mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-19 07:45:09 +00:00
Estimated hours taken: 3.5 Branches: main Split the parse tree (currently defined in prog_data.m) into two separate modules. The reason for doing this is that while over 80% of the modules in the compiler import prog_data, very few of them actually require access to the types that define the parse tree (principally the item type). At the moment even small changes to these types can result in recompiles that rebuild almost all of the compiler. This change shifts the item type (and related types) into a new module, prog_item, that is only imported where these types are required (mostly at the frontend of the compiler). This should reduce the size of recompiles required when the parse tree is modified. This diff does not change any algorithms; it just shifts things around. compiler/prog_data.m: Move the item type and any related types that are not needed after the HLDS has been built to the new prog_item module. Fix bitrot in comments. Fix formatting and layout of comments. Use unexpected/2 in place of error/1 in a spot. compiler/prog_item.m: New file. This module contains any parts of the parse tree that are not needed by the rest of the compiler after the HLDS has been built. compiler/check_typeclass.m: s/list(instance_method)/instance_methods/ compiler/equiv_type.m: compiler/hlds_module.m: compiler/intermod.m: compiler/make.module_dep_file.m: compiler/make_hlds.m: compiler/mercury_compile.m: compiler/mercury_to_mercury.m: compiler/module_qual.m: compiler/modules.m: compiler/parse_tree.m: compiler/prog_io.m: compiler/prog_io_dcg.m: compiler/prog_io_goal.m: compiler/prog_io_pragma.m: compiler/prog_io_typeclass.m: compiler/prog_io_util.m: compiler/prog_out.m: compiler/prog_util.m: compiler/recompilation.check.m: compiler/recompilation.usage.m: compiler/recompilation.version.m: compiler/trans_opt.m: Conform to the above changes. compiler/notes/compiler_design.html: Mention the new module.
438 lines
16 KiB
Mathematica
438 lines
16 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% vim: ft=mercury ts=4 sw=4 et
|
|
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1996-2005 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% File: prog_io_goal.m.
|
|
% Main author: fjh.
|
|
%
|
|
% This module defines the predicates that parse goals.
|
|
|
|
:- module parse_tree__prog_io_goal.
|
|
|
|
:- interface.
|
|
|
|
:- import_module parse_tree.prog_data.
|
|
:- import_module parse_tree.prog_item.
|
|
|
|
:- import_module list.
|
|
:- import_module term.
|
|
|
|
% Convert a single term into a goal.
|
|
%
|
|
:- pred parse_goal(term::in, goal::out, prog_varset::in, prog_varset::out)
|
|
is det.
|
|
|
|
% Convert a term, possibly starting with `some [Vars]', into
|
|
% a list of the quantified variables, a list of quantified
|
|
% state variables, and a goal. (If the term doesn't start
|
|
% with `some [Vars]', we return empty lists of variables.)
|
|
%
|
|
:- pred parse_some_vars_goal(term::in, list(prog_var)::out,
|
|
list(prog_var)::out, goal::out, prog_varset::in, prog_varset::out)
|
|
is det.
|
|
|
|
% parse_pred_expression/3 converts the first argument to a :-/2
|
|
% higher-order pred expression into a list of variables, a list
|
|
% of their corresponding modes, and a determinism.
|
|
%
|
|
:- pred parse_pred_expression(term::in, lambda_eval_method::out,
|
|
list(prog_term)::out, list(mer_mode)::out, determinism::out) is semidet.
|
|
|
|
% parse_dcg_pred_expression/3 converts the first argument to a -->/2
|
|
% higher-order DCG pred expression into a list of arguments, a list
|
|
% of their corresponding modes and the two DCG argument modes, and a
|
|
% determinism.
|
|
% This is a variant of the higher-order pred syntax:
|
|
% `(pred(Var1::Mode1, ..., VarN::ModeN, DCG0Mode, DCGMode)
|
|
% is Det --> Goal)'.
