mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-14 13:23:53 +00:00
Estimated hours taken: 20 Branches: main Add a new compiler option. --inform-ite-instead-of-switch. If this is enabled, the compiler will generate informational messages about if-then-elses that it thinks should be converted to switches for the sake of program reliability. Act on the output generated by this option. compiler/simplify.m: Implement the new option. Fix an old bug that could cause us to generate warnings about code that was OK in one duplicated copy but not in another (where a switch arm's code is duplicated due to the case being selected for more than one cons_id). compiler/options.m: Add the new option. Add a way to test for the bug fix in simplify. doc/user_guide.texi: Document the new option. NEWS: Mention the new option. library/*.m: mdbcomp/*.m: browser/*.m: compiler/*.m: deep_profiler/*.m: Convert if-then-elses to switches at most of the sites suggested by the new option. At the remaining sites, switching to switches would have nontrivial downsides. This typically happens with the switched-on type has many functors, and we treat one or two specially (e.g. cons/2 in the cons_id type). Perform misc cleanups in the vicinity of the if-then-else to switch conversions. In a few cases, improve the error messages generated. compiler/accumulator.m: compiler/hlds_goal.m: (Rename and) move insts for particular kinds of goal from accumulator.m to hlds_goal.m, to allow them to be used in other modules. Using these insts allowed us to eliminate some if-then-elses entirely. compiler/exprn_aux.m: Instead of fixing some if-then-elses, delete the predicates containing them, since they aren't used, and (as pointed out by the new option) would need considerable other fixing if they were ever needed again. compiler/lp_rational.m: Add prefixes to the names of the function symbols on some types, since without those prefixes, it was hard to figure out what type the switch corresponding to an old if-then-else was switching on. tests/invalid/reserve_tag.err_exp: Expect a new, improved error message.
1474 lines
60 KiB
Mathematica
1474 lines
60 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% vim: ft=mercury ts=4 sw=4 et
|
|
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1996-2007 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% File: modecheck_unify.m.
|
|
% Main author: fjh.
|
|
%
|
|
% This module contains the code to modecheck a unification.
|
|
%
|
|
% Check that the unification doesn't attempt to unify two free variables
|
|
% (or in general two free sub-terms) unless one of them is dead. (Also we
|
|
% ought to split unifications up if necessary to avoid complicated
|
|
% sub-unifications.)
|
|
%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- module check_hlds.modecheck_unify.
|
|
:- interface.
|
|
|
|
:- import_module check_hlds.mode_info.
|
|
:- import_module hlds.
|
|
:- import_module hlds.hlds_goal.
|
|
:- import_module parse_tree.prog_data.
|
|
|
|
:- import_module io.
|
|
|
|
% Modecheck a unification.
|
|
%
|
|
:- pred modecheck_unification(prog_var::in, unify_rhs::in, unification::in,
|
|
unify_context::in, hlds_goal_info::in, hlds_goal_expr::out,
|
|
mode_info::in, mode_info::out, io::di, io::uo) is det.
|
|
|
|
% Create a unification between the two given variables.
|
|
% The goal's mode and determinism information are not filled in.
|
|
%
|
|
:- pred create_var_var_unification(prog_var::in, prog_var::in,
|
|
mer_type::in, mode_info::in, hlds_goal::out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module check_hlds.inst_match.
|
|
:- import_module check_hlds.inst_util.
|
|
:- import_module check_hlds.mode_debug.
|
|
:- import_module check_hlds.mode_errors.
|
|
:- import_module check_hlds.mode_info.
|
|
:- import_module check_hlds.modes.
|
|
:- import_module check_hlds.mode_util.
|
|
:- import_module check_hlds.polymorphism.
|
|
:- import_module check_hlds.type_util.
|
|
:- import_module check_hlds.unify_proc.
|
|
:- import_module check_hlds.unique_modes.
|
|
:- import_module hlds.hlds_goal.
|
|
:- import_module hlds.hlds_module.
|
|
:- import_module hlds.hlds_pred.
|
|
:- import_module hlds.instmap.
|
|
:- import_module libs.
|
|
:- import_module libs.compiler_util.
|
|
:- import_module libs.globals.
|
|
:- import_module libs.options.
|
|
:- import_module mdbcomp.
|
|
:- import_module mdbcomp.prim_data.
|
|
:- import_module parse_tree.
|
|
:- import_module parse_tree.prog_mode.
|
|
:- import_module parse_tree.prog_type.
|
|
|
|
:- import_module assoc_list.
|
|
:- import_module bool.
|
|
:- import_module list.
|
|
:- import_module map.
|
|
:- import_module maybe.
|
|
:- import_module pair.
|
|
:- import_module set.
|
|
:- import_module string.
|
|
:- import_module term.
|
|
:- import_module varset.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% We first have to check that if a unification occurs in a negated
|
|
% context with an inst any argument then it has an explicit `impure'
|
|
% annotation.
|
|
%
|
|
% With lambdas, the lambda itself must be marked as impure if it includes
|
|
% any inst any nonlocals (executing such a lambda may have the side effect
|
|
% of constraining a nonlocal solver variable).
|
|
%
|
|
modecheck_unification(X, RHS, Unification0, UnifyContext, UnifyGoalInfo0,
|
|
Unify, !ModeInfo, !IO) :-
|
|
(
|
|
% If this is a lambda unification containing some inst any
|
|
% nonlocals, then the lambda should be marked as impure.
|
|
%
|
|
RHS = rhs_lambda_goal(Purity, _, _, NonLocals, _, _, _, _),
|
|
Purity \= purity_impure,
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
|
|
mode_info_get_instmap(!.ModeInfo, InstMap),
|
|
AnyVars = list.filter(var_inst_contains_any(ModuleInfo, InstMap),
|
|
NonLocals),
|
|
AnyVars = [_ | _]
|
|
->
|
|
set.init(WaitingVars),
|
|
mode_info_error(WaitingVars,
|
|
purity_error_lambda_should_be_impure(AnyVars), !ModeInfo),
|
|
Unify = conj(plain_conj, [])
|
|
;
|
|
modecheck_unification_2(X, RHS, Unification0, UnifyContext,
|
|
UnifyGoalInfo0, Unify, !ModeInfo, !IO)
|
|
).
|
|
|
|
|
|
:- pred modecheck_unification_2(prog_var::in, unify_rhs::in, unification::in,
|
|
unify_context::in, hlds_goal_info::in, hlds_goal_expr::out,
|
|
mode_info::in, mode_info::out, io::di, io::uo) is det.
|
|
|
|
modecheck_unification_2(X, rhs_var(Y), Unification0, UnifyContext,
|
|
UnifyGoalInfo0, UnifyGoalExpr, !ModeInfo, !IO) :-
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
mode_info_get_var_types(!.ModeInfo, VarTypes),
|
|
mode_info_get_instmap(!.ModeInfo, InstMap0),
|
|
instmap.lookup_var(InstMap0, X, InstOfX0),
|
|
instmap.lookup_var(InstMap0, Y, InstOfY0),
|
|
% If X and Y are free and have a solver type and we are allowed to
|
|
% insert initialisation calls at this point, then do so to allow
|
|
% scheduling of the unification.
|
|
(
|
|
mode_info_solver_init_is_supported(!.ModeInfo),
|
|
mode_info_may_init_solver_vars(!.ModeInfo),
|
|
InstOfX0 = free,
|
|
InstOfY0 = free,
|
|
VarType = VarTypes ^ elem(X),
|
|
type_is_solver_type_with_auto_init(ModuleInfo0, VarType)
|
|
->
|
|
construct_initialisation_call(X, VarType, any_inst,
|
|
context_init, no, InitXGoal, !ModeInfo),
|
|
MaybeInitX = yes(InitXGoal),
|
|
instmap.set(X, any_inst, InstMap0, InstMap),
|
|
InstOfX = any_inst,
|
|
InstOfY = InstOfY0
|
|
;
|
|
MaybeInitX = no,
|
|
InstMap = InstMap0,
|
|
InstOfX = InstOfX0,
|
|
InstOfY = InstOfY0
|
|
),
|
|
mode_info_var_is_live(!.ModeInfo, X, LiveX),
|
|
mode_info_var_is_live(!.ModeInfo, Y, LiveY),
|
|
(
|
|
( LiveX = is_live, LiveY = is_live ->
|
|
BothLive = is_live
|
|
;
|
|
BothLive = is_dead
|
|
),
|
|
abstractly_unify_inst(BothLive, InstOfX, InstOfY, real_unify,
|
|
UnifyInst, Det1, ModuleInfo0, ModuleInfo1),
|
|
% Don't allow free-free unifications if both variables are locked.
|
|
% (Normally the checks for binding locked variables are done in
|
|
% modecheck_set_var_inst, which is called below, but that won't catch
|
|
% this case, because the inst of the variable will remain `free'.
|
|
% XXX are there other cases like this one?)
