Files
mercury/compiler/cse_detection.m
Julien Fischer eb25a143e8 Replace some switches with if-then-elses.
Estimated hours taken: 0.5
Branches: main

compiler/cse_detection.m:
compiler/module_qual.m:
compiler/simplify.m:
compiler/switch_detection.m:
compiler/unused_args.m:
	Replace some switches with if-then-elses.

	Minor formatting improvements, break overlong lines etc.
2007-11-19 06:11:17 +00:00

871 lines
35 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1995-2007 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: cse_detection.m.
% Main author: zs.
% Much of the code is based on switch_detection.m by fjh.
%
% Common subexpression detection - hoist common subexpression goals out of
% branched structures. This can enable us to find more indexing opportunities
% and hence can make the code more deterministic.
% This code is switched on/off with the `--common-goal' option.
%
%-----------------------------------------------------------------------------%
:- module check_hlds.cse_detection.
:- interface.
:- import_module hlds.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_pred.
:- import_module io.
:- pred detect_cse(module_info::in, module_info::out, io::di, io::uo) is det.
:- pred detect_cse_in_proc(proc_id::in, pred_id::in,
module_info::in, module_info::out, io::di, io::uo) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds.inst_match.
:- import_module check_hlds.modes.
:- import_module check_hlds.switch_detection.
:- import_module check_hlds.switch_detection.
:- import_module check_hlds.type_util.
:- import_module hlds.goal_util.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_out.
:- import_module hlds.hlds_rtti.
:- import_module hlds.instmap.
:- import_module hlds.quantification.
:- import_module libs.
:- import_module libs.compiler_util.
:- import_module libs.globals.
:- import_module libs.options.
:- import_module parse_tree.
:- import_module parse_tree.error_util.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_out.
:- import_module parse_tree.prog_type_subst.
:- import_module assoc_list.
:- import_module bool.
:- import_module int.
:- import_module list.
:- import_module map.
:- import_module pair.
:- import_module set.
:- import_module string.
:- import_module svmap.
:- import_module term.
:- import_module varset.
%-----------------------------------------------------------------------------%
detect_cse(!ModuleInfo, !IO) :-
% Traverse the module structure, calling `detect_cse_in_goal'
% for each procedure body.
module_info_predids(PredIds, !ModuleInfo),
detect_cse_in_preds(PredIds, !ModuleInfo, !IO).
:- pred detect_cse_in_preds(list(pred_id)::in,
module_info::in, module_info::out, io::di, io::uo) is det.
detect_cse_in_preds([], !ModuleInfo, !IO).
detect_cse_in_preds([PredId | PredIds], !ModuleInfo, !IO) :-
module_info_preds(!.ModuleInfo, PredTable),
map.lookup(PredTable, PredId, PredInfo),
detect_cse_in_pred(PredId, PredInfo, !ModuleInfo, !IO),
detect_cse_in_preds(PredIds, !ModuleInfo, !IO).
:- pred detect_cse_in_pred(pred_id::in, pred_info::in,
module_info::in, module_info::out, io::di, io::uo) is det.
detect_cse_in_pred(PredId, PredInfo0, !ModuleInfo, !IO) :-
ProcIds = pred_info_non_imported_procids(PredInfo0),
detect_cse_in_procs(ProcIds, PredId, !ModuleInfo, !IO).
:- pred detect_cse_in_procs(list(proc_id)::in, pred_id::in,
module_info::in, module_info::out, io::di, io::uo) is det.
detect_cse_in_procs([], _PredId, !ModuleInfo, !IO).
detect_cse_in_procs([ProcId | ProcIds], PredId, !ModuleInfo, !IO) :-
detect_cse_in_proc(ProcId, PredId, !ModuleInfo, !IO),
detect_cse_in_procs(ProcIds, PredId, !ModuleInfo, !IO).
detect_cse_in_proc(ProcId, PredId, !ModuleInfo, !IO) :-
detect_cse_in_proc_2(ProcId, PredId, Redo, !ModuleInfo),
globals.io_lookup_bool_option(very_verbose, VeryVerbose, !IO),
(
VeryVerbose = yes,
io.write_string("% Detecting common deconstructions for ", !IO),
hlds_out.write_pred_id(!.ModuleInfo, PredId, !IO),
io.write_string("\n", !IO)
;
VeryVerbose = no
),
globals.io_lookup_bool_option(detailed_statistics, Statistics, !IO),
maybe_report_stats(Statistics, !IO),
(
Redo = no
;
Redo = yes,
(
VeryVerbose = yes,
io.write_string("% Repeating mode check for ", !IO),
hlds_out.write_pred_id(!.ModuleInfo, PredId, !IO),
io.write_string("\n", !IO)
;
VeryVerbose = no
),
modecheck_proc(ProcId, PredId, !ModuleInfo, ErrorSpecs, _Changed, !IO),
maybe_report_stats(Statistics, !IO),
module_info_get_globals(!.ModuleInfo, Globals),
write_error_specs(ErrorSpecs, Globals, 0, _NumWarnings, 0, NumErrors,
!IO),
module_info_incr_num_errors(NumErrors, !ModuleInfo),
( NumErrors > 0 ->
unexpected(this_file, "mode check fails when repeated")
;
true
),
(
VeryVerbose = yes,
io.write_string("% Repeating switch detection for ", !IO),
hlds_out.write_pred_id(!.ModuleInfo, PredId, !IO),
io.write_string("\n", !IO)
;
VeryVerbose = no
),
detect_switches_in_proc(ProcId, PredId, !ModuleInfo),
maybe_report_stats(Statistics, !IO),
(
VeryVerbose = yes,
io.write_string("% Repeating common " ++
"deconstruction detection for ", !IO),
hlds_out.write_pred_id(!.ModuleInfo, PredId, !IO),
io.write_string("\n", !IO)
;
VeryVerbose = no
),
detect_cse_in_proc(ProcId, PredId, !ModuleInfo, !IO)
).
