------------------------------------------------------%
% Values of this type hold information about stack frames that is
% generated when generating prologs and is used in generating epilogs
% and when massaging the code generated for the procedure.
:- type frame_info
---> frame(
int, % Number of slots in frame.
maybe(int), % Slot number of succip if succip is
% present in a general slot.
bool % Is this the frame of a model_non
% proc defined via pragma C code?
).
%---------------------------------------------------------------------------%
generate_proc_code(PredInfo, ProcInfo0, ProcId, PredId, ModuleInfo0,
!GlobalData, Proc) :-
% The modified module_info and proc_info are both discarded
% on return from generate_proc_code.
maybe_set_trace_level(PredInfo, ModuleInfo0, ModuleInfo),
ensure_all_headvars_are_named(ProcInfo0, ProcInfo),
proc_info_interface_determinism(ProcInfo, Detism),
CodeModel = proc_info_interface_code_model(ProcInfo),
proc_info_get_goal(ProcInfo, Goal),
Goal = hlds_goal(_, GoalInfo),
goal_info_get_follow_vars(GoalInfo, MaybeFollowVars),
(
MaybeFollowVars = yes(FollowVars)
;
MaybeFollowVars = no,
map.init(FollowVarsMap),
FollowVars = abs_follow_vars(FollowVarsMap, 1)
),
module_info_get_globals(ModuleInfo, Globals),
continuation_info.basic_stack_layout_for_proc(PredInfo, Globals,
BasicStackLayout, ForceProcId),
SaveSuccip = BasicStackLayout,
% Initialise the code_info structure. Generate_category_code below will use
% the returned OutsideResumePoint as the entry to the code that handles
% the failure of the procedure, if such code is needed. It is never needed
% for model_det procedures, always needed for model_semi procedures, and
% needed for model_non procedures only if we are doing execution tracing.
global_data_get_static_cell_info(!.GlobalData, StaticCellInfo0),
code_info_init(SaveSuccip, Globals, PredId, ProcId, PredInfo,
ProcInfo, FollowVars, ModuleInfo, StaticCellInfo0,
OutsideResumePoint, TraceSlotInfo, CodeInfo0),
% Find out the approriate context for the predicate's interface events.
pred_info_get_clauses_info(PredInfo, ClausesInfo),
get_clause_list(ClausesInfo ^ clauses_rep, Clauses),
(
Clauses = [],
% This predicate must have been created by the compiler. In that case,
% the context of the body goal is the best we can do.
ProcContext = goal_info_get_context(GoalInfo)
;
Clauses = [FirstClause | _],
ProcContext = FirstClause ^ clause_context
),
% Generate code for the procedure.
generate_category_code(CodeModel, ProcContext, Goal, OutsideResumePoint,
TraceSlotInfo, CodeTree, MaybeTraceCallLabel, FrameInfo,
CodeInfo0, CodeInfo),
code_info.get_max_reg_in_use_at_trace(CodeInfo, MaxTraceReg),
code_info.get_static_cell_info(CodeInfo, StaticCellInfo),
global_data_set_static_cell_info(StaticCellInfo, !GlobalData),
globals.get_trace_level(Globals, TraceLevel),
code_info.get_created_temp_frame(CodeInfo, CreatedTempFrame),
code_info.get_proc_trace_events(CodeInfo, ProcTraceEvents),
% You can have user trace events even if the effective trace level is none.
(
ProcTraceEvents = yes,
CreatedTempFrame = yes,
CodeModel \= model_non
->
% If tracing is enabled, the procedure lives on the det stack and the
% code created any temporary nondet stack frames, then we must have
% reserved a stack slot for storing the value of maxfr; if we didn't,
% a retry command in the debugger from a point in the middle of this
% procedure will do the wrong thing.
proc_info_get_need_maxfr_slot(ProcInfo, HaveMaxfrSlot),
expect(unify(HaveMaxfrSlot, yes), this_file,
"should have reserved a slot for maxfr, but didn't")
;
true
),
% Turn the code tree into a list.
tree.flatten(CodeTree, FragmentList),
% Now the code is a list of code fragments (== list(instr)),
% so we need to do a level of unwinding to get a flat list.
list.condense(FragmentList, Instructions0),
FrameInfo = frame(TotalSlots, MaybeSuccipSlot, _),
(
MaybeSuccipSlot = yes(SuccipSlot),
% The set of recorded live values at calls (for value numbering)
% and returns (for accurate gc and execution tracing) do not yet record
% the stack slot holding the succip, so add it to those sets.
add_saved_succip(Instructions0, SuccipSlot, Instructions)
;
MaybeSuccipSlot = no,
Instructions = Instructions0
),
proc_info_get_maybe_proc_table_io_info(ProcInfo, MaybeTableIOInfo),
(
( BasicStackLayout = yes
; MaybeTableIOInfo = yes(_TableIODeclInfo)
)
->
% Create the procedure layout structure.