|
|
\+ (
|
|
UnifyInst = free,
|
|
mode_info_var_is_locked(!.ModeInfo, X, _XLockedReason),
|
|
mode_info_var_is_locked(!.ModeInfo, Y, _YLockedReason),
|
|
% a unification of the form `X = X' doesn't bind X,
|
|
% and thus should be allowed even if X is locked
|
|
X \= Y
|
|
)
|
|
->
|
|
Inst = UnifyInst,
|
|
Det = Det1,
|
|
mode_info_set_module_info(ModuleInfo1, !ModeInfo),
|
|
modecheck_set_var_inst(X, Inst, yes(InstOfY), !ModeInfo),
|
|
modecheck_set_var_inst(Y, Inst, yes(InstOfX), !ModeInfo),
|
|
ModeOfX = (InstOfX -> Inst),
|
|
ModeOfY = (InstOfY -> Inst),
|
|
categorize_unify_var_var(ModeOfX, ModeOfY, LiveX, LiveY, X, Y,
|
|
Det, UnifyContext, UnifyGoalInfo0, VarTypes, Unification0,
|
|
UnifyGoalExpr0, !ModeInfo),
|
|
(
|
|
MaybeInitX = no,
|
|
UnifyGoalExpr = UnifyGoalExpr0
|
|
;
|
|
MaybeInitX = yes(InitGoal),
|
|
compute_goal_instmap_delta(InstMap, UnifyGoalExpr0,
|
|
UnifyGoalInfo0, UnifyGoalInfo, !ModeInfo),
|
|
UnifySubGoal = hlds_goal(UnifyGoalExpr0, UnifyGoalInfo),
|
|
UnifyGoalExpr = conj(plain_conj, [InitGoal, UnifySubGoal])
|
|
)
|
|
;
|
|
set.list_to_set([X, Y], WaitingVars),
|
|
mode_info_error(WaitingVars,
|
|
mode_error_unify_var_var(X, Y, InstOfX, InstOfY), !ModeInfo),
|
|
% If we get an error, set the inst to not_reached to suppress
|
|
% follow-on errors. But don't call categorize_unification, because
|
|
% that could cause an invalid call to `unify_proc.request_unify'
|
|
Inst = not_reached,
|
|
modecheck_set_var_inst(X, Inst, no, !ModeInfo),
|
|
modecheck_set_var_inst(Y, Inst, no, !ModeInfo),
|
|
% Return any old garbage.
|
|
Unification = assign(X, Y),
|
|
ModeOfX = (InstOfX -> Inst),
|
|
ModeOfY = (InstOfY -> Inst),
|
|
Modes = ModeOfX - ModeOfY,
|
|
UnifyGoalExpr = unify(X, rhs_var(Y), Modes, Unification, UnifyContext)
|
|
).
|
|
|
|
modecheck_unification_2(X0,
|
|
rhs_functor(ConsId0, IsExistConstruction, ArgVars0),
|
|
Unification0, UnifyContext, GoalInfo0, Goal, !ModeInfo, !IO) :-
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
mode_info_get_var_types(!.ModeInfo, VarTypes0),
|
|
map.lookup(VarTypes0, X0, TypeOfX),
|
|
|
|
%
|
|
% We replace any unifications with higher-order pred constants
|
|
% by lambda expressions. For example, we replace
|
|
%
|
|
% X = list.append(Y) % Y::in, X::out
|
|
%
|
|
% with
|
|
%
|
|
% X = lambda [A1::in, A2::out] (list.append(Y, A1, A2))
|
|
%
|
|
% Normally this is done by polymorphism.process_unify_functor,
|
|
% but if we're re-modechecking goals after lambda.m has been run
|
|
% (e.g. for deforestation), then we may need to do it again here.
|
|
% Note that any changes to this code here will probably need to be
|
|
% duplicated there too.
|
|
%
|
|
(
|
|
% Check if variable has a higher-order type.
|
|
type_is_higher_order_details(TypeOfX, Purity, _, EvalMethod,
|
|
PredArgTypes),
|
|
ConsId0 = pred_const(ShroudedPredProcId, _)
|
|
->
|
|
% Convert the pred term to a lambda expression.
|
|
mode_info_get_varset(!.ModeInfo, VarSet0),
|
|
mode_info_get_context(!.ModeInfo, Context),
|
|
proc(PredId, ProcId) = unshroud_pred_proc_id(ShroudedPredProcId),
|
|
convert_pred_to_lambda_goal(Purity, EvalMethod, X0, PredId, ProcId,
|
|
ArgVars0, PredArgTypes, UnifyContext, GoalInfo0, Context,
|
|
ModuleInfo0, Functor0, VarSet0, VarSet, VarTypes0, VarTypes),
|
|
mode_info_set_varset(VarSet, !ModeInfo),
|
|
mode_info_set_var_types(VarTypes, !ModeInfo),
|
|
|
|
% Modecheck this unification in its new form.
|
|
modecheck_unification_2(X0, Functor0, Unification0, UnifyContext,
|
|
GoalInfo0, Goal, !ModeInfo, !IO)
|
|
;
|
|
% It's not a higher-order pred unification - just
|
|
% call modecheck_unify_functor to do the ordinary thing.
|
|
modecheck_unify_functor(X0, TypeOfX, ConsId0,
|
|
IsExistConstruction, ArgVars0, Unification0,
|
|
UnifyContext, GoalInfo0, Goal, !ModeInfo, !IO)
|
|
).
|
|
|
|
modecheck_unification_2(X, LambdaGoal, Unification0, UnifyContext, _GoalInfo,
|
|
unify(X, RHS, Mode, Unification, UnifyContext), !ModeInfo, !IO) :-
|
|
LambdaGoal = rhs_lambda_goal(Purity, PredOrFunc, EvalMethod,
|
|
ArgVars, Vars, Modes0, Det, Goal0),
|
|
|
|
% First modecheck the lambda goal itself:
|
|
%
|
|
% initialize the initial insts of the lambda variables,
|
|
% check that the non-local vars are ground (XXX or any),
|
|
% mark the non-local vars as shared,
|
|
% lock the non-local vars,
|
|
% mark the non-clobbered lambda variables as live,
|
|
% modecheck the goal,
|
|
% check that the final insts are correct,
|
|
% unmark the live vars,
|
|
% unlock the non-local vars,
|
|
% restore the original instmap.
|
|
%
|
|
% XXX or should we merge the original and the final instmaps???
|
|
%
|
|
% The reason that we need to merge the original and final instmaps is
|
|
% as follows. The lambda goal will not have bound any variables (since
|
|
% they were locked), but it may have added some information or lost some
|
|
% uniqueness. We cannot use the final instmap, because that may have
|
|
% too much information. If we use the initial instmap, variables will be
|
|
% considered as unique even if they become shared or clobbered in the
|
|
% lambda goal!
|
|
%
|
|
% However even this may not be enough. If a unique non-local variable
|
|
% is used in its unique inst (e.g. it's used in a ui mode) and then shared
|
|
% within the lambda body, this is unsound. This variable should be marked
|
|
% as shared at the _top_ of the lambda goal. As for implementing this,
|
|
% it probably means that the lambda goal should be re-modechecked,
|
|
% or even modechecked to a fixpoint.
|
|
%
|
|
% For the moment, since doing all that properly seems too hard, we just
|
|
% share all non-local variables at the top of the lambda goal. This is
|
|
% safe, but perhaps too conservative.
|
|
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
mode_info_get_how_to_check(!.ModeInfo, HowToCheckGoal),
|
|
|
|
(
|
|
HowToCheckGoal = check_modes,
|
|
% This only needs to be done once.
|
|
mode_info_get_types_of_vars(!.ModeInfo, Vars, VarTypes),
|
|
propagate_types_into_mode_list(ModuleInfo0, VarTypes, Modes0, Modes)
|
|
;
|
|
HowToCheckGoal = check_unique_modes,
|
|
Modes = Modes0
|
|
),
|
|
|
|
% Initialize the initial insts of the lambda variables.
|
|
mode_list_get_initial_insts(ModuleInfo0, Modes, VarInitialInsts),
|
|
assoc_list.from_corresponding_lists(Vars, VarInitialInsts, VarInstAL),
|
|
instmap_delta_from_assoc_list(VarInstAL, VarInstMapDelta),
|
|
mode_info_get_instmap(!.ModeInfo, InstMap0),
|
|
instmap.apply_instmap_delta(InstMap0, VarInstMapDelta, InstMap1),
|
|
mode_info_set_instmap(InstMap1, !ModeInfo),
|
|
|
|
% Mark the non-clobbered lambda variables as live.
|
|
get_arg_lives(ModuleInfo0, Modes, ArgLives),
|
|
get_live_vars(Vars, ArgLives, LiveVarsList),
|
|
set.list_to_set(LiveVarsList, LiveVars),
|
|
mode_info_add_live_vars(LiveVars, !ModeInfo),
|
|
|
|
% Lock the non-locals. (A lambda goal is not allowed to bind any of the
|
|
% non-local variables, since it could get called more than once, or
|
|
% from inside a negation.)
|
|
Goal0 = hlds_goal(_, GoalInfo0),
|
|
NonLocals0 = goal_info_get_nonlocals(GoalInfo0),
|
|
set.delete_list(NonLocals0, Vars, NonLocals),
|
|
set.to_sorted_list(NonLocals, NonLocalsList),
|
|
instmap.lookup_vars(NonLocalsList, InstMap1, NonLocalInsts),
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo2),
|
|
(
|
|
% XXX This test is too conservative.
|
|
%
|
|
% We should allow non-local variables to be non-ground sometimes,
|
|
% possibly dependent on whether or not they are dead after this
|
|
% unification. In addition, we should not "share" a unique non-local
|
|
% variable if these two conditions hold:
|
|
%
|
|
% - It is dead after this unification.
|
|
% - It is not shared within the lambda body.
|
|
%
|
|
% Unfortunately, we can't test the latter condition until after
|
|
% we've mode-checked the lambda body. (See the above comment on
|
|
% merging the initial and final instmaps.)
