Files
mercury/compiler/common.m
Zoltan Somogyi 672f77c4ec Add a new compiler option. --inform-ite-instead-of-switch.
Estimated hours taken: 20
Branches: main

Add a new compiler option. --inform-ite-instead-of-switch. If this is enabled,
the compiler will generate informational messages about if-then-elses that
it thinks should be converted to switches for the sake of program reliability.

Act on the output generated by this option.

compiler/simplify.m:
	Implement the new option.

	Fix an old bug that could cause us to generate warnings about code
	that was OK in one duplicated copy but not in another (where a switch
	arm's code is duplicated due to the case being selected for more than
	one cons_id).

compiler/options.m:
	Add the new option.

	Add a way to test for the bug fix in simplify.

doc/user_guide.texi:
	Document the new option.

NEWS:
	Mention the new option.

library/*.m:
mdbcomp/*.m:
browser/*.m:
compiler/*.m:
deep_profiler/*.m:
	Convert if-then-elses to switches at most of the sites suggested by the
	new option. At the remaining sites, switching to switches would have
	nontrivial downsides. This typically happens with the switched-on type
	has many functors, and we treat one or two specially (e.g. cons/2 in
	the cons_id type).

	Perform misc cleanups in the vicinity of the if-then-else to switch
	conversions.

	In a few cases, improve the error messages generated.

compiler/accumulator.m:
compiler/hlds_goal.m:
	(Rename and) move insts for particular kinds of goal from
	accumulator.m to hlds_goal.m, to allow them to be used in other
	modules. Using these insts allowed us to eliminate some if-then-elses
	entirely.

compiler/exprn_aux.m:
	Instead of fixing some if-then-elses, delete the predicates containing
	them, since they aren't used, and (as pointed out by the new option)
	would need considerable other fixing if they were ever needed again.

compiler/lp_rational.m:
	Add prefixes to the names of the function symbols on some types,
	since without those prefixes, it was hard to figure out what type
	the switch corresponding to an old if-then-else was switching on.

tests/invalid/reserve_tag.err_exp:
	Expect a new, improved error message.
2007-11-23 07:36:01 +00:00

