Files
mercury/browser/declarative_debugger.m
Mark Brown 5cbec33da5 Add the command 'pd' to the declarative debugger.
Estimated hours taken: 1
Branches: main

Add the command 'pd' to the declarative debugger.  This command returns
to the procedural debugger at the event corresponding to the current
question; it is notionally the inverse of the 'dd' command in the
procedural debugger.

browser/declarative_user.m:
	Handle the new command, and add a new alternative to the
	user_response type.

browser/declarative_oracle.m:
	Handle the new user response, and add a new alternative to the
	oracle_response type.

browser/declarative_debugger.m:
	Handle the new oracle response, and add a new alternative to the
	diagnoser_response type.

	Export some procedures to C so that the back end can interpret the
	new diagnoser response.

	Update an old comment.

trace/mercury_trace_declarative.c:
	Handle the new diagnoser response.  Rename the function
	MR_decl_handle_bug_found, since it now also handles the case
	where a symptom has been found.

	Interpret the diagnoser response using something like a switch,
	rather than something like an if-then-else.  This gives better
	error messages if the diagnoser response type is changed.

doc/user_guide.texi:
	Document the new command.

tests/debugger/declarative/Mmakefile:
tests/debugger/declarative/pd.exp:
tests/debugger/declarative/pd.inp:
tests/debugger/declarative/pd.m:
	Test the new feature.
2002-10-03 07:34:43 +00:00