|
|
|
|
% XXX This test is also not conservative enough!
|
|
%
|
|
% We should not allow non-local vars to have inst `any'; because that
|
|
% can lead to unsoundness. However, disallowing that idiom would break
|
|
% extras/trailed_update/samples/vqueens.m, and would make freeze/3
|
|
% basically useless... so for now at least, let's not disallow it,
|
|
% even though it is unsafe.
|
|
|
|
inst_list_is_ground_or_any(NonLocalInsts, ModuleInfo2)
|
|
->
|
|
make_shared_inst_list(NonLocalInsts, SharedNonLocalInsts,
|
|
ModuleInfo2, ModuleInfo3),
|
|
instmap.set_vars(NonLocalsList, SharedNonLocalInsts,
|
|
InstMap1, InstMap2),
|
|
mode_info_set_module_info(ModuleInfo3, !ModeInfo),
|
|
mode_info_set_instmap(InstMap2, !ModeInfo),
|
|
|
|
mode_info_lock_vars(var_lock_lambda(PredOrFunc), NonLocals, !ModeInfo),
|
|
|
|
mode_checkpoint(enter, "lambda goal", !ModeInfo, !IO),
|
|
% If we're being called from unique_modes.m, then we need to
|
|
% call unique_modes.check_goal rather than modecheck_goal.
|
|
(
|
|
HowToCheckGoal = check_unique_modes,
|
|
unique_modes_check_goal(Goal0, Goal1, !ModeInfo, !IO)
|
|
;
|
|
HowToCheckGoal = check_modes,
|
|
modecheck_goal(Goal0, Goal1, !ModeInfo, !IO)
|
|
),
|
|
mode_list_get_final_insts(ModuleInfo0, Modes, FinalInsts),
|
|
modecheck_lambda_final_insts(Vars, FinalInsts, Goal1, Goal, !ModeInfo),
|
|
mode_checkpoint(exit, "lambda goal", !ModeInfo, !IO),
|
|
|
|
mode_info_remove_live_vars(LiveVars, !ModeInfo),
|
|
mode_info_unlock_vars(var_lock_lambda(PredOrFunc), NonLocals,
|
|
!ModeInfo),
|
|
|
|
% Ensure that the non-local vars are shared OUTSIDE the
|
|
% lambda unification as well as inside.
|
|
|
|
instmap.set_vars(NonLocalsList, SharedNonLocalInsts,
|
|
InstMap0, InstMap11),
|
|
mode_info_set_instmap(InstMap11, !ModeInfo),
|
|
|
|
% Now modecheck the unification of X with the lambda-expression.
|
|
|
|
RHS0 = rhs_lambda_goal(Purity, PredOrFunc, EvalMethod, ArgVars,
|
|
Vars, Modes, Det, Goal),
|
|
modecheck_unify_lambda(X, PredOrFunc, ArgVars, Modes, Det,
|
|
RHS0, RHS, Unification0, Unification, Mode, !ModeInfo)
|
|
;
|
|
list.filter(
|
|
(pred(Var :: in) is semidet :-
|
|
instmap.lookup_var(InstMap1, Var, Inst),
|
|
\+ inst_is_ground(ModuleInfo2, Inst)
|
|
), NonLocalsList, NonGroundNonLocals),
|
|
(
|
|
NonGroundNonLocals = [BadVar | _],
|
|
instmap.lookup_var(InstMap1, BadVar, BadInst),
|
|
set.singleton_set(WaitingVars, BadVar),
|
|
mode_info_error(WaitingVars,
|
|
mode_error_non_local_lambda_var(BadVar, BadInst), !ModeInfo)
|
|
;
|
|
NonGroundNonLocals = [],
|
|
unexpected(this_file,
|
|
"modecheck_unification_2(lambda): very strange var")
|
|
),
|
|
% Return any old garbage.
|
|
RHS = rhs_lambda_goal(Purity, PredOrFunc, EvalMethod, ArgVars,
|
|
Vars, Modes0, Det, Goal0),
|
|
Mode = (free -> free) - (free -> free),
|
|
Unification = Unification0
|
|
).
|
|
|
|
:- pred modecheck_unify_lambda(prog_var::in, pred_or_func::in,
|
|
list(prog_var)::in, list(mer_mode)::in, determinism::in,
|
|
unify_rhs::in, unify_rhs::out, unification::in, unification::out,
|
|
pair(mer_mode)::out, mode_info::in, mode_info::out) is det.
|
|
|
|
modecheck_unify_lambda(X, PredOrFunc, ArgVars, LambdaModes, LambdaDet,
|
|
RHS0, RHS, Unification0, Unification, Mode, !ModeInfo) :-
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
mode_info_get_instmap(!.ModeInfo, InstMap0),
|
|
instmap.lookup_var(InstMap0, X, InstOfX),
|
|
InstOfY = ground(unique, higher_order(LambdaPredInfo)),
|
|
LambdaPredInfo = pred_inst_info(PredOrFunc, LambdaModes, LambdaDet),
|
|
(
|
|
abstractly_unify_inst(is_dead, InstOfX, InstOfY, real_unify,
|
|
UnifyInst, _Det, ModuleInfo0, ModuleInfo1)
|
|
->
|
|
Inst = UnifyInst,
|
|
mode_info_set_module_info(ModuleInfo1, !ModeInfo),
|
|
ModeOfX = (InstOfX -> Inst),
|
|
ModeOfY = (InstOfY -> Inst),
|
|
Mode = ModeOfX - ModeOfY,
|
|
% the lambda expression just maps its argument variables
|
|
% from their current insts to the same inst
|
|
instmap.lookup_vars(ArgVars, InstMap0, ArgInsts),
|
|
inst_lists_to_mode_list(ArgInsts, ArgInsts, ArgModes),
|
|
categorize_unify_var_lambda(ModeOfX, ArgModes, X, ArgVars, PredOrFunc,
|
|
RHS0, RHS, Unification0, Unification, !ModeInfo),
|
|
modecheck_set_var_inst(X, Inst, no, !ModeInfo)
|
|
;
|
|
set.list_to_set([X], WaitingVars),
|
|
mode_info_error(WaitingVars,
|
|
mode_error_unify_var_lambda(X, InstOfX, InstOfY),
|
|
!ModeInfo),
|
|
% If we get an error, set the inst to not_reached to avoid cascading
|
|
% errors. But don't call categorize_unification, because that could
|
|
% cause an invalid call to `unify_proc.request_unify'
|
|
Inst = not_reached,
|
|
modecheck_set_var_inst(X, Inst, no, !ModeInfo),
|
|
ModeOfX = (InstOfX -> Inst),
|
|
ModeOfY = (InstOfY -> Inst),
|
|
Mode = ModeOfX - ModeOfY,
|
|
|
|
% Return any old garbage.
|
|
Unification = Unification0,
|
|
RHS = RHS0
|
|
).
|
|
|
|
:- pred modecheck_unify_functor(prog_var::in, mer_type::in, cons_id::in,
|
|
is_existential_construction::in, list(prog_var)::in, unification::in,
|
|
unify_context::in, hlds_goal_info::in, hlds_goal_expr::out,
|
|
mode_info::in, mode_info::out, io::di, io::uo) is det.
|
|
|
|
modecheck_unify_functor(X0, TypeOfX, ConsId0, IsExistConstruction, ArgVars0,
|
|
Unification0, UnifyContext, GoalInfo0, Goal, !ModeInfo, !IO) :-
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
mode_info_get_how_to_check(!.ModeInfo, HowToCheckGoal),
|
|
|
|
% Fully module qualify all cons_ids (except for builtins such as
|
|
% ints and characters).
|
|
|
|
qualify_cons_id(TypeOfX, ArgVars0, ConsId0, ConsId, InstConsId),
|
|
|
|
mode_info_get_instmap(!.ModeInfo, InstMap0),
|
|
instmap.lookup_var(InstMap0, X0, InstOfX0),
|
|
(
|
|
% If the unification was originally of the form X = 'new f'(Y),
|
|
% it must be classified as a construction. If it were classified as a
|
|
% deconstruction, the argument unifications would be ill-typed.
|
|
IsExistConstruction = yes,
|
|
\+ inst_is_free(ModuleInfo0, InstOfX0)
|
|
->
|
|
% To make sure the unification is classified as a construction,
|
|
% if X is already bound, we must add a unification with an extra
|
|
% variable:
|
|
% Z = 'new f'(Y),
|
|
% X = Z.
|
|
|
|
InstOfX = free,
|
|
LiveX = is_live,
|
|
make_complicated_sub_unify(X0, X, ExtraGoals0, !ModeInfo)
|
|
;
|
|
InstOfX = InstOfX0,
|
|
X = X0,
|
|
mode_info_var_is_live(!.ModeInfo, X, LiveX),
|
|
ExtraGoals0 = no_extra_goals
|
|
),
|
|
|
|
% This needs to come after make_complicated_sub_unify because
|
|
% make_complicated_sub_unify may introduce new variables
|
|
% whose types we need to look-up.
|
|
mode_info_get_var_types(!.ModeInfo, VarTypes),
|
|
(
|
|
% If we are allowed to insert solver type initialisation calls and
|
|
% InstOfX0 is free and all ArgVars0 are either non-free or have
|
|
% solver types, then we know that this is going to be a construction,
|
|
% so we can insert the necessary initialisation calls.