932 lines
38 KiB
Mathematica

%---------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%---------------------------------------------------------------------------%
% Copyright (C) 1995-2007 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: common.m.
% Original author: squirrel (Jane Anna Langley).
% Some bugs fixed by fjh.
% Extensive revision by zs.
% More revision by stayl.
%
% This module attempts to optimise out instances where a variable is
% decomposed and then soon after reconstructed from the parts. If possible we
% would like to "short-circuit" this process. It also optimizes
% deconstructions of known cells, replacing them with assignments to the
% arguments where this is guaranteed to not increase the number of stack slots
% required by the goal. Repeated calls to predicates with the same input
% arguments are replaced by assignments and warnings are returned.
%
% IMPORTANT: This module does a small subset of the job of compile-time
% garbage collection, but it does so without paying attention to uniqueness
% information, since the compiler does not yet have such information. Once we
% implement ctgc, the assumptions made by this module will have to be
% revisited.
%
%---------------------------------------------------------------------------%
:- module check_hlds.common.
:- interface.
:- import_module check_hlds.simplify.
:- import_module hlds.
:- import_module hlds.hlds_goal.
:- import_module hlds.hlds_pred.
:- import_module parse_tree.
:- import_module parse_tree.prog_data.
:- import_module list.
%---------------------------------------------------------------------------%
% If we find a deconstruction or a construction we cannot optimize, record
% the details of the memory cell in CommonInfo.
%
% If we find a construction that constructs a cell identical to one we
% have seen before, replace the construction with an assignment from the
% variable unified with that cell.
%
:- pred common_optimise_unification(unification::in, prog_var::in,
unify_rhs::in, unify_mode::in, unify_context::in,
hlds_goal_expr::in, hlds_goal_expr::out,
hlds_goal_info::in, hlds_goal_info::out,
simplify_info::in, simplify_info::out) is det.
% Check whether this call has been seen before and is replaceable, if
% so produce assignment unification for the non-local output variables,
% and give a warning.
% A call is considered replaceable if it has no uniquely moded outputs
% and no destructive inputs.
% It is the caller's responsibility to check that the call is pure.
%
:- pred common_optimise_call(pred_id::in, proc_id::in, list(prog_var)::in,
hlds_goal_info::in, hlds_goal_expr::in, hlds_goal_expr::out,
simplify_info::in, simplify_info::out) is det.
:- pred common_optimise_higher_order_call(prog_var::in, list(prog_var)::in,
list(mer_mode)::in, determinism::in, hlds_goal_info::in,
hlds_goal_expr::in, hlds_goal_expr::out,
simplify_info::in, simplify_info::out) is det.
% Succeeds if the two variables are equivalent according to the specified
% equivalence class.
%
:- pred common_vars_are_equivalent(prog_var::in, prog_var::in,
common_info::in) is semidet.
% Assorted stuff used here that simplify.m doesn't need to know about.
%
:- type common_info.
:- func common_info_init = common_info.
% Clear the list of structs seen since the last stack flush.
%
:- pred common_info_clear_structs(common_info::in, common_info::out) is det.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- implementation.
:- import_module check_hlds.det_report.
:- import_module check_hlds.inst_match.
:- import_module check_hlds.mode_util.
:- import_module hlds.hlds_module.
:- import_module hlds.hlds_rtti.
:- import_module hlds.instmap.
:- import_module libs.
:- import_module libs.compiler_util.
:- import_module libs.options.
:- import_module parse_tree.error_util.
:- import_module parse_tree.prog_type.
:- import_module transform_hlds.
:- import_module transform_hlds.pd_cost.
:- import_module bool.
:- import_module eqvclass.
:- import_module map.
:- import_module maybe.
:- import_module pair.
:- import_module set.
:- import_module sveqvclass.
:- import_module svmap.
:- import_module term.
%---------------------------------------------------------------------------%
% The var_eqv field records information about which sets of variables are
% known to be equivalent, usually because they have been unified. This is
% useful when eliminating duplicate unifications and when eliminating
% duplicate calls.
%
% The all_structs and since_call_structs fields record information about
% the memory cells available for reuse. The all_structs field has info
% about all the cells available at the current program point. The
