Files
mercury/library/array.m
Zoltan Somogyi 25df09dd06 Fix white space.
Estimated hours taken: 0.1
Branches: main

library/array.m:
	Fix white space.
2012-03-29 03:50:11 +00:00

2939 lines
98 KiB
Mathematica

%-----------------------------------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%-----------------------------------------------------------------------------%
% Copyright (C) 1993-1995, 1997-2012 The University of Melbourne.
% This file may only be copied under the terms of the GNU Library General
% Public License - see the file COPYING.LIB in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: array.m.
% Main authors: fjh, bromage.
% Stability: medium-low.
%
% This module provides dynamically-sized one-dimensional arrays.
% Array indices start at zero.
%
% WARNING!
%
% Arrays are currently not unique objects. until this situation is resolved,
% it is up to the programmer to ensure that arrays are used in ways that
% preserve correctness. In the absence of mode reordering, one should therefore
% assume that evaluation will take place in left-to-right order. For example,
% the following code will probably not work as expected (f is a function,
% A an array, I an index, and X an appropriate value):
%
% Y = f(A ^ elem(I) := X, A ^ elem(I))
%
% The compiler is likely to compile this as
%
% V0 = A ^ elem(I) := X,
% V1 = A ^ elem(I),
% Y = f(V0, V1)
%
% and will be unaware that the first line should be ordered *after* the second.
% The safest thing to do is write things out by hand in the form
%
% A0I = A0 ^ elem(I),
% A1 = A0 ^ elem(I) := X,
% Y = f(A1, A0I)
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module array.
:- interface.
:- import_module list.
:- import_module maybe.
:- import_module pretty_printer.
:- import_module random.
:- type array(T).
:- inst array(I) == ground.
:- inst array == array(ground).
% XXX the current Mercury compiler doesn't support `ui' modes,
% so to work-around that problem, we currently don't use
% unique modes in this module.
% :- inst uniq_array(I) == unique.
% :- inst uniq_array == uniq_array(unique).
:- inst uniq_array(I) == array(I). % XXX work-around
:- inst uniq_array == uniq_array(ground). % XXX work-around
:- mode array_di == di(uniq_array).
:- mode array_uo == out(uniq_array).
:- mode array_ui == in(uniq_array).
% :- inst mostly_uniq_array(I) == mostly_unique).
% :- inst mostly_uniq_array == mostly_uniq_array(mostly_unique).
:- inst mostly_uniq_array(I) == array(I). % XXX work-around
:- inst mostly_uniq_array == mostly_uniq_array(ground). % XXX work-around
:- mode array_mdi == mdi(mostly_uniq_array).
:- mode array_muo == out(mostly_uniq_array).
:- mode array_mui == in(mostly_uniq_array).
% An `array.index_out_of_bounds' is the exception thrown
% on out-of-bounds array accesses. The string describes
% the predicate or function reporting the error.
:- type array.index_out_of_bounds
---> array.index_out_of_bounds(string).
%-----------------------------------------------------------------------------%
% array.make_empty_array(Array) creates an array of size zero
% starting at lower bound 0.
%
:- pred array.make_empty_array(array(T)::array_uo) is det.
:- func array.make_empty_array = (array(T)::array_uo) is det.
% array.init(Size, Init, Array) creates an array with bounds from 0
% to Size-1, with each element initialized to Init.
%
:- pred array.init(int, T, array(T)).
:- mode array.init(in, in, array_uo) is det.
:- func array.init(int, T) = array(T).
:- mode array.init(in, in) = array_uo is det.
% array/1 is a function that constructs an array from a list.
% (It does the same thing as the predicate array.from_list/2.)
% The syntax `array([...])' is used to represent arrays
% for io.read, io.write, term_to_type, and type_to_term.
%
:- func array(list(T)) = array(T).
:- mode array(in) = array_uo is det.
% array.generate(Size, Generate) = Array:
% Create an array with bounds from 0 to Size - 1 using the function
% Generate to set the initial value of each element of the array.
% The initial value of the element at index K will be the result of
% calling the function Generate(K).
%
:- func array.generate(int::in, (func(int) = T)::in) = (array(T)::array_uo)
is det.
% array.generate_foldl(Size, Generate, Array, !Acc):
% As above, but using a predicate with an accumulator threaded through it
% to generate the initial value of each element.
%
:- pred array.generate_foldl(int, pred(int, T, A, A), array(T), A, A).
:- mode array.generate_foldl(in, in(pred(in, out, in, out) is det),
array_uo, in, out) is det.
:- mode array.generate_foldl(in, in(pred(in, out, mdi, muo) is det),
array_uo, mdi, muo) is det.
:- mode array.generate_foldl(in, in(pred(in, out, di, uo) is det),
array_uo, di, uo) is det.
:- mode array.generate_foldl(in, in(pred(in, out, in, out) is semidet),
array_uo, in, out) is semidet.
:- mode array.generate_foldl(in, in(pred(in, out, mdi, muo) is semidet),
array_uo, mdi, muo) is semidet.
:- mode array.generate_foldl(in, in(pred(in, out, di, uo) is semidet),
array_uo, di, uo) is semidet.
%-----------------------------------------------------------------------------%
% array.min returns the lower bound of the array.
% Note: in this implementation, the lower bound is always zero.
%
:- pred array.min(array(_T), int).
%:- mode array.min(array_ui, out) is det.
:- mode array.min(in, out) is det.
:- func array.min(array(_T)) = int.
%:- mode array.min(array_ui) = out is det.
:- mode array.min(in) = out is det.
:- func array.least_index(array(T)) = int.
%:- mode array.least_index(array_ui) = out is det.
:- mode array.least_index(in) = out is det.
% array.max returns the upper bound of the array.
%
:- pred array.max(array(_T), int).
%:- mode array.max(array_ui, out) is det.
:- mode array.max(in, out) is det.
:- func array.max(array(_T)) = int.
%:- mode array.max(array_ui) = out is det.
:- mode array.max(in) = out is det.
:- func array.greatest_index(array(T)) = int.
%:- mode array.greatest_index(array_ui) = out is det.
:- mode array.greatest_index(in) = out is det.
% array.size returns the length of the array,
% i.e. upper bound - lower bound + 1.
%
:- pred array.size(array(_T), int).
%:- mode array.size(array_ui, out) is det.
:- mode array.size(in, out) is det.
:- func array.size(array(_T)) = int.
%:- mode array.size(array_ui) = out is det.
:- mode array.size(in) = out is det.
% array.bounds returns the upper and lower bounds of an array.
% Note: in this implementation, the lower bound is always zero.
%
:- pred array.bounds(array(_T), int, int).
%:- mode array.bounds(array_ui, out, out) is det.
:- mode array.bounds(in, out, out) is det.
% array.in_bounds checks whether an index is in the bounds of an array.
%
:- pred array.in_bounds(array(_T), int).
%:- mode array.in_bounds(array_ui, in) is semidet.
:- mode array.in_bounds(in, in) is semidet.
%-----------------------------------------------------------------------------%
% array.lookup returns the Nth element of an array.
% Throws an exception if the index is out of bounds.
%
:- pred array.lookup(array(T), int, T).
%:- mode array.lookup(array_ui, in, out) is det.
:- mode array.lookup(in, in, out) is det.
:- func array.lookup(array(T), int) = T.