RttiProcLabel = make_rtti_proc_label(ModuleInfo, PredId, ProcId),
code_info.get_layout_info(CodeInfo, InternalMap),
EntryLabel = make_local_entry_label(ModuleInfo, PredId, ProcId, no),
proc_info_get_eval_method(ProcInfo, EvalMethod),
proc_info_get_initial_instmap(ProcInfo, ModuleInfo, InstMap0),
proc_info_get_headvars(ProcInfo, HeadVars),
proc_info_get_varset(ProcInfo, VarSet),
proc_info_get_argmodes(ProcInfo, ArgModes),
proc_info_get_vartypes(ProcInfo, VarTypes),
globals.get_trace_suppress(Globals, TraceSuppress),
(
eff_trace_needs_proc_body_reps(ModuleInfo, PredInfo, ProcInfo,
TraceLevel, TraceSuppress) = yes
->
NeedGoalRep = trace_needs_body_rep
;
NeedGoalRep = trace_does_not_need_body_rep
),
NeedsAllNames = eff_trace_needs_all_var_names(ModuleInfo, PredInfo,
ProcInfo, TraceLevel, TraceSuppress),
proc_info_get_maybe_deep_profile_info(ProcInfo,
MaybeHLDSDeepInfo),
(
MaybeHLDSDeepInfo = yes(HLDSDeepInfo),
DeepProfInfo = generate_deep_prof_info(ProcInfo, HLDSDeepInfo),
MaybeDeepProfInfo = yes(DeepProfInfo)
;
MaybeHLDSDeepInfo = no,
MaybeDeepProfInfo = no
),
EffTraceLevel = eff_trace_level(ModuleInfo, PredInfo, ProcInfo,
TraceLevel),
module_info_get_table_struct_map(ModuleInfo, TableStructMap),
PredProcId = proc(PredId, ProcId),
(
MaybeTableIOInfo = no,
( map.search(TableStructMap, PredProcId, TableStructInfo) ->
TableStructInfo = table_struct_info(ProcTableStructInfo,
_Attributes),
MaybeTableInfo = yes(proc_table_struct(ProcTableStructInfo))
;
MaybeTableInfo = no
)
;
MaybeTableIOInfo = yes(TableIOInfo),
( map.search(TableStructMap, PredProcId, _TableStructInfo) ->
unexpected(this_file,
"generate_proc_code: conflicting kinds of tabling")
;
MaybeTableInfo = yes(proc_table_io_decl(TableIOInfo))
)
),
ProcLayout = proc_layout_info(RttiProcLabel, EntryLabel,
Detism, TotalSlots, MaybeSuccipSlot, EvalMethod,
EffTraceLevel, MaybeTraceCallLabel, MaxTraceReg,
HeadVars, ArgModes, Goal, NeedGoalRep, InstMap0,
TraceSlotInfo, ForceProcId, VarSet, VarTypes,
InternalMap, MaybeTableInfo, NeedsAllNames,
MaybeDeepProfInfo),
global_data_add_new_proc_layout(proc(PredId, ProcId), ProcLayout,
!GlobalData)
;
true
),
code_info.get_closure_layouts(CodeInfo, ClosureLayouts),
global_data_add_new_closure_layouts(ClosureLayouts, !GlobalData),
ProcLabel = make_proc_label(ModuleInfo, PredId, ProcId),
Name = pred_info_name(PredInfo),
Arity = pred_info_orig_arity(PredInfo),
code_info.get_label_counter(CodeInfo, LabelCounter),
% You can have user trace events even if the effective trace level is none.
(
ProcTraceEvents = no,
MayAlterRtti = may_alter_rtti
;
ProcTraceEvents = yes,
MayAlterRtti = must_not_alter_rtti
),
globals.lookup_bool_option(Globals, generate_bytecode, GenBytecode),
(
% XXX: There is a mass of calls above that the bytecode doesn't need;
% work out which is and isn't needed and put inside the else case
% below.
GenBytecode = yes,
% We don't generate bytecode for unify and compare preds.
% The automatically generated unify and compare predicates
% are correct by construction; for user-defined unify and
% compare predicates, we *assume* their correctness for now
% (perhaps not wisely).
\+ is_unify_or_compare_pred(PredInfo),
% Don't generate bytecode for procs with foreign code.
goal_has_foreign(Goal) = no
->
bytecode_stub(ModuleInfo, PredId, ProcId, ProcInstructions),
ProcLabelCounter = counter.init(0)
;
ProcInstructions = Instructions,
ProcLabelCounter = LabelCounter
),
code_info.get_used_env_vars(CodeInfo, UsedEnvVars),
Proc = c_procedure(Name, Arity, proc(PredId, ProcId), CodeModel,
ProcInstructions, ProcLabel, ProcLabelCounter, MayAlterRtti,
UsedEnvVars).
:- pred maybe_set_trace_level(pred_info::in,
module_info::in, module_info::out) is det.
maybe_set_trace_level(PredInfo, !ModuleInfo) :-
module_info_get_globals(!.ModuleInfo, Globals0),
(
PredModule = pred_info_module(PredInfo),
PredName = pred_info_name(PredInfo),
PredArity = pred_info_orig_arity(PredInfo),
no_type_info_builtin(PredModule, PredName, PredArity)
->
% These predicates should never be traced, since they do not obey
% typeinfo_liveness. Since they may be opt_imported into other
% modules, we must switch off the tracing of such preds on a
% pred-by-pred basis.
globals.set_trace_level_none(Globals0, Globals1),
module_info_set_globals(Globals1, !ModuleInfo)
;
pred_info_get_origin(PredInfo, origin_special_pred(_)),
globals.get_trace_level(Globals0, TraceLevel),
UC_TraceLevel = trace_level_for_unify_compare(TraceLevel)
->
globals.set_trace_level(UC_TraceLevel, Globals0, Globals1),
module_info_set_globals(Globals1, !ModuleInfo)
;
true
).