|
|
%
|
|
:- pred parse_dcg_pred_expression(term::in, lambda_eval_method::out,
|
|
list(prog_term)::out, list(mer_mode)::out, determinism::out) is semidet.
|
|
|
|
% parse_func_expression/3 converts the first argument to a :-/2
|
|
% higher-order func expression into a list of arguments, a list
|
|
% of their corresponding modes, and a determinism. The syntax
|
|
% of a higher-order func expression is
|
|
% `(func(Var1::Mode1, ..., VarN::ModeN) = (VarN1::ModeN1) is Det
|
|
% :- Goal)'
|
|
% or
|
|
% `(func(Var1, ..., VarN) = (VarN1) is Det :- Goal)'
|
|
% where the modes are assumed to be `in' for the
|
|
% function arguments and `out' for the result
|
|
% or
|
|
% `(func(Var1, ..., VarN) = (VarN1) :- Goal)'
|
|
% where the modes are assumed as above, and the
|
|
% determinism is assumed to be det
|
|
% or
|
|
% `(func(Var1, ..., VarN) = (VarN1). '
|
|
%
|
|
:- pred parse_func_expression(term::in, lambda_eval_method::out,
|
|
list(prog_term)::out, list(mer_mode)::out, determinism::out) is semidet.
|
|
|
|
% parse_lambda_eval_method/3 extracts the `aditi_bottom_up'
|
|
% annotation (if any) from a pred expression and returns the
|
|
% rest of the term.
|
|
%
|
|
:- pred parse_lambda_eval_method(term(T)::in, lambda_eval_method::out,
|
|
term(T)::out) is det.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module mdbcomp.prim_data.
|
|
:- import_module parse_tree.prog_io.
|
|
:- import_module parse_tree.prog_io_util.
|
|
:- import_module parse_tree.prog_mode.
|
|
:- import_module parse_tree.prog_out.
|
|
|
|
:- import_module int.
|
|
:- import_module map.
|
|
:- import_module std_util.
|
|
:- import_module string.
|
|
:- import_module term.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
parse_goal(Term, Goal, !VarSet) :-
|
|
% We could do some error-checking here, but all errors are picked up
|
|
% in either the type-checker or parser anyway.
|
|
|
|
% First, get the goal context.
|
|
(
|
|
Term = term__functor(_, _, Context)
|
|
;
|
|
Term = term__variable(_),
|
|
term__context_init(Context)
|
|
),
|
|
% We just check if it matches the appropriate pattern for one of the
|
|
% builtins. If it doesn't match any of the builtins, then it's just
|
|
% a predicate call.
|
|
(
|
|
% Check for builtins...
|
|
Term = term__functor(term__atom(Name), Args, Context),
|
|
parse_goal_2(Name, Args, GoalExpr, !VarSet)
|
|
->
|
|
Goal = GoalExpr - Context
|
|
;
|
|
% It's not a builtin.
|
|
term__coerce(Term, ArgsTerm),
|
|
(
|
|
% Check for predicate calls.
|
|
sym_name_and_args(ArgsTerm, SymName, Args)
|
|
->
|
|
Goal = call(SymName, Args, purity_pure) - Context
|
|
;
|
|
% A call to a free variable, or to a number or string.
|
|
% Just translate it into a call to call/1 - the
|
|
% typechecker will catch calls to numbers and strings.
|
|
Goal = call(unqualified("call"), [ArgsTerm], purity_pure) - Context
|
|
)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred parse_goal_2(string::in, list(term)::in, goal_expr::out,
|
|
prog_varset::in, prog_varset::out) is semidet.
|
|
|
|
% Since (A -> B) has different semantics in standard Prolog
|
|
% (A -> B ; fail) than it does in NU-Prolog or Mercury (A -> B ; true),
|
|
% for the moment we'll just disallow it.
|
|
% For consistency we also disallow if-then without the else.
|
|
|
|
parse_goal_2("true", [], true, !V).
|
|
parse_goal_2("fail", [], fail, !V).