%:- mode array.lookup(array_ui, in) = out is det.
:- mode array.lookup(in, in) = out is det.
% array.semidet_lookup returns the Nth element of an array.
% It fails if the index is out of bounds.
%
:- pred array.semidet_lookup(array(T), int, T).
%:- mode array.semidet_lookup(array_ui, in, out) is semidet.
:- mode array.semidet_lookup(in, in, out) is semidet.
% array.unsafe_lookup returns the Nth element of an array.
% It is an error if the index is out of bounds.
%
:- pred array.unsafe_lookup(array(T), int, T).
%:- mode array.unsafe_lookup(array_ui, in, out) is det.
:- mode array.unsafe_lookup(in, in, out) is det.
% array.set sets the nth element of an array, and returns the
% resulting array (good opportunity for destructive update ;-).
% Throws an exception if the index is out of bounds.
%
:- pred array.set(int, T, array(T), array(T)).
:- mode array.set(in, in, array_di, array_uo) is det.
:- func array.set(array(T), int, T) = array(T).
:- mode array.set(array_di, in, in) = array_uo is det.
% An obsolete synonym for array.set/4.
%
:- pragma obsolete(array.svset/4).
:- pred array.svset(int, T, array(T), array(T)).
:- mode array.svset(in, in, array_di, array_uo) is det.
% array.semidet_set sets the nth element of an array, and returns
% the resulting array. It fails if the index is out of bounds.
%
:- pred array.semidet_set(int, T, array(T), array(T)).
:- mode array.semidet_set(in, in, array_di, array_uo) is semidet.
% array.unsafe_set sets the nth element of an array, and returns the
% resulting array. It is an error if the index is out of bounds.
%
:- pred array.unsafe_set(int, T, array(T), array(T)).
:- mode array.unsafe_set(in, in, array_di, array_uo) is det.
% An obsolete synonym for array.unsafe_set/4.
%
:- pragma obsolete(array.unsafe_svset/4).
:- pred array.unsafe_svset(int, T, array(T), array(T)).
:- mode array.unsafe_svset(in, in, array_di, array_uo) is det.
% array.slow_set sets the nth element of an array, and returns the
% resulting array. The initial array is not required to be unique,
% so the implementation may not be able to use destructive update.
% It is an error if the index is out of bounds.
%
:- pred array.slow_set(int, T, array(T), array(T)).
%:- mode array.slow_set(in, in, array_ui, array_uo) is det.
:- mode array.slow_set(in, in, in, array_uo) is det.
:- func array.slow_set(array(T), int, T) = array(T).
%:- mode array.slow_set(array_ui, in, in) = array_uo is det.
:- mode array.slow_set(in, in, in) = array_uo is det.
% array.semidet_slow_set sets the nth element of an array, and returns
% the resulting array. The initial array is not required to be unique,
% so the implementation may not be able to use destructive update.
% It fails if the index is out of bounds.
%
:- pred array.semidet_slow_set(int, T, array(T), array(T)).
%:- mode array.semidet_slow_set(in, in, array_ui, array_uo) is semidet.
:- mode array.semidet_slow_set(in, in, in, array_uo) is semidet.
% Field selection for arrays.
% Array ^ elem(Index) = array.lookup(Array, Index).
%
:- func array.elem(int, array(T)) = T.
%:- mode array.elem(in, array_ui) = out is det.
:- mode array.elem(in, in) = out is det.
% As above, but omit the bounds check.
%
:- func array.unsafe_elem(int, array(T)) = T.
%:- mode array.unsafe_elem(in, array_ui) = out is det.
:- mode array.unsafe_elem(in, in) = out is det.
% Field update for arrays.
% (Array ^ elem(Index) := Value) = array.set(Array, Index, Value).
%
:- func 'elem :='(int, array(T), T) = array(T).
:- mode 'elem :='(in, array_di, in) = array_uo is det.
% As above, but omit the bounds check.
%
:- func 'unsafe_elem :='(int, array(T), T) = array(T).
:- mode 'unsafe_elem :='(in, array_di, in) = array_uo is det.
% Returns every element of the array, one by one.
%
:- pred array.member(array(T)::in, T::out) is nondet.
%-----------------------------------------------------------------------------%
% array.copy(Array0, Array):
% Makes a new unique copy of an array.
%
:- pred array.copy(array(T), array(T)).
%:- mode array.copy(array_ui, array_uo) is det.
:- mode array.copy(in, array_uo) is det.
:- func array.copy(array(T)) = array(T).
%:- mode array.copy(array_ui) = array_uo is det.
:- mode array.copy(in) = array_uo is det.
% array.resize(Array0, Size, Init, Array):
% The array is expanded or shrunk to make it fit the new size `Size'.
% Any new entries are filled with `Init'.
%
:- pred array.resize(int, T, array(T), array(T)).
:- mode array.resize(in, in, array_di, array_uo) is det.
:- func array.resize(array(T), int, T) = array(T).
:- mode array.resize(array_di, in, in) = array_uo is det.
% array.shrink(Array0, Size, Array):
% The array is shrunk to make it fit the new size `Size'.
% Throws an exception if `Size' is larger than the size of `Array0'.
%
:- pred array.shrink(int, array(T), array(T)).
:- mode array.shrink(in, array_di, array_uo) is det.
:- func array.shrink(array(T), int) = array(T).
:- mode array.shrink(array_di, in) = array_uo is det.
% array.from_list takes a list, and returns an array containing those
% elements in the same order that they occurred in the list.
%
:- func array.from_list(list(T)::in) = (array(T)::array_uo) is det.
:- pred array.from_list(list(T)::in, array(T)::array_uo) is det.
% array.from_reverse_list takes a list, and returns an array containing
% those elements in the reverse order that they occurred in the list.
%
:- func array.from_reverse_list(list(T)::in) = (array(T)::array_uo) is det.
% array.to_list takes an array and returns a list containing the elements
% of the array in the same order that they occurred in the array.
%
:- pred array.to_list(array(T), list(T)).
%:- mode array.to_list(array_ui, out) is det.
:- mode array.to_list(in, out) is det.
:- func array.to_list(array(T)) = list(T).
%:- mode array.to_list(array_ui) = out is det.
:- mode array.to_list(in) = out is det.
% array.fetch_items takes an array and a lower and upper index,
% and places those items in the array between these indices into a list.
% It is an error if either index is out of bounds.
%
:- pred array.fetch_items(array(T), int, int, list(T)).
:- mode array.fetch_items(in, in, in, out) is det.
:- func array.fetch_items(array(T), int, int) = list(T).
%:- mode array.fetch_items(array_ui, in, in) = out is det.
:- mode array.fetch_items(in, in, in) = out is det.
% XXX We prefer users to call the new array.binary_search predicate
% instead of array.bsearch, which may be deprecated in later releases.
%
% array.bsearch takes an array, an element to be matched and a comparison
% predicate and returns the position of the first occurrence in the array
% of an element which is equivalent to the given one in the ordering
% provided. Assumes the array is sorted according to this ordering.
%
:- pred array.bsearch(array(T), T, comparison_pred(T), maybe(int)).
%:- mode array.bsearch(array_ui, in, in(comparison_pred), out) is det.
:- mode array.bsearch(in, in, in(comparison_pred), out) is det.