:- func generate_deep_prof_info(proc_info, deep_profile_proc_info)
= proc_layout_proc_static.
generate_deep_prof_info(ProcInfo, HLDSDeepInfo) = DeepProfInfo :-
HLDSDeepInfo ^ deep_layout = MaybeHLDSDeepLayout,
(
MaybeHLDSDeepLayout = yes(HLDSDeepLayout)
;
MaybeHLDSDeepLayout = no,
unexpected(this_file,
"generate_deep_prof_info: no HLDS deep profiling layout info")
),
HLDSDeepLayout = hlds_deep_layout(HLDSProcStatic, HLDSExcpVars),
HLDSExcpVars = hlds_deep_excp_vars(TopCSDVar, MiddleCSDVar,
MaybeOldOutermostVar),
proc_info_get_stack_slots(ProcInfo, StackSlots),
( map.search(StackSlots, TopCSDVar, TopCSDSlot) ->
TopCSDSlotNum = stack_slot_num(TopCSDSlot),
map.lookup(StackSlots, MiddleCSDVar, MiddleCSDSlot),
MiddleCSDSlotNum = stack_slot_num(MiddleCSDSlot),
(
MaybeOldOutermostVar = yes(OldOutermostVar),
map.lookup(StackSlots, OldOutermostVar, OldOutermostSlot),
OldOutermostSlotNum = stack_slot_num(OldOutermostSlot)
;
MaybeOldOutermostVar = no,
OldOutermostSlotNum = -1
)
;
TopCSDSlotNum = -1,
MiddleCSDSlotNum = -1,
OldOutermostSlotNum = -1
),
DeepExcpSlots = deep_excp_slots(TopCSDSlotNum, MiddleCSDSlotNum,
OldOutermostSlotNum),
DeepProfInfo = proc_layout_proc_static(HLDSProcStatic, DeepExcpSlots).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Generate_category_code generates code for an entire procedure.
% Its algorithm has three or four main stages:
%
% - generate code for the body goal
% - generate code for the procedure entry
% - generate code for the procedure exit
% - generate code for the procedure fail (if needed)
%
% The first three tasks are forwarded to other procedures.
% The fourth task, if needed, is done by generate_category_code.
%
% The only caller of generate_category_code, generate_proc_code,
% has set up the code generator state to reflect what the machine
% state will be on entry to the procedure. Ensuring that the
% machine state at exit will conform to the expectation
% of the caller is the job of generate_exit.
%
% The reason why we generate the entry code after the body is that
% information such as the total number of stack slots needed,
% which is needed in the procedure entry prologue, cannot be
% conveniently obtained before generating the body, since the
% code generator may allocate temporary variables to hold values
% such as saved heap and trail pointers.
%
% Code_gen.generate_entry cannot depend on the code generator
% state, since when it is invoked this state is not appropriate
% for the procedure entry. Nor can it change the code generator state,
% since that would confuse generate_exit.
%
% Generating CALL trace events is done by generate_category_code,
% since only on entry to generate_category_code is the code generator
% state set up right. Generating EXIT trace events is done by
% generate_exit. Generating FAIL trace events is done
% by generate_category_code, since this requires modifying how
% we generate code for the body of the procedure (failures must
% now branch to a different place). Since FAIL trace events are
% part of the failure continuation, generate_category_code takes
% care of the failure continuation as well. (Model_det procedures
% of course have no failure continuation. Model_non procedures have
% a failure continuation, but in the absence of tracing this
% continuation needs no code. Only model_semi procedures need code
% for the failure continuation at all times.)
%
:- pred generate_category_code(code_model::in, prog_context::in, hlds_goal::in,
resume_point_info::in, trace_slot_info::in, code_tree::out,
maybe(label)::out, frame_info::out, code_info::in, code_info::out) is det.
generate_category_code(model_det, ProcContext, Goal, ResumePoint,
TraceSlotInfo, Code, MaybeTraceCallLabel, FrameInfo, !CI) :-
% Generate the code for the body of the procedure.
(
code_info.get_globals(!.CI, Globals),
globals.lookup_bool_option(Globals, middle_rec, yes),
middle_rec.match_and_generate(Goal, MiddleRecCode, !CI)
->
Code = MiddleRecCode,
MaybeTraceCallLabel = no,
FrameInfo = frame(0, no, no)
;
code_info.get_maybe_trace_info(!.CI, MaybeTraceInfo),
(
MaybeTraceInfo = yes(TraceInfo),
generate_call_event(TraceInfo, ProcContext, MaybeTraceCallLabel,
TraceCallCode, !CI)
;
MaybeTraceInfo = no,
MaybeTraceCallLabel = no,
TraceCallCode = empty
),
generate_goal(model_det, Goal, BodyCode, !CI),
generate_entry(!.CI, model_det, Goal, ResumePoint, FrameInfo,
EntryCode),
generate_exit(model_det, FrameInfo, TraceSlotInfo, ProcContext,
_, ExitCode, !CI),
Code = tree_list([EntryCode, TraceCallCode, BodyCode, ExitCode])
).
