Files
mercury/compiler/prog_io_dcg.m
Julien Fischer 2a477fb7e7 Split the parse tree (currently defined in prog_data.m) into two
Estimated hours taken: 3.5
Branches: main

Split the parse tree (currently defined in prog_data.m) into two
separate modules.  The reason for doing this is that while over 80%
of the modules in the compiler import prog_data, very few of them actually
require access to the types that define the parse tree (principally
the item type).  At the moment even small changes to these types can
result in recompiles that rebuild almost all of the compiler.  This change
shifts the item type (and related types) into a new module, prog_item,
that is only imported where these types are required (mostly at the
frontend of the compiler).  This should reduce the size of recompiles
required when the parse tree is modified.

This diff does not change any algorithms; it just shifts things around.

compiler/prog_data.m:
	Move the item type and any related types that are not needed
	after the HLDS has been built to the new prog_item module.

	Fix bitrot in comments.

	Fix formatting and layout of comments.

	Use unexpected/2 in place of error/1 in a spot.

compiler/prog_item.m:
	New file.  This module contains any parts of the parse tree
	that are not needed by the rest of the compiler after the
	HLDS has been built.

compiler/check_typeclass.m:
	s/list(instance_method)/instance_methods/

compiler/equiv_type.m:
compiler/hlds_module.m:
compiler/intermod.m:
compiler/make.module_dep_file.m:
compiler/make_hlds.m:
compiler/mercury_compile.m:
compiler/mercury_to_mercury.m:
compiler/module_qual.m:
compiler/modules.m:
compiler/parse_tree.m:
compiler/prog_io.m:
compiler/prog_io_dcg.m:
compiler/prog_io_goal.m:
compiler/prog_io_pragma.m:
compiler/prog_io_typeclass.m:
compiler/prog_io_util.m:
compiler/prog_out.m:
compiler/prog_util.m:
compiler/recompilation.check.m:
compiler/recompilation.usage.m:
compiler/recompilation.version.m:
compiler/trans_opt.m:
	Conform to the above changes.

compiler/notes/compiler_design.html:
	Mention the new module.
2005-11-23 04:44:10 +00:00