:- type cse_info
---> cse_info(
varset :: prog_varset,
vartypes :: vartypes,
rtti_varmaps :: rtti_varmaps,
module_info :: module_info
).
:- pred detect_cse_in_proc_2(proc_id::in, pred_id::in, bool::out,
module_info::in, module_info::out) is det.
detect_cse_in_proc_2(ProcId, PredId, Redo, ModuleInfo0, ModuleInfo) :-
module_info_preds(ModuleInfo0, PredTable0),
map.lookup(PredTable0, PredId, PredInfo0),
pred_info_get_procedures(PredInfo0, ProcTable0),
map.lookup(ProcTable0, ProcId, ProcInfo0),
% To process each ProcInfo, we get the goal, initialize the instmap
% based on the modes of the head vars, and pass these to
% `detect_cse_in_goal'.
proc_info_get_goal(ProcInfo0, Goal0),
proc_info_get_initial_instmap(ProcInfo0, ModuleInfo0, InstMap0),
proc_info_get_varset(ProcInfo0, Varset0),
proc_info_get_vartypes(ProcInfo0, VarTypes0),
proc_info_get_rtti_varmaps(ProcInfo0, RttiVarMaps0),
CseInfo0 = cse_info(Varset0, VarTypes0, RttiVarMaps0, ModuleInfo0),
detect_cse_in_goal(Goal0, InstMap0, CseInfo0, CseInfo, Redo, Goal1),
(
Redo = no,
ModuleInfo = ModuleInfo0
;
Redo = yes,
% ModuleInfo should not be changed by detect_cse_in_goal.
CseInfo = cse_info(VarSet1, VarTypes1, RttiVarMaps1, _),
proc_info_get_headvars(ProcInfo0, HeadVars),
implicitly_quantify_clause_body(HeadVars, _Warnings,
Goal1, Goal, VarSet1, VarSet, VarTypes1, VarTypes,
RttiVarMaps1, RttiVarMaps),
proc_info_set_goal(Goal, ProcInfo0, ProcInfo1),
proc_info_set_varset(VarSet, ProcInfo1, ProcInfo2),
proc_info_set_vartypes(VarTypes, ProcInfo2, ProcInfo3),
proc_info_set_rtti_varmaps(RttiVarMaps, ProcInfo3, ProcInfo),
map.det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(ProcTable, PredInfo0, PredInfo),
map.det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(PredTable, ModuleInfo0, ModuleInfo)
).
%-----------------------------------------------------------------------------%
% Given a goal, and the instmap on entry to that goal,
% find disjunctions that contain common subexpressions
% and hoist these out of the disjunction. At the moment
% we only look for cses that are deconstruction unifications.
%
:- pred detect_cse_in_goal(hlds_goal::in, instmap::in, cse_info::in,
cse_info::out, bool::out, hlds_goal::out) is det.
detect_cse_in_goal(Goal0, InstMap0, !CseInfo, Redo, Goal) :-
detect_cse_in_goal_1(Goal0, InstMap0, !CseInfo, Redo, Goal, _InstMap).
% This version is the same as the above except that it returns
% the resulting instmap on exit from the goal, which is
% computed by applying the instmap delta specified in the
% goal's goalinfo.
%
:- pred detect_cse_in_goal_1(hlds_goal::in, instmap::in, cse_info::in,
cse_info::out, bool::out, hlds_goal::out, instmap::out) is det.
detect_cse_in_goal_1(hlds_goal(GoalExpr0, GoalInfo), InstMap0, !CseInfo, Redo,
hlds_goal(GoalExpr, GoalInfo), InstMap) :-
detect_cse_in_goal_2(GoalExpr0, GoalInfo, InstMap0, !CseInfo, Redo,
GoalExpr),
InstMapDelta = goal_info_get_instmap_delta(GoalInfo),
instmap.apply_instmap_delta(InstMap0, InstMapDelta, InstMap).
% Here we process each of the different sorts of goals.