generate_category_code(model_semi, ProcContext, Goal, ResumePoint,
TraceSlotInfo, Code, MaybeTraceCallLabel, FrameInfo, !CI) :-
set.singleton_set(FailureLiveRegs, reg(reg_r, 1)),
FailCode = node([
llds_instr(assign(reg(reg_r, 1), const(llconst_false)), "Fail"),
llds_instr(livevals(FailureLiveRegs), ""),
llds_instr(goto(code_succip), "Return from procedure call")
]),
code_info.get_maybe_trace_info(!.CI, MaybeTraceInfo),
(
MaybeTraceInfo = yes(TraceInfo),
generate_call_event(TraceInfo, ProcContext, MaybeTraceCallLabel,
TraceCallCode, !CI),
generate_goal(model_semi, Goal, BodyCode, !CI),
generate_entry(!.CI, model_semi, Goal, ResumePoint,
FrameInfo, EntryCode),
generate_exit(model_semi, FrameInfo, TraceSlotInfo,
ProcContext, RestoreDeallocCode, ExitCode, !CI),
code_info.generate_resume_point(ResumePoint, ResumeCode, !CI),
code_info.resume_point_vars(ResumePoint, ResumeVarList),
set.list_to_set(ResumeVarList, ResumeVars),
code_info.set_forward_live_vars(ResumeVars, !CI),
% XXX A context that gives the end of the procedure definition
% would be better than ProcContext.
generate_external_event_code(external_port_fail, TraceInfo,
ProcContext, MaybeFailExternalInfo, !CI),
(
MaybeFailExternalInfo = yes(FailExternalInfo),
FailExternalInfo = external_event_info(_, _, TraceFailCode)
;
MaybeFailExternalInfo = no,
TraceFailCode = empty
),
Code = tree_list([EntryCode, TraceCallCode, BodyCode, ExitCode,
ResumeCode, TraceFailCode, RestoreDeallocCode, FailCode])
;
MaybeTraceInfo = no,
MaybeTraceCallLabel = no,
generate_goal(model_semi, Goal, BodyCode, !CI),
generate_entry(!.CI, model_semi, Goal, ResumePoint,
FrameInfo, EntryCode),
generate_exit(model_semi, FrameInfo, TraceSlotInfo,
ProcContext, RestoreDeallocCode, ExitCode, !CI),
code_info.generate_resume_point(ResumePoint, ResumeCode, !CI),
Code = tree_list([EntryCode, BodyCode, ExitCode,
ResumeCode, RestoreDeallocCode, FailCode])
).
generate_category_code(model_non, ProcContext, Goal, ResumePoint,
TraceSlotInfo, Code, MaybeTraceCallLabel, FrameInfo, !CI) :-
code_info.get_maybe_trace_info(!.CI, MaybeTraceInfo),
(
MaybeTraceInfo = yes(TraceInfo),
generate_call_event(TraceInfo, ProcContext, MaybeTraceCallLabel,
TraceCallCode, !CI),
generate_goal(model_non, Goal, BodyCode, !CI),
generate_entry(!.CI, model_non, Goal, ResumePoint,
FrameInfo, EntryCode),
generate_exit(model_non, FrameInfo, TraceSlotInfo,
ProcContext, _, ExitCode, !CI),
code_info.generate_resume_point(ResumePoint, ResumeCode, !CI),
code_info.resume_point_vars(ResumePoint, ResumeVarList),
set.list_to_set(ResumeVarList, ResumeVars),
code_info.set_forward_live_vars(ResumeVars, !CI),
% XXX A context that gives the end of the procedure definition
% would be better than ProcContext.
generate_external_event_code(external_port_fail, TraceInfo,
ProcContext, MaybeFailExternalInfo, !CI),
(
MaybeFailExternalInfo = yes(FailExternalInfo),
FailExternalInfo = external_event_info(_, _, TraceFailCode)
;
MaybeFailExternalInfo = no,
TraceFailCode = empty
),
( TraceSlotInfo ^ slot_trail = yes(_) ->
MaybeFromFull = TraceSlotInfo ^ slot_from_full,
(
MaybeFromFull = yes(FromFullSlot),
% Generate code which discards the ticket only if it was
% allocated, i.e. only if MR_trace_from_full was true on entry.
FromFullSlotLval =
llds.stack_slot_num_to_lval(nondet_stack, FromFullSlot),
code_info.get_next_label(SkipLabel, !CI),
DiscardTraceTicketCode = node([
llds_instr(
if_val(unop(logical_not, lval(FromFullSlotLval)),
code_label(SkipLabel)), ""),
llds_instr(discard_ticket, "discard retry ticket"),
llds_instr(label(SkipLabel), "")
])
;
MaybeFromFull = no,
DiscardTraceTicketCode = node([
llds_instr(discard_ticket, "discard retry ticket")
])
)
;
DiscardTraceTicketCode = empty
),
FailCode = node([
llds_instr(goto(do_fail), "fail after fail trace port")
]),
Code = tree_list([EntryCode, TraceCallCode, BodyCode, ExitCode,
ResumeCode, TraceFailCode, DiscardTraceTicketCode, FailCode])
;
MaybeTraceInfo = no,
MaybeTraceCallLabel = no,
generate_goal(model_non, Goal, BodyCode, !CI),
generate_entry(!.CI, model_non, Goal, ResumePoint,
FrameInfo, EntryCode),
generate_exit(model_non, FrameInfo, TraceSlotInfo,
ProcContext, _, ExitCode, !CI),
Code = tree_list([EntryCode, BodyCode, ExitCode])
).
:- pred generate_call_event(trace_info::in, prog_context::in,
maybe(label)::out, code_tree::out, code_info::in, code_info::out) is det.
generate_call_event(TraceInfo, ProcContext, MaybeTraceCallLabel, TraceCallCode,
!CI) :-
generate_external_event_code(external_port_call, TraceInfo,
ProcContext, MaybeCallExternalInfo, !CI),
(
MaybeCallExternalInfo = yes(CallExternalInfo),
CallExternalInfo = external_event_info(TraceCallLabel, _,
TraceCallCode),
MaybeTraceCallLabel = yes(TraceCallLabel)
;
MaybeCallExternalInfo = no,
% This can happen for procedures containing user events
% in shallow traced modules.