570 lines
18 KiB
Mathematica

%-----------------------------------------------------------------------------%
% Copyright (C) 1999-2002 The University of Melbourne.
% This file may only be copied under the terms of the GNU Library General
% Public License - see the file COPYING.LIB in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: declarative_debugger.m
% Author: Mark Brown
%
% This module has two main purposes:
% - to define the interface between the front and back ends of
% a Mercury declarative debugger, and
% - to implement a front end.
%
% The interface is defined by a procedure that can be called from
% the back end to perform diagnosis, and a typeclass which represents
% a declarative view of execution used by the front end.
%
% The front end implemented in this module analyses the EDT it is
% passed to diagnose a bug. It does this by a simple top-down search.
%
% Because Mercury modules are able to be compiled with different levels
% of tracing, the trace sequences generated by the back end, and passed
% to the front end as "annotated traces", can include or exclude certain
% types of events. This front end is able to cope with some variation in
% the trace events produced, but there are some basic requirements on
% trace sequences which the back end must meet:
%
% 1) if there are any events from a certain class (e.g. interface
% events, negation events, disj events) then we require all events
% of that class;
%
% 2) if there are any disj events, we require all negation events
% and if-then-else events.
%
%-----------------------------------------------------------------------------%
:- module mdb__declarative_debugger.
:- interface.
:- import_module mdb__declarative_execution, mdb__program_representation.
:- import_module mdb__io_action.
:- import_module io, bool, list, std_util, string.
% This type represents the possible truth values for nodes
% in the EDT.
%
:- type decl_truth == bool.
% This type represents the possible responses to being
% asked to confirm that a node is a bug.
%
:- type decl_confirmation
---> confirm_bug
; overrule_bug
; abort_diagnosis.
% This type represents the bugs which can be diagnosed.
% The parameter of the constructor is the type of EDT nodes.
%
:- type decl_bug
% An EDT whose root node is incorrect,
% but whose children are all correct.
%
---> e_bug(decl_e_bug)
% An EDT whose root node is incorrect, and
% which has no incorrect children but at
% least one inadmissible one.
%
; i_bug(decl_i_bug).
:- type decl_e_bug
---> incorrect_contour(
final_decl_atom,% The head of the clause, in its
% final state of instantiation.
decl_contour, % The path taken through the body.
event_number % The exit event.
)
; partially_uncovered_atom(
init_decl_atom, % The called atom, in its initial
% state.
event_number % The fail event.
)
; unhandled_exception(
init_decl_atom, % The called atom, in its initial
% state.
decl_exception, % The exception thrown.
event_number % The excp event.
).
:- type decl_i_bug
---> inadmissible_call(
init_decl_atom, % The parent atom, in its initial
% state.
decl_position, % The location of the call in the
% parent's body.
init_decl_atom, % The inadmissible child, in its
% initial state.
event_number % The call event.
).
% XXX not yet implemented.
%
:- type decl_contour == unit.
:- type decl_position == unit.
% Values of the following two types represent questions from the
% analyser to the oracle about some aspect of program behaviour,
% and responses from the oracle, respectively. In both cases the
% type parameter is for the type of EDT nodes -- each question and
% answer keeps a reference to the node which generated it, so that
% the analyser is able to figure out what to do when the answer
% arrives back from the oracle.
%
:- type decl_question(T)
% The node is a suspected wrong answer. The first
% argument is the EDT node the question came from.
% The second argument is the atom in its final
% state of instantiatedness (ie. at the EXIT event).
%
---> wrong_answer(T, final_decl_atom)
% The node is a suspected missing answer. The
% first argument is the EDT node the question came
% from. The second argument is the atom in its
% initial state of instantiatedness (ie. at the
% CALL event), and the third argument is the list
% of solutions.
%
; missing_answer(T, init_decl_atom, list(final_decl_atom))
% The node is a possibly unexpected exception.
% The first argument is the EDT node the question