% since_call_structs field contains info about the subset of these cells
% that have been seen since the last stack flush, which is usually a call.
%
% The reason why we make the distinction between structs seen before the
% last call and structs seen after is best explained by these two program
% fragments:
%
% fragment 1:
% X => f(A1, A2, A3, A4),
% X => f(B1, B2, B3, B4),
%
% fragment 2:
% X => f(A1, A2, A3, A4),
% p(...),
% X => f(B1, B2, B3, B4),
%
% In fragment 1, we want to replace the second deconstruction with
% the assignments B1 = A1, ... B4 = A4, since this can avoid the
% second check of X's function symbol. (If the inst of X at the start
% of the second unification is `bound(f(...))', we can dispense with
% this test anyway, but if the two unifications are brought together
% by inlining, then X's inst then may simply be `ground'.)
%
% In fragment 2, we don't want make the same transformation, because
% doing so would require storing A1 ... A4 across the call instead of
% just X.
%
% If the second unification were a construction instead of a
% deconstruction, we want to make the transformation in both cases,
% because the heap allocation we thus avoid is quite expensive,
% and because it actually reduces the number of stack slots we need
% across the call (X instead of A1 .. A4). The exception is
% constructions using function symbols of arity zero, which we
% never need to eliminate. We process unifications with constants
% only to update our information about variable equivalences: after
% X = c and Y = c, X and Y are equivalent.
%
% The seen_calls field records which calls we have seen, which we use
% to eliminate duplicate calls.
:- type common_info
---> common_info(
var_eqv :: eqvclass(prog_var),
all_structs :: struct_map,
since_call_structs :: struct_map,
seen_calls :: seen_calls
).
% A struct_map maps a principal type constructor and a cons_id of that
% type to information about cells involving that cons_id.
%
% The reason why we need the principal type constructors is that two
% syntactically identical structures have compatible representations if and
% only if their principal type constructors are the same. For example, if
% we have:
%
% :- type maybe_err(T) ---> ok(T) ; err(string).
%
% :- pred p(maybe_err(foo)::in, maybe_err(bar)::out) is semidet.
% p(err(X), err(X)).
%
% then we want to reuse the `err(X)' in the first arg rather than
% constructing a new copy of it for the second arg.
% The two occurrences of `err(X)' have types `maybe_err(int)'
% and `maybe(float)', but we know that they have the same
% representation.
%
% We put the cons_id first in the pair because there are more cons_ids
% than type constructors, and hence comparisons involving cons_ids are
% more likely to fail. This should ensure that failed comparisons in map
% searches fail as soon as possible.
:- type cons_id_map == map(cons_id, structures).
:- type struct_map == map(type_ctor, cons_id_map).
% Given a unification X = f(Y1, ... Yn), we record its availability for
% reuse by creating structure(X, [Y1, ... Yn]), and putting it at the
% front of the list of structures for the entry for f and X's type_ctor.
:- type structures == list(structure).
:- type structure
---> structure(prog_var, list(prog_var)).
:- type seen_calls == map(seen_call_id, list(call_args)).
:- type call_args
---> call_args(
prog_context, % The context of the call, for use in
% warnings about % duplicate calls.
list(prog_var), % The input arguments. For higher-order
% calls, the closure is the first input
% argument.
list(prog_var) % The output arguments.
).
%---------------------------------------------------------------------------%
common_info_init = CommonInfo :-
eqvclass.init(VarEqv0),
map.init(StructMap0),
map.init(SeenCalls0),
CommonInfo = common_info(VarEqv0, StructMap0, StructMap0, SeenCalls0).
common_info_clear_structs(!Info) :-
!:Info = !.Info ^ since_call_structs := map.init.
%---------------------------------------------------------------------------%
common_optimise_unification(Unification0, _Left0, _Right0, Mode, _Context,
Goal0, Goal, GoalInfo0, GoalInfo, !Info) :-
(
Unification0 = construct(Var, ConsId, ArgVars, _, _, _, SubInfo),
(
SubInfo = construct_sub_info(MaybeTakeAddr, _),
MaybeTakeAddr = yes(_)
->
Goal = Goal0,
GoalInfo = GoalInfo0
;
common_optimise_construct(Var, ConsId, ArgVars, Mode,
Goal0, Goal, GoalInfo0, GoalInfo, !Info)
)
;
Unification0 = deconstruct(Var, ConsId, ArgVars, UniModes, CanFail, _),
common_optimise_deconstruct(Var, ConsId, ArgVars, UniModes, CanFail,
Mode, Goal0, Goal, GoalInfo0, GoalInfo, !Info)
;
Unification0 = assign(Var1, Var2),
record_equivalence(Var1, Var2, !Info),
Goal = Goal0,