TraceCallCode = empty,
MaybeTraceCallLabel = no
).
%---------------------------------------------------------------------------%
% Generate the prologue for a procedure.
%
% The prologue will contain
%
% a comment to mark prologue start
% a comment explaining the stack layout
% the procedure entry label
% code to allocate a stack frame
% code to fill in some special slots in the stack frame
% a comment to mark prologue end
%
% At the moment the only special slots are the succip slot, and
% the slots holding the call number and call depth for tracing.
%
% Not all frames will have all these components. For example, the code
% to allocate a stack frame will be missing if the procedure doesn't
% need a stack frame, and if the procedure is nondet, then the code
% to fill in the succip slot is subsumed by the mkframe.
:- pred generate_entry(code_info::in, code_model::in, hlds_goal::in,
resume_point_info::in, frame_info::out, code_tree::out) is det.
generate_entry(CI, CodeModel, Goal, OutsideResumePoint, FrameInfo,
EntryCode) :-
code_info.get_stack_slots(CI, StackSlots),
code_info.get_varset(CI, VarSet),
SlotsComment = explain_stack_slots(StackSlots, VarSet),
StartComment = node([
llds_instr(comment("Start of procedure prologue"), ""),
llds_instr(comment(SlotsComment), "")
]),
code_info.get_total_stackslot_count(CI, MainSlots),
code_info.get_pred_id(CI, PredId),
code_info.get_proc_id(CI, ProcId),
code_info.get_module_info(CI, ModuleInfo),
EntryLabel = make_local_entry_label(ModuleInfo, PredId, ProcId, no),
LabelCode = node([
llds_instr(label(EntryLabel), "Procedure entry point")
]),
code_info.get_succip_used(CI, Used),
(
% Do we need to save the succip across calls?
Used = yes,
% Do we need to use a general slot for storing succip?
CodeModel \= model_non
->
SuccipSlot = MainSlots + 1,
SaveSuccipCode = node([
llds_instr(assign(stackvar(SuccipSlot), lval(succip)),
"Save the success ip")
]),
TotalSlots = SuccipSlot,
MaybeSuccipSlot = yes(SuccipSlot)
;
SaveSuccipCode = empty,
TotalSlots = MainSlots,
MaybeSuccipSlot = no
),
code_info.get_maybe_trace_info(CI, MaybeTraceInfo),
(
MaybeTraceInfo = yes(TraceInfo),
generate_slot_fill_code(CI, TraceInfo, TraceFillCode)
;
MaybeTraceInfo = no,
TraceFillCode = empty
),
module_info_pred_info(ModuleInfo, PredId, PredInfo),
ModuleName = pred_info_module(PredInfo),
PredName = pred_info_name(PredInfo),
Arity = pred_info_orig_arity(PredInfo),
PushMsg = push_msg(ModuleInfo, PredId, ProcId),
(
CodeModel = model_non,
code_info.resume_point_stack_addr(OutsideResumePoint,
OutsideResumeAddress),
(
Goal = hlds_goal(call_foreign_proc(_, _, _, _, _, _, PragmaCode),
_),
PragmaCode = fc_impl_model_non(Fields, FieldsContext,
_, _, _, _, _, _, _)
->
StructName = foreign_proc_struct_name(ModuleName, PredName, Arity,
ProcId),
Struct = foreign_proc_struct(StructName, Fields, FieldsContext),
string.format("#define\tMR_ORDINARY_SLOTS\t%d\n",
[i(TotalSlots)], DefineStr),
DefineComponents = [foreign_proc_raw_code(cannot_branch_away,
proc_does_not_affect_liveness, live_lvals_info(set.init),
DefineStr)],
NondetFrameInfo = ordinary_frame(PushMsg, TotalSlots, yes(Struct)),
MD = proc_may_not_duplicate,
AllocCode = node([
llds_instr(mkframe(NondetFrameInfo, yes(OutsideResumeAddress)),
"Allocate stack frame"),
llds_instr(foreign_proc_code([], DefineComponents,
proc_will_not_call_mercury, no, no, no, no, no, MD), "")
]),
NondetPragma = yes
;
NondetFrameInfo = ordinary_frame(PushMsg, TotalSlots, no),
AllocCode = node([
llds_instr(mkframe(NondetFrameInfo, yes(OutsideResumeAddress)),
"Allocate stack frame")
]),
NondetPragma = no
)
;
( CodeModel = model_det
; CodeModel = model_semi
),
IsLeaf = proc_body_is_leaf(Goal),
(
IsLeaf = is_not_leaf,
StackIncrKind = stack_incr_nonleaf
;
IsLeaf = is_leaf,
StackIncrKind = stack_incr_leaf
),
( TotalSlots > 0 ->
AllocCode = node([
llds_instr(incr_sp(TotalSlots, PushMsg, StackIncrKind),
"Allocate stack frame")
])
;
AllocCode = empty
),
NondetPragma = no
),
FrameInfo = frame(TotalSlots, MaybeSuccipSlot, NondetPragma),
EndComment = node([
llds_instr(comment("End of procedure prologue"), "")
]),
EntryCode = tree_list([StartComment, LabelCode, AllocCode,
SaveSuccipCode, TraceFillCode, EndComment]).
%---------------------------------------------------------------------------%
% Generate the success epilogue for a procedure.