|
|
parse_goal_2("=", [A0, B0], unify(A, B, purity_pure), !V) :-
|
|
term__coerce(A0, A),
|
|
term__coerce(B0, B).
|
|
parse_goal_2(",", [A0, B0], (A, B), !V) :-
|
|
parse_goal(A0, A, !V),
|
|
parse_goal(B0, B, !V).
|
|
parse_goal_2("&", [A0, B0], (A & B), !V) :-
|
|
parse_goal(A0, A, !V),
|
|
parse_goal(B0, B, !V).
|
|
parse_goal_2(";", [A0, B0], R, !V) :-
|
|
( A0 = term__functor(term__atom("->"), [X0, Y0], _Context) ->
|
|
parse_some_vars_goal(X0, Vars, StateVars, X, !V),
|
|
parse_goal(Y0, Y, !V),
|
|
parse_goal(B0, B, !V),
|
|
R = if_then_else(Vars, StateVars, X, Y, B)
|
|
;
|
|
parse_goal(A0, A, !V),
|
|
parse_goal(B0, B, !V),
|
|
R = (A;B)
|
|
).
|
|
parse_goal_2("else", [IF, C0], if_then_else(Vars, StateVars, A, B, C), !V) :-
|
|
IF = term__functor(term__atom("if"),
|
|
[term__functor(term__atom("then"), [A0, B0], _)], _),
|
|
parse_some_vars_goal(A0, Vars, StateVars, A, !V),
|
|
parse_goal(B0, B, !V),
|
|
parse_goal(C0, C, !V).
|
|
|
|
parse_goal_2("not", [A0], not(A), !V) :-
|
|
parse_goal(A0, A, !V).
|
|
|
|
parse_goal_2("\\+", [A0], not(A), !V) :-
|
|
parse_goal(A0, A, !V).
|
|
|
|
parse_goal_2("all", [QVars, A0], GoalExpr, !V):-
|
|
% Extract any state variables in the quantifier.
|
|
parse_quantifier_vars(QVars, StateVars0, Vars0),
|
|
list__map(term__coerce_var, StateVars0, StateVars),
|
|
list__map(term__coerce_var, Vars0, Vars),
|
|
|
|
parse_goal(A0, A @ (GoalExprA - ContextA), !V),
|
|
|
|
(
|
|
Vars = [], StateVars = [],
|
|
GoalExpr = GoalExprA
|
|
;
|
|
Vars = [], StateVars = [_|_],
|
|
GoalExpr = all_state_vars(StateVars, A)
|
|
;
|
|
Vars = [_|_], StateVars = [],
|
|
GoalExpr = all(Vars, A)
|
|
;
|
|
Vars = [_|_], StateVars = [_|_],
|
|
GoalExpr = all(Vars, all_state_vars(StateVars, A) - ContextA)
|
|
).
|
|
|
|
% Handle implication.
|
|
parse_goal_2("<=", [A0, B0], implies(B, A), !V):-
|
|
parse_goal(A0, A, !V),
|
|
parse_goal(B0, B, !V).
|
|
|
|
parse_goal_2("=>", [A0, B0], implies(A, B), !V):-
|
|
parse_goal(A0, A, !V),
|
|
parse_goal(B0, B, !V).
|
|
|
|
% handle equivalence
|
|
parse_goal_2("<=>", [A0, B0], equivalent(A, B), !V):-
|
|
parse_goal(A0, A, !V),
|
|
parse_goal(B0, B, !V).
|
|
|
|
parse_goal_2("some", [QVars, A0], GoalExpr, !V):-
|
|
% Extract any state variables in the quantifier.