|
|
ArgVars0 = [_ | _],
|
|
HowToCheckGoal = check_modes,
|
|
inst_match.inst_is_free(ModuleInfo0, InstOfX),
|
|
mode_info_may_init_solver_vars(!.ModeInfo),
|
|
mode_info_solver_init_is_supported(!.ModeInfo),
|
|
instmap.lookup_vars(ArgVars0, InstMap0, InstArgs0),
|
|
all_arg_vars_are_non_free_or_solver_vars(ArgVars0, InstArgs0,
|
|
VarTypes, ModuleInfo0, ArgVarsToInit)
|
|
->
|
|
construct_initialisation_calls(ArgVarsToInit, InitGoals, !ModeInfo),
|
|
(
|
|
InitGoals = [],
|
|
ExtraGoals1 = no_extra_goals
|
|
;
|
|
InitGoals = [_ | _],
|
|
ExtraGoals1 = extra_goals(InitGoals, [])
|
|
)
|
|
;
|
|
ExtraGoals1 = no_extra_goals
|
|
),
|
|
mode_info_get_instmap(!.ModeInfo, InstMap1),
|
|
instmap.lookup_vars(ArgVars0, InstMap1, InstArgs),
|
|
mode_info_var_list_is_live(!.ModeInfo, ArgVars0, LiveArgs),
|
|
InstOfY = bound(unique, [bound_functor(InstConsId, InstArgs)]),
|
|
(
|
|
% The occur check: X = f(X) is considered a mode error unless X is
|
|
% ground. (Actually it wouldn't be that hard to generate code for it
|
|
% - it always fails! - but it's most likely to be a programming error,
|
|
% so it's better to report it.)
|
|
|
|
list.member(X, ArgVars0),
|
|
\+ inst_is_ground(ModuleInfo0, InstOfX)
|
|
->
|
|
set.list_to_set([X], WaitingVars),
|
|
mode_info_error(WaitingVars,
|
|
mode_error_unify_var_functor(X, InstConsId, ArgVars0,
|
|
InstOfX, InstArgs),
|
|
!ModeInfo),
|
|
Inst = not_reached,
|
|
Det = detism_erroneous,
|
|
% If we get an error, set the inst to not_reached to avoid cascading
|
|
% errors. But don't call categorize_unification, because that could
|
|
% cause an invalid call to `unify_proc.request_unify'.
|
|
ModeOfX = (InstOfX -> Inst),
|
|
ModeOfY = (InstOfY -> Inst),
|
|
Mode = ModeOfX - ModeOfY,
|
|
modecheck_set_var_inst(X, Inst, no, !ModeInfo),
|
|
NoArgInsts = list.duplicate(length(ArgVars0), no),
|
|
bind_args(Inst, ArgVars0, NoArgInsts, !ModeInfo),
|
|
% Return any old garbage.
|
|
Unification = Unification0,
|
|
ArgVars = ArgVars0,
|
|
ExtraGoals2 = no_extra_goals
|
|
;
|
|
% XXX We forbid the construction of partially instantiated structures
|
|
% involving solver types. We'd like to forbid all such constructions
|
|
% here, but that causes trouble with the current implementation of
|
|
% term.term_to_univ_special_case which does use partial instantiation
|
|
% (in a rather horrible way). This is a hacky solution that gets us
|
|
% most of what we want w.r.t. solver types.
|
|
not (
|
|
inst_is_free(ModuleInfo0, InstOfX),
|
|
list.member(InstArg, InstArgs),
|
|
inst_is_free(ModuleInfo0, InstArg),
|
|
list.member(ArgVar, ArgVars0),
|
|
ArgType = VarTypes ^ elem(ArgVar),
|
|
type_is_solver_type(ModuleInfo0, ArgType)
|
|
),
|
|
abstractly_unify_inst_functor(LiveX, InstOfX, InstConsId,
|
|
InstArgs, LiveArgs, real_unify, TypeOfX,
|
|
UnifyInst, Det1, ModuleInfo0, ModuleInfo1)
|
|
->
|
|
Inst = UnifyInst,
|
|
Det = Det1,
|
|
mode_info_set_module_info(ModuleInfo1, !ModeInfo),
|
|
ModeOfX = (InstOfX -> Inst),
|
|
ModeOfY = (InstOfY -> Inst),
|
|
Mode = ModeOfX - ModeOfY,
|
|
( get_mode_of_args(Inst, InstArgs, ModeArgs0) ->
|
|
ModeArgs = ModeArgs0
|
|
;
|
|
unexpected(this_file, "get_mode_of_args failed")
|
|
),
|
|
(
|
|
inst_expand_and_remove_constrained_inst_vars(ModuleInfo1,
|
|
InstOfX, InstOfX1),
|
|
list.length(ArgVars0, Arity),
|
|
get_arg_insts(InstOfX1, InstConsId, Arity, InstOfXArgs0),
|
|
get_mode_of_args(Inst, InstOfXArgs0, ModeOfXArgs0)
|
|
->
|
|
ModeOfXArgs = ModeOfXArgs0,
|
|
InstOfXArgs = InstOfXArgs0
|
|
;
|
|
unexpected(this_file, "get_(inst/mode)_of_args failed")
|
|
),
|
|
categorize_unify_var_functor(ModeOfX, ModeOfXArgs, ModeArgs,
|
|
X, ConsId, ArgVars0, VarTypes, UnifyContext,
|
|
Unification0, Unification1, !ModeInfo),
|
|
split_complicated_subunifies(Unification1, Unification,
|
|
ArgVars0, ArgVars, ExtraGoals2, !ModeInfo),
|
|
modecheck_set_var_inst(X, Inst, yes(InstOfY), !ModeInfo),
|
|
UnifyArgInsts = list.map(func(I) = yes(I), InstOfXArgs),
|
|
mode_info_get_in_from_ground_term(!.ModeInfo, InFromGroundTerm),
|
|
(
|
|
InFromGroundTerm = in_from_ground_term
|
|
% In the goals that result from the transformation of a unification
|
|
% of a variable with a ground term, the variables on the right hand
|
|
% sides of the construct unifications are all local to the scope
|
|
% of the from_ground_term scope, and their last appearance is in
|
|
% the construct. Therefore there is no need to update their inst.
|
|
%
|
|
% Avoiding the update can be a significant performance win, because
|
|
% for a ground list with N elements, the size of the inst of the
|
|
% average intermediate variable is proportional to N. Since there
|
|
% are N intermediate variables, the complexity of updating their
|
|
% insts would be quadratic.
|
|
;
|
|
InFromGroundTerm = not_in_from_ground_term,
|
|
bind_args(Inst, ArgVars, UnifyArgInsts, !ModeInfo)
|
|
)
|
|
;
|
|
set.list_to_set([X | ArgVars0], WaitingVars), % conservative
|
|
mode_info_error(WaitingVars,
|
|
mode_error_unify_var_functor(X, InstConsId, ArgVars0,
|
|
InstOfX, InstArgs),
|
|
!ModeInfo),
|
|
% If we get an error, set the inst to not_reached to avoid cascading
|
|
% errors. But don't call categorize_unification, because that could
|
|
% cause an invalid call to `unify_proc.request_unify'.
|
|
Inst = not_reached,
|
|
Det = detism_erroneous,
|
|
ModeOfX = (InstOfX -> Inst),
|
|
ModeOfY = (InstOfY -> Inst),
|
|
Mode = ModeOfX - ModeOfY,
|
|
modecheck_set_var_inst(X, Inst, no, !ModeInfo),
|
|
NoArgInsts = list.duplicate(length(ArgVars0), no),
|
|
bind_args(Inst, ArgVars0, NoArgInsts, !ModeInfo),
|
|
% Return any old garbage.
|
|
Unification = Unification0,
|
|
ArgVars = ArgVars0,
|
|
ExtraGoals2 = no_extra_goals
|
|
),
|
|
|
|
%
|
|
% Optimize away construction of unused terms by replacing the unification
|
|
% with `true'. Optimize away unifications which always fail by replacing
|
|
% them with `fail'.
|
|
%
|
|
(
|
|
Unification = construct(_, _, _, _, _, _, _),
|
|
LiveX = is_dead
|
|
->
|
|
Goal = conj(plain_conj, [])
|
|
;
|
|
Det = detism_failure
|
|
->
|
|
% This optimisation is safe because the only way that we can analyse
|
|
% a unification as having no solutions is that the unification always
|
|
% fails.
|
|
%
|
|
% Unifying two preds is not erroneous as far as the mode checker
|
|
% is concerned, but a mode _error_.
|
|
Goal = disj([]),
|
|
globals.io_lookup_bool_option(warn_unification_cannot_succeed,
|
|
WarnCannotSucceed, !IO),
|
|
(
|
|
WarnCannotSucceed = yes,
|
|
mode_info_get_in_dupl_for_switch(!.ModeInfo, InDuplForSwitch),
|
|
(
|
|
InDuplForSwitch = in_dupl_for_switch
|
|
% Suppress the warning, since the unification may succeed
|
|
% in another copy of this duplicated switch arm.
|
|
;
|
|
InDuplForSwitch = not_in_dupl_for_switch,
|
|
mode_info_get_pred_id(!.ModeInfo, PredId),
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
pred_info_get_origin(PredInfo, Origin),
|
|
should_report_mode_warning_for_pred_origin(Origin,
|
|
ReportWarning),
|
|
(
|
|
ReportWarning = yes,
|
|
Warning = cannot_succeed_var_functor(X, InstOfX, ConsId),
|
|
mode_info_warning(Warning, !ModeInfo)
|
|
;
|
|
ReportWarning = no
|
|
)
|
|
)
|
|
;
|
|
WarnCannotSucceed = no
|
|
)
|
|
;
|
|
Functor = rhs_functor(ConsId, IsExistConstruction, ArgVars),
|
|
Unify = unify(X, Functor, Mode, Unification, UnifyContext),
|
|
%
|
|
% Modecheck_unification sometimes needs to introduce new goals
|
|
% to handle complicated sub-unifications in deconstructions.