%
:- pred detect_cse_in_goal_2(hlds_goal_expr::in, hlds_goal_info::in,
instmap::in, cse_info::in, cse_info::out, bool::out,
hlds_goal_expr::out) is det.
detect_cse_in_goal_2(Goal @ call_foreign_proc(_, _, _, _, _, _, _), _, _,
!CseInfo, no, Goal).
detect_cse_in_goal_2(Goal @ generic_call(_, _, _, _), _, _, !CseInfo,
no, Goal).
detect_cse_in_goal_2(Goal @ plain_call(_, _, _, _, _, _), _, _, !CseInfo,
no, Goal).
detect_cse_in_goal_2(unify(LHS, RHS0, Mode, Unify, UnifyContext), _, InstMap0,
!CseInfo, Redo, unify(LHS, RHS, Mode,Unify, UnifyContext)) :-
(
RHS0 = rhs_lambda_goal(Purity, PredOrFunc, EvalMethod, NonLocalVars,
Vars, Modes, Det, Goal0),
ModuleInfo = !.CseInfo ^ module_info,
instmap.pre_lambda_update(ModuleInfo, Vars, Modes, InstMap0, InstMap),
detect_cse_in_goal(Goal0, InstMap, !CseInfo, Redo, Goal),
RHS = rhs_lambda_goal(Purity, PredOrFunc, EvalMethod, NonLocalVars,
Vars, Modes, Det, Goal)
;
( RHS0 = rhs_var(_)
; RHS0 = rhs_functor(_, _, _)
),
RHS = RHS0,
Redo = no
).
detect_cse_in_goal_2(negation(Goal0), _GoalInfo, InstMap, !CseInfo, Redo,
negation(Goal)) :-
detect_cse_in_goal(Goal0, InstMap, !CseInfo, Redo, Goal).
detect_cse_in_goal_2(scope(Reason, Goal0), _GoalInfo, InstMap,
!CseInfo, Redo, scope(Reason, Goal)) :-
detect_cse_in_goal(Goal0, InstMap, !CseInfo, Redo, Goal).
detect_cse_in_goal_2(conj(ConjType, Goals0), _GoalInfo, InstMap, !CseInfo,
Redo, conj(ConjType, Goals)) :-
detect_cse_in_conj(Goals0, ConjType, InstMap, !CseInfo, Redo, Goals).
detect_cse_in_goal_2(disj(Goals0), GoalInfo, InstMap, !CseInfo, Redo, Goal) :-
(
Goals0 = [],
Redo = no,
Goal = disj([])
;
Goals0 = [_ | _],
NonLocals = goal_info_get_nonlocals(GoalInfo),
set.to_sorted_list(NonLocals, NonLocalsList),
detect_cse_in_disj(NonLocalsList, Goals0, GoalInfo,
InstMap, !CseInfo, Redo, Goal)
).
detect_cse_in_goal_2(switch(Var, CanFail, Cases0), GoalInfo, InstMap,
!CseInfo, Redo, Goal) :-
NonLocals = goal_info_get_nonlocals(GoalInfo),
set.to_sorted_list(NonLocals, NonLocalsList),
detect_cse_in_cases(NonLocalsList, Var, CanFail, Cases0, GoalInfo,
InstMap, !CseInfo, Redo, Goal).
detect_cse_in_goal_2(if_then_else(Vars, Cond0, Then0, Else0), GoalInfo,
InstMap, !CseInfo, Redo, Goal) :-
NonLocals = goal_info_get_nonlocals(GoalInfo),
set.to_sorted_list(NonLocals, NonLocalsList),
detect_cse_in_ite(NonLocalsList, Vars, Cond0, Then0, Else0, GoalInfo,
InstMap, !CseInfo, Redo, Goal).
detect_cse_in_goal_2(shorthand(_), _, _, _, _, _, _) :-
% These should have been expanded out by now.
unexpected(this_file, "detect_cse_in_goal_2: unexpected shorthand").
%-----------------------------------------------------------------------------%
:- pred detect_cse_in_conj(list(hlds_goal)::in, conj_type::in, instmap::in,
cse_info::in, cse_info::out, bool::out, list(hlds_goal)::out) is det.
detect_cse_in_conj([], _ConjType, _InstMap, !CseInfo, no, []).
detect_cse_in_conj([Goal0 | Goals0], ConjType, InstMap0, !CseInfo, Redo,
Goals) :-
detect_cse_in_goal_1(Goal0, InstMap0, !CseInfo, Redo1, Goal, InstMap1),
detect_cse_in_conj(Goals0, ConjType, InstMap1, !CseInfo, Redo2, TailGoals),
(
Goal = hlds_goal(conj(InnerConjType, ConjGoals), _),
ConjType = InnerConjType
->
Goals = ConjGoals ++ TailGoals
;
Goals = [Goal | TailGoals]
),
bool.or(Redo1, Redo2, Redo).
%-----------------------------------------------------------------------------%
% These are the interesting bits - we've found a non-empty branched
% structure, and we've got a list of the non-local variables of that
% structure. Now for each non-local variable, we check whether each
% branch matches that variable against the same functor.