|
|
parse_quantifier_vars(QVars, StateVars0, Vars0),
|
|
list__map(term__coerce_var, StateVars0, StateVars),
|
|
list__map(term__coerce_var, Vars0, Vars),
|
|
|
|
parse_goal(A0, A @ (GoalExprA - ContextA), !V),
|
|
(
|
|
Vars = [], StateVars = [],
|
|
GoalExpr = GoalExprA
|
|
;
|
|
Vars = [], StateVars = [_|_],
|
|
GoalExpr = some_state_vars(StateVars, A)
|
|
;
|
|
Vars = [_|_], StateVars = [],
|
|
GoalExpr = some(Vars, A)
|
|
;
|
|
Vars = [_|_], StateVars = [_|_],
|
|
GoalExpr = some(Vars, some_state_vars(StateVars, A) - ContextA)
|
|
).
|
|
|
|
parse_goal_2("promise_equivalent_solutions", [OVars, A0], GoalExpr, !V):-
|
|
parse_goal(A0, A, !V),
|
|
parse_vars_and_state_vars(OVars, Vars0, DotSVars0, ColonSVars0),
|
|
list__map(term__coerce_var, Vars0, Vars),
|
|
list__map(term__coerce_var, DotSVars0, DotSVars),
|
|
list__map(term__coerce_var, ColonSVars0, ColonSVars),
|
|
GoalExpr = promise_equivalent_solutions(Vars, DotSVars, ColonSVars, A).
|
|
|
|
parse_goal_2("promise_pure", [A0], GoalExpr, !V):-
|
|
parse_goal(A0, A, !V),
|
|
GoalExpr = promise_purity(dont_make_implicit_promises, purity_pure, A).
|
|
|
|
parse_goal_2("promise_semipure", [A0], GoalExpr, !V):-
|
|
parse_goal(A0, A, !V),
|
|
GoalExpr = promise_purity(dont_make_implicit_promises, purity_semipure, A).
|
|
|
|
parse_goal_2("promise_impure", [A0], GoalExpr, !V):-
|
|
parse_goal(A0, A, !V),
|
|
GoalExpr = promise_purity(dont_make_implicit_promises, purity_impure, A).
|
|
|
|
parse_goal_2("promise_pure_implicit", [A0], GoalExpr, !V):-
|
|
parse_goal(A0, A, !V),
|
|
GoalExpr = promise_purity(make_implicit_promises, purity_pure, A).
|
|
|
|
parse_goal_2("promise_semipure_implicit", [A0], GoalExpr, !V):-
|
|
parse_goal(A0, A, !V),
|
|
GoalExpr = promise_purity(make_implicit_promises, purity_semipure, A).
|
|
|
|
parse_goal_2("promise_impure_implicit", [A0], GoalExpr, !V):-
|
|
parse_goal(A0, A, !V),
|
|
GoalExpr = promise_purity(make_implicit_promises, purity_impure, A).
|
|
|
|
% The following is a temporary hack to handle `is' in the parser -
|
|
% we ought to handle it in the code generation - but then `is/2' itself
|
|
% is a bit of a hack.
|
|
parse_goal_2("is", [A0, B0], unify(A, B, purity_pure), !V) :-
|
|
term__coerce(A0, A),
|
|
term__coerce(B0, B).
|
|
parse_goal_2("impure", [A0], A, !V) :-
|
|
parse_goal_with_purity(A0, purity_impure, A, !V).
|
|
parse_goal_2("semipure", [A0], A, !V) :-
|
|
parse_goal_with_purity(A0, purity_semipure, A, !V).
|
|
|
|
:- pred parse_goal_with_purity(term::in, purity::in, goal_expr::out,
|
|
prog_varset::in, prog_varset::out) is det.
|
|
|
|
parse_goal_with_purity(A0, Purity, A, !V) :-
|
|
parse_goal(A0, A1, !V),
|
|
( A1 = call(Pred, Args, purity_pure) - _ ->
|
|
A = call(Pred, Args, Purity)
|
|
; A1 = unify(ProgTerm1, ProgTerm2, purity_pure) - _ ->
|
|
A = unify(ProgTerm1, ProgTerm2, Purity)
|
|
;
|
|
% Inappropriate placement of an impurity marker, so we treat
|
|
% it like a predicate call. typecheck.m prints out something
|
|
% descriptive for these errors.