% came from. The second argument is the atom in
% its initial state of instantiation, and the third
% argument is the exception thrown.
%
; unexpected_exception(T, init_decl_atom, decl_exception).
:- type decl_answer(T)
% The oracle knows the truth value of this node.
%
---> truth_value(T, decl_truth)
% The oracle does not say anything about the truth
% value, but is suspicious of the subterm at the
% given term_path and arg_pos.
%
; suspicious_subterm(T, arg_pos, term_path).
% Extract the EDT node from a question.
%
:- func get_decl_question_node(decl_question(T)) = T.
:- type some_decl_atom
---> init(init_decl_atom)
; final(final_decl_atom).
:- type init_decl_atom
---> init_decl_atom(
init_atom :: trace_atom
).
:- type final_decl_atom
---> final_decl_atom(
final_atom :: trace_atom,
final_io_actions :: list(io_action)
).
:- type decl_exception == univ.
% The diagnoser eventually responds with a value of this type
% after it is called.
%
:- type diagnoser_response
% There was a bug found and confirmed. The
% event number is for a call port (inadmissible
% call), an exit port (incorrect contour),
% a fail port (partially uncovered atom),
% or an exception port (unhandled exception).
%
---> bug_found(event_number)
% There was another symptom of incorrect behaviour
% found; this symptom will be closer, in a sense,
% to the location of a bug.
%
; symptom_found(event_number)
% There was no symptom found, or the diagnoser
% aborted before finding a bug.
%
; no_bug_found
% The analyser requires the back end to reproduce
% part of the annotated trace, with a greater
% depth bound. The event number and sequence
% number are for the final event required (the
% first event required is the call event with
% the same sequence number).
%
; require_subtree(event_number, sequence_number).
:- type diagnoser_state(R).
:- pred diagnoser_state_init(io_action_map::in, io__input_stream::in,
io__output_stream::in, diagnoser_state(R)::out) is det.
:- pred diagnosis(S::in, R::in, int::in, int::in, int::in,
diagnoser_response::out,
diagnoser_state(R)::in, diagnoser_state(R)::out,
io__state::di, io__state::uo) is cc_multi <= annotated_trace(S, R).
:- pred unravel_decl_atom(some_decl_atom::in, trace_atom::out,
list(io_action)::out) is det.
%-----------------------------------------------------------------------------%
% The diagnoser generates exceptions of the following type.
%
:- type diagnoser_exception
---> internal_error(
string, % predicate/function name
string % error message
)
; io_error(
string, % predicate/function name
string % error message
)
; unimplemented_feature(
string % feature that is NYI
).
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module mdb__declarative_analyser, mdb__declarative_oracle.
:- import_module mdb__declarative_tree.
:- import_module exception, int, map.
unravel_decl_atom(DeclAtom, TraceAtom, IoActions) :-
(
DeclAtom = init(init_decl_atom(TraceAtom)),
IoActions = []
;
DeclAtom = final(final_decl_atom(TraceAtom, IoActions))
).
get_decl_question_node(wrong_answer(Node, _)) = Node.
get_decl_question_node(missing_answer(Node, _, _)) = Node.
get_decl_question_node(unexpected_exception(Node, _, _)) = Node.
%-----------------------------------------------------------------------------%
:- type diagnoser_state(R)
---> diagnoser(
analyser_state :: analyser_state(edt_node(R)),
oracle_state :: oracle_state
).
:- pred diagnoser_get_analyser(diagnoser_state(R),
analyser_state(edt_node(R))).
:- mode diagnoser_get_analyser(in, out) is det.
diagnoser_get_analyser(diagnoser(Analyser, _), Analyser).
:- pred diagnoser_set_analyser(diagnoser_state(R), analyser_state(edt_node(R)),
diagnoser_state(R)).
:- mode diagnoser_set_analyser(in, in, out) is det.
diagnoser_set_analyser(diagnoser(_, B), A, diagnoser(A, B)).
:- pred diagnoser_get_oracle(diagnoser_state(R), oracle_state).
:- mode diagnoser_get_oracle(in, out) is det.
diagnoser_get_oracle(diagnoser(_, Oracle), Oracle).
:- pred diagnoser_set_oracle(diagnoser_state(R), oracle_state,
diagnoser_state(R)).
:- mode diagnoser_set_oracle(in, in, out) is det.
diagnoser_set_oracle(diagnoser(A, _), B, diagnoser(A, B)).
diagnoser_state_init(IoActionMap, InStr, OutStr, Diagnoser) :-
analyser_state_init(IoActionMap, Analyser),
oracle_state_init(InStr, OutStr, Oracle),
Diagnoser = diagnoser(Analyser, Oracle).
diagnosis(Store, NodeId, UseOldIoActionMap, IoActionStart, IoActionEnd,
Response, Diagnoser0, Diagnoser) -->
( { UseOldIoActionMap > 0 } ->