:- func array.bsearch(array(T), T, comparison_func(T)) = maybe(int).
%:- mode array.bsearch(array_ui, in, in(comparison_func)) = out is det.
:- mode array.bsearch(in, in, in(comparison_func)) = out is det.
% array.approx_binary_search(A, X, I) performs a binary search for an
% approximate match for X in array A, computing I as the result. More
% specifically, if the call succeeds, then either A ^ elem(I) = X or
% A ^ elem(I) @< X and either X @< A ^ elem(I + 1) or I is the last index
% in A.
%
% array.binary_search(A, X, I) performs a binary search for an
% exact match for X in array A (i.e., it succeeds iff X = A ^ elem(I)).
%
% A must be sorted into ascending order, but may contain duplicates
% (the ordering must be with respect to the supplied comparison predicate
% if one is supplied, otherwise with respect to the Mercury standard
% ordering).
%
:- pred array.approx_binary_search(array(T), T, int).
:- mode array.approx_binary_search(array_ui, in, out) is semidet.
:- pred array.approx_binary_search(comparison_func(T), array(T), T, int).
:- mode array.approx_binary_search(in, array_ui, in, out) is semidet.
:- pred array.binary_search(array(T), T, int).
:- mode array.binary_search(array_ui, in, out) is semidet.
:- pred array.binary_search(comparison_func(T), array(T), T, int).
:- mode array.binary_search(in, array_ui, in, out) is semidet.
% array.map(Closure, OldArray, NewArray) applies `Closure' to
% each of the elements of `OldArray' to create `NewArray'.
%
:- pred array.map(pred(T1, T2), array(T1), array(T2)).
:- mode array.map(pred(in, out) is det, array_di, array_uo) is det.
:- func array.map(func(T1) = T2, array(T1)) = array(T2).
:- mode array.map(func(in) = out is det, array_di) = array_uo is det.
:- func array_compare(array(T), array(T)) = comparison_result.
:- mode array_compare(in, in) = uo is det.
% array.sort(Array) returns a version of Array sorted into ascending
% order.
%
% This sort is not stable. That is, elements that compare/3 decides are
% equal will appear together in the sorted array, but not necessarily
% in the same order in which they occurred in the input array. This is
% primarily only an issue with types with user-defined equivalence for
% which `equivalent' objects are otherwise distinguishable.
%
:- func array.sort(array(T)) = array(T).
:- mode array.sort(array_di) = array_uo is det.
% array.foldl(Fn, Array, X) is equivalent to
% list.foldl(Fn, array.to_list(Array), X)
% but more efficient.
%
:- func array.foldl(func(T1, T2) = T2, array(T1), T2) = T2.
%:- mode array.foldl(func(in, in) = out is det, array_ui, in) = out is det.
:- mode array.foldl(func(in, in) = out is det, in, in) = out is det.
%:- mode array.foldl(func(in, di) = uo is det, array_ui, di) = uo is det.
:- mode array.foldl(func(in, di) = uo is det, in, di) = uo is det.
% array.foldl(Pr, Array, !X) is equivalent to
% list.foldl(Pr, array.to_list(Array), !X)
% but more efficient.
%
:- pred array.foldl(pred(T1, T2, T2), array(T1), T2, T2).
:- mode array.foldl(pred(in, in, out) is det, in, in, out) is det.
:- mode array.foldl(pred(in, mdi, muo) is det, in, mdi, muo) is det.
:- mode array.foldl(pred(in, di, uo) is det, in, di, uo) is det.
:- mode array.foldl(pred(in, in, out) is semidet, in, in, out) is semidet.
:- mode array.foldl(pred(in, mdi, muo) is semidet, in, mdi, muo) is semidet.
:- mode array.foldl(pred(in, di, uo) is semidet, in, di, uo) is semidet.
% array.foldl2(Pr, Array, !X, !Y) is equivalent to
% list.foldl2(Pr, array.to_list(Array), !X, !Y)
% but more efficient.
%
:- pred array.foldl2(pred(T1, T2, T2, T3, T3), array(T1), T2, T2, T3, T3).
:- mode array.foldl2(pred(in, in, out, in, out) is det, in, in, out, in, out)
is det.
:- mode array.foldl2(pred(in, in, out, mdi, muo) is det, in, in, out, mdi, muo)
is det.
:- mode array.foldl2(pred(in, in, out, di, uo) is det, in, in, out, di, uo)
is det.
:- mode array.foldl2(pred(in, in, out, in, out) is semidet, in,
in, out, in, out) is semidet.
:- mode array.foldl2(pred(in, in, out, mdi, muo) is semidet, in,
in, out, mdi, muo) is semidet.
:- mode array.foldl2(pred(in, in, out, di, uo) is semidet, in,
in, out, di, uo) is semidet.
% As above, but with three accumulators.
%
:- pred array.foldl3(pred(T1, T2, T2, T3, T3, T4, T4), array(T1),
T2, T2, T3, T3, T4, T4).
:- mode array.foldl3(pred(in, in, out, in, out, in, out) is det,
in, in, out, in, out, in, out) is det.
:- mode array.foldl3(pred(in, in, out, in, out, mdi, muo) is det,
in, in, out, in, out, mdi, muo) is det.
:- mode array.foldl3(pred(in, in, out, in, out, di, uo) is det,
in, in, out, in, out, di, uo) is det.
:- mode array.foldl3(pred(in, in, out, in, out, in, out) is semidet,
in, in, out, in, out, in, out) is semidet.
:- mode array.foldl3(pred(in, in, out, in, out, mdi, muo) is semidet,
in, in, out, in, out, mdi, muo) is semidet.
:- mode array.foldl3(pred(in, in, out, in, out, di, uo) is semidet,
in, in, out, in, out, di, uo) is semidet.
% As above, but with four accumulators.
%
:- pred array.foldl4(pred(T1, T2, T2, T3, T3, T4, T4, T5, T5), array(T1),
T2, T2, T3, T3, T4, T4, T5, T5).
:- mode array.foldl4(pred(in, in, out, in, out, in, out, in, out) is det,
in, in, out, in, out, in, out, in, out) is det.
:- mode array.foldl4(pred(in, in, out, in, out, in, out, mdi, muo) is det,
in, in, out, in, out, in, out, mdi, muo) is det.
:- mode array.foldl4(pred(in, in, out, in, out, in, out, di, uo) is det,
in, in, out, in, out, in, out, di, uo) is det.
:- mode array.foldl4(pred(in, in, out, in, out, in, out, in, out) is semidet,
in, in, out, in, out, in, out, in, out) is semidet.
:- mode array.foldl4(pred(in, in, out, in, out, in, out, mdi, muo) is semidet,
in, in, out, in, out, in, out, mdi, muo) is semidet.
:- mode array.foldl4(pred(in, in, out, in, out, in, out, di, uo) is semidet,
in, in, out, in, out, in, out, di, uo) is semidet.
% As above, but with five accumulators.
%
:- pred array.foldl5(pred(T1, T2, T2, T3, T3, T4, T4, T5, T5, T6, T6),
array(T1), T2, T2, T3, T3, T4, T4, T5, T5, T6, T6).
:- mode array.foldl5(
pred(in, in, out, in, out, in, out, in, out, in, out) is det,
in, in, out, in, out, in, out, in, out, in, out) is det.