|
|
purity_name(Purity, PurityString),
|
|
term__coerce(A0, A2),
|
|
A = call(unqualified(PurityString), [A2], purity_pure)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
parse_some_vars_goal(A0, Vars, StateVars, A, !VarSet) :-
|
|
(
|
|
A0 = term__functor(term__atom("some"), [QVars, A1], _Context),
|
|
parse_quantifier_vars(QVars, StateVars0, Vars0)
|
|
->
|
|
list__map(term__coerce_var, StateVars0, StateVars),
|
|
list__map(term__coerce_var, Vars0, Vars),
|
|
parse_goal(A1, A, !VarSet)
|
|
;
|
|
Vars = [],
|
|
StateVars = [],
|
|
parse_goal(A0, A, !VarSet)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred parse_lambda_arg(term::in, prog_term::out, mer_mode::out) is semidet.
|
|
|
|
parse_lambda_arg(Term, ArgTerm, Mode) :-
|
|
Term = term__functor(term__atom("::"), [ArgTerm0, ModeTerm], _),
|
|
term__coerce(ArgTerm0, ArgTerm),
|
|
convert_mode(allow_constrained_inst_var, ModeTerm, Mode0),
|
|
constrain_inst_vars_in_mode(Mode0, Mode).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%
|
|
% Code for parsing pred/func expressions
|
|
%
|
|
|
|
parse_pred_expression(PredTerm, EvalMethod, Args, Modes, Det) :-
|
|
PredTerm = term__functor(term__atom("is"), [PredEvalArgsTerm, DetTerm], _),
|
|
DetTerm = term__functor(term__atom(DetString), [], _),
|
|
standard_det(DetString, Det),
|
|
parse_lambda_eval_method(PredEvalArgsTerm, EvalMethod, PredArgsTerm),
|
|
PredArgsTerm = term__functor(term__atom("pred"), PredArgsList, _),
|
|
parse_pred_expr_args(PredArgsList, Args, Modes),
|
|
inst_var_constraints_are_consistent_in_modes(Modes).
|
|
|
|
parse_dcg_pred_expression(PredTerm, EvalMethod, Args, Modes, Det) :-
|
|
PredTerm = term__functor(term__atom("is"), [PredEvalArgsTerm, DetTerm], _),
|
|
DetTerm = term__functor(term__atom(DetString), [], _),
|
|
standard_det(DetString, Det),
|
|
parse_lambda_eval_method(PredEvalArgsTerm, EvalMethod, PredArgsTerm),
|
|
PredArgsTerm = term__functor(term__atom("pred"), PredArgsList, _),
|
|
parse_dcg_pred_expr_args(PredArgsList, Args, Modes),
|
|
inst_var_constraints_are_consistent_in_modes(Modes).
|
|
|
|
parse_func_expression(FuncTerm, EvalMethod, Args, Modes, Det) :-
|
|
% Parse a func expression with specified modes and determinism.
|
|
FuncTerm = term__functor(term__atom("is"), [EqTerm, DetTerm], _),
|
|
EqTerm = term__functor(term__atom("="), [FuncEvalArgsTerm, RetTerm], _),
|
|
DetTerm = term__functor(term__atom(DetString), [], _),
|
|
standard_det(DetString, Det),
|
|
parse_lambda_eval_method(FuncEvalArgsTerm, EvalMethod, FuncArgsTerm),
|
|
FuncArgsTerm = term__functor(term__atom("func"), FuncArgsList, _),
|
|
|
|
( parse_pred_expr_args(FuncArgsList, Args0, Modes0) ->
|
|
parse_lambda_arg(RetTerm, RetArg, RetMode),
|
|
list__append(Args0, [RetArg], Args),
|
|
list__append(Modes0, [RetMode], Modes),
|
|
inst_var_constraints_are_consistent_in_modes(Modes)
|
|
;
|
|
% The argument modes default to `in',
|
|
% the return mode defaults to `out'.