{ Diagnoser1 = Diagnoser0 }
;
make_io_action_map(IoActionStart, IoActionEnd, IoActionMap),
{ Analyser0 = Diagnoser0 ^ analyser_state },
{ analyser_state_replace_io_map(IoActionMap,
Analyser0, Analyser1) },
{ Diagnoser1 = Diagnoser0 ^ analyser_state := Analyser1 }
),
try_io(diagnosis_2(Store, NodeId, Diagnoser1), Result),
(
{ Result = succeeded({Response, Diagnoser}) }
;
{ Result = exception(UnivException) },
(
{ univ_to_type(UnivException, DiagnoserException) }
->
handle_diagnoser_exception(DiagnoserException,
Response, Diagnoser1, Diagnoser)
;
{ rethrow(Result) }
)
).
:- pred diagnosis_2(S::in, R::in, diagnoser_state(R)::in,
{diagnoser_response, diagnoser_state(R)}::out,
io__state::di, io__state::uo) is cc_multi <= annotated_trace(S, R).
diagnosis_2(Store, NodeId, Diagnoser0, {Response, Diagnoser}) -->
{ Analyser0 = Diagnoser0 ^ analyser_state },
{ start_analysis(wrap(Store), dynamic(NodeId), AnalyserResponse,
Analyser0, Analyser) },
{ diagnoser_set_analyser(Diagnoser0, Analyser, Diagnoser1) },
{ debug_analyser_state(Analyser, MaybeOrigin) },
handle_analyser_response(Store, AnalyserResponse, MaybeOrigin,
Response, Diagnoser1, Diagnoser).
:- pred handle_analyser_response(S::in, analyser_response(edt_node(R))::in,
maybe(subterm_origin(edt_node(R)))::in, diagnoser_response::out,
diagnoser_state(R)::in, diagnoser_state(R)::out,
io__state::di, io__state::uo) is cc_multi <= annotated_trace(S, R).
handle_analyser_response(_, no_suspects, _, no_bug_found, D, D) -->
io__write_string("No bug found.\n").
handle_analyser_response(_, bug_found(Bug), _, Response, Diagnoser0,
Diagnoser) -->
confirm_bug(Bug, Response, Diagnoser0, Diagnoser).
handle_analyser_response(Store, oracle_queries(Queries), MaybeOrigin, Response,
Diagnoser0, Diagnoser) -->
{ diagnoser_get_oracle(Diagnoser0, Oracle0) },
debug_origin(Flag),
(
{ MaybeOrigin = yes(Origin) },
{ Flag > 0 }
->
io__write_string("Origin: "),
write_origin(wrap(Store), Origin),
io__nl
;
[]
),
query_oracle(Queries, OracleResponse, Oracle0, Oracle),
{ diagnoser_set_oracle(Diagnoser0, Oracle, Diagnoser1) },
handle_oracle_response(Store, OracleResponse, Response, Diagnoser1,
Diagnoser).
handle_analyser_response(Store, require_explicit(Tree), _, Response,
Diagnoser, Diagnoser) -->
{
edt_subtree_details(Store, Tree, Event, Seqno),
Response = require_subtree(Event, Seqno)
}.
:- pred handle_oracle_response(S::in, oracle_response(edt_node(R))::in,
diagnoser_response::out,
diagnoser_state(R)::in, diagnoser_state(R)::out,
io__state::di, io__state::uo) is cc_multi <= annotated_trace(S, R).
handle_oracle_response(Store, oracle_answers(Answers), Response, Diagnoser0,
Diagnoser) -->
{ diagnoser_get_analyser(Diagnoser0, Analyser0) },
{ continue_analysis(wrap(Store), Answers, AnalyserResponse,
Analyser0, Analyser) },
{ diagnoser_set_analyser(Diagnoser0, Analyser, Diagnoser1) },
{ debug_analyser_state(Analyser, MaybeOrigin) },
handle_analyser_response(Store, AnalyserResponse, MaybeOrigin,
Response, Diagnoser1, Diagnoser).
handle_oracle_response(_, no_oracle_answers, no_bug_found, D, D) -->
[].
handle_oracle_response(Store, exit_diagnosis(Node), Response, D, D) -->
{ edt_subtree_details(Store, Node, Event, _) },
{ Response = symptom_found(Event) }.
handle_oracle_response(_, abort_diagnosis, no_bug_found, D, D) -->
io__write_string("Diagnosis aborted.\n").
:- pred confirm_bug(decl_bug::in, diagnoser_response::out,
diagnoser_state(R)::in, diagnoser_state(R)::out,
io__state::di, io__state::uo) is cc_multi.
confirm_bug(Bug, Response, Diagnoser0, Diagnoser) -->
{ diagnoser_get_oracle(Diagnoser0, Oracle0) },
oracle_confirm_bug(Bug, Confirmation, Oracle0, Oracle),
{ diagnoser_set_oracle(Diagnoser0, Oracle, Diagnoser) },
{
Confirmation = confirm_bug,
decl_bug_get_event_number(Bug, Event),
Response = bug_found(Event)
;
Confirmation = overrule_bug,
Response = no_bug_found
;
Confirmation = abort_diagnosis,
Response = no_bug_found
}.
%-----------------------------------------------------------------------------%
% Export a monomorphic version of diagnosis_state_init/4, to
% make it easier to call from C code.
%
:- pred diagnoser_state_init_store(io__input_stream, io__output_stream,
diagnoser_state(trace_node_id)).
:- mode diagnoser_state_init_store(in, in, out) is det.
:- pragma export(diagnoser_state_init_store(in, in, out),
"MR_DD_decl_diagnosis_state_init").
diagnoser_state_init_store(InStr, OutStr, Diagnoser) :-
diagnoser_state_init(map__init, InStr, OutStr, Diagnoser).