:- mode array.foldl5(
pred(in, in, out, in, out, in, out, in, out, mdi, muo) is det,
in, in, out, in, out, in, out, in, out, mdi, muo) is det.
:- mode array.foldl5(
pred(in, in, out, in, out, in, out, in, out, di, uo) is det,
in, in, out, in, out, in, out, in, out, di, uo) is det.
:- mode array.foldl5(
pred(in, in, out, in, out, in, out, in, out, in, out) is semidet,
in, in, out, in, out, in, out, in, out, in, out) is semidet.
:- mode array.foldl5(
pred(in, in, out, in, out, in, out, in, out, mdi, muo) is semidet,
in, in, out, in, out, in, out, in, out, mdi, muo) is semidet.
:- mode array.foldl5(
pred(in, in, out, in, out, in, out, in, out, di, uo) is semidet,
in, in, out, in, out, in, out, in, out, di, uo) is semidet.
% array.foldr(Fn, Array, X) is equivalent to
% list.foldr(Fn, array.to_list(Array), X)
% but more efficient.
%
:- func array.foldr(func(T1, T2) = T2, array(T1), T2) = T2.
%:- mode array.foldr(func(in, in) = out is det, array_ui, in) = out is det.
:- mode array.foldr(func(in, in) = out is det, in, in) = out is det.
%:- mode array.foldr(func(in, di) = uo is det, array_ui, di) = uo is det.
:- mode array.foldr(func(in, di) = uo is det, in, di) = uo is det.
% array.foldr(P, Array, !Acc) is equivalent to
% list.foldr(P, array.to_list(Array), !Acc)
% but more efficient.
%
:- pred array.foldr(pred(T1, T2, T2), array(T1), T2, T2).
:- mode array.foldr(pred(in, in, out) is det, in, in, out) is det.
:- mode array.foldr(pred(in, mdi, muo) is det, in, mdi, muo) is det.
:- mode array.foldr(pred(in, di, uo) is det, in, di, uo) is det.
:- mode array.foldr(pred(in, in, out) is semidet, in, in, out) is semidet.
:- mode array.foldr(pred(in, mdi, muo) is semidet, in, mdi, muo) is semidet.
:- mode array.foldr(pred(in, di, uo) is semidet, in, di, uo) is semidet.
% As above, but with two accumulators.
%
:- pred array.foldr2(pred(T1, T2, T2, T3, T3), array(T1), T2, T2, T3, T3).
:- mode array.foldr2(pred(in, in, out, in, out) is det, in, in, out, in, out)
is det.
:- mode array.foldr2(pred(in, in, out, mdi, muo) is det, in, in, out, mdi, muo)
is det.
:- mode array.foldr2(pred(in, in, out, di, uo) is det, in, in, out, di, uo)
is det.
:- mode array.foldr2(pred(in, in, out, in, out) is semidet, in,
in, out, in, out) is semidet.
:- mode array.foldr2(pred(in, in, out, mdi, muo) is semidet, in,
in, out, mdi, muo) is semidet.
:- mode array.foldr2(pred(in, in, out, di, uo) is semidet, in,
in, out, di, uo) is semidet.
% As above, but with three accumulators.
%
:- pred array.foldr3(pred(T1, T2, T2, T3, T3, T4, T4), array(T1),
T2, T2, T3, T3, T4, T4).
:- mode array.foldr3(pred(in, in, out, in, out, in, out) is det, in,
in, out, in, out, in, out) is det.
:- mode array.foldr3(pred(in, in, out, in, out, mdi, muo) is det, in,
in, out, in, out, mdi, muo) is det.
:- mode array.foldr3(pred(in, in, out, in, out, di, uo) is det, in,
in, out, in, out, di, uo) is det.
:- mode array.foldr3(pred(in, in, out, in, out, in, out) is semidet, in,
in, out, in, out, in, out) is semidet.
:- mode array.foldr3(pred(in, in, out, in, out, mdi, muo) is semidet, in,
in, out, in, out, mdi, muo) is semidet.
:- mode array.foldr3(pred(in, in, out, in, out, di, uo) is semidet, in,
in, out, in, out, di, uo) is semidet.
% As above, but with four accumulators.
%
:- pred array.foldr4(pred(T1, T2, T2, T3, T3, T4, T4, T5, T5), array(T1),
T2, T2, T3, T3, T4, T4, T5, T5).
:- mode array.foldr4(pred(in, in, out, in, out, in, out, in, out) is det,
in, in, out, in, out, in, out, in, out) is det.
:- mode array.foldr4(pred(in, in, out, in, out, in, out, mdi, muo) is det,
in, in, out, in, out, in, out, mdi, muo) is det.
:- mode array.foldr4(pred(in, in, out, in, out, in, out, di, uo) is det,
in, in, out, in, out, in, out, di, uo) is det.
:- mode array.foldr4(pred(in, in, out, in, out, in, out, in, out) is semidet,
in, in, out, in, out, in, out, in, out) is semidet.
:- mode array.foldr4(pred(in, in, out, in, out, in, out, mdi, muo) is semidet,
in, in, out, in, out, in, out, mdi, muo) is semidet.
:- mode array.foldr4(pred(in, in, out, in, out, in, out, di, uo) is semidet,
in, in, out, in, out, in, out, di, uo) is semidet.
% As above, but with five accumulators.
%
:- pred array.foldr5(pred(T1, T2, T2, T3, T3, T4, T4, T5, T5, T6, T6),
array(T1), T2, T2, T3, T3, T4, T4, T5, T5, T6, T6).
:- mode array.foldr5(
pred(in, in, out, in, out, in, out, in, out, in, out) is det,
in, in, out, in, out, in, out, in, out, in, out) is det.
:- mode array.foldr5(
pred(in, in, out, in, out, in, out, in, out, mdi, muo) is det,
in, in, out, in, out, in, out, in, out, mdi, muo) is det.
:- mode array.foldr5(
pred(in, in, out, in, out, in, out, in, out, di, uo) is det,
in, in, out, in, out, in, out, in, out, di, uo) is det.
:- mode array.foldr5(
pred(in, in, out, in, out, in, out, in, out, in, out) is semidet,
in, in, out, in, out, in, out, in, out, in, out) is semidet.
:- mode array.foldr5(
pred(in, in, out, in, out, in, out, in, out, mdi, muo) is semidet,
in, in, out, in, out, in, out, in, out, mdi, muo) is semidet.
:- mode array.foldr5(
pred(in, in, out, in, out, in, out, in, out, di, uo) is semidet,
in, in, out, in, out, in, out, in, out, di, uo) is semidet.
% array.map_foldl(P, A, B, !Acc):
% Invoke P(Aelt, Belt, !Acc) on each element of the A array,
% and construct array B from the resulting values of Belt.
%
:- pred map_foldl(pred(T1, T2, T3, T3), array(T1), array(T2), T3, T3).
:- mode map_foldl(in(pred(in, out, in, out) is det),
in, array_uo, in, out) is det.
:- mode map_foldl(in(pred(in, out, mdi, muo) is det),
in, array_uo, mdi, muo) is det.
:- mode map_foldl(in(pred(in, out, di, uo) is det),
in, array_uo, di, uo) is det.
:- mode map_foldl(in(pred(in, out, in, out) is semidet),
in, array_uo, in, out) is semidet.