|
|
% The only time this can happen during unique mode analysis is if
|
|
% the instmap is unreachable, since inst_is_bound succeeds for
|
|
% not_reached. (If it did in other cases, the code would be wrong
|
|
% since it wouldn't have the correct determinism annotations.)
|
|
%
|
|
append_extra_goals(ExtraGoals0, ExtraGoals1, ExtraGoals01),
|
|
append_extra_goals(ExtraGoals01, ExtraGoals2, ExtraGoals),
|
|
(
|
|
HowToCheckGoal = check_unique_modes,
|
|
ExtraGoals = extra_goals(_, _),
|
|
instmap.is_reachable(InstMap1)
|
|
->
|
|
unexpected(this_file,
|
|
"re-modecheck of unification " ++
|
|
"encountered complicated sub-unifies")
|
|
;
|
|
true
|
|
),
|
|
handle_extra_goals(Unify, ExtraGoals, GoalInfo0,
|
|
[X0 | ArgVars0], [X | ArgVars], InstMap0, Goal, !ModeInfo, !IO)
|
|
).
|
|
|
|
:- pred all_arg_vars_are_non_free_or_solver_vars(list(prog_var)::in,
|
|
list(mer_inst)::in, vartypes::in, module_info::in, list(prog_var)::out)
|
|
is semidet.
|
|
|
|
all_arg_vars_are_non_free_or_solver_vars([], [], _, _, []).
|
|
all_arg_vars_are_non_free_or_solver_vars([], [_ | _], _, _, _) :-
|
|
unexpected(this_file,
|
|
"modecheck_unify.all_arg_vars_are_non_free_or_solver_vars: " ++
|
|
"mismatch in list lengths").
|
|
all_arg_vars_are_non_free_or_solver_vars([_ | _], [], _, _, _) :-
|
|
unexpected(this_file,
|
|
"modecheck_unify.all_arg_vars_are_non_free_or_solver_vars: " ++
|
|
"mismatch in list lengths").
|
|
all_arg_vars_are_non_free_or_solver_vars([Arg | Args], [Inst | Insts],
|
|
VarTypes, ModuleInfo, ArgsToInit) :-
|
|
( inst_match.inst_is_free(ModuleInfo, Inst) ->
|
|
type_is_solver_type(ModuleInfo, VarTypes ^ elem(Arg)),
|
|
all_arg_vars_are_non_free_or_solver_vars(Args, Insts,
|
|
VarTypes, ModuleInfo, ArgsToInit1),
|
|
ArgsToInit = [Arg | ArgsToInit1]
|
|
;
|
|
all_arg_vars_are_non_free_or_solver_vars(Args, Insts,
|
|
VarTypes, ModuleInfo, ArgsToInit)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% The argument unifications in a construction or deconstruction
|
|
% unification must be simple assignments, they cannot be
|
|
% complicated unifications. If they are, we split them out
|
|
% into separate unifications by introducing fresh variables here.
|
|
%
|
|
:- pred split_complicated_subunifies(unification::in, unification::out,
|
|
list(prog_var)::in, list(prog_var)::out, extra_goals::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
split_complicated_subunifies(Unification0, Unification, ArgVars0, ArgVars,
|
|
ExtraGoals, !ModeInfo) :-
|
|
(
|
|
Unification0 = deconstruct(X, ConsId, ArgVars0, ArgModes0, Det, CanCGC)
|
|
->
|
|
(
|
|
split_complicated_subunifies_2(ArgVars0, ArgModes0,
|
|
ArgVars1, ExtraGoals1, !ModeInfo)
|
|
->
|
|
ExtraGoals = ExtraGoals1,
|
|
ArgVars = ArgVars1,
|
|
Unification = deconstruct(X, ConsId, ArgVars, ArgModes0, Det,
|
|
CanCGC)
|
|
;
|
|
unexpected(this_file, "split_complicated_subunifies_2 failed")
|
|
)
|
|
;
|
|
Unification = Unification0,
|
|
ArgVars = ArgVars0,
|
|
ExtraGoals = no_extra_goals
|
|
).
|
|
|
|
:- pred split_complicated_subunifies_2(list(prog_var)::in, list(uni_mode)::in,
|
|
list(prog_var)::out, extra_goals::out, mode_info::in, mode_info::out)
|
|
is semidet.
|
|
|
|
split_complicated_subunifies_2([], [], [], no_extra_goals, !ModeInfo).
|
|
split_complicated_subunifies_2([Var0 | Vars0], [UniMode0 | UniModes0],
|
|
Vars, ExtraGoals, !ModeInfo) :-
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
|
|
UniMode0 = (InitialInstX - InitialInstY -> FinalInstX - FinalInstY),
|
|
ModeX = (InitialInstX -> FinalInstX),
|
|
ModeY = (InitialInstY -> FinalInstY),
|
|
mode_info_get_var_types(!.ModeInfo, VarTypes0),
|
|
map.lookup(VarTypes0, Var0, VarType),
|
|
(
|
|
mode_to_arg_mode(ModuleInfo, ModeX, VarType, top_in),
|
|
mode_to_arg_mode(ModuleInfo, ModeY, VarType, top_in)
|
|
->
|
|
make_complicated_sub_unify(Var0, Var, ExtraGoals0, !ModeInfo),
|
|
|
|
% Recursive call to handle the remaining variables...
|
|
split_complicated_subunifies_2(Vars0, UniModes0,
|
|
Vars1, ExtraGoals1, !ModeInfo),
|
|
Vars = [Var | Vars1],
|
|
append_extra_goals(ExtraGoals0, ExtraGoals1, ExtraGoals)
|
|
;
|
|
split_complicated_subunifies_2(Vars0, UniModes0, Vars1,
|
|
ExtraGoals, !ModeInfo),
|
|
Vars = [Var0 | Vars1]
|
|
).
|
|
|
|
:- pred make_complicated_sub_unify(prog_var::in, prog_var::out,
|
|
extra_goals::out, mode_info::in, mode_info::out) is det.
|
|
|
|
make_complicated_sub_unify(Var0, Var, ExtraGoals0, !ModeInfo) :-
|
|
% introduce a new variable `Var'
|
|
mode_info_get_varset(!.ModeInfo, VarSet0),
|
|
mode_info_get_var_types(!.ModeInfo, VarTypes0),
|
|
varset.new_var(VarSet0, Var, VarSet),
|
|
map.lookup(VarTypes0, Var0, VarType),
|
|
map.set(VarTypes0, Var, VarType, VarTypes),
|
|
mode_info_set_varset(VarSet, !ModeInfo),
|
|
mode_info_set_var_types(VarTypes, !ModeInfo),
|
|
|
|
create_var_var_unification(Var0, Var, VarType, !.ModeInfo, ExtraGoal),
|
|
|
|
% Insert the new unification at the start of the extra goals.
|
|
ExtraGoals0 = extra_goals([], [ExtraGoal]).
|
|
|
|
create_var_var_unification(Var0, Var, Type, ModeInfo, Goal) :-
|
|
Goal = hlds_goal(GoalExpr, GoalInfo),
|
|
mode_info_get_context(ModeInfo, Context),
|
|
mode_info_get_mode_context(ModeInfo, ModeContext),
|
|
mode_context_to_unify_context(ModeInfo, ModeContext, UnifyContext),
|
|
UnifyContext = unify_context(MainContext, SubContexts),
|
|
|
|
create_pure_atomic_complicated_unification(Var0, rhs_var(Var), Context,
|
|
MainContext, SubContexts, hlds_goal(GoalExpr0, GoalInfo0)),
|
|
|
|
% Compute the goal_info nonlocal vars for the newly created goal
|
|
% (excluding the type_info vars -- they are added below).
|
|
% N.B. This may overestimate the set of non-locals,
|
|
% but that shouldn't cause any problems.
|
|
|
|
set.list_to_set([Var0, Var], NonLocals),
|
|
goal_info_set_nonlocals(NonLocals, GoalInfo0, GoalInfo1),
|
|
goal_info_set_context(Context, GoalInfo1, GoalInfo2),
|
|
|
|
% Look up the map(tvar, type_info_locn) in the proc_info,
|
|
% since it is needed by polymorphism.unification_typeinfos.
|
|
|
|
mode_info_get_module_info(ModeInfo, ModuleInfo),
|
|
mode_info_get_pred_id(ModeInfo, PredId),
|
|
mode_info_get_proc_id(ModeInfo, ProcId),
|
|
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
|
|
_PredInfo, ProcInfo),
|
|
proc_info_get_rtti_varmaps(ProcInfo, RttiVarMaps),
|
|
|
|
% Call polymorphism.unification_typeinfos to add the appropriate
|
|
% type-info and type-class-info variables to the nonlocals
|
|
% and to the unification.