%
:- pred detect_cse_in_disj(list(prog_var)::in, list(hlds_goal)::in,
hlds_goal_info::in, instmap::in, cse_info::in,
cse_info::out, bool::out, hlds_goal_expr::out) is det.
detect_cse_in_disj([], Goals0, _, InstMap, !CseInfo, Redo, disj(Goals)) :-
detect_cse_in_disj_2(Goals0, InstMap, !CseInfo, Redo, Goals).
detect_cse_in_disj([Var | Vars], Goals0, GoalInfo0, InstMap,
!CseInfo, Redo, GoalExpr) :-
(
instmap.lookup_var(InstMap, Var, VarInst0),
ModuleInfo = !.CseInfo ^ module_info,
% XXX we only need inst_is_bound, but leave this as it is
% until mode analysis can handle aliasing between free
% variables.
inst_is_ground_or_any(ModuleInfo, VarInst0),
common_deconstruct(Goals0, Var, !CseInfo, Unify,
FirstOldNew, LaterOldNew, Goals)
->
maybe_update_existential_data_structures(Unify,
FirstOldNew, LaterOldNew, !CseInfo),
GoalExpr = conj(plain_conj,
[Unify, hlds_goal(disj(Goals), GoalInfo0)]),
Redo = yes
;
detect_cse_in_disj(Vars, Goals0, GoalInfo0, InstMap,
!CseInfo, Redo, GoalExpr)
).
:- pred detect_cse_in_disj_2(list(hlds_goal)::in, instmap::in, cse_info::in,
cse_info::out, bool::out, list(hlds_goal)::out) is det.
detect_cse_in_disj_2([], _InstMap, !CseInfo, no, []).
detect_cse_in_disj_2([Goal0 | Goals0], InstMap0, !CseInfo, Redo,
[Goal | Goals]) :-
detect_cse_in_goal(Goal0, InstMap0, !CseInfo, Redo1, Goal),
detect_cse_in_disj_2(Goals0, InstMap0, !CseInfo, Redo2, Goals),
bool.or(Redo1, Redo2, Redo).
:- pred detect_cse_in_cases(list(prog_var)::in, prog_var::in, can_fail::in,
list(case)::in, hlds_goal_info::in, instmap::in,
cse_info::in, cse_info::out, bool::out, hlds_goal_expr::out) is det.
detect_cse_in_cases([], SwitchVar, CanFail, Cases0, _GoalInfo, InstMap,
!CseInfo, Redo, switch(SwitchVar, CanFail, Cases)) :-
detect_cse_in_cases_2(Cases0, InstMap, !CseInfo, Redo, Cases).
detect_cse_in_cases([Var | Vars], SwitchVar, CanFail, Cases0, GoalInfo,
InstMap, !CseInfo, Redo, GoalExpr) :-
(
Var \= SwitchVar,
instmap.lookup_var(InstMap, Var, VarInst0),
ModuleInfo = !.CseInfo ^ module_info,
% XXX We only need inst_is_bound, but leave this as it is until
% mode analysis can handle aliasing between free variables.
inst_is_ground_or_any(ModuleInfo, VarInst0),
common_deconstruct_cases(Cases0, Var, !CseInfo,
Unify, FirstOldNew, LaterOldNew, Cases)
->
maybe_update_existential_data_structures(Unify,
FirstOldNew, LaterOldNew, !CseInfo),
GoalExpr = conj(plain_conj,
[Unify, hlds_goal(switch(SwitchVar, CanFail, Cases), GoalInfo)]),
Redo = yes
;
detect_cse_in_cases(Vars, SwitchVar, CanFail, Cases0, GoalInfo,
InstMap, !CseInfo, Redo, GoalExpr)
).
:- pred detect_cse_in_cases_2(list(case)::in, instmap::in, cse_info::in,
cse_info::out, bool::out, list(case)::out) is det.
detect_cse_in_cases_2([], _, !CseInfo, no, []).
detect_cse_in_cases_2([Case0 | Cases0], InstMap, !CseInfo, Redo,
[Case | Cases]) :-
Case0 = case(Functor, Goal0),
detect_cse_in_goal(Goal0, InstMap, !CseInfo, Redo1, Goal),
Case = case(Functor, Goal),
detect_cse_in_cases_2(Cases0, InstMap, !CseInfo, Redo2, Cases),
bool.or(Redo1, Redo2, Redo).