540 lines
20 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1996-2001, 2003-2005 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io_dcg.m.
% Main authors: fjh, zs.
%
% This module handles the parsing of clauses in Definite Clause Grammar
% notation.
%
% XXX This module performs no error checking.
% XXX It may be an idea to recode this as a state variable transformation:
% roughly Head --> G1, G2, {G3}, G4.
% becomes Head(!DCG) :- G1(!DCG), G2(!DCG), G3, G4(!DCG).
:- module parse_tree__prog_io_dcg.
:- interface.
:- import_module mdbcomp.prim_data.
:- import_module parse_tree.prog_data.
:- import_module parse_tree.prog_item.
:- import_module parse_tree.prog_io_util.
:- import_module term.
:- import_module varset.
:- pred parse_dcg_clause(module_name::in, varset::in, term::in, term::in,
prog_context::in, maybe_item_and_context::out) is det.
% parse_dcg_pred_goal(GoalTerm, Goal, DCGVarInitial, DCGVarFinal, !Varset):
%
% Parses `GoalTerm' and expands it as a DCG goal.
% `DCGVarInitial' is the first DCG variable,
% and `DCGVarFinal' is the final DCG variable.
%
:- pred parse_dcg_pred_goal(term::in, goal::out, prog_var::out, prog_var::out,
prog_varset::in, prog_varset::out) is det.
:- implementation.
:- import_module parse_tree.prog_io.
:- import_module parse_tree.prog_io_goal.
:- import_module parse_tree.prog_util.
:- import_module parse_tree.prog_out.
:- import_module counter.
:- import_module int.
:- import_module list.
:- import_module map.
:- import_module std_util.
:- import_module string.
%-----------------------------------------------------------------------------%
parse_dcg_clause(ModuleName, VarSet0, DCG_Head, DCG_Body, DCG_Context,
Result) :-
varset__coerce(VarSet0, ProgVarSet0),
new_dcg_var(ProgVarSet0, ProgVarSet1, counter__init(0), Counter0,
DCG_0_Var),
parse_dcg_goal(DCG_Body, Body, ProgVarSet1, ProgVarSet, Counter0, _Counter,
DCG_0_Var, DCG_Var),
parse_implicitly_qualified_term(ModuleName, DCG_Head, DCG_Body,
"DCG clause head", HeadResult),
process_dcg_clause(HeadResult, ProgVarSet, DCG_0_Var, DCG_Var, Body, R),
add_context(R, DCG_Context, Result).
%-----------------------------------------------------------------------------%
parse_dcg_pred_goal(GoalTerm, Goal, DCGVar0, DCGVar, !VarSet) :-
new_dcg_var(!VarSet, counter__init(0), Counter0, DCGVar0),
parse_dcg_goal(GoalTerm, Goal, !VarSet, Counter0, _Counter,
DCGVar0, DCGVar).
%-----------------------------------------------------------------------------%
% Used to allocate fresh variables needed for the DCG expansion.
%
:- pred new_dcg_var(prog_varset::in, prog_varset::out,
counter::in, counter::out, prog_var::out) is det.
new_dcg_var(!VarSet, !Counter, DCG_0_Var) :-
counter__allocate(N, !Counter),
string__int_to_string(N, StringN),
string__append("DCG_", StringN, VarName),
varset__new_var(!.VarSet, DCG_0_Var, !:VarSet),
varset__name_var(!.VarSet, DCG_0_Var, VarName, !:VarSet).
%-----------------------------------------------------------------------------%
% Expand a DCG goal.
%
:- pred parse_dcg_goal(term::in, goal::out, prog_varset::in, prog_varset::out,
counter::in, counter::out, prog_var::in, prog_var::out) is det.
parse_dcg_goal(Term, Goal, !VarSet, !Counter, !Var) :-
% First, figure out the context for the goal.
(
Term = term__functor(_, _, Context)
;
Term = term__variable(_),
term__context_init(Context)
),
% Next, parse it.
(
term__coerce(Term, ProgTerm),
sym_name_and_args(ProgTerm, SymName, Args0)
->
% First check for the special cases:
(
SymName = unqualified(Functor),
list__map(term__coerce, Args0, Args1),