|
|
|
|
( GoalExpr0 = unify(X, Y, Mode, Unification0, FinalUnifyContext) ->
|
|
unification_typeinfos_rtti_varmaps(Type, RttiVarMaps,
|
|
Unification0, Unification, GoalInfo2, GoalInfo),
|
|
GoalExpr = unify(X, Y, Mode, Unification, FinalUnifyContext)
|
|
;
|
|
unexpected(this_file, "modecheck_unify.create_var_var_unification")
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% categorize_unify_var_var works out which category a unification
|
|
% between a variable and another variable expression is - whether it is
|
|
% an assignment, a simple test or a complicated unify.
|
|
%
|
|
:- pred categorize_unify_var_var(mer_mode::in, mer_mode::in,
|
|
is_live::in, is_live::in, prog_var::in,
|
|
prog_var::in, determinism::in, unify_context::in, hlds_goal_info::in,
|
|
vartypes::in, unification::in, hlds_goal_expr::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
categorize_unify_var_var(ModeOfX, ModeOfY, LiveX, LiveY, X, Y, Det,
|
|
UnifyContext, GoalInfo, VarTypes, Unification0, Unify, !ModeInfo) :-
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
(
|
|
mode_is_output(ModuleInfo0, ModeOfX)
|
|
->
|
|
Unification = assign(X, Y)
|
|
;
|
|
mode_is_output(ModuleInfo0, ModeOfY)
|
|
->
|
|
Unification = assign(Y, X)
|
|
;
|
|
mode_is_unused(ModuleInfo0, ModeOfX),
|
|
mode_is_unused(ModuleInfo0, ModeOfY)
|
|
->
|
|
% For free-free unifications, we pretend for a moment that they are
|
|
% an assignment to the dead variable - they will then be optimized
|
|
% away.
|
|
(
|
|
LiveX = is_dead,
|
|
Unification = assign(X, Y)
|
|
;
|
|
LiveX = is_live,
|
|
(
|
|
LiveY = is_dead,
|
|
Unification = assign(Y, X)
|
|
;
|
|
LiveY = is_live,
|
|
unexpected(this_file,
|
|
"categorize_unify_var_var: free-free unify!")
|
|
)
|
|
)
|
|
;
|
|
% Check for unreachable unifications.
|
|
( mode_get_insts(ModuleInfo0, ModeOfX, not_reached, _)
|
|
; mode_get_insts(ModuleInfo0, ModeOfY, not_reached, _)
|
|
)
|
|
->
|
|
% For these, we can generate any old junk here --
|
|
% we just need to avoid calling modecheck_complicated_unify,
|
|
% since that might abort.
|
|
|
|
Unification = simple_test(X, Y)
|
|
;
|
|
map.lookup(VarTypes, X, Type),
|
|
(
|
|
type_is_atomic(ModuleInfo0, Type),
|
|
not type_has_user_defined_equality_pred(ModuleInfo0, Type, _)
|
|
->
|
|
Unification = simple_test(X, Y)
|
|
;
|
|
modecheck_complicated_unify(X, Y, Type, ModeOfX, ModeOfY, Det,
|
|
UnifyContext, Unification0, Unification, !ModeInfo)
|
|
)
|
|
),
|
|
|
|
% Optimize away unifications with dead variables and simple tests that
|
|
% cannot fail by replacing them with `true'. (The optimization of simple
|
|
% tests is necessary because otherwise determinism analysis assumes they
|
|
% can fail. The optimization of assignments to dead variables may be
|
|
% necessary to stop the code generator from getting confused.)
|
|
%
|
|
% Optimize away unifications which always fail by replacing them with
|
|
% `fail'.
|
|
(
|
|
Unification = assign(AssignTarget, AssignSource),
|
|
mode_info_var_is_live(!.ModeInfo, AssignTarget, is_dead)
|
|
->
|
|
Unify = conj(plain_conj, []),
|
|
record_optimize_away(GoalInfo, AssignTarget, AssignSource, !ModeInfo)
|
|
;
|
|
Unification = simple_test(TestVar1, TestVar2),
|
|
Det = detism_det
|
|
->
|
|
Unify = conj(plain_conj, []),
|
|
record_optimize_away(GoalInfo, TestVar1, TestVar2, !ModeInfo)
|
|
;
|
|
Det = detism_failure
|
|
->
|
|
% This optimisation is safe because the only way that we can analyse
|
|
% a unification as having no solutions is that the unification
|
|
% always fails.
|
|
%
|
|
% Unifying two preds is not erroneous as far as the
|
|
% mode checker is concerned, but a mode _error_.
|
|
Unify = disj([]),
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
|
|
module_info_get_globals(ModuleInfo, Globals),
|
|
globals.lookup_bool_option(Globals, warn_unification_cannot_succeed,
|
|
WarnCannotSucceed),
|
|
(
|
|
WarnCannotSucceed = yes,
|
|
mode_get_insts(ModuleInfo0, ModeOfX, InstOfX, _),
|
|
mode_get_insts(ModuleInfo0, ModeOfY, InstOfY, _),
|
|
mode_info_get_pred_id(!.ModeInfo, PredId),
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
pred_info_get_origin(PredInfo, Origin),
|
|
should_report_mode_warning_for_pred_origin(Origin, ReportWarning),
|
|
(
|
|
ReportWarning = yes,
|
|
Warning = cannot_succeed_var_var(X, Y, InstOfX, InstOfY),
|
|
mode_info_warning(Warning, !ModeInfo)
|
|
;
|
|
ReportWarning = no
|
|
)
|
|
;
|
|
WarnCannotSucceed = no
|
|
)
|
|
;
|
|
Unify = unify(X, rhs_var(Y), ModeOfX - ModeOfY,
|
|
Unification, UnifyContext)
|
|
).
|
|
|
|
% If we optimize away a singleton variable in a unification in one branch
|
|
% of e.g. a switch, it is possible that the same variable is a singleton
|
|
% in another branch, but cannot be optimized away because it is bound in
|
|
% a call (which cannot be optimized away). In such cases, we must make sure
|
|
% that we call requantification to delete the variable from the nonlocals
|
|
% set of the switch, because otherwise, the arms of the switch would
|
|
% disagree on which nonlocals are bound.
|
|
%
|
|
:- pred record_optimize_away(hlds_goal_info::in, prog_var::in, prog_var::in,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
record_optimize_away(GoalInfo, Var1, Var2, !ModeInfo) :-
|
|
NonLocals = goal_info_get_nonlocals(GoalInfo),
|
|
(
|
|
set.member(Var1, NonLocals),
|
|
set.member(Var2, NonLocals)
|
|
->
|
|
true
|
|
;
|
|
mode_info_need_to_requantify(!ModeInfo)
|
|
).
|
|
|
|
% Modecheck_complicated_unify does some extra checks that are needed
|
|
% for mode-checking complicated unifications.
|
|
%
|
|
:- pred modecheck_complicated_unify(prog_var::in, prog_var::in,
|
|
mer_type::in, mer_mode::in, mer_mode::in, determinism::in,
|
|
unify_context::in, unification::in, unification::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
modecheck_complicated_unify(X, Y, Type, ModeOfX, ModeOfY, Det, UnifyContext,
|
|
Unification0, Unification, !ModeInfo) :-
|
|
% Build up the unification.
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo0),
|
|
mode_get_insts(ModuleInfo0, ModeOfX, InitialInstX, FinalInstX),
|
|
mode_get_insts(ModuleInfo0, ModeOfY, InitialInstY, FinalInstY),
|
|
UniMode = ((InitialInstX - InitialInstY) -> (FinalInstX - FinalInstY)),
|
|
determinism_components(Det, CanFail, _),
|
|
( Unification0 = complicated_unify(_, _, UnifyTypeInfoVars0) ->
|
|
UnifyTypeInfoVars = UnifyTypeInfoVars0
|
|
;
|
|
unexpected(this_file, "modecheck_complicated_unify")
|
|
),
|
|
Unification = complicated_unify(UniMode, CanFail, UnifyTypeInfoVars),
|
|
|
|
% Check that all the type_info or type_class_info variables used
|
|
% by the polymorphic unification are ground.
|
|
(
|
|
% Optimize common case.
|
|
UnifyTypeInfoVars = []
|
|
;
|
|
UnifyTypeInfoVars = [_ | _],
|
|
list.length(UnifyTypeInfoVars, NumTypeInfoVars),
|
|
list.duplicate(NumTypeInfoVars, ground(shared, none), ExpectedInsts),
|
|
mode_info_set_call_context(call_context_unify(UnifyContext), !ModeInfo),
|
|
InitialArgNum = 0,
|
|
modecheck_var_has_inst_list_no_exact_match(UnifyTypeInfoVars,
|
|
ExpectedInsts, InitialArgNum, _InstVarSub, !ModeInfo),
|
|
% we can ignore _InstVarSub since type_info variables
|
|
% should not have variable insts.
|
|
mode_info_unset_call_context(!ModeInfo)
|
|
),
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo3),
|
|
(
|
|
mode_info_get_errors(!.ModeInfo, Errors),
|
|
Errors = [_ | _]
|
|
->
|
|
true
|
|
;
|
|
% Check that we're not trying to do a polymorphic unification
|
|
% in a mode other than (in, in).
|
|
% [Actually we also allow `any' insts, since the (in, in)
|
|
% mode of unification for types which have `any' insts must
|
|
% also be able to handle (in(any), in(any)) unifications.]