:- pred detect_cse_in_ite(list(prog_var)::in, list(prog_var)::in,
hlds_goal::in, hlds_goal::in, hlds_goal::in, hlds_goal_info::in,
instmap::in, cse_info::in, cse_info::out, bool::out,
hlds_goal_expr::out) is det.
detect_cse_in_ite([], IfVars, Cond0, Then0, Else0, _, InstMap, !CseInfo,
Redo, if_then_else(IfVars, Cond, Then, Else)) :-
detect_cse_in_ite_2(Cond0, Then0, Else0, InstMap, !CseInfo, Redo,
Cond, Then, Else).
detect_cse_in_ite([Var | Vars], IfVars, Cond0, Then0, Else0, GoalInfo,
InstMap, !CseInfo, Redo, GoalExpr) :-
(
ModuleInfo = !.CseInfo ^ module_info,
instmap.lookup_var(InstMap, Var, VarInst0),
% XXX We only need inst_is_bound, but leave this as it is until
% mode analysis can handle aliasing between free variables.
inst_is_ground_or_any(ModuleInfo, VarInst0),
common_deconstruct([Then0, Else0], Var, !CseInfo,
Unify, FirstOldNew, LaterOldNew, Goals),
Goals = [Then, Else]
->
maybe_update_existential_data_structures(Unify,
FirstOldNew, LaterOldNew, !CseInfo),
IfGoal = hlds_goal(if_then_else(IfVars, Cond0, Then, Else), GoalInfo),
GoalExpr = conj(plain_conj, [Unify, IfGoal]),
Redo = yes
;
detect_cse_in_ite(Vars, IfVars, Cond0, Then0, Else0, GoalInfo,
InstMap, !CseInfo, Redo, GoalExpr)
).
:- pred detect_cse_in_ite_2(hlds_goal::in, hlds_goal::in, hlds_goal::in,
instmap::in, cse_info::in, cse_info::out, bool::out,
hlds_goal::out, hlds_goal::out, hlds_goal::out) is det.
detect_cse_in_ite_2(Cond0, Then0, Else0, InstMap0, !CseInfo, Redo,
Cond, Then, Else) :-
detect_cse_in_goal_1(Cond0, InstMap0, !CseInfo, Redo1, Cond, InstMap1),
detect_cse_in_goal(Then0, InstMap1, !CseInfo, Redo2, Then),
detect_cse_in_goal(Else0, InstMap0, !CseInfo, Redo3, Else),
bool.or(Redo1, Redo2, Redo12),
bool.or(Redo12, Redo3, Redo).
%-----------------------------------------------------------------------------%
% common_deconstruct(Goals0, Var, !CseInfo, Unify, Goals):
% input vars:
% Goals0 is a list of parallel goals in a branched structure
% (disjunction, if-then-else, or switch).
% Var is the variable we are looking for a common deconstruction on.
% !.CseInfo contains the original varset and type map.
% output vars:
% !:CseInfo has a varset and a type map reflecting the new variables
% we have introduced.
% Goals is the modified version of Goals0 after the common deconstruction
% has been hoisted out, with the new variables as the functor arguments.
% Unify is the unification that was hoisted out.
%
:- pred common_deconstruct(list(hlds_goal)::in, prog_var::in, cse_info::in,
cse_info::out, hlds_goal::out, assoc_list(prog_var)::out,
list(assoc_list(prog_var))::out, list(hlds_goal)::out) is semidet.
common_deconstruct(Goals0, Var, !CseInfo, Unify, FirstOldNew, LaterOldNew,
Goals) :-
common_deconstruct_2(Goals0, Var, before_candidate,
have_candidate(Unify, FirstOldNew, LaterOldNew), !CseInfo, Goals),
LaterOldNew = [_ | _].
:- pred common_deconstruct_2(list(hlds_goal)::in, prog_var::in,
cse_state::in, cse_state::out, cse_info::in, cse_info::out,
list(hlds_goal)::out) is semidet.
common_deconstruct_2([], _Var, !CseState, !CseInfo, []).
common_deconstruct_2([Goal0 | Goals0], Var, !CseState, !CseInfo,
[Goal | Goals]) :-
find_bind_var(Var, find_bind_var_for_cse_in_deconstruct, Goal0, Goal,
!CseState, !CseInfo, yes),
!.CseState = have_candidate(_, _, _),
common_deconstruct_2(Goals0, Var, !CseState, !CseInfo, Goals).
%-----------------------------------------------------------------------------%
:- pred common_deconstruct_cases(list(case)::in, prog_var::in,
cse_info::in, cse_info::out, hlds_goal::out, assoc_list(prog_var)::out,
list(assoc_list(prog_var))::out, list(case)::out) is semidet.
common_deconstruct_cases(Cases0, Var, !CseInfo, Unify,
FirstOldNew, LaterOldNew, Cases) :-
common_deconstruct_cases_2(Cases0, Var, before_candidate,
have_candidate(Unify, FirstOldNew, LaterOldNew), !CseInfo, Cases),
LaterOldNew = [_ | _].
:- pred common_deconstruct_cases_2(list(case)::in, prog_var::in,
cse_state::in, cse_state::out, cse_info::in, cse_info::out,
list(case)::out) is semidet.
common_deconstruct_cases_2([], _Var, !CseState, !CseInfo, []).
common_deconstruct_cases_2([case(ConsId, Goal0) | Cases0], Var,
!CseState, !CseInfo, [case(ConsId, Goal) | Cases]) :-
find_bind_var(Var, find_bind_var_for_cse_in_deconstruct, Goal0, Goal,
!CseState, !CseInfo, yes),
!.CseState = have_candidate(_, _, _),
common_deconstruct_cases_2(Cases0, Var, !CseState, !CseInfo, Cases).