% Export a monomorphic version of diagnosis/10, to make it
% easier to call from C code.
%
:- pred diagnosis_store(trace_node_store::in, trace_node_id::in,
int::in, int::in, int::in, diagnoser_response::out,
diagnoser_state(trace_node_id)::in,
diagnoser_state(trace_node_id)::out, io__state::di, io__state::uo)
is cc_multi.
:- pragma export(diagnosis_store(in, in, in, in, in, out, in, out, di, uo),
"MR_DD_decl_diagnosis").
diagnosis_store(Store, Node, UseOldIoActionMap, IoActionStart, IoActionEnd,
Response, State0, State) -->
diagnosis(Store, Node, UseOldIoActionMap, IoActionStart, IoActionEnd,
Response, State0, State).
% Export some predicates so that C code can interpret the
% diagnoser response.
%
:- pred diagnoser_bug_found(diagnoser_response, event_number).
:- mode diagnoser_bug_found(in, out) is semidet.
:- pragma export(diagnoser_bug_found(in, out), "MR_DD_diagnoser_bug_found").
diagnoser_bug_found(bug_found(Event), Event).
:- pred diagnoser_symptom_found(diagnoser_response, event_number).
:- mode diagnoser_symptom_found(in, out) is semidet.
:- pragma export(diagnoser_symptom_found(in, out),
"MR_DD_diagnoser_symptom_found").
diagnoser_symptom_found(symptom_found(Event), Event).
:- pred diagnoser_no_bug_found(diagnoser_response).
:- mode diagnoser_no_bug_found(in) is semidet.
:- pragma export(diagnoser_no_bug_found(in), "MR_DD_diagnoser_no_bug_found").
diagnoser_no_bug_found(no_bug_found).
:- pred diagnoser_require_subtree(diagnoser_response, event_number,
sequence_number).
:- mode diagnoser_require_subtree(in, out, out) is semidet.
:- pragma export(diagnoser_require_subtree(in, out, out),
"MR_DD_diagnoser_require_subtree").
diagnoser_require_subtree(require_subtree(Event, SeqNo), Event, SeqNo).
%-----------------------------------------------------------------------------%
:- pred handle_diagnoser_exception(diagnoser_exception::in,
diagnoser_response::out, diagnoser_state(R)::in,
diagnoser_state(R)::out, io__state::di, io__state::uo) is det.
handle_diagnoser_exception(internal_error(Loc, Msg), Response, D, D) -->
io__stderr_stream(StdErr),
io__write_strings(StdErr, [
"An internal error has occurred; diagnosis will be aborted. Debugging\n",
"message follows:\n",
Loc, ": ", Msg, "\n",
"Please report bugs to mercury-bugs@cs.mu.oz.au.\n"]),
{ Response = no_bug_found }.
handle_diagnoser_exception(io_error(Loc, Msg), Response, D, D) -->
io__stderr_stream(StdErr),
io__write_strings(StdErr, [
"I/O error: ", Loc, ": ", Msg, ".\n",
"Diagnosis will be aborted.\n"]),
{ Response = no_bug_found }.
handle_diagnoser_exception(unimplemented_feature(Feature), Response, D, D) -->
io__write_strings([
"Sorry, the diagnosis cannot continue because it requires support for\n",
"the following: ", Feature, ".\n",
"The debugger is a work in progress, and this is not supported in the\n",
"current version.\n"]),
{ Response = no_bug_found }.
%-----------------------------------------------------------------------------%
:- pred decl_bug_get_event_number(decl_bug, event_number).
:- mode decl_bug_get_event_number(in, out) is det.
decl_bug_get_event_number(e_bug(EBug), Event) :-
(
EBug = incorrect_contour(_, _, Event)
;
EBug = partially_uncovered_atom(_, Event)
;
EBug = unhandled_exception(_, _, Event)
).
decl_bug_get_event_number(i_bug(IBug), Event) :-
IBug = inadmissible_call(_, _, _, Event).
%-----------------------------------------------------------------------------%
:- pred write_origin(wrap(S)::in, subterm_origin(edt_node(R))::in,
io__state::di, io__state::uo) is det <= annotated_trace(S, R).
write_origin(wrap(Store), Origin) -->
( { Origin = output(dynamic(NodeId), ArgPos, TermPath) } ->
{ exit_node_from_id(Store, NodeId, ExitNode) },
{ ProcName = ExitNode ^ exit_atom ^ proc_name },
io__write_string("output("),
io__write_string(ProcName),
io__write_string(", "),
io__write(ArgPos),
io__write_string(", "),
io__write(TermPath),
io__write_string(")")
;
io__write(Origin)
).
:- pragma foreign_code("C",
"
/*
** The declarative debugger will print diagnostic information about the origins
** computed by dependency tracking if this flag has a positive value.
*/
int MR_DD_debug_origin = 0;
").
:- pragma foreign_decl("C",
"
extern int MR_DD_debug_origin;
").
:- pred debug_origin(int::out, io__state::di, io__state::uo) is det.
:- pragma foreign_proc("C",
debug_origin(Flag::out, IO0::di, IO::uo),
[will_not_call_mercury, promise_pure, tabled_for_io],
"
Flag = MR_DD_debug_origin;
IO = IO0;
").