GoalInfo = GoalInfo0
;
Unification0 = simple_test(Var1, Var2),
record_equivalence(Var1, Var2, !Info),
Goal = Goal0,
GoalInfo = GoalInfo0
;
Unification0 = complicated_unify(_, _, _),
Goal = Goal0,
GoalInfo = GoalInfo0
).
:- pred common_optimise_construct(prog_var::in, cons_id::in,
list(prog_var)::in, unify_mode::in,
hlds_goal_expr::in, hlds_goal_expr::out,
hlds_goal_info::in, hlds_goal_info::out,
simplify_info::in, simplify_info::out) is det.
common_optimise_construct(Var, ConsId, ArgVars, Mode, GoalExpr0, GoalExpr,
GoalInfo0, GoalInfo, !Info) :-
Mode = LVarMode - _,
simplify_info_get_module_info(!.Info, ModuleInfo),
mode_get_insts(ModuleInfo, LVarMode, _, Inst),
(
% Don't optimise partially instantiated construction unifications,
% because it would be tricky to work out how to mode the replacement
% assignment unifications. In the vast majority of cases, the variable
% is ground.
\+ inst_is_ground(ModuleInfo, Inst)
->
GoalExpr = GoalExpr0,
GoalInfo = GoalInfo0
;
TypeCtor = lookup_var_type_ctor(!.Info, Var),
simplify_info_get_common_info(!.Info, CommonInfo0),
VarEqv0 = CommonInfo0 ^ var_eqv,
list.map_foldl(eqvclass.ensure_element_partition_id,
ArgVars, ArgVarIds, VarEqv0, VarEqv1),
AllStructMap0 = CommonInfo0 ^ all_structs,
(
% generate_assign assumes that the output variable
% is in the instmap_delta, which will not be true if the
% variable is local to the unification. The optimization
% is pointless in that case.
InstMapDelta = goal_info_get_instmap_delta(GoalInfo0),
instmap_delta_search_var(InstMapDelta, Var, _),
map.search(AllStructMap0, TypeCtor, ConsIdMap0),
map.search(ConsIdMap0, ConsId, Structs),
find_matching_cell_construct(Structs, VarEqv1, ArgVarIds,
OldStruct)
->
OldStruct = structure(OldVar, _),
sveqvclass.ensure_equivalence(Var, OldVar, VarEqv1, VarEqv),
CommonInfo = CommonInfo0 ^ var_eqv := VarEqv,
simplify_info_set_common_info(CommonInfo, !Info),
(
ArgVars = [],
% Constants don't use memory, so there's no point in
% optimizing away their construction; in fact, doing so
% could cause more stack usage.
GoalExpr = GoalExpr0,
GoalInfo = GoalInfo0
;
ArgVars = [_ | _],
UniMode = ((free - Inst) -> (Inst - Inst)),
generate_assign(Var, OldVar, UniMode, GoalInfo0,
hlds_goal(GoalExpr, GoalInfo), !Info),
simplify_info_set_requantify(!Info),
goal_cost(hlds_goal(GoalExpr0, GoalInfo0), Cost),
simplify_info_incr_cost_delta(Cost, !Info)
)
;
GoalExpr = GoalExpr0,
GoalInfo = GoalInfo0,
Struct = structure(Var, ArgVars),
record_cell_in_maps(TypeCtor, ConsId, Struct, VarEqv1, !Info)
)
).
:- pred common_optimise_deconstruct(prog_var::in, cons_id::in,
list(prog_var)::in, list(uni_mode)::in, can_fail::in, unify_mode::in,
hlds_goal_expr::in, hlds_goal_expr::out,
hlds_goal_info::in, hlds_goal_info::out,
simplify_info::in, simplify_info::out) is det.
common_optimise_deconstruct(Var, ConsId, ArgVars, UniModes, CanFail, Mode,
GoalExpr0, GoalExpr, GoalInfo0, GoalInfo, !Info) :-
simplify_info_get_module_info(!.Info, ModuleInfo),
(
% Don't optimise partially instantiated deconstruction unifications,
% because it would be tricky to work out how to mode the replacement
% assignment unifications. In the vast majority of cases, the variable
% is ground.
Mode = LVarMode - _,
mode_get_insts(ModuleInfo, LVarMode, Inst0, _),
\+ inst_is_ground(ModuleInfo, Inst0)
->
GoalExpr = GoalExpr0
;
TypeCtor = lookup_var_type_ctor(!.Info, Var),
simplify_info_get_common_info(!.Info, CommonInfo0),
VarEqv0 = CommonInfo0 ^ var_eqv,
eqvclass.ensure_element_partition_id(Var, VarId, VarEqv0, VarEqv1),
SinceCallStructMap0 = CommonInfo0 ^ since_call_structs,
(
% Do not delete deconstruction unifications inserted by
% stack_opt.m or tupling.m, which have done a more comprehensive
% cost analysis than common.m can do.
\+ goal_info_has_feature(GoalInfo, feature_stack_opt),
\+ goal_info_has_feature(GoalInfo, feature_tuple_opt),
map.search(SinceCallStructMap0, TypeCtor, ConsIdMap0),
map.search(ConsIdMap0, ConsId, Structs),
find_matching_cell_deconstruct(Structs, VarEqv1, VarId, OldStruct)
->
OldStruct = structure(_, OldArgVars),
eqvclass.ensure_corresponding_equivalences(ArgVars,
OldArgVars, VarEqv1, VarEqv),
CommonInfo = CommonInfo0 ^ var_eqv := VarEqv,
simplify_info_set_common_info(CommonInfo, !Info),
create_output_unifications(GoalInfo0, ArgVars, OldArgVars,
UniModes, Goals, !Info),
GoalExpr = conj(plain_conj, Goals),
goal_cost(hlds_goal(GoalExpr0, GoalInfo0), Cost),
simplify_info_incr_cost_delta(Cost, !Info),
simplify_info_set_requantify(!Info),
(
CanFail = can_fail,
simplify_info_set_rerun_det(!Info)
;
CanFail = cannot_fail
)
;
GoalExpr = GoalExpr0,
Struct = structure(Var, ArgVars),
record_cell_in_maps(TypeCtor, ConsId, Struct, VarEqv1, !Info)