%-----------------------------------------------------------------------------%
% This data structure represents the state of the search for
% deconstructions in all the branches of a branched control structure
% that deconstruct a given variable with the same functor.
% Initially, we don't know what unification we will hoist out, so the
% state is before_candidate. When we find a unification we want to
% hoist out, this fixes the functor, and the state is have_candidate.
% If we find that some branches unify that variable with some other
% functor, we have multiple_candidates, which means that we don't hoist
% out any of them. (Although our caller may try again with another
% variable.)
%
% The goal field contains the unification we are proposing to put
% before the branched control structure. The first_old_new field
% gives the mapping from argument variables in the old unification
% in the first branch to the freshly created variables in the goal
% being hoisted before the branched control structure. The
% later_old_new field contains the same information for the second
% and later branches.
:- type cse_state
---> before_candidate
; have_candidate(
goal :: hlds_goal,
first_old_new :: assoc_list(prog_var),
later_old_new :: list(assoc_list(prog_var))
)
; multiple_candidates.
:- pred find_bind_var_for_cse_in_deconstruct(prog_var::in, hlds_goal::in,
list(hlds_goal)::out, cse_state::in, cse_state::out,
cse_info::in, cse_info::out) is det.
find_bind_var_for_cse_in_deconstruct(Var, Goal0, Goals,
!CseState, !CseInfo) :-
(
!.CseState = before_candidate,
construct_common_unify(Var, Goal0, !CseInfo, OldNewVars,
HoistedGoal, Goals),
!:CseState = have_candidate(HoistedGoal, OldNewVars, [])
;
!.CseState = have_candidate(HoistedGoal,
FirstOldNewVars, LaterOldNewVars0),
Goal0 = hlds_goal(_, GoalInfo),
Context = goal_info_get_context(GoalInfo),
(
find_similar_deconstruct(HoistedGoal,
Goal0, Context, OldNewVars, Goals0)
->
Goals = Goals0,
LaterOldNewVars = [OldNewVars | LaterOldNewVars0],
!:CseState = have_candidate(HoistedGoal,
FirstOldNewVars, LaterOldNewVars)
;
Goals = [Goal0],
!:CseState = multiple_candidates
)
;
!.CseState = multiple_candidates,
Goals = [Goal0],
!:CseState = multiple_candidates
).
:- pred construct_common_unify(prog_var::in, hlds_goal::in,
cse_info::in, cse_info::out, assoc_list(prog_var)::out,
hlds_goal::out, list(hlds_goal)::out) is det.
construct_common_unify(Var, hlds_goal(GoalExpr0, GoalInfo), !CseInfo,
OldNewVars, HoistedGoal, Replacements) :-
(
GoalExpr0 = unify(_, RHS, Umode, Unif0, Ucontext),
Unif0 = deconstruct(_, Consid, Args, Submodes, CanFail, CanCGC)
->
Unif = deconstruct(Var, Consid, Args, Submodes, CanFail, CanCGC),
(
RHS = rhs_functor(_, _, _),
GoalExpr1 = unify(Var, RHS, Umode, Unif, Ucontext)
;
( RHS = rhs_var(_)
; RHS = rhs_lambda_goal(_, _, _, _, _, _, _, _)
),
unexpected(this_file,
"non-functor unify in construct_common_unify")
),
Context = goal_info_get_context(GoalInfo),
create_parallel_subterms(Args, Context, Ucontext, !CseInfo,
OldNewVars, Replacements),
map.from_assoc_list(OldNewVars, Sub),
rename_some_vars_in_goal(Sub, hlds_goal(GoalExpr1, GoalInfo),
HoistedGoal)
;
unexpected(this_file, "non-unify goal in construct_common_unify")
).
:- pred create_parallel_subterms(list(prog_var)::in, prog_context::in,
unify_context::in, cse_info::in, cse_info::out,
assoc_list(prog_var)::out, list(hlds_goal)::out) is det.
create_parallel_subterms([], _, _, !CseInfo, [], []).
create_parallel_subterms([OFV | OFV0], Context, UnifyContext, !CseInfo,
OldNewVars, Replacements) :-
create_parallel_subterms(OFV0, Context, UnifyContext, !CseInfo,
OldNewVars1, Replacements1),
create_parallel_subterm(OFV, Context, UnifyContext, !CseInfo,
OldNewVars1, OldNewVars, Goal),
Replacements = [Goal | Replacements1].