|
|
in_mode(InMode),
|
|
out_mode(OutMode),
|
|
list__length(FuncArgsList, NumArgs),
|
|
list__duplicate(NumArgs, InMode, Modes0),
|
|
RetMode = OutMode,
|
|
list__append(Modes0, [RetMode], Modes),
|
|
list__append(FuncArgsList, [RetTerm], Args1),
|
|
list__map(term__coerce, Args1, Args)
|
|
).
|
|
|
|
parse_func_expression(FuncTerm, EvalMethod, Args, Modes, Det) :-
|
|
% Parse a func expression with unspecified modes and determinism.
|
|
FuncTerm = term__functor(term__atom("="), [FuncEvalArgsTerm, RetTerm], _),
|
|
parse_lambda_eval_method(FuncEvalArgsTerm, EvalMethod, FuncArgsTerm),
|
|
FuncArgsTerm = term__functor(term__atom("func"), Args0, _),
|
|
|
|
% The argument modes default to `in',
|
|
% the return mode defaults to `out',
|
|
% and the determinism defaults to `det'.
|
|
in_mode(InMode),
|
|
out_mode(OutMode),
|
|
list__length(Args0, NumArgs),
|
|
list__duplicate(NumArgs, InMode, Modes0),
|
|
RetMode = OutMode,
|
|
Det = det,
|
|
list__append(Modes0, [RetMode], Modes),
|
|
inst_var_constraints_are_consistent_in_modes(Modes),
|
|
list__append(Args0, [RetTerm], Args1),
|
|
list__map(term__coerce, Args1, Args).
|
|
|
|
parse_lambda_eval_method(Term0, EvalMethod, Term) :-
|
|
( Term0 = term__functor(term__atom(MethodStr), [Term1], _) ->
|
|
( MethodStr = "aditi_bottom_up" ->
|
|
EvalMethod = lambda_aditi_bottom_up,
|
|
Term = Term1
|
|
;
|
|
EvalMethod = lambda_normal,
|
|
Term = Term0
|
|
)
|
|
;
|
|
EvalMethod = lambda_normal,
|
|
Term = Term0
|
|
).
|
|
|
|
:- pred parse_pred_expr_args(list(term)::in, list(prog_term)::out,
|
|
list(mer_mode)::out) is semidet.
|
|
|
|
parse_pred_expr_args([], [], []).
|
|
parse_pred_expr_args([Term|Terms], [Arg|Args], [Mode|Modes]) :-
|
|
parse_lambda_arg(Term, Arg, Mode),
|
|
parse_pred_expr_args(Terms, Args, Modes).
|
|
|
|
% parse_dcg_pred_expr_args is like parse_pred_expr_args except
|
|
% that the last two elements of the list are the modes of the
|
|
% two DCG arguments.
|
|
%
|
|
:- pred parse_dcg_pred_expr_args(list(term)::in, list(prog_term)::out,
|
|
list(mer_mode)::out) is semidet.
|
|
|
|
parse_dcg_pred_expr_args([DCGModeTermA, DCGModeTermB], [],
|
|
[DCGModeA, DCGModeB]) :-
|
|
convert_mode(allow_constrained_inst_var, DCGModeTermA, DCGModeA0),
|
|
convert_mode(allow_constrained_inst_var, DCGModeTermB, DCGModeB0),
|
|
constrain_inst_vars_in_mode(DCGModeA0, DCGModeA),
|
|
constrain_inst_vars_in_mode(DCGModeB0, DCGModeB).
|
|
parse_dcg_pred_expr_args([Term|Terms], [Arg|Args], [Mode|Modes]) :-
|
|
Terms = [_, _ | _],
|
|
parse_lambda_arg(Term, Arg, Mode),
|
|
parse_dcg_pred_expr_args(Terms, Args, Modes).
|
|
|
|
%-----------------------------------------------------------------------------%
|