parse_dcg_goal_2(Functor, Args1, Context, Goal1,
!VarSet, !Counter, !Var)
->
Goal = Goal1
;
% It's the ordinary case of non-terminal. Create a fresh var
% as the DCG output var from this goal, and append the DCG argument
% pair to the non-terminal's argument list.
new_dcg_var(!VarSet, !Counter, Var),
Args = Args0 ++ [term__variable(!.Var), term__variable(Var)],
Goal = call(SymName, Args, purity_pure) - Context,
!:Var = Var
)
;
% A call to a free variable, or to a number or string.
% Just translate it into a call to call/3 - the typechecker
% will catch calls to numbers and strings.
new_dcg_var(!VarSet, !Counter, Var),
term__coerce(Term, ProgTerm),
Goal = call(unqualified("call"),
[ProgTerm, term__variable(!.Var), term__variable(Var)],
purity_pure) - Context,
!:Var = Var
).
% parse_dcg_goal_2(Functor, Args, Context, Goal, !VarSet, !Counter, !Var):
%
% We use !VarSet to allocate fresh DCG variables; We use !Counter
% to keep track of the number to give to the next DCG variable
% (so that we can give it a semi-meaningful name "DCG_<N>" for use
% in error messages, debugging, etc.). We use !Var to keep track of
% the current DCG variable.
%
% Since (A -> B) has different semantics in standard Prolog
% (A -> B ; fail) than it does in NU-Prolog or Mercury (A -> B ; true),
% for the moment we'll just disallow it.
%
:- pred parse_dcg_goal_2(string::in, list(term)::in, prog_context::in,
goal::out, prog_varset::in, prog_varset::out,
counter::in, counter::out, prog_var::in, prog_var::out) is semidet.
parse_dcg_goal_2("{}", [G0 | Gs], Context, Goal, !VarSet, !Counter, !Var) :-
% Ordinary goal inside { curly braces }.
% The parser treats '{}/N' terms as tuples, so we need
% to undo the parsing of the argument conjunction here.
list_to_conjunction(Context, G0, Gs, G),
parse_goal(G, Goal, !VarSet).
parse_dcg_goal_2("impure", [G], _, Goal, !VarSet, !Counter, !Var) :-
parse_dcg_goal_with_purity(G, purity_impure, Goal, !VarSet,
!Counter, !Var).
parse_dcg_goal_2("semipure", [G], _, Goal, !VarSet, !Counter, !Var) :-
parse_dcg_goal_with_purity(G, purity_semipure, Goal, !VarSet,
!Counter, !Var).
parse_dcg_goal_2("promise_pure", [G], Context, Goal,
!VarSet, !Counter, !Var) :-
parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var),
Goal = promise_purity(dont_make_implicit_promises, purity_pure, Goal0)
- Context.
parse_dcg_goal_2("promise_semipure", [G], Context, Goal,
!VarSet, !Counter, !Var) :-
parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var),
Goal = promise_purity(dont_make_implicit_promises, purity_semipure, Goal0)
- Context.
parse_dcg_goal_2("promise_impure", [G], Context, Goal,
!VarSet, !Counter, !Var) :-
parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var),
Goal = promise_purity(dont_make_implicit_promises, purity_impure, Goal0)
- Context.
parse_dcg_goal_2("promise_pure_implicit", [G], Context, Goal,
!VarSet, !Counter, !Var) :-
parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var),
Goal = promise_purity(make_implicit_promises, purity_pure, Goal0)
- Context.
parse_dcg_goal_2("promise_semipure_implicit", [G], Context, Goal,
!VarSet, !Counter, !Var) :-
parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var),
Goal = promise_purity(make_implicit_promises, purity_semipure, Goal0)
- Context.
parse_dcg_goal_2("promise_impure_implicit", [G], Context, Goal,
!VarSet, !Counter, !Var) :-
parse_dcg_goal(G, Goal0, !VarSet, !Counter, !Var),
Goal = promise_purity(make_implicit_promises, purity_impure, Goal0)
- Context.
parse_dcg_goal_2("[]", [], Context, Goal, !VarSet, !Counter, Var0, Var) :-
% Empty list - just unify the input and output DCG args.