:- pred create_parallel_subterm(prog_var::in, prog_context::in,
unify_context::in, cse_info::in, cse_info::out,
assoc_list(prog_var)::in, assoc_list(prog_var)::out,
hlds_goal::out) is det.
create_parallel_subterm(OFV, Context, UnifyContext, !CseInfo, !OldNewVar,
Goal) :-
VarSet0 = !.CseInfo ^ varset,
VarTypes0 = !.CseInfo ^ vartypes,
varset.new_var(VarSet0, NFV, VarSet),
map.lookup(VarTypes0, OFV, Type),
map.det_insert(VarTypes0, NFV, Type, VarTypes),
!:OldNewVar = [OFV - NFV | !.OldNewVar],
UnifyContext = unify_context(MainCtxt, SubCtxt),
% It is ok to create complicated unifications here, because we rerun
% mode analysis on the resulting goal. It would be nicer to generate
% the right assignment unification directly, but that would require keeping
% track of the inst of OFV.
create_pure_atomic_complicated_unification(OFV, rhs_var(NFV),
Context, MainCtxt, SubCtxt, Goal),
!:CseInfo = !.CseInfo ^ varset := VarSet,
!:CseInfo = !.CseInfo ^ vartypes := VarTypes.
%-----------------------------------------------------------------------------%
:- pred find_similar_deconstruct(hlds_goal::in, hlds_goal::in,
prog_context::in, assoc_list(prog_var)::out, list(hlds_goal)::out)
is semidet.
find_similar_deconstruct(HoistedUnifyGoal, OldUnifyGoal, Context,
OldHoistedVars, Replacements) :-
(
HoistedUnifyGoal = hlds_goal(unify(_, _, _, HoistedUnifyInfo, OC), _),
HoistedUnifyInfo = deconstruct(_, HoistedFunctor,
HoistedVars, _, _, _),
OldUnifyGoal = hlds_goal(unify(_, _, _, OldUnifyInfo, _NC), _),
OldUnifyInfo = deconstruct(_, OldFunctor, OldVars, _, _, _)
->
HoistedFunctor = OldFunctor,
list.length(HoistedVars, HoistedVarsCount),
list.length(OldVars, OldVarsCount),
HoistedVarsCount = OldVarsCount,
assoc_list.from_corresponding_lists(OldVars, HoistedVars,
OldHoistedVars),
pair_subterms(OldHoistedVars, Context, OC, Replacements)
;
unexpected(this_file,
"find_similar_deconstruct: non-deconstruct unify")
).
:- pred pair_subterms(assoc_list(prog_var)::in, prog_context::in,
unify_context::in, list(hlds_goal)::out) is det.
pair_subterms([], _Context, _UnifyContext, []).
pair_subterms([OldVar - HoistedVar | OldHoistedVars], Context, UnifyContext,
Replacements) :-
pair_subterms(OldHoistedVars, Context, UnifyContext, Replacements1),
( OldVar = HoistedVar ->
Replacements = Replacements1
;
UnifyContext = unify_context(MainCtxt, SubCtxt),
% It is ok to create complicated unifications here, because we rerun
% mode analysis on the resulting goal. It would be nicer to generate
% the right assignment unification directly, but that would require
% keeping track of the inst of OldVar.
create_pure_atomic_complicated_unification(HoistedVar, rhs_var(OldVar),
Context, MainCtxt, SubCtxt, Goal),
Replacements = [Goal | Replacements1]
).
%-----------------------------------------------------------------------------%
% This section handles the case where the functor involved in the
% common subexpression contains existentially typed arguments,
% whether or not they are constrained to belong to a typeclass.
% In such cases, what the compiler used to consider several distinct
% types (the types of say the first the existentially typed argument
% in the deconstructions in the different branches) become one (in this
% case, the type of the first existentially typed argument in the
% hoisted out deconstruction). The prog_vars describing the types
% of the existentially typed arguments (i.e. containing their
% typeinfos) change as well, from being some of the variables in
% in the original deconstructions to being the corresponding variables
% in the hoisted out deconstruction.
%
% As an example, consider a disjunction such as
%
% (
% HeadVar.g2_2 = x:u(TypeClassInfo_for_v_8, V_4),
% ...
% ;
% HeadVar.g2_2 = x:u(TypeClassInfo_for_v_14, V_6)
% ...
% )
%
% The main part of cse_detection will replace this with
%
% HeadVar.g2_2 = x:u(V_17, V_16)
% (
% TypeClassInfo_for_v_8 = V_17,
% V_4 = V_16,
% ...
% ;
% TypeClassInfo_for_v_14 = V_17,
% V_6 = V_16,
% ...
% )
%
% However, this is not enough. Since TypeClassInfo_for_v_8 and
% TypeClassInfo_for_v_14 may (and probably will) be eliminated later,
% it is imperative that the data structures in the proc_info that refer
% to them be updated to eliminate references to those variables.