%
% The success epilogue will contain
%
% a comment to mark epilogue start
% code to place the output arguments where their caller expects
% code to restore registers from some special slots
% code to deallocate the stack frame
% code to set r1 to MR_TRUE (for semidet procedures only)
% a jump back to the caller, including livevals information
% a comment to mark epilogue end
%
% The parts of this that restore registers and deallocate the stack
% frame are also part of the failure epilog, which is handled by
% our caller; this is why we return RestoreDeallocCode.
%
% At the moment the only special slots are the succip slot, and
% the tracing slots (holding the call sequence number, call event
% number, call depth, from-full indication, and trail state).
%
% Not all frames will have all these components. For example, for
% nondet procedures we don't deallocate the stack frame before
% success.
%
% Epilogues for procedures defined by nondet pragma C codes do not
% follow the rules above. For such procedures, the normal functions
% of the epilogue are handled when traversing the pragma C code goal;
% we need only #undef a macro defined by the procedure prologue.
:- pred generate_exit(code_model::in, frame_info::in,
trace_slot_info::in, prog_context::in, code_tree::out, code_tree::out,
code_info::in, code_info::out) is det.
generate_exit(CodeModel, FrameInfo, TraceSlotInfo, ProcContext,
RestoreDeallocCode, ExitCode, !CI) :-
StartComment = node([
llds_instr(comment("Start of procedure epilogue"), "")
]),
EndComment = node([
llds_instr(comment("End of procedure epilogue"), "")
]),
FrameInfo = frame(TotalSlots, MaybeSuccipSlot, NondetPragma),
(
NondetPragma = yes,
UndefStr = "#undef\tMR_ORDINARY_SLOTS\n",
UndefComponents = [foreign_proc_raw_code(cannot_branch_away,
proc_does_not_affect_liveness, live_lvals_info(set.init),
UndefStr)],
MD = proc_may_not_duplicate,
UndefCode = node([
llds_instr(foreign_proc_code([], UndefComponents,
proc_will_not_call_mercury, no, no, no, no, no, MD), "")
]),
RestoreDeallocCode = empty, % always empty for nondet code
ExitCode = tree_list([StartComment, UndefCode, EndComment])
;
NondetPragma = no,
code_info.get_instmap(!.CI, InstMap),
ArgModes = code_info.get_arginfo(!.CI),
HeadVars = code_info.get_headvars(!.CI),
assoc_list.from_corresponding_lists(HeadVars, ArgModes, Args),
( instmap.is_unreachable(InstMap) ->
OutLvals = set.init,
FlushCode = empty
;
code_info.setup_return(Args, OutLvals, FlushCode, !CI)
),
(
MaybeSuccipSlot = yes(SuccipSlot),
RestoreSuccipCode = node([
llds_instr(assign(succip, lval(stackvar(SuccipSlot))),
"restore the success ip")
])
;
MaybeSuccipSlot = no,
RestoreSuccipCode = empty
),
(
( TotalSlots = 0
; CodeModel = model_non
)
->
DeallocCode = empty
;
DeallocCode = node([
llds_instr(decr_sp(TotalSlots), "Deallocate stack frame")
])
),
(
TraceSlotInfo ^ slot_trail = yes(_),
CodeModel \= model_non
->
MaybeFromFull = TraceSlotInfo ^ slot_from_full,
(
MaybeFromFull = yes(FromFullSlot),
% Generate code which prunes the ticket only if it was
% allocated, i.e. only if MR_trace_from_full was true on entry.
%
% Note that to avoid duplicating label names, we need to
% generate two different copies of this with different labels;
% this is needed for semidet code, which will get one copy
% in the success epilogue and one copy in the failure epilogue.
StackId = code_model_to_main_stack(CodeModel),
FromFullSlotLval =
llds.stack_slot_num_to_lval(StackId, FromFullSlot),
code_info.get_next_label(SkipLabel, !CI),
code_info.get_next_label(SkipLabelCopy, !CI),
PruneTraceTicketCode = node([
llds_instr(if_val(unop(logical_not, lval(FromFullSlotLval)),
code_label(SkipLabel)), ""),
llds_instr(prune_ticket, "prune retry ticket"),
llds_instr(label(SkipLabel), "")
]),
PruneTraceTicketCodeCopy = node([
llds_instr(if_val(unop(logical_not, lval(FromFullSlotLval)),
code_label(SkipLabelCopy)), ""),
llds_instr(prune_ticket, "prune retry ticket"),
llds_instr(label(SkipLabelCopy), "")
])
;
MaybeFromFull = no,
PruneTraceTicketCode = node([
llds_instr(prune_ticket, "prune retry ticket")
]),
PruneTraceTicketCodeCopy = PruneTraceTicketCode
)
;
PruneTraceTicketCode = empty,
PruneTraceTicketCodeCopy = empty
),
RestoreDeallocCode = tree_list([RestoreSuccipCode,
PruneTraceTicketCode, DeallocCode]),
RestoreDeallocCodeCopy = tree_list([RestoreSuccipCode,
PruneTraceTicketCodeCopy, DeallocCode]),
code_info.get_maybe_trace_info(!.CI, MaybeTraceInfo),
(
MaybeTraceInfo = yes(TraceInfo),
% XXX A context that gives the end of the procedure definition
% would be better than CallContext.