)
),
GoalInfo = GoalInfo0.
:- func lookup_var_type_ctor(simplify_info, prog_var) = type_ctor.
lookup_var_type_ctor(Info, Var) = TypeCtor :-
simplify_info_get_var_types(Info, VarTypes),
map.lookup(VarTypes, Var, Type),
( type_to_ctor_and_args(Type, TypeCtorPrime, _) ->
TypeCtor = TypeCtorPrime
;
% If we unify a variable with a function symbol, we *must* know
% what the principal type constructor of its type is.
unexpected(this_file, "lookup_var_type_ctor: cannot find type_ctor")
).
%---------------------------------------------------------------------------%
:- pred find_matching_cell_construct(structures::in, eqvclass(prog_var)::in,
list(partition_id)::in, structure::out) is semidet.
find_matching_cell_construct([Struct | Structs], VarEqv, ArgVarIds, Match) :-
Struct = structure(_Var, Vars),
( ids_vars_match(ArgVarIds, Vars, VarEqv) ->
Match = Struct
;
find_matching_cell_construct(Structs, VarEqv, ArgVarIds, Match)
).
:- pred find_matching_cell_deconstruct(structures::in, eqvclass(prog_var)::in,
partition_id::in, structure::out) is semidet.
find_matching_cell_deconstruct([Struct | Structs], VarEqv, VarId, Match) :-
Struct = structure(Var, _Vars),
( id_var_match(VarId, Var, VarEqv) ->
Match = Struct
;
find_matching_cell_deconstruct(Structs, VarEqv, VarId, Match)
).
:- pred ids_vars_match(list(partition_id)::in, list(prog_var)::in,
eqvclass(prog_var)::in) is semidet.
ids_vars_match([], [], _VarEqv).
ids_vars_match([Id | Ids], [Var | Vars], VarEqv) :-
id_var_match(Id, Var, VarEqv),
ids_vars_match(Ids, Vars, VarEqv).
:- pred id_var_match(partition_id::in, prog_var::in,
eqvclass(prog_var)::in) is semidet.
:- pragma inline(id_var_match/3).
id_var_match(Id, Var, VarEqv) :-
eqvclass.partition_id(VarEqv, Var, VarId),
Id = VarId.
%---------------------------------------------------------------------------%
:- pred record_cell_in_maps(type_ctor::in, cons_id::in, structure::in,
eqvclass(prog_var)::in, simplify_info::in, simplify_info::out) is det.
record_cell_in_maps(TypeCtor, ConsId, Struct, VarEqv, !Info) :-
some [!CommonInfo] (
simplify_info_get_common_info(!.Info, !:CommonInfo),
AllStructMap0 = !.CommonInfo ^ all_structs,
SinceCallStructMap0 = !.CommonInfo ^ since_call_structs,
do_record_cell_in_struct_map(TypeCtor, ConsId, Struct,
AllStructMap0, AllStructMap),
do_record_cell_in_struct_map(TypeCtor, ConsId, Struct,
SinceCallStructMap0, SinceCallStructMap),
!:CommonInfo = !.CommonInfo ^ var_eqv := VarEqv,
!:CommonInfo = !.CommonInfo ^ all_structs := AllStructMap,
!:CommonInfo = !.CommonInfo ^ since_call_structs := SinceCallStructMap,
simplify_info_set_common_info(!.CommonInfo, !Info)
).
:- pred do_record_cell_in_struct_map(type_ctor::in, cons_id::in,
structure::in, struct_map::in, struct_map::out) is det.
do_record_cell_in_struct_map(TypeCtor, ConsId, Struct, !StructMap) :-
( map.search(!.StructMap, TypeCtor, ConsIdMap0) ->
( map.search(ConsIdMap0, ConsId, Structs0) ->
Structs = [Struct | Structs0],
map.det_update(ConsIdMap0, ConsId, Structs, ConsIdMap)
;
map.det_insert(ConsIdMap0, ConsId, [Struct], ConsIdMap)
),
svmap.det_update(TypeCtor, ConsIdMap, !StructMap)
;
map.det_insert(map.init, ConsId, [Struct], ConsIdMap),
svmap.det_insert(TypeCtor, ConsIdMap, !StructMap)
).
%---------------------------------------------------------------------------%
:- pred record_equivalence(prog_var::in, prog_var::in,
simplify_info::in, simplify_info::out) is det.
record_equivalence(Var1, Var2, !Info) :-
simplify_info_get_common_info(!.Info, CommonInfo0),
VarEqv0 = CommonInfo0 ^ var_eqv,
eqvclass.ensure_equivalence(VarEqv0, Var1, Var2, VarEqv),
CommonInfo = CommonInfo0 ^ var_eqv := VarEqv,
simplify_info_set_common_info(CommonInfo, !Info).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
common_optimise_call(PredId, ProcId, Args, GoalInfo, Goal0, Goal, !Info) :-
(
Det = goal_info_get_determinism(GoalInfo),
check_call_detism(Det),
simplify_info_get_var_types(!.Info, VarTypes),
simplify_info_get_module_info(!.Info, ModuleInfo),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo),
proc_info_get_argmodes(ProcInfo, ArgModes),
partition_call_args(VarTypes, ModuleInfo, ArgModes, Args,
InputArgs, OutputArgs, OutputModes)
->
common_optimise_call_2(seen_call(PredId, ProcId), InputArgs,
OutputArgs, OutputModes, GoalInfo, Goal0, Goal, !Info)
;
Goal = Goal0
).
common_optimise_higher_order_call(Closure, Args, Modes, Det, GoalInfo,
Goal0, Goal, !Info) :-
(
check_call_detism(Det),
simplify_info_get_var_types(!.Info, VarTypes),
simplify_info_get_module_info(!.Info, ModuleInfo),
partition_call_args(VarTypes, ModuleInfo, Modes, Args,
InputArgs, OutputArgs, OutputModes)
->