new_dcg_var(!VarSet, !Counter, Var),
Goal = unify(term__variable(Var0), term__variable(Var), purity_pure)
- Context.
parse_dcg_goal_2("[|]", [X, Xs], Context, Goal, !VarSet, !Counter,
Var0, Var) :-
% Non-empty list of terminals. Append the DCG output arg as the new tail
% of the list, and unify the result with the DCG input arg.
new_dcg_var(!VarSet, !Counter, Var),
ConsTerm0 = term__functor(term__atom("[|]"), [X, Xs], Context),
term__coerce(ConsTerm0, ConsTerm),
term_list_append_term(ConsTerm, term__variable(Var), Term),
Goal = unify(term__variable(Var0), Term, purity_pure) - Context.
parse_dcg_goal_2("=", [A0], Context, Goal, !VarSet, !Counter, Var, Var) :-
% Call to '='/1 - unify argument with DCG input arg.
term__coerce(A0, A),
Goal = unify(A, term__variable(Var), purity_pure) - Context.
parse_dcg_goal_2(":=", [A0], Context, Goal, !VarSet, !Counter, _Var0, Var) :-
% Call to ':='/1 - unify argument with DCG output arg.
new_dcg_var(!VarSet, !Counter, Var),
term__coerce(A0, A),
Goal = unify(A, term__variable(Var), purity_pure) - Context.
% parse_dcg_goal_2("->", [Cond0, Then0], Context, VarSet0, Counter0, Var0,
% Goal, VarSet, Counter, Var) :-
% % If-then (Prolog syntax).
% % We need to add an else part to unify the DCG args.
% parse_dcg_if_then(Cond0, Then0, Context, VarSet0, Counter0, Var0,
% SomeVars, StateVars, Cond, Then, VarSet, Counter, Var),
% ( Var = Var0 ->
% Goal = if_then(SomeVars, StateVars, Cond, Then) - Context
% ;
% Unify = unify(term__variable(Var), term__variable(Var0)),
% Goal = if_then_else(SomeVars, StateVars, Cond, Then,
% Unify - Context) - Context
% ).
parse_dcg_goal_2("if", [term__functor(term__atom("then"), [Cond0, Then0], _)],
Context, Goal, !VarSet, !Counter, Var0, Var) :-
% If-then (NU-Prolog syntax).
parse_dcg_if_then(Cond0, Then0, Context, SomeVars, StateVars,
Cond, Then, !VarSet, !Counter, Var0, Var),
( Var = Var0 ->
Goal = if_then(SomeVars, StateVars, Cond, Then) - Context
;
Unify = unify(term__variable(Var), term__variable(Var0), purity_pure),
Goal = if_then_else(SomeVars, StateVars, Cond, Then, Unify - Context)
- Context
).
parse_dcg_goal_2(",", [A0, B0], Context, (A, B) - Context, !VarSet, !Counter,
!Var) :-
% Conjunction.
parse_dcg_goal(A0, A, !VarSet, !Counter, !Var),
parse_dcg_goal(B0, B, !VarSet, !Counter, !Var).
parse_dcg_goal_2("&", [A0, B0], Context, (A & B) - Context,
!VarSet, !Counter, !Var) :-
parse_dcg_goal(A0, A, !VarSet, !Counter, !Var),
parse_dcg_goal(B0, B, !VarSet, !Counter, !Var).
parse_dcg_goal_2(";", [A0, B0], Context, Goal, !VarSet, !Counter, Var0, Var) :-
% Disjunction or if-then-else (Prolog syntax).
(
A0 = term__functor(term__atom("->"), [Cond0, Then0], _Context)
->
parse_dcg_if_then_else(Cond0, Then0, B0, Context, Goal,
!VarSet, !Counter, Var0, Var)
;
parse_dcg_goal(A0, A1, !VarSet, !Counter, Var0, VarA),
parse_dcg_goal(B0, B1, !VarSet, !Counter, Var0, VarB),
( VarA = Var0, VarB = Var0 ->
Var = Var0,
Goal = (A1 ; B1) - Context
; VarA = Var0 ->
Var = VarB,
Unify = unify(term__variable(Var), term__variable(VarA),
purity_pure),
append_to_disjunct(A1, Unify, Context, A2),
Goal = (A2 ; B1) - Context
; VarB = Var0 ->
Var = VarA,
Unify = unify(term__variable(Var), term__variable(VarB),
purity_pure),
append_to_disjunct(B1, Unify, Context, B2),
Goal = (A1 ; B2) - Context
;
Var = VarB,
prog_util__rename_in_goal(VarA, VarB, A1, A2),
Goal = (A2 ; B1) - Context
)
).
parse_dcg_goal_2("else", [IF, Else0], _, Goal, !VarSet, !Counter, !Var) :-
% If-then-else (NU-Prolog syntax).
IF = term__functor(term__atom("if"),