% array.map_corresponding_foldl(P, A, B, C, !Acc):
%
% Given two arrays A and B, invoke P(Aelt, Belt, Celt, !Acc) on
% each corresponding pair of elements Aelt and Belt. Build up the array C
% from the result Celt values. Return C and the final value of the
% accumulator.
%
% C will have as many elements as A does. In most uses, B will also have
% this many elements, but may have more; it may NOT have fewer.
%
:- pred array.map_corresponding_foldl(pred(T1, T2, T3, T4, T4),
array(T1), array(T2), array(T3), T4, T4).
:- mode array.map_corresponding_foldl(
in(pred(in, in, out, in, out) is det),
in, in, array_uo, in, out) is det.
:- mode array.map_corresponding_foldl(
in(pred(in, in, out, mdi, muo) is det),
in, in, array_uo, mdi, muo) is det.
:- mode array.map_corresponding_foldl(
in(pred(in, in, out, di, uo) is det),
in, in, array_uo, di, uo) is det.
:- mode array.map_corresponding_foldl(
in(pred(in, in, out, in, out) is semidet),
in, in, array_uo, in, out) is semidet.
% array.append(A, B) = C:
%
% Make C a concatenation of the arrays A and B.
%
:- func array.append(array(T)::in, array(T)::in) = (array(T)::array_uo) is det.
% array.random_permutation(A0, A, RS0, RS) permutes the elements in
% A0 given random seed RS0 and returns the permuted array in A
% and the next random seed in RS.
%
:- pred array.random_permutation(array(T)::array_di, array(T)::array_uo,
random.supply::mdi, random.supply::muo) is det.
% Convert an array to a pretty_printer.doc for formatting.
%
:- func array.array_to_doc(array(T)) = pretty_printer.doc.
:- mode array.array_to_doc(array_ui) = out is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
% Everything beyond here is not intended as part of the public interface,
% and will not appear in the Mercury Library Reference Manual.
:- interface.
% dynamic_cast/2 won't work for arbitrary arrays since array/1 is
% not a ground type (that is, dynamic_cast/2 will work when the
% target type is e.g. array(int), but not when it is array(T)).
%
:- some [T2] pred dynamic_cast_to_array(T1::in, array(T2)::out) is semidet.
:- implementation.
:- import_module exception.
:- import_module int.
:- import_module require.
:- import_module string.
:- import_module type_desc.
%
% Define the array type appropriately for the different targets.
% Note that the definitions here should match what is output by
% mlds_to_c.m, mlds_to_il.m, or mlds_to_java.m for mlds.mercury_array_type.
%
% MR_ArrayPtr is defined in runtime/mercury_types.h.
:- pragma foreign_type("C", array(T), "MR_ArrayPtr")
where equality is array.array_equal,
comparison is array.array_compare.
:- pragma foreign_type("C#", array(T), "System.Array")
where equality is array.array_equal,
comparison is array.array_compare.
:- pragma foreign_type("IL", array(T), "class [mscorlib]System.Array")
where equality is array.array_equal,
comparison is array.array_compare.
% We can't use `java.lang.Object []', since we want a generic type
% that is capable of holding any kind of array, including e.g. `int []'.
% Java doesn't have any equivalent of .NET's System.Array class,
% so we just use the universal base `java.lang.Object'.
:- pragma foreign_type("Java", array(T), "/* Array */ java.lang.Object")
where equality is array.array_equal,
comparison is array.array_compare.
:- pragma foreign_type("Erlang", array(T), "")
where equality is array.array_equal,
comparison is array.array_compare.
% unify/2 for arrays
%
:- pred array_equal(array(T)::in, array(T)::in) is semidet.
:- pragma foreign_export("C", array_equal(in, in), "ML_array_equal").
:- pragma foreign_export("IL", array_equal(in, in), "ML_array_equal").
:- pragma terminates(array_equal/2).
array_equal(Array1, Array2) :-
(
array.size(Array1, Size),
array.size(Array2, Size)
->
array.equal_elements(0, Size, Array1, Array2)
;
fail
).
:- pred array.equal_elements(int, int, array(T), array(T)).
:- mode array.equal_elements(in, in, in, in) is semidet.
array.equal_elements(N, Size, Array1, Array2) :-
( N = Size ->
true
;
array.lookup(Array1, N, Elem),
array.lookup(Array2, N, Elem),
N1 = N + 1,
array.equal_elements(N1, Size, Array1, Array2)
).
array_compare(A1, A2) = C :-
array_compare(C, A1, A2).
% compare/3 for arrays
%
:- pred array_compare(comparison_result::uo, array(T)::in, array(T)::in)
is det.
:- pragma foreign_export("C", array_compare(uo, in, in), "ML_array_compare").
:- pragma foreign_export("IL", array_compare(uo, in, in), "ML_array_compare").
:- pragma terminates(array_compare/3).
array_compare(Result, Array1, Array2) :-
array.size(Array1, Size1),
array.size(Array2, Size2),
compare(SizeResult, Size1, Size2),
(
SizeResult = (=),
array.compare_elements(0, Size1, Array1, Array2, Result)
;
( SizeResult = (<)
; SizeResult = (>)
),
Result = SizeResult
).
:- pred array.compare_elements(int::in, int::in, array(T)::in, array(T)::in,
comparison_result::uo) is det.
array.compare_elements(N, Size, Array1, Array2, Result) :-
( N = Size ->
Result = (=)
;
array.lookup(Array1, N, Elem1),
array.lookup(Array2, N, Elem2),
compare(ElemResult, Elem1, Elem2),
(
ElemResult = (=),
N1 = N + 1,
array.compare_elements(N1, Size, Array1, Array2, Result)
;
( ElemResult = (<)
; ElemResult = (>)
),
Result = ElemResult
)
).
%-----------------------------------------------------------------------------%
:- pred bounds_checks is semidet.
:- pragma inline(bounds_checks/0).
:- pragma foreign_proc("C",
bounds_checks,
[will_not_call_mercury, promise_pure, thread_safe, will_not_modify_trail,
does_not_affect_liveness, no_sharing],
"
#ifdef ML_OMIT_ARRAY_BOUNDS_CHECKS
SUCCESS_INDICATOR = MR_FALSE;
#else
SUCCESS_INDICATOR = MR_TRUE;
#endif
").
:- pragma foreign_proc("C#",
bounds_checks,
[will_not_call_mercury, promise_pure, thread_safe],
"
#if ML_OMIT_ARRAY_BOUNDS_CHECKS
SUCCESS_INDICATOR = false;
#else
SUCCESS_INDICATOR = true;
#endif
").
:- pragma foreign_proc("Java",
bounds_checks,
[will_not_call_mercury, promise_pure, thread_safe],
"
// never do bounds checking for Java (throw exceptions instead)
SUCCESS_INDICATOR = false;
").
:- pragma foreign_proc("Erlang",
bounds_checks,
[will_not_call_mercury, promise_pure, thread_safe],
"
SUCCESS_INDICATOR = true
").