generate_external_event_code(external_port_exit, TraceInfo,
ProcContext, MaybeExitExternalInfo, !CI),
(
MaybeExitExternalInfo = yes(ExitExternalInfo),
ExitExternalInfo = external_event_info(_, TypeInfoDatas,
TraceExitCode)
;
MaybeExitExternalInfo = no,
TypeInfoDatas = map.init,
TraceExitCode = empty
),
map.values(TypeInfoDatas, TypeInfoLocnSets),
FindBaseLvals = (pred(Lval::out) is nondet :-
list.member(LocnSet, TypeInfoLocnSets),
set.member(Locn, LocnSet),
(
Locn = locn_direct(Lval)
;
Locn = locn_indirect(Lval, _)
)
),
solutions.solutions(FindBaseLvals, TypeInfoLvals),
set.insert_list(OutLvals, TypeInfoLvals, LiveLvals)
;
MaybeTraceInfo = no,
TraceExitCode = empty,
LiveLvals = OutLvals
),
code_info.get_proc_info(!.CI, ProcInfo),
proc_info_get_maybe_special_return(ProcInfo, MaybeSpecialReturn),
(
CodeModel = model_det,
expect(unify(MaybeSpecialReturn, no), this_file,
"generate_exit: det special_return"),
SuccessCode = node([
llds_instr(livevals(LiveLvals), ""),
llds_instr(goto(code_succip), "Return from procedure call")
]),
AllSuccessCode = tree_list([TraceExitCode, RestoreDeallocCodeCopy,
SuccessCode])
;
CodeModel = model_semi,
expect(unify(MaybeSpecialReturn, no), this_file,
"generate_exit: semi special_return"),
set.insert(LiveLvals, reg(reg_r, 1), SuccessLiveRegs),
SuccessCode = node([
llds_instr(assign(reg(reg_r, 1), const(llconst_true)),
"Succeed"),
llds_instr(livevals(SuccessLiveRegs), ""),
llds_instr(goto(code_succip), "Return from procedure call")
]),
AllSuccessCode = tree_list([TraceExitCode, RestoreDeallocCodeCopy,
SuccessCode])
;
CodeModel = model_non,
(
MaybeTraceInfo = yes(TraceInfo2),
maybe_setup_redo_event(TraceInfo2, SetupRedoCode)
;
MaybeTraceInfo = no,
SetupRedoCode = empty
),
(
MaybeSpecialReturn = yes(SpecialReturn),
SpecialReturn = generator_return(GeneratorLocnStr, DebugStr),
ReturnMacroName = "MR_tbl_mmos_return_answer",
ReturnCodeStr = "\t" ++ ReturnMacroName ++ "(" ++
DebugStr ++ ", " ++ GeneratorLocnStr ++ ");\n",
Component = foreign_proc_user_code(no,
proc_does_not_affect_liveness, ReturnCodeStr),
MD = proc_may_not_duplicate,
SuccessCode = node([
llds_instr(livevals(LiveLvals), ""),
llds_instr(foreign_proc_code([], [Component],
proc_may_call_mercury, no, no, no, no, no, MD), "")
])
;
MaybeSpecialReturn = no,
SuccessCode = node([
llds_instr(livevals(LiveLvals), ""),
llds_instr(goto(do_succeed(no)),
"Return from procedure call")
])
),
AllSuccessCode = tree_list([SetupRedoCode, TraceExitCode,
SuccessCode])
),
ExitCode = tree_list([StartComment, FlushCode, AllSuccessCode,
EndComment])
).
%---------------------------------------------------------------------------%
% Add the succip to the livevals before and after calls. Traverses the list
% of instructions looking for livevals and calls, adding succip in the
% stackvar number given as an argument.
%
:- pred add_saved_succip(list(instruction)::in, int::in,
list(instruction)::out) is det.
add_saved_succip([], _StackLoc, []).
add_saved_succip([Instr0 | Instrs0], StackLoc, [Instr | Instrs]) :-
Instr0 = llds_instr(Uinstr0, Comment),
(
Uinstr0 = livevals(LiveVals0),
Instrs0 \= [llds_instr(goto(code_succip), _) | _]
% XXX We should also test for tailcalls
% once we start generating them directly.
->
set.insert(LiveVals0, stackvar(StackLoc), LiveVals1),
Uinstr = livevals(LiveVals1),
Instr = llds_instr(Uinstr, Comment)
;
Uinstr0 = llcall(Target, ReturnLabel, LiveVals0, Context, GP, CM)
->
map.init(Empty),
LiveVals = [live_lvalue(locn_direct(stackvar(StackLoc)),
live_value_succip, Empty) | LiveVals0],
Uinstr = llcall(Target, ReturnLabel, LiveVals, Context, GP, CM),
Instr = llds_instr(Uinstr, Comment)
;
Instr = Instr0
),
add_saved_succip(Instrs0, StackLoc, Instrs).