|
|
Type = type_variable(_, _),
|
|
\+ inst_is_ground_or_any(ModuleInfo3, InitialInstX)
|
|
->
|
|
set.singleton_set(WaitingVars, X),
|
|
mode_info_error(WaitingVars, mode_error_poly_unify(X, InitialInstX),
|
|
!ModeInfo)
|
|
;
|
|
Type = type_variable(_, _),
|
|
\+ inst_is_ground_or_any(ModuleInfo3, InitialInstY)
|
|
->
|
|
set.singleton_set(WaitingVars, Y),
|
|
mode_info_error(WaitingVars, mode_error_poly_unify(Y, InitialInstY),
|
|
!ModeInfo)
|
|
;
|
|
|
|
% Check that we're not trying to do a higher-order unification.
|
|
type_is_higher_order_details(Type, _, PredOrFunc, _, _)
|
|
->
|
|
% We do not want to report this as an error if it occurs in a
|
|
% compiler-generated predicate - instead, we delay the error
|
|
% until runtime so that it only occurs if the compiler-generated
|
|
% predicate gets called. not_reached is considered bound, so the
|
|
% error message would be spurious if the instmap is unreachable.
|
|
mode_info_get_pred_id(!.ModeInfo, PredId),
|
|
module_info_pred_info(ModuleInfo3, PredId, PredInfo),
|
|
mode_info_get_instmap(!.ModeInfo, InstMap0),
|
|
(
|
|
( is_unify_or_compare_pred(PredInfo)
|
|
; instmap.is_unreachable(InstMap0)
|
|
)
|
|
->
|
|
true
|
|
;
|
|
set.init(WaitingVars),
|
|
mode_info_error(WaitingVars,
|
|
mode_error_unify_pred(X, error_at_var(Y), Type, PredOrFunc),
|
|
!ModeInfo)
|
|
)
|
|
;
|
|
% Ensure that we will generate code for the unification procedure
|
|
% that will be used to implement this complicated unification.
|
|
type_to_ctor_and_args(Type, TypeCtor, _)
|
|
->
|
|
mode_info_get_context(!.ModeInfo, Context),
|
|
mode_info_get_instvarset(!.ModeInfo, InstVarSet),
|
|
UnifyProcId = unify_proc_id(TypeCtor, UniMode),
|
|
unify_proc.request_unify(UnifyProcId, InstVarSet,
|
|
Det, Context, ModuleInfo3, ModuleInfo),
|
|
mode_info_set_module_info(ModuleInfo, !ModeInfo)
|
|
;
|
|
true
|
|
).
|
|
|
|
% Categorize_unify_var_lambda works out which category a unification
|
|
% between a variable and a lambda expression is - whether it is a
|
|
% construction unification or a deconstruction. It also works out
|
|
% whether it will be deterministic or semideterministic.
|
|
%
|
|
:- pred categorize_unify_var_lambda(mer_mode::in, list(mer_mode)::in,
|
|
prog_var::in, list(prog_var)::in, pred_or_func::in,
|
|
unify_rhs::in, unify_rhs::out, unification::in, unification::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
categorize_unify_var_lambda(ModeOfX, ArgModes0, X, ArgVars, PredOrFunc,
|
|
RHS0, RHS, Unification0, Unification, !ModeInfo) :-
|
|
% If we are re-doing mode analysis, preserve the existing cons_id.
|
|
list.length(ArgVars, Arity),
|
|
(
|
|
Unification0 = construct(_, ConsIdPrime, _, _, _, _, SubInfo0),
|
|
(
|
|
SubInfo0 = construct_sub_info(MaybeTakeAddr, _MaybeSize),
|
|
expect(unify(MaybeTakeAddr, no), this_file,
|
|
"categorize_unify_var_lambda: take_addr")
|
|
;
|
|
SubInfo0 = no_construct_sub_info
|
|
),
|
|
SubInfo = SubInfo0,
|
|
ConsId = ConsIdPrime
|
|
;
|
|
Unification0 = deconstruct(_, ConsIdPrime, _, _, _, _),
|
|
SubInfo = no_construct_sub_info,
|
|
ConsId = ConsIdPrime
|
|
;
|
|
( Unification0 = assign(_, _)
|
|
; Unification0 = simple_test(_, _)
|
|
; Unification0 = complicated_unify(_, _, _)
|
|
),
|
|
% The real cons_id will be computed by lambda.m;
|
|
% we just put in a dummy one for now.
|
|
SubInfo = no_construct_sub_info,
|
|
ConsId = cons(unqualified("__LambdaGoal__"), Arity)
|
|
),
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
|
|
modes_to_uni_modes(ModuleInfo, ArgModes0, ArgModes0, ArgModes),
|
|
mode_info_get_instmap(!.ModeInfo, InstMap),
|
|
( mode_is_output(ModuleInfo, ModeOfX) ->
|
|
(
|
|
% If pred_consts are present, lambda expansion has already been
|
|
% done. Rerunning mode analysis should not produce a lambda_goal
|
|
% which cannot be directly converted back into a higher-order
|
|
% predicate constant. If the instmap is not reachable, the call
|
|
% may have been handled as an implied mode, since not_reached
|
|
% is considered to be bound. In this case the lambda_goal may
|
|
% not be converted back to a predicate constant, but that doesn't
|
|
% matter since the code will be pruned away later by simplify.m.
|
|
ConsId = pred_const(ShroudedPredProcId, EvalMethod),
|
|
instmap.is_reachable(InstMap)
|
|
->
|
|
proc(PredId, ProcId) =
|
|
unshroud_pred_proc_id(ShroudedPredProcId),
|
|
(
|
|
RHS0 = rhs_lambda_goal(_, _, EvalMethod, _, _, _, _, Goal),
|
|
Goal = hlds_goal(plain_call(PredId, ProcId, _, _, _, _), _)
|
|
->
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
PredModule = pred_info_module(PredInfo),
|
|
PredName = pred_info_name(PredInfo),
|
|
RHS = rhs_functor(cons(qualified(PredModule, PredName), Arity),
|
|
no, ArgVars)
|
|
;
|
|
unexpected(this_file,
|
|
"categorize_unify_var_lambda - reintroduced lambda goal")
|
|
)
|
|
;
|
|
RHS = RHS0
|
|
),
|
|
Unification = construct(X, ConsId, ArgVars, ArgModes,
|
|
construct_dynamically, cell_is_unique, SubInfo)
|
|
; instmap.is_reachable(InstMap) ->
|
|
% If it is a deconstruction, it is a mode error.
|
|
% The error message would be incorrect in unreachable code,
|
|
% since not_reached is considered bound.
|
|
set.init(WaitingVars),
|
|
mode_info_get_var_types(!.ModeInfo, VarTypes0),
|
|
map.lookup(VarTypes0, X, Type),
|
|
mode_info_error(WaitingVars,
|
|
mode_error_unify_pred(X, error_at_lambda(ArgVars, ArgModes0),
|
|
Type, PredOrFunc),
|
|
!ModeInfo),
|
|
% Return any old garbage.
|
|
Unification = Unification0,
|
|
RHS = RHS0
|
|
;
|
|
Unification = Unification0,
|
|
RHS = RHS0
|
|
).
|
|
|
|
% Categorize_unify_var_functor works out which category a unification
|
|
% between a variable and a functor is - whether it is a construction
|
|
% unification or a deconstruction. It also works out whether it will be
|
|
% deterministic or semideterministic.
|
|
%
|
|
:- pred categorize_unify_var_functor(mer_mode::in, list(mer_mode)::in,
|
|
list(mer_mode)::in, prog_var::in, cons_id::in, list(prog_var)::in,
|
|
vartypes::in, unify_context::in,
|
|
unification::in, unification::out,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
categorize_unify_var_functor(ModeOfX, ModeOfXArgs, ArgModes0,
|
|
X, NewConsId, ArgVars, VarTypes, UnifyContext,
|
|
Unification0, Unification, !ModeInfo) :-
|
|
mode_info_get_module_info(!.ModeInfo, ModuleInfo),
|
|
map.lookup(VarTypes, X, TypeOfX),
|
|
% If we are re-doing mode analysis, preserve the existing cons_id.
|
|
(
|
|
Unification0 = construct(_, ConsIdPrime, _, _, _, _, SubInfo0),
|
|
(
|
|
SubInfo0 = construct_sub_info(MaybeTakeAddr, _MaybeSize0),
|
|
expect(unify(MaybeTakeAddr, no), this_file,
|
|
"categorize_unify_var_functor: take_addr")
|
|
;
|
|
SubInfo0 = no_construct_sub_info
|
|
),
|
|
SubInfo = SubInfo0,
|
|
ConsId = ConsIdPrime
|
|
;
|
|
Unification0 = deconstruct(_, ConsIdPrime, _, _, _, _),
|
|
SubInfo = no_construct_sub_info,
|
|
ConsId = ConsIdPrime
|
|
;
|
|
( Unification0 = assign(_, _)
|
|
; Unification0 = simple_test(_, _)
|
|
; Unification0 = complicated_unify(_, _, _)
|
|
),
|
|
SubInfo = no_construct_sub_info,
|
|
ConsId = NewConsId
|
|
),
|
|
modes_to_uni_modes(ModuleInfo, ModeOfXArgs, ArgModes0, ArgModes),
|
|
( mode_is_output(ModuleInfo, ModeOfX) ->
|
|
% It is a construction.
|
|
Unification = construct(X, ConsId, ArgVars, ArgModes,
|
|
construct_dynamically, cell_is_unique, SubInfo),
|
|
|
|
% For existentially quantified data types, check that any type_info
|
|
% or type_class_info variables in the construction are ground.