[term__functor(term__atom("then"), [Cond0, Then0], _)], Context),
parse_dcg_if_then_else(Cond0, Then0, Else0, Context, Goal,
!VarSet, !Counter, !Var).
parse_dcg_goal_2("not", [A0], Context, not(A) - Context,
!VarSet, !Counter, Var0, Var0) :-
% Negation (NU-Prolog syntax).
parse_dcg_goal(A0, A, !VarSet, !Counter, Var0, _).
parse_dcg_goal_2("\\+", [A0], Context, not(A) - Context,
!VarSet, !Counter, Var0, Var0) :-
% Negation (Prolog syntax).
parse_dcg_goal(A0, A, !VarSet, !Counter, Var0, _).
parse_dcg_goal_2("all", [QVars, A0], Context, GoalExpr - Context,
!VarSet, !Counter, !Var) :-
% Universal quantification.
% Extract any state variables in the quantifier.
parse_quantifier_vars(QVars, StateVars0, Vars0),
list__map(term__coerce_var, StateVars0, StateVars),
list__map(term__coerce_var, Vars0, Vars),
parse_dcg_goal(A0, A @ (GoalExprA - ContextA), !VarSet, !Counter, !Var),
(
Vars = [],
StateVars = [],
GoalExpr = GoalExprA
;
Vars = [],
StateVars = [_ | _],
GoalExpr = all_state_vars(StateVars, A)
;
Vars = [_ | _],
StateVars = [],
GoalExpr = all(Vars, A)
;
Vars = [_ | _],
StateVars = [_ | _],
GoalExpr = all(Vars, all_state_vars(StateVars, A) - ContextA)
).
parse_dcg_goal_2("some", [QVars, A0], Context, GoalExpr - Context,
!VarSet, !Counter, !Var) :-
% Existential quantification.
% Extract any state variables in the quantifier.
parse_quantifier_vars(QVars, StateVars0, Vars0),
list__map(term__coerce_var, StateVars0, StateVars),
list__map(term__coerce_var, Vars0, Vars),
parse_dcg_goal(A0, A @ (GoalExprA - ContextA), !VarSet, !Counter, !Var),
(
Vars = [],
StateVars = [],
GoalExpr = GoalExprA
;
Vars = [],
StateVars = [_ | _],
GoalExpr = some_state_vars(StateVars, A)
;
Vars = [_ | _],
StateVars = [],
GoalExpr = some(Vars, A)
;
Vars = [_ | _],
StateVars = [_ | _],
GoalExpr = some(Vars, some_state_vars(StateVars, A) - ContextA)
).
:- pred parse_dcg_goal_with_purity(term::in, purity::in, goal::out,
prog_varset::in, prog_varset::out, counter::in, counter::out,
prog_var::in, prog_var::out) is det.
parse_dcg_goal_with_purity(G, Purity, Goal, !VarSet, !Counter, !Var) :-
parse_dcg_goal(G, Goal1, !VarSet, !Counter, !Var),
( Goal1 = call(Pred, Args, purity_pure) - Context ->
Goal = call(Pred, Args, Purity) - Context
; Goal1 = unify(ProgTerm1, ProgTerm2, purity_pure) - Context ->
Goal = unify(ProgTerm1, ProgTerm2, Purity) - Context
;
% Inappropriate placement of an impurity marker, so we treat
% it like a predicate call. typecheck.m prints out something
% descriptive for these errors.
Goal1 = _ - Context,
purity_name(Purity, PurityString),
term__coerce(G, G1),
Goal = call(unqualified(PurityString), [G1], purity_pure) - Context
).
:- pred append_to_disjunct(goal::in, goal_expr::in, prog_context::in,
goal::out) is det.
append_to_disjunct(Disjunct0, Goal, Context, Disjunct) :-
( Disjunct0 = (A0 ; B0) - Context2 ->
append_to_disjunct(A0, Goal, Context, A),
append_to_disjunct(B0, Goal, Context, B),
Disjunct = (A ; B) - Context2
;
Disjunct = (Disjunct0, Goal - Context) - Context
).
:- pred parse_some_vars_dcg_goal(term::in, list(prog_var)::out,
list(prog_var)::out, goal::out, prog_varset::in, prog_varset::out,
counter::in, counter::out, prog_var::in, prog_var::out) is det.
parse_some_vars_dcg_goal(A0, SomeVars, StateVars, A, !VarSet, !Counter,
!Var) :-
( A0 = term__functor(term__atom("some"), [QVars0, A1], _Context) ->
term__coerce(QVars0, QVars),
( parse_quantifier_vars(QVars, StateVars0, SomeVars0) ->
SomeVars = SomeVars0,
StateVars = StateVars0
;
% XXX A hack because we do not do error checking in this module.
term__vars(QVars, SomeVars),
StateVars = []
),
A2 = A1