common_optimise_call_2(higher_order_call, [Closure | InputArgs],
OutputArgs, OutputModes, GoalInfo, Goal0, Goal, !Info)
;
Goal = Goal0
).
:- pred check_call_detism(determinism::in) is semidet.
check_call_detism(Det) :-
determinism_components(Det, _, SolnCount),
% Replacing nondet or mulidet calls would cause
% loss of solutions.
( SolnCount = at_most_one
; SolnCount = at_most_many_cc
).
:- pred common_optimise_call_2(seen_call_id::in, list(prog_var)::in,
list(prog_var)::in, list(mer_mode)::in, hlds_goal_info::in,
hlds_goal_expr::in, hlds_goal_expr::out,
simplify_info::in, simplify_info::out) is det.
common_optimise_call_2(SeenCall, InputArgs, OutputArgs, Modes, GoalInfo,
GoalExpr0, GoalExpr, !Info) :-
simplify_info_get_common_info(!.Info, CommonInfo0),
Eqv0 = CommonInfo0 ^ var_eqv,
SeenCalls0 = CommonInfo0 ^ seen_calls,
( map.search(SeenCalls0, SeenCall, SeenCallsList0) ->
(
find_previous_call(SeenCallsList0, InputArgs, Eqv0,
OutputArgs2, PrevContext)
->
simplify_info_get_module_info(!.Info, ModuleInfo),
modes_to_uni_modes(ModuleInfo, Modes, Modes, UniModes),
create_output_unifications(GoalInfo, OutputArgs, OutputArgs2,
UniModes, Goals, !Info),
GoalExpr = conj(plain_conj, Goals),
simplify_info_get_var_types(!.Info, VarTypes),
(
simplify_do_warn_duplicate_calls(!.Info),
% Don't warn for cases such as:
% set.init(Set1 : set(int)),
% set.init(Set2 : set(float)).
map.apply_to_list(OutputArgs, VarTypes, OutputArgTypes1),
map.apply_to_list(OutputArgs2, VarTypes, OutputArgTypes2),
types_match_exactly_list(OutputArgTypes1, OutputArgTypes2)
->
Context = goal_info_get_context(GoalInfo),
CallPieces = det_report_seen_call_id(ModuleInfo, SeenCall),
CurPieces = [words("Warning: redundant") | CallPieces]
++ [suffix(".")],
PrevPieces = [words("Here is the previous") | CallPieces]
++ [suffix(".")],
Severity = severity_conditional(warn_duplicate_calls, yes,
severity_warning, no),
Msg = simple_msg(Context,
[option_is_set(warn_duplicate_calls, yes,
[always(CurPieces)])]),
PrevMsg = error_msg(yes(PrevContext), yes, 0,
[option_is_set(warn_duplicate_calls, yes,
[always(PrevPieces)])]),
Spec = error_spec(Severity, phase_simplify(report_in_any_mode),
[Msg, PrevMsg]),
simplify_info_do_add_error_spec(Spec, !Info)
;
true
),
CommonInfo = CommonInfo0,
goal_cost(hlds_goal(GoalExpr0, GoalInfo), Cost),
simplify_info_incr_cost_delta(Cost, !Info),
simplify_info_set_requantify(!Info),
Detism0 = goal_info_get_determinism(GoalInfo),
(
Detism0 = detism_det
;
( Detism0 = detism_semi
; Detism0 = detism_non
; Detism0 = detism_multi
; Detism0 = detism_failure
; Detism0 = detism_erroneous
; Detism0 = detism_cc_non
; Detism0 = detism_cc_multi
),
simplify_info_set_rerun_det(!Info)
)
;
Context = goal_info_get_context(GoalInfo),
ThisCall = call_args(Context, InputArgs, OutputArgs),
map.det_update(SeenCalls0, SeenCall, [ThisCall | SeenCallsList0],
SeenCalls),
CommonInfo = CommonInfo0 ^ seen_calls := SeenCalls,
GoalExpr = GoalExpr0
)
;
Context = goal_info_get_context(GoalInfo),
ThisCall = call_args(Context, InputArgs, OutputArgs),
map.det_insert(SeenCalls0, SeenCall, [ThisCall], SeenCalls),
CommonInfo = CommonInfo0 ^ seen_calls := SeenCalls,
GoalExpr = GoalExpr0
),
simplify_info_set_common_info(CommonInfo, !Info).
%---------------------------------------------------------------------------%
% Partition the arguments of a call into inputs and outputs,
% failing if any of the outputs have a unique component
% or if any of the outputs contain any `any' insts.
%
:- pred partition_call_args(vartypes::in, module_info::in,
list(mer_mode)::in, list(prog_var)::in, list(prog_var)::out,
list(prog_var)::out, list(mer_mode)::out) is semidet.
partition_call_args(_, _, [], [], [], [], []).
partition_call_args(_, _, [], [_ | _], _, _, _) :-
unexpected(this_file, "partition_call_args: length mismatch (1)").
partition_call_args(_, _, [_ | _], [], _, _, _) :-
unexpected(this_file, "partition_call_args: length mismatch (2)").
partition_call_args(VarTypes, ModuleInfo, [ArgMode | ArgModes],
[Arg | Args], InputArgs, OutputArgs, OutputModes) :-
partition_call_args(VarTypes, ModuleInfo, ArgModes, Args,
InputArgs1, OutputArgs1, OutputModes1),
mode_get_insts(ModuleInfo, ArgMode, InitialInst, FinalInst),
map.lookup(VarTypes, Arg, Type),
( inst_matches_binding(InitialInst, FinalInst, Type, ModuleInfo) ->
InputArgs = [Arg | InputArgs1],
OutputArgs = OutputArgs1,
OutputModes = OutputModes1
;
% Calls with partly unique outputs cannot be replaced,
% since a unique copy of the outputs must be produced.
inst_is_not_partly_unique(ModuleInfo, FinalInst),
% Don't optimize calls whose outputs include any `any' insts, since
% that would create false aliasing between the different variables.