%-----------------------------------------------------------------------------%
:- pragma foreign_decl("C", "
#include ""mercury_heap.h"" /* for MR_maybe_record_allocation() */
#include ""mercury_library_types.h"" /* for MR_ArrayPtr */
/*
** We do not yet record term sizes for arrays in term size profiling
** grades. Doing so would require
**
** - modifying ML_alloc_array to allocate an extra word for the size;
** - modifying all the predicates that call ML_alloc_array to compute the
** size of the array (the sum of the sizes of the elements and the size of
** the array itself);
** - modifying all the predicates that update array elements to compute the
** difference between the sizes of the terms being added to and deleted from
** the array, and updating the array size accordingly.
*/
#define ML_alloc_array(newarray, arraysize, alloc_id) \
do { \
MR_Word newarray_word; \
MR_offset_incr_hp_msg(newarray_word, 0, (arraysize), \
alloc_id, ""array.array/1""); \
(newarray) = (MR_ArrayPtr) newarray_word; \
} while (0)
").
:- pragma foreign_decl("C", "
void ML_init_array(MR_ArrayPtr, MR_Integer size, MR_Word item);
").
:- pragma foreign_code("C", "
/*
** The caller is responsible for allocating the memory for the array.
** This routine does the job of initializing the already-allocated memory.
*/
void
ML_init_array(MR_ArrayPtr array, MR_Integer size, MR_Word item)
{
MR_Integer i;
array->size = size;
for (i = 0; i < size; i++) {
array->elements[i] = item;
}
}
").
:- pragma foreign_code("C#", "
public static System.Array
ML_new_array(int Size, object Item)
{
System.Array arr;
if (Size == 0) {
return null;
}
if (Item is int || Item is double || Item is char || Item is bool) {
arr = System.Array.CreateInstance(Item.GetType(), Size);
} else {
arr = new object[Size];
}
for (int i = 0; i < Size; i++) {
arr.SetValue(Item, i);
}
return arr;
}
public static System.Array
ML_unsafe_new_array(int Size, object Item, int IndexToSet)
{
System.Array arr;
if (Item is int || Item is double || Item is char || Item is bool) {
arr = System.Array.CreateInstance(Item.GetType(), Size);
} else {
arr = new object[Size];
}
arr.SetValue(Item, IndexToSet);
return arr;
}
public static System.Array
ML_array_resize(System.Array arr0, int Size, object Item)
{
if (Size == 0) {
return null;
}
if (arr0 == null) {
return ML_new_array(Size, Item);
}
if (arr0.Length == Size) {
return arr0;
}
int OldSize = arr0.Length;
System.Array arr;
if (Item is int) {
int[] tmp = (int[]) arr0;
System.Array.Resize(ref tmp, Size);
arr = tmp;
} else if (Item is double) {
double[] tmp = (double[]) arr0;
System.Array.Resize(ref tmp, Size);
arr = tmp;
} else if (Item is char) {
char[] tmp = (char[]) arr0;
System.Array.Resize(ref tmp, Size);
arr = tmp;
} else if (Item is bool) {
bool[] tmp = (bool[]) arr0;
System.Array.Resize(ref tmp, Size);
arr = tmp;
} else {
object[] tmp = (object[]) arr0;
System.Array.Resize(ref tmp, Size);
arr = tmp;
}
for (int i = OldSize; i < Size; i++) {
arr.SetValue(Item, i);
}
return arr;
}
public static System.Array
ML_shrink_array(System.Array arr, int Size)
{
if (arr == null) {
return null;
} else if (arr is int[]) {
int[] tmp = (int[]) arr;
System.Array.Resize(ref tmp, Size);
return tmp;
} else if (arr is double[]) {
double[] tmp = (double[]) arr;
System.Array.Resize(ref tmp, Size);
return tmp;
} else if (arr is char[]) {
char[] tmp = (char[]) arr;
System.Array.Resize(ref tmp, Size);
return tmp;
} else if (arr is bool[]) {
bool[] tmp = (bool[]) arr;
System.Array.Resize(ref tmp, Size);
return tmp;
} else {
object[] tmp = (object[]) arr;
System.Array.Resize(ref tmp, Size);
return tmp;
}
}
").
:- pragma foreign_code("Java", "
public static Object
ML_new_array(int Size, Object Item, boolean fill)
{
if (Size == 0) {
return null;
}
if (Item instanceof Integer) {
int[] as = new int[Size];
if (fill) {
java.util.Arrays.fill(as, (Integer) Item);
}
return as;
}
if (Item instanceof Double) {
double[] as = new double[Size];
if (fill) {
java.util.Arrays.fill(as, (Double) Item);
}
return as;
}
if (Item instanceof Character) {
char[] as = new char[Size];
if (fill) {
java.util.Arrays.fill(as, (Character) Item);
}
return as;
}
if (Item instanceof Boolean) {
boolean[] as = new boolean[Size];
if (fill) {
java.util.Arrays.fill(as, (Boolean) Item);
}
return as;
}
Object[] as = new Object[Size];
if (fill) {
java.util.Arrays.fill(as, Item);
}
return as;
}
public static Object
ML_unsafe_new_array(int Size, Object Item, int IndexToSet)
{
if (Item instanceof Integer) {
int[] as = new int[Size];
as[IndexToSet] = (Integer) Item;
return as;
}
if (Item instanceof Double) {
double[] as = new double[Size];
as[IndexToSet] = (Double) Item;
return as;
}
if (Item instanceof Character) {
char[] as = new char[Size];
as[IndexToSet] = (Character) Item;
return as;
}
if (Item instanceof Boolean) {
boolean[] as = new boolean[Size];
as[IndexToSet] = (Boolean) Item;
return as;
}
Object[] as = new Object[Size];
as[IndexToSet] = Item;
return as;
}
public static int
ML_array_size(Object Array)
{
if (Array == null) {
return 0;
} else if (Array instanceof int[]) {
return ((int[]) Array).length;
} else if (Array instanceof double[]) {
return ((double[]) Array).length;
} else if (Array instanceof char[]) {
return ((char[]) Array).length;
} else if (Array instanceof boolean[]) {
return ((boolean[]) Array).length;
} else {
return ((Object[]) Array).length;
}
}
public static Object
ML_array_resize(Object Array0, int Size, Object Item)
{
if (Size == 0) {
return null;
}
if (Array0 == null) {
return ML_new_array(Size, Item, true);
}
if (ML_array_size(Array0) == Size) {
return Array0;
}
if (Array0 instanceof int[]) {
int[] arr0 = (int[]) Array0;
int[] Array = new int[Size];
System.arraycopy(arr0, 0, Array, 0, Math.min(arr0.length, Size));
for (int i = arr0.length; i < Size; i++) {
Array[i] = (Integer) Item;
}
return Array;
}
if (Array0 instanceof double[]) {
double[] arr0 = (double[]) Array0;
double[] Array = new double[Size];
System.arraycopy(arr0, 0, Array, 0, Math.min(arr0.length, Size));
for (int i = arr0.length; i < Size; i++) {
Array[i] = (Double) Item;
}
return Array;
}
if (Array0 instanceof char[]) {
char[] arr0 = (char[]) Array0;
char[] Array = new char[Size];
System.arraycopy(arr0, 0, Array, 0, Math.min(arr0.length, Size));
for (int i = arr0.length; i < Size; i++) {
Array[i] = (Character) Item;
}
return Array;
}
if (Array0 instanceof boolean[]) {
boolean[] arr0 = (boolean[]) Array0;
boolean[] Array = new boolean[Size];
System.arraycopy(arr0, 0, Array, 0, Math.min(arr0.length, Size));
for (int i = arr0.length; i < Size; i++) {
Array[i] = (Boolean) Item;
}
return Array;
} else {
Object[] arr0 = (Object[]) Array0;
Object[] Array = new Object[Size];
System.arraycopy(arr0, 0, Array, 0, Math.min(arr0.length, Size));
for (int i = arr0.length; i < Size; i++) {
Array[i] = Item;
}
return Array;
}
}
").
array.init(N, X) = A :-
array.init(N, X, A).
array.init(Size, Item, Array) :-
( Size < 0 ->
error("array.init: negative size")
;
array.init_2(Size, Item, Array)
).