|
|
check_type_info_args_are_ground(ArgVars, VarTypes,
|
|
UnifyContext, !ModeInfo)
|
|
;
|
|
% It is a deconstruction.
|
|
(
|
|
% If the variable was already known to be bound to a single
|
|
% particular functor, then the unification either always succeeds
|
|
% or always fails. In the latter case, the final inst will be
|
|
% `not_reached' or `bound([])'. So if both the initial and final
|
|
% inst are `bound([_])', then the unification must be
|
|
% deterministic.
|
|
mode_get_insts(ModuleInfo, ModeOfX, InitialInst0, FinalInst0),
|
|
inst_expand(ModuleInfo, InitialInst0, InitialInst),
|
|
inst_expand(ModuleInfo, FinalInst0, FinalInst),
|
|
InitialInst = bound(_, [_]),
|
|
FinalInst = bound(_, [_])
|
|
->
|
|
CanFail = cannot_fail
|
|
;
|
|
% If the type has only one constructor, then the unification
|
|
% cannot fail.
|
|
type_constructors(TypeOfX, ModuleInfo, Constructors),
|
|
Constructors = [_]
|
|
->
|
|
CanFail = cannot_fail
|
|
;
|
|
% Otherwise, it can fail.
|
|
CanFail = can_fail,
|
|
mode_info_get_instmap(!.ModeInfo, InstMap0),
|
|
(
|
|
type_is_higher_order_details(TypeOfX, _, PredOrFunc, _, _),
|
|
instmap.is_reachable(InstMap0)
|
|
->
|
|
set.init(WaitingVars),
|
|
mode_info_error(WaitingVars,
|
|
mode_error_unify_pred(X, error_at_functor(ConsId, ArgVars),
|
|
TypeOfX, PredOrFunc),
|
|
!ModeInfo)
|
|
;
|
|
true
|
|
)
|
|
),
|
|
Unification = deconstruct(X, ConsId, ArgVars, ArgModes, CanFail,
|
|
cannot_cgc)
|
|
).
|
|
|
|
% Check that any type_info or type_class_info variables
|
|
% in the argument list are ground.
|
|
%
|
|
:- pred check_type_info_args_are_ground(list(prog_var)::in,
|
|
vartypes::in, unify_context::in,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
check_type_info_args_are_ground([], _VarTypes, _UnifyContext, !ModeInfo).
|
|
check_type_info_args_are_ground([ArgVar | ArgVars], VarTypes, UnifyContext,
|
|
!ModeInfo) :-
|
|
(
|
|
map.lookup(VarTypes, ArgVar, ArgType),
|
|
is_introduced_type_info_type(ArgType)
|
|
->
|
|
mode_info_set_call_context(call_context_unify(UnifyContext),
|
|
!ModeInfo),
|
|
InitialArgNum = 0,
|
|
modecheck_var_has_inst_list_no_exact_match([ArgVar],
|
|
[ground(shared, none)], InitialArgNum, _InstVarSub, !ModeInfo),
|
|
check_type_info_args_are_ground(ArgVars, VarTypes, UnifyContext,
|
|
!ModeInfo),
|
|
mode_info_unset_call_context(!ModeInfo)
|
|
;
|
|
true
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred bind_args(mer_inst::in, list(prog_var)::in, list(maybe(mer_inst))::in,
|
|
mode_info::in, mode_info::out) is det.
|
|
|
|
bind_args(Inst, Args, UnifyArgInsts, !ModeInfo) :-
|
|
( try_bind_args(Inst, Args, UnifyArgInsts, !ModeInfo) ->
|
|
true
|
|
;
|
|
unexpected(this_file, "bind_args: try_bind_args failed")
|
|
).
|
|
|
|
:- pred try_bind_args(mer_inst::in, list(prog_var)::in,
|
|
list(maybe(mer_inst))::in, mode_info::in, mode_info::out) is semidet.
|
|
|
|
try_bind_args(not_reached, _, _, !ModeInfo) :-
|
|
instmap.init_unreachable(InstMap),
|
|
mode_info_set_instmap(InstMap, !ModeInfo).
|
|
try_bind_args(ground(Uniq, none), Args, UnifyArgInsts, !ModeInfo) :-
|
|
ground_args(Uniq, Args, UnifyArgInsts, !ModeInfo).
|
|
try_bind_args(bound(_Uniq, List), Args, UnifyArgInsts, !ModeInfo) :-
|
|
(
|
|
List = [],
|
|
% The code is unreachable.
|
|
instmap.init_unreachable(InstMap),
|
|
mode_info_set_instmap(InstMap, !ModeInfo)
|
|
;
|
|
List = [_ | _],
|
|
List = [bound_functor(_, InstList)],
|
|
try_bind_args_2(Args, InstList, UnifyArgInsts, !ModeInfo)
|
|
).
|
|
try_bind_args(constrained_inst_vars(_, Inst), Args, UnifyArgInsts,
|
|
!ModeInfo) :-
|
|
try_bind_args(Inst, Args, UnifyArgInsts, !ModeInfo).
|
|
|
|
:- pred try_bind_args_2(list(prog_var)::in, list(mer_inst)::in,
|
|
list(maybe(mer_inst))::in, mode_info::in, mode_info::out) is semidet.
|
|
|
|
try_bind_args_2([], [], [], !ModeInfo).
|
|
try_bind_args_2([Arg | Args], [Inst | Insts], [UnifyArgInst | UnifyArgInsts],
|
|
!ModeInfo) :-
|
|
modecheck_set_var_inst(Arg, Inst, UnifyArgInst, !ModeInfo),
|
|
try_bind_args_2(Args, Insts, UnifyArgInsts, !ModeInfo).
|
|
|
|
:- pred ground_args(uniqueness::in, list(prog_var)::in,
|
|
list(maybe(mer_inst))::in, mode_info::in, mode_info::out) is semidet.
|
|
|
|
ground_args(_Uniq, [], [], !ModeInfo).
|
|
ground_args(Uniq, [Arg | Args], [UnifyArgInst | UnifyArgInsts], !ModeInfo) :-
|
|
modecheck_set_var_inst(Arg, ground(Uniq, none), UnifyArgInst, !ModeInfo),
|
|
ground_args(Uniq, Args, UnifyArgInsts, !ModeInfo).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% get_mode_of_args(FinalInst, InitialArgInsts, ArgModes):
|
|
%
|
|
% For a var-functor unification, given the final inst of the var
|
|
% and the initial insts of the functor arguments, compute the modes
|
|
% of the functor arguments.
|
|
%
|
|
:- pred get_mode_of_args(mer_inst::in, list(mer_inst)::in, list(mer_mode)::out)
|
|
is semidet.
|
|
|
|
get_mode_of_args(not_reached, ArgInsts, ArgModes) :-
|
|
mode_set_args(ArgInsts, not_reached, ArgModes).
|
|
get_mode_of_args(any(Uniq), ArgInsts, ArgModes) :-
|
|
mode_set_args(ArgInsts, any(Uniq), ArgModes).
|
|
get_mode_of_args(ground(Uniq, none), ArgInsts, ArgModes) :-
|
|
mode_set_args(ArgInsts, ground(Uniq, none), ArgModes).
|
|
get_mode_of_args(bound(_Uniq, List), ArgInstsA, ArgModes) :-
|
|
(
|
|
List = [],
|
|
% The code is unreachable.
|
|
mode_set_args(ArgInstsA, not_reached, ArgModes)
|
|
;
|
|
List = [_ | _],
|
|
List = [bound_functor(_Name, ArgInstsB)],
|
|
get_mode_of_args_2(ArgInstsA, ArgInstsB, ArgModes)
|
|
).
|
|
get_mode_of_args(constrained_inst_vars(_, Inst), ArgInsts, ArgModes) :-
|
|
get_mode_of_args(Inst, ArgInsts, ArgModes).
|
|
|
|
:- pred get_mode_of_args_2(list(mer_inst)::in, list(mer_inst)::in,
|
|
list(mer_mode)::out) is semidet.
|
|
|
|
get_mode_of_args_2([], [], []).
|
|
get_mode_of_args_2([InstA | InstsA], [InstB | InstsB], [Mode | Modes]) :-
|
|
Mode = (InstA -> InstB),
|
|
get_mode_of_args_2(InstsA, InstsB, Modes).
|
|
|
|
:- pred mode_set_args(list(mer_inst)::in, mer_inst::in, list(mer_mode)::out)
|
|
is det.
|
|
|
|
mode_set_args([], _, []).
|
|
mode_set_args([Inst | Insts], FinalInst, [Mode | Modes]) :-
|
|
Mode = (Inst -> FinalInst),
|
|
mode_set_args(Insts, FinalInst, Modes).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- func init_instmap_may_have_subtype(mode_info) = bool.
|
|
|
|
init_instmap_may_have_subtype(ModeInfo) = MayHaveSubtype :-
|
|
mode_info_get_initial_instmap(ModeInfo, InitialInstMap),
|
|
instmap.to_assoc_list(InitialInstMap, InitVarsInsts),
|
|
assoc_list.values(InitVarsInsts, InitInsts),
|
|
mode_info_get_module_info(ModeInfo, ModuleInfo),
|
|
MayRestrictList =
|
|
list.map(inst_may_restrict_cons_ids(ModuleInfo), InitInsts),
|
|
bool.or_list(MayRestrictList, MayHaveSubtype).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- func this_file = string.
|
|
|
|
this_file = "modecheck_unify.m".
|
|
|
|
%-----------------------------------------------------------------------------%
|