% (inst_matches_binding applied to identical insts fails only for
% `any' insts.)
inst_matches_binding(FinalInst, FinalInst, Type, ModuleInfo),
% Don't optimize calls where a partially instantiated variable is
% further instantiated. That case is difficult to test properly
% because mode analysis currently rejects most potential test cases.
inst_is_free(ModuleInfo, InitialInst),
InputArgs = InputArgs1,
OutputArgs = [Arg | OutputArgs1],
OutputModes = [ArgMode | OutputModes1]
).
%---------------------------------------------------------------------------%
:- pred find_previous_call(list(call_args)::in, list(prog_var)::in,
eqvclass(prog_var)::in, list(prog_var)::out,
prog_context::out) is semidet.
find_previous_call([SeenCall | SeenCalls], InputArgs, Eqv, OutputArgs,
PrevContext) :-
SeenCall = call_args(PrevContext, InputArgs1, OutputArgs1),
( common_var_lists_are_equiv(InputArgs, InputArgs1, Eqv) ->
OutputArgs = OutputArgs1
;
find_previous_call(SeenCalls, InputArgs, Eqv, OutputArgs, PrevContext)
).
%---------------------------------------------------------------------------%
% Succeeds if the two lists of variables are equivalent
% according to the specified equivalence class.
%
:- pred common_var_lists_are_equiv(list(prog_var)::in, list(prog_var)::in,
eqvclass(prog_var)::in) is semidet.
common_var_lists_are_equiv([], [], _VarEqv).
common_var_lists_are_equiv([X | Xs], [Y | Ys], VarEqv) :-
common_vars_are_equiv(X, Y, VarEqv),
common_var_lists_are_equiv(Xs, Ys, VarEqv).
common_vars_are_equivalent(X, Y, CommonInfo) :-
EqvVars = CommonInfo ^ var_eqv,
common_vars_are_equiv(X, Y, EqvVars).
% Succeeds if the two variables are equivalent according to the
% specified equivalence class.
%
:- pred common_vars_are_equiv(prog_var::in, prog_var::in,
eqvclass(prog_var)::in) is semidet.
common_vars_are_equiv(X, Y, VarEqv) :-
(
X = Y
;
eqvclass.partition_id(VarEqv, X, Id),
eqvclass.partition_id(VarEqv, Y, Id)
).
%---------------------------------------------------------------------------%
% Create unifications to assign the vars in OutputArgs from the
% corresponding var in OldOutputArgs. This needs to be done even if
% OutputArg is not a nonlocal in the original goal, because later goals
% in the conjunction may match against the cell and need all the output
% arguments. The unneeded assignments will be removed later.
%
:- pred create_output_unifications(hlds_goal_info::in, list(prog_var)::in,
list(prog_var)::in, list(uni_mode)::in, list(hlds_goal)::out,
simplify_info::in, simplify_info::out) is det.
create_output_unifications(GoalInfo, OutputArgs, OldOutputArgs, UniModes,
Goals, !Info) :-
(
OutputArgs = [OutputArg | OutputArgsTail],
OldOutputArgs = [OldOutputArg | OldOutputArgsTail],
UniModes = [UniMode | UniModesTail]
->
(
% This can happen if the first cell was created
% with a partially instantiated deconstruction.
OutputArg \= OldOutputArg
->
generate_assign(OutputArg, OldOutputArg, UniMode, GoalInfo,
Goal, !Info),
create_output_unifications(GoalInfo,
OutputArgsTail, OldOutputArgsTail, UniModesTail,
GoalsTail, !Info),
Goals = [Goal | GoalsTail]
;
create_output_unifications(GoalInfo,
OutputArgsTail, OldOutputArgsTail,
UniModesTail, Goals, !Info)
)
;
OutputArgs = [],
OldOutputArgs = [],
UniModes = []
->
Goals = []
;
unexpected(this_file, "create_output_unifications: mode mismatch")
).
%---------------------------------------------------------------------------%
:- pred generate_assign(prog_var::in, prog_var::in, uni_mode::in,
hlds_goal_info::in, hlds_goal::out, simplify_info::in, simplify_info::out)
is det.
generate_assign(ToVar, FromVar, UniMode, _, Goal, !Info) :-
apply_induced_tsubst(ToVar, FromVar, !Info),
simplify_info_get_var_types(!.Info, VarTypes),
map.lookup(VarTypes, ToVar, ToVarType),
map.lookup(VarTypes, FromVar, FromVarType),
set.list_to_set([ToVar, FromVar], NonLocals),
UniMode = ((_ - ToVarInst0) -> (_ - ToVarInst)),
( types_match_exactly(ToVarType, FromVarType) ->
UnifyMode = (ToVarInst0 -> ToVarInst) - (ToVarInst -> ToVarInst),
UnifyContext = unify_context(umc_explicit, []),
GoalExpr = unify(ToVar, rhs_var(FromVar), UnifyMode,
assign(ToVar, FromVar), UnifyContext)
;
% If the cells we are optimizing don't have exactly the same
% type, we insert explicit type casts to ensure type
% correctness. This avoids problems with HLDS optimizations
% such as inlining which expect the HLDS to be well-typed.
% Unfortunately this loses information for other optimizations,
% since the call to the type cast hides the equivalence of
% the input and output.
Modes = [(ToVarInst -> ToVarInst), (free -> ToVarInst)],
GoalExpr = generic_call(cast(unsafe_type_cast), [FromVar, ToVar],
Modes, detism_det)
),