% Those data structures may originally contain something like this:
%
% type_info varmap:
% T_1 (number 1) -> typeclass_info(TypeClassInfo_for_v_8, 1)
% T_3 (number 3) -> typeclass_info(TypeClassInfo_for_v_14, 1)
% typeclass_info varmap:
% x:v(T_1) -> TypeClassInfo_for_v_8
% x:v(T_3) -> TypeClassInfo_for_v_14
% variable types map:
% V_4 (number 4) :: T_1
% V_6 (number 6) :: T_3
%
% They must be updated like this:
%
% type_info varmap:
% T_1 (number 1) -> typeclass_info(V_17, 1)
% typeclass_info varmap:
% x:v(T_1) -> V_17
% variable types map:
% V_4 (number 4) :: T_1
% V_6 (number 6) :: T_1
:- pred maybe_update_existential_data_structures(hlds_goal::in,
assoc_list(prog_var)::in, list(assoc_list(prog_var))::in,
cse_info::in, cse_info::out) is det.
maybe_update_existential_data_structures(Unify, FirstOldNew, LaterOldNew,
!CseInfo) :-
(
Unify = hlds_goal(unify(_, _, _, UnifyInfo, _), _),
UnifyInfo = deconstruct(Var, ConsId, _, _, _, _),
ModuleInfo = !.CseInfo ^ module_info,
VarTypes = !.CseInfo ^ vartypes,
map.lookup(VarTypes, Var, Type),
type_util.is_existq_cons(ModuleInfo, Type, ConsId)
->
update_existential_data_structures(FirstOldNew, LaterOldNew, !CseInfo)
;
true
).
:- pred update_existential_data_structures(
assoc_list(prog_var)::in, list(assoc_list(prog_var))::in,
cse_info::in, cse_info::out) is det.
update_existential_data_structures(FirstOldNew, LaterOldNews, !CseInfo) :-
list.condense(LaterOldNews, LaterOldNew),
map.from_assoc_list(FirstOldNew, FirstOldNewMap),
map.from_assoc_list(LaterOldNew, LaterOldNewMap),
RttiVarMaps0 = !.CseInfo ^ rtti_varmaps,
VarTypes0 = !.CseInfo ^ vartypes,
% Build a map for all locations in the rtti_varmaps that are changed
% by the application of FirstOldNewMap. The keys of this map are the
% new locations, and the values are the tvars (from the first branch)
% that have had their locations moved.
%
rtti_varmaps_tvars(RttiVarMaps0, TvarsList),
list.foldl(find_type_info_locn_tvar_map(RttiVarMaps0, FirstOldNewMap),
TvarsList, map.init, NewTvarMap),
% Traverse TVarsList again, this time looking for locations in later
% branches that merge with locations in the first branch. When we find one,
% add a type substitution which represents the type variables that were
% merged.
%
list.foldl(find_merged_tvars(RttiVarMaps0, LaterOldNewMap, NewTvarMap),
TvarsList, map.init, Renaming),
% Apply the full old->new map and the type substitution to the
% rtti_varmaps, and apply the type substitution to the vartypes.
%
list.append(FirstOldNew, LaterOldNew, OldNew),
map.from_assoc_list(OldNew, OldNewMap),
apply_substitutions_to_rtti_varmaps(Renaming, map.init, OldNewMap,
RttiVarMaps0, RttiVarMaps),
map.map_values(apply_tvar_rename(Renaming), VarTypes0, VarTypes),
!:CseInfo = !.CseInfo ^ rtti_varmaps := RttiVarMaps,
!:CseInfo = !.CseInfo ^ vartypes := VarTypes.
:- pred apply_tvar_rename(tvar_renaming::in, prog_var::in,
mer_type::in, mer_type::out) is det.
apply_tvar_rename(Renaming, _Var, Type0, Type) :-
apply_variable_renaming_to_type(Renaming, Type0, Type).
:- pred find_type_info_locn_tvar_map(rtti_varmaps::in,
map(prog_var, prog_var)::in, tvar::in,
map(type_info_locn, tvar)::in, map(type_info_locn, tvar)::out) is det.
find_type_info_locn_tvar_map(RttiVarMaps, FirstOldNewMap, Tvar, !NewTvarMap) :-
rtti_lookup_type_info_locn(RttiVarMaps, Tvar, TypeInfoLocn0),
type_info_locn_var(TypeInfoLocn0, Old),
( map.search(FirstOldNewMap, Old, New) ->
type_info_locn_set_var(New, TypeInfoLocn0, TypeInfoLocn),
svmap.det_insert(TypeInfoLocn, Tvar, !NewTvarMap)
;
true
).
:- pred find_merged_tvars(rtti_varmaps::in, map(prog_var, prog_var)::in,
map(type_info_locn, tvar)::in, tvar::in,
tvar_renaming::in, tvar_renaming::out) is det.
find_merged_tvars(RttiVarMaps, LaterOldNewMap, NewTvarMap, Tvar, !Renaming) :-
rtti_lookup_type_info_locn(RttiVarMaps, Tvar, TypeInfoLocn0),
type_info_locn_var(TypeInfoLocn0, Old),
( map.search(LaterOldNewMap, Old, New) ->
type_info_locn_set_var(New, TypeInfoLocn0, TypeInfoLocn),
map.lookup(NewTvarMap, TypeInfoLocn, NewTvar),
( NewTvar = Tvar ->
true
;
svmap.det_insert(Tvar, NewTvar, !Renaming)
)
;
true
).
%-----------------------------------------------------------------------------%
:- func this_file = string.
this_file = "cse_detection.m".
%-----------------------------------------------------------------------------%
:- end_module cse_detection.
%-----------------------------------------------------------------------------%