:- pred array.init_2(int::in, T::in, array(T)::array_uo) is det.
:- pragma foreign_proc("C",
array.init_2(Size::in, Item::in, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe, will_not_modify_trail,
does_not_affect_liveness,
sharing(yes(int, T, array(T)), [
cel(Item, []) - cel(Array, [T])
])
],
"
ML_alloc_array(Array, Size + 1, MR_ALLOC_ID);
ML_init_array(Array, Size, Item);
").
array.make_empty_array = A :-
array.make_empty_array(A).
:- pragma foreign_proc("C",
array.make_empty_array(Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe, will_not_modify_trail,
does_not_affect_liveness, no_sharing],
"
ML_alloc_array(Array, 1, MR_ALLOC_ID);
ML_init_array(Array, 0, 0);
").
:- pragma foreign_proc("C#",
array.init_2(Size::in, Item::in, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
Array = array.ML_new_array(Size, Item);
").
:- pragma foreign_proc("C#",
array.make_empty_array(Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
// XXX A better solution then using the null pointer to represent
// the empty array would be to create an array of size 0. However
// we need to determine the element type of the array before we can
// do that. This could be done by examining the RTTI of the array
// type and then using System.Type.GetType(""<mercury type>"") to
// determine it. However constructing the <mercury type> string is
// a non-trival amount of work.
Array = null;
").
:- pragma foreign_proc("Erlang",
array.init_2(Size::in, Item::in, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
Array = erlang:make_tuple(Size, Item)
").
:- pragma foreign_proc("Erlang",
array.make_empty_array(Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
Array = {}
").
:- pragma foreign_proc("Java",
array.init_2(Size::in, Item::in, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
Array = array.ML_new_array(Size, Item, true);
").
:- pragma foreign_proc("Java",
array.make_empty_array(Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
// XXX as per C#
Array = null;
").
%-----------------------------------------------------------------------------%
array.generate(Size, GenFunc) = Array :-
compare(Result, Size, 0),
(
Result = (<),
error("array.generate: negative size")
;
Result = (=),
make_empty_array(Array)
;
Result = (>),
FirstElem = GenFunc(0),
Array0 = unsafe_init(Size, FirstElem, 0),
Array = generate_2(1, Size, GenFunc, Array0)
).
:- func unsafe_init(int::in, T::in, int::in) = (array(T)::array_uo) is det.
:- pragma foreign_proc("C",
unsafe_init(Size::in, FirstElem::in, IndexToSet::in) = (Array::array_uo),
[promise_pure, will_not_call_mercury, thread_safe, will_not_modify_trail,
does_not_affect_liveness],
"
ML_alloc_array(Array, Size + 1, MR_ALLOC_ID);
/*
** In debugging grades we fill the array with the first element
** in case the return value of a call to this predicate is examined
** in the debugger.
*/
#if defined(MR_EXEC_TRACE)
ML_init_array(Array, Size, FirstElem);
#else
Array->size = Size;
Array->elements[IndexToSet] = FirstElem;
#endif
").
:- pragma foreign_proc("C#",
unsafe_init(Size::in, FirstElem::in, IndexToSet::in) = (Array::array_uo),
[promise_pure, will_not_call_mercury, thread_safe],
"
Array = array.ML_unsafe_new_array(Size, FirstElem, IndexToSet);
").
:- pragma foreign_proc("Java",
unsafe_init(Size::in, FirstElem::in, IndexToSet::in) = (Array::array_uo),
[promise_pure, will_not_call_mercury, thread_safe],
"
Array = array.ML_unsafe_new_array(Size, FirstElem, IndexToSet);
").
:- pragma foreign_proc("Erlang",
unsafe_init(Size::in, FirstElem::in, _IndexToSet::in) = (Array::array_uo),
[promise_pure, will_not_call_mercury, thread_safe],
"
Array = erlang:make_tuple(Size, FirstElem)
").
:- func generate_2(int::in, int::in, (func(int) = T)::in, array(T)::array_di)
= (array(T)::array_uo) is det.
generate_2(Index, Size, GenFunc, !.Array) = !:Array :-
( if Index < Size then
Elem = GenFunc(Index),
array.unsafe_set(Index, Elem, !Array),
!:Array = generate_2(Index + 1, Size, GenFunc, !.Array)
else
true
).
array.generate_foldl(Size, GenPred, Array, !Acc) :-
compare(Result, Size, 0),
(
Result = (<),
error("array.generate_foldl: negative size")
;
Result = (=),
make_empty_array(Array)
;
Result = (>),
GenPred(0, FirstElem, !Acc),
Array0 = unsafe_init(Size, FirstElem, 0),
generate_foldl_2(1, Size, GenPred, Array0, Array, !Acc)
).
:- pred generate_foldl_2(int, int, pred(int, T, A, A),
array(T), array(T), A, A).
:- mode generate_foldl_2(in, in, in(pred(in, out, in, out) is det),
array_di, array_uo, in, out) is det.
:- mode generate_foldl_2(in, in, in(pred(in, out, mdi, muo) is det),
array_di, array_uo, mdi, muo) is det.
:- mode generate_foldl_2(in, in, in(pred(in, out, di, uo) is det),
array_di, array_uo, di, uo) is det.
:- mode generate_foldl_2(in, in, in(pred(in, out, in, out) is semidet),
array_di, array_uo, in, out) is semidet.
:- mode generate_foldl_2(in, in, in(pred(in, out, mdi, muo) is semidet),
array_di, array_uo, mdi, muo) is semidet.
:- mode generate_foldl_2(in, in, in(pred(in, out, di, uo) is semidet),
array_di, array_uo, di, uo) is semidet.
generate_foldl_2(Index, Size, GenPred, !Array, !Acc) :-
( if Index < Size then
GenPred(Index, Elem, !Acc),
array.unsafe_set(Index, Elem, !Array),
generate_foldl_2(Index + 1, Size, GenPred, !Array, !Acc)
else
true
).
%-----------------------------------------------------------------------------%
array.min(A) = N :-
array.min(A, N).
:- pragma foreign_proc("C",
array.min(Array::in, Min::out),
[will_not_call_mercury, promise_pure, thread_safe, will_not_modify_trail,
does_not_affect_liveness, no_sharing],
"
/* Array not used */
Min = 0;
").
:- pragma foreign_proc("C#",
array.min(_Array::in, Min::out),
[will_not_call_mercury, promise_pure, thread_safe],
"
/* Array not used */
Min = 0;
").
:- pragma foreign_proc("Erlang",
array.min(Array::in, Min::out),
[will_not_call_mercury, promise_pure, thread_safe],
"
% Array not used
Min = 0
").