% `ToVar' may not appear in the original instmap_delta,
% so we can't just use instmap_delta_restrict on the
% original instmap_delta here.
instmap_delta_from_assoc_list([ToVar - ToVarInst], InstMapDelta),
goal_info_init(NonLocals, InstMapDelta, detism_det, purity_pure, GoalInfo),
Goal = hlds_goal(GoalExpr, GoalInfo),
record_equivalence(ToVar, FromVar, !Info).
:- pred types_match_exactly(mer_type::in, mer_type::in) is semidet.
types_match_exactly(type_variable(TVar, _), type_variable(TVar, _)).
types_match_exactly(defined_type(Name, As, _), defined_type(Name, Bs, _)) :-
types_match_exactly_list(As, Bs).
types_match_exactly(builtin_type(BuiltinType), builtin_type(BuiltinType)).
types_match_exactly(higher_order_type(As, AR, P, E),
higher_order_type(Bs, BR, P, E)) :-
types_match_exactly_list(As, Bs),
(
AR = yes(A),
BR = yes(B),
types_match_exactly(A, B)
;
AR = no,
BR = no
).
types_match_exactly(tuple_type(As, _), tuple_type(Bs, _)) :-
types_match_exactly_list(As, Bs).
types_match_exactly(apply_n_type(TVar, As, _), apply_n_type(TVar, Bs, _)) :-
types_match_exactly_list(As, Bs).
types_match_exactly(kinded_type(_, _), _) :-
unexpected(this_file, "kind annotation").
:- pred types_match_exactly_list(list(mer_type)::in, list(mer_type)::in)
is semidet.
types_match_exactly_list([], []).
types_match_exactly_list([Type1 | Types1], [Type2 | Types2]) :-
types_match_exactly(Type1, Type2),
types_match_exactly_list(Types1, Types2).
%---------------------------------------------------------------------------%
% Two existentially quantified type variables may become aliased if two
% calls or two deconstructions are merged together. We detect this
% situation here and apply the appropriate tsubst to the vartypes and
% rtti_varmaps. This allows us to avoid an unsafe cast, and also may
% allow more opportunities for simplification.
%
% Note that this relies on the assignments for type_infos and
% typeclass_infos to be generated before other arguments with these
% existential types are processed. In other words, the arguments of
% calls and deconstructions must be processed in left to right order.
%
:- pred apply_induced_tsubst(prog_var::in, prog_var::in, simplify_info::in,
simplify_info::out) is det.
apply_induced_tsubst(ToVar, FromVar, !Info) :-
simplify_info_get_rtti_varmaps(!.Info, RttiVarMaps0),
rtti_varmaps_var_info(RttiVarMaps0, FromVar, FromVarRttiInfo),
rtti_varmaps_var_info(RttiVarMaps0, ToVar, ToVarRttiInfo),
( calculate_induced_tsubst(ToVarRttiInfo, FromVarRttiInfo, TSubst) ->
( map.is_empty(TSubst) ->
true
;
simplify_info_apply_type_substitution(TSubst, !Info)
)
;
% Update the rtti_varmaps with new information if only one of the
% variables has rtti_var_info recorded. This can happen if a new
% variable has been introduced, eg in quantification, without
% being recorded in the rtti_varmaps.
(
FromVarRttiInfo = non_rtti_var,
rtti_var_info_duplicate(ToVar, FromVar,
RttiVarMaps0, RttiVarMaps),
simplify_info_set_rtti_varmaps(RttiVarMaps, !Info)
;
( FromVarRttiInfo = type_info_var(_)
; FromVarRttiInfo = typeclass_info_var(_)
),
(
ToVarRttiInfo = non_rtti_var,
rtti_var_info_duplicate(FromVar, ToVar,
RttiVarMaps0, RttiVarMaps),
simplify_info_set_rtti_varmaps(RttiVarMaps, !Info)
;
( ToVarRttiInfo = type_info_var(_)
; ToVarRttiInfo = typeclass_info_var(_)
),
% Calculate_induced_tsubst failed for a different reason,
% either because unification failed or because one variable
% was a type_info and the other was a typeclass_info.
unexpected(this_file,
"apply_induced_tsubst: inconsistent info")
)
)
).
% Calculate the induced substitution by unifying the types or constraints,
% if they exist. Fail if given non-matching rtti_var_infos.
%
:- pred calculate_induced_tsubst(rtti_var_info::in, rtti_var_info::in,
tsubst::out) is semidet.
calculate_induced_tsubst(ToVarRttiInfo, FromVarRttiInfo, TSubst) :-
(
FromVarRttiInfo = type_info_var(FromVarTypeInfoType),
ToVarRttiInfo = type_info_var(ToVarTypeInfoType),
type_unify(FromVarTypeInfoType, ToVarTypeInfoType, [],
map.init, TSubst)
;
FromVarRttiInfo = typeclass_info_var(FromVarConstraint),
ToVarRttiInfo = typeclass_info_var(ToVarConstraint),
FromVarConstraint = constraint(Name, FromArgs),
ToVarConstraint = constraint(Name, ToArgs),
type_unify_list(FromArgs, ToArgs, [], map.init, TSubst)
;
FromVarRttiInfo = non_rtti_var,
ToVarRttiInfo = non_rtti_var,
map.init(TSubst)
).
%---------------------------------------------------------------------------%
:- func this_file = string.
this_file = "common.m".
%---------------------------------------------------------------------------%
:- end_module common.
%---------------------------------------------------------------------------%