%---------------------------------------------------------------------------%
:- pred bytecode_stub(module_info::in, pred_id::in, proc_id::in,
list(instruction)::out) is det.
bytecode_stub(ModuleInfo, PredId, ProcId, BytecodeInstructions) :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
ModuleSymName = pred_info_module(PredInfo),
ModuleName = sym_name_to_string_sep(ModuleSymName, "__"),
EntryLabel = make_local_entry_label(ModuleInfo, PredId, ProcId, no),
PredName = pred_info_name(PredInfo),
proc_id_to_int(ProcId, ProcNum),
string.int_to_string(ProcNum, ProcStr),
Arity = pred_info_orig_arity(PredInfo),
int_to_string(Arity, ArityStr),
PredOrFunc = pred_info_is_pred_or_func(PredInfo),
CallStructName = "bytecode_call_info",
append_list([
"\t\tstatic MB_Call ", CallStructName, " = {\n",
"\t\t\t(MB_Word)NULL,\n",
"\t\t\t""", ModuleName, """,\n",
"\t\t\t""", PredName, """,\n",
"\t\t\t", ProcStr, ",\n",
"\t\t\t", ArityStr, ",\n",
"\t\t\t", (PredOrFunc = pf_function -> "MR_TRUE" ; "MR_FALSE"), "\n",
"\t\t};\n"
], CallStruct),
append_list([
"\t\tMB_Native_Addr return_addr;\n",
"\t\tMR_save_registers();\n",
"\t\treturn_addr = MB_bytecode_call_entry(", "&",CallStructName,");\n",
"\t\tMR_restore_registers();\n",
"\t\tMR_GOTO(return_addr);\n"
], BytecodeCall),
BytecodeInstructionsComponents = [
foreign_proc_raw_code(cannot_branch_away,
proc_does_not_affect_liveness, live_lvals_info(set.init), "\t{\n"),
foreign_proc_raw_code(cannot_branch_away,
proc_does_not_affect_liveness, live_lvals_info(set.init),
CallStruct),
foreign_proc_raw_code(cannot_branch_away,
proc_does_not_affect_liveness, no_live_lvals_info, BytecodeCall),
foreign_proc_raw_code(cannot_branch_away,
proc_does_not_affect_liveness, live_lvals_info(set.init), "\t}\n")
],
MD = proc_may_not_duplicate,
BytecodeInstructions = [
llds_instr(label(EntryLabel), "Procedure entry point"),
llds_instr(foreign_proc_code([], BytecodeInstructionsComponents,
proc_may_call_mercury, no, no, no, no, no, MD), "Entry stub")
].
%---------------------------------------------------------------------------%
:- type type_giving_arg
---> last_arg
; last_but_one_arg.
push_msg(ModuleInfo, PredId, ProcId) = PushMsg :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
PredOrFunc = pred_info_is_pred_or_func(PredInfo),
ModuleName = pred_info_module(PredInfo),
PredName = pred_info_name(PredInfo),
Arity = pred_info_orig_arity(PredInfo),
pred_info_get_origin(PredInfo, Origin),
( Origin = origin_special_pred(SpecialId - TypeCtor) ->
find_arg_type_ctor_name(TypeCtor, TypeName),
SpecialPredName = get_special_pred_id_generic_name(SpecialId),
FullPredName = SpecialPredName ++ "_for_" ++ TypeName
;
FullPredName = PredName
),
% XXX if ModuleNameString ends with [0-9] and/or FullPredName starts with
% [0-9] then ideally we should use "'.'" rather than just ".".
%
PushMsg = pred_or_func_to_str(PredOrFunc) ++ " " ++
sym_name_to_string(ModuleName) ++ "." ++
FullPredName ++ "/" ++ int_to_string(Arity) ++ "-" ++
int_to_string(proc_id_to_int(ProcId)).
:- pred find_arg_type_ctor_name((type_ctor)::in, string::out) is det.
find_arg_type_ctor_name(TypeCtor, TypeName) :-
TypeCtor = type_ctor(TypeCtorSymName, TypeCtorArity),
TypeCtorName = sym_name_to_string(TypeCtorSymName),
string.int_to_string(TypeCtorArity, ArityStr),
string.append_list([TypeCtorName, "_", ArityStr], TypeName).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
add_all_tabling_info_structs(ModuleInfo, !GlobalData) :-
module_info_get_table_struct_map(ModuleInfo, TableStructMap),
map.to_assoc_list(TableStructMap, TableStructs),
list.foldl(add_tabling_info_struct, TableStructs, !GlobalData).
:- pred add_tabling_info_struct(pair(pred_proc_id, table_struct_info)::in,
global_data::in, global_data::out) is det.
add_tabling_info_struct(PredProcId - TableStructInfo, !GlobalData) :-
TableStructInfo = table_struct_info(ProcTableStructInfo, TableAttributes),
ProcTableStructInfo = proc_table_struct_info(RttiProcLabel, _TVarSet,
_Context, NumInputs, NumOutputs, InputSteps, MaybeOutputSteps,
ArgInfos, EvalMethod),
global_data_get_static_cell_info(!.GlobalData, StaticCellInfo0),
convert_table_arg_info(ArgInfos, NumPTIs, PTIVectorRval,
TVarVectorRval, StaticCellInfo0, StaticCellInfo),
global_data_set_static_cell_info(StaticCellInfo, !GlobalData),
NumArgs = NumInputs + NumOutputs,
expect(unify(NumArgs, NumPTIs), this_file,
"add_tabling_info_struct: args mismatch"),
MaybeSizeLimit = TableAttributes ^ table_attr_size_limit,
Statistics = TableAttributes ^ table_attr_statistics,
ModuleName = RttiProcLabel ^ proc_module,
ProcLabel = make_proc_label_from_rtti(RttiProcLabel),
Var = tabling_info_struct(ModuleName, ProcLabel, EvalMethod,
NumInputs, NumOutputs, InputSteps, MaybeOutputSteps, PTIVectorRval,
TVarVectorRval, MaybeSizeLimit, Statistics),
global_data_add_new_proc_var(PredProcId, Var, !GlobalData).
%---------------------------------------------------------------------------%
:- func this_file = string.
this_file = "proc_gen.m".
%---------------------------------------------------------------------------%