;
SomeVars = [],
StateVars = [],
A2 = A0
),
parse_dcg_goal(A2, A, !VarSet, !Counter, !Var).
% Parse the "if" and the "then" part of an if-then or an if-then-else.
% If the condition is a DCG goal, but then "then" part is not,
% then we need to translate
% ( a -> { b } ; c )
% as
% ( a(DCG_1, DCG_2) ->
% b,
% DCG_3 = DCG_2
% ;
% c(DCG_1, DCG_3)
% )
% rather than
% ( a(DCG_1, DCG_2) ->
% b
% ;
% c(DCG_1, DCG_2)
% )
% so that the implicit quantification of DCG_2 is correct.
%
:- pred parse_dcg_if_then(term::in, term::in, prog_context::in,
list(prog_var)::out, list(prog_var)::out, goal::out, goal::out,
prog_varset::in, prog_varset::out, counter::in, counter::out,
prog_var::in, prog_var::out) is det.
parse_dcg_if_then(Cond0, Then0, Context, SomeVars, StateVars, Cond, Then,
!VarSet, !Counter, Var0, Var) :-
parse_some_vars_dcg_goal(Cond0, SomeVars, StateVars, Cond,
!VarSet, !Counter, Var0, Var1),
parse_dcg_goal(Then0, Then1, !VarSet, !Counter, Var1, Var2),
(
Var0 \= Var1,
Var1 = Var2
->
new_dcg_var(!VarSet, !Counter, Var),
Unify = unify(term__variable(Var), term__variable(Var2), purity_pure),
Then = (Then1, Unify - Context) - Context
;
Then = Then1,
Var = Var2
).
:- pred parse_dcg_if_then_else(term::in, term::in, term::in, prog_context::in,
goal::out, prog_varset::in, prog_varset::out,
counter::in, counter::out, prog_var::in, prog_var::out) is det.
parse_dcg_if_then_else(Cond0, Then0, Else0, Context, Goal,
!VarSet, !Counter, Var0, Var) :-
parse_dcg_if_then(Cond0, Then0, Context, SomeVars, StateVars,
Cond, Then1, !VarSet, !Counter, Var0, VarThen),
parse_dcg_goal(Else0, Else1, !VarSet, !Counter, Var0, VarElse),
( VarThen = Var0, VarElse = Var0 ->
Var = Var0,
Then = Then1,
Else = Else1
; VarThen = Var0 ->
Var = VarElse,
Unify = unify(term__variable(Var), term__variable(VarThen),
purity_pure),
Then = (Then1, Unify - Context) - Context,
Else = Else1
; VarElse = Var0 ->
Var = VarThen,
Then = Then1,
Unify = unify(term__variable(Var), term__variable(VarElse),
purity_pure),
Else = (Else1, Unify - Context) - Context
;
% We prefer to substitute the then part since it is likely to be
% smaller than the else part, since the else part may have a deeply
% nested chain of if-then-elses.
% parse_dcg_if_then guarantees that if VarThen \= Var0, then the
% then part introduces a new DCG variable (i.e. VarThen does not appear
% in the condition). We therefore don't need to do the substitution
% in the condition.
Var = VarElse,
prog_util__rename_in_goal(VarThen, VarElse, Then1, Then),
Else = Else1
),
Goal = if_then_else(SomeVars, StateVars, Cond, Then, Else) - Context.
% term_list_append_term(ListTerm, Term, Result):
%
% If ListTerm is a term representing a proper list, this predicate
% will append the term Term onto the end of the list.
%
:- pred term_list_append_term(term(T)::in, term(T)::in, term(T)::out)
is semidet.
term_list_append_term(List0, Term, List) :-
( List0 = term__functor(term__atom("[]"), [], _Context) ->
List = Term
;
List0 = term__functor(term__atom("[|]"), [Head, Tail0], Context2),
List = term__functor(term__atom("[|]"), [Head, Tail], Context2),
term_list_append_term(Tail0, Term, Tail)
).
:- pred process_dcg_clause(maybe_functor::in, prog_varset::in, prog_var::in,
prog_var::in, goal::in, maybe1(item)::out) is det.
process_dcg_clause(ok(Name, Args0), VarSet, Var0, Var, Body,
ok(clause(user, VarSet, predicate, Name, Args, Body))) :-
list__map(term__coerce, Args0, Args1),
list__append(Args1, [term__variable(Var0), term__variable(Var)], Args).
process_dcg_clause(error(Message, Term), _, _, _, _, error(Message, Term)).