:- pragma foreign_proc("Java",
array.min(_Array::in, Min::out),
[will_not_call_mercury, promise_pure, thread_safe],
"
/* Array not used */
Min = 0;
").
array.max(A) = N :-
array.max(A, N).
:- pragma foreign_proc("C",
array.max(Array::in, Max::out),
[will_not_call_mercury, promise_pure, thread_safe, will_not_modify_trail,
does_not_affect_liveness, no_sharing],
"
Max = Array->size - 1;
").
:- pragma foreign_proc("C#",
array.max(Array::in, Max::out),
[will_not_call_mercury, promise_pure, thread_safe],
"
if (Array != null) {
Max = Array.Length - 1;
} else {
Max = -1;
}
").
:- pragma foreign_proc("Erlang",
array.max(Array::in, Max::out),
[will_not_call_mercury, promise_pure, thread_safe],
"
Max = size(Array) - 1
").
:- pragma foreign_proc("Java",
array.max(Array::in, Max::out),
[will_not_call_mercury, promise_pure, thread_safe],
"
if (Array != null) {
Max = array.ML_array_size(Array) - 1;
} else {
Max = -1;
}
").
array.bounds(Array, Min, Max) :-
array.min(Array, Min),
array.max(Array, Max).
%-----------------------------------------------------------------------------%
array.size(A) = N :-
array.size(A, N).
:- pragma foreign_proc("C",
array.size(Array::in, Max::out),
[will_not_call_mercury, promise_pure, thread_safe, will_not_modify_trail,
does_not_affect_liveness, no_sharing],
"
Max = Array->size;
").
:- pragma foreign_proc("C#",
array.size(Array::in, Max::out),
[will_not_call_mercury, promise_pure, thread_safe],
"
if (Array != null) {
Max = Array.Length;
} else {
Max = 0;
}
").
:- pragma foreign_proc("Erlang",
array.size(Array::in, Max::out),
[will_not_call_mercury, promise_pure, thread_safe],
"
Max = size(Array)
").
:- pragma foreign_proc("Java",
array.size(Array::in, Max::out),
[will_not_call_mercury, promise_pure, thread_safe],
"
Max = jmercury.array.ML_array_size(Array);
").
%-----------------------------------------------------------------------------%
array.in_bounds(Array, Index) :-
array.bounds(Array, Min, Max),
Min =< Index, Index =< Max.
array.semidet_set(Index, Item, !Array) :-
( array.in_bounds(!.Array, Index) ->
array.unsafe_set(Index, Item, !Array)
;
fail
).
array.semidet_slow_set(Index, Item, !Array) :-
( array.in_bounds(!.Array, Index) ->
array.slow_set(Index, Item, !Array)
;
fail
).
array.slow_set(!.Array, N, X) = !:Array :-
array.slow_set(N, X, !Array).
array.slow_set(Index, Item, !Array) :-
array.copy(!Array),
array.set(Index, Item, !Array).
%-----------------------------------------------------------------------------%
array.elem(Index, Array) = array.lookup(Array, Index).
array.unsafe_elem(Index, Array) = Elem :-
array.unsafe_lookup(Array, Index, Elem).
array.lookup(Array, N) = X :-
array.lookup(Array, N, X).
array.lookup(Array, Index, Item) :-
( bounds_checks, \+ array.in_bounds(Array, Index) ->
out_of_bounds_error(Array, Index, "array.lookup")
;
array.unsafe_lookup(Array, Index, Item)
).
array.semidet_lookup(Array, Index, Item) :-
( array.in_bounds(Array, Index) ->
array.unsafe_lookup(Array, Index, Item)
;
fail
).
:- pragma foreign_proc("C",
array.unsafe_lookup(Array::in, Index::in, Item::out),
[will_not_call_mercury, promise_pure, thread_safe, will_not_modify_trail,
does_not_affect_liveness,
sharing(yes(array(T), int, T), [
cel(Array, [T]) - cel(Item, [])
])
],
"
Item = Array->elements[Index];
").
:- pragma foreign_proc("C#",
array.unsafe_lookup(Array::in, Index::in, Item::out),
[will_not_call_mercury, promise_pure, thread_safe],
"{
Item = Array.GetValue(Index);
}").
:- pragma foreign_proc("Erlang",
array.unsafe_lookup(Array::in, Index::in, Item::out),
[will_not_call_mercury, promise_pure, thread_safe],
"
Item = element(Index + 1, Array)
").
:- pragma foreign_proc("Java",
array.unsafe_lookup(Array::in, Index::in, Item::out),
[will_not_call_mercury, promise_pure, thread_safe],
"
if (Array instanceof int[]) {
Item = ((int[]) Array)[Index];
} else if (Array instanceof double[]) {
Item = ((double[]) Array)[Index];
} else if (Array instanceof char[]) {
Item = ((char[]) Array)[Index];
} else if (Array instanceof boolean[]) {
Item = ((boolean[]) Array)[Index];
} else {
Item = ((Object[]) Array)[Index];
}
").
%-----------------------------------------------------------------------------%
'elem :='(Index, Array, Value) = array.set(Array, Index, Value).
array.set(A1, N, X) = A2 :-
array.set(N, X, A1, A2).
array.set(Index, Item, !Array) :-
( bounds_checks, \+ array.in_bounds(!.Array, Index) ->
out_of_bounds_error(!.Array, Index, "array.set")
;
array.unsafe_set(Index, Item, !Array)
).
array.svset(Index, Item, !Array) :-
( bounds_checks, \+ array.in_bounds(!.Array, Index) ->
out_of_bounds_error(!.Array, Index, "array.set")
;
array.unsafe_svset(Index, Item, !Array)
).
'unsafe_elem :='(Index, !.Array, Value) = !:Array :-
array.unsafe_set(Index, Value, !Array).
:- pragma foreign_proc("C",
array.unsafe_set(Index::in, Item::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe, will_not_modify_trail,
does_not_affect_liveness,
sharing(yes(int, T, array(T), array(T)), [
cel(Array0, []) - cel(Array, []),
cel(Item, []) - cel(Array, [T])
])
],
"
Array0->elements[Index] = Item; /* destructive update! */
Array = Array0;
").
:- pragma foreign_proc("C",
array.unsafe_svset(Index::in, Item::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe, will_not_modify_trail,
does_not_affect_liveness,
sharing(yes(int, T, array(T), array(T)), [
cel(Array0, []) - cel(Array, []),
cel(Item, []) - cel(Array, [T])
])
],
"
Array0->elements[Index] = Item; /* destructive update! */
Array = Array0;
").
:- pragma foreign_proc("C#",
array.unsafe_set(Index::in, Item::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"{
Array0.SetValue(Item, Index); /* destructive update! */
Array = Array0;
}").
:- pragma foreign_proc("C#",
array.unsafe_svset(Index::in, Item::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"{
Array0.SetValue(Item, Index); /* destructive update! */
Array = Array0;
}").
:- pragma foreign_proc("Erlang",
array.unsafe_set(Index::in, Item::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
Array = setelement(Index + 1, Array0, Item)
").
:- pragma foreign_proc("Erlang",
array.unsafe_svset(Index::in, Item::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
Array = setelement(Index + 1, Array0, Item)
").
:- pragma foreign_proc("Java",
array.unsafe_set(Index::in, Item::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
if (Array0 instanceof int[]) {
((int[]) Array0)[Index] = (Integer) Item;
} else if (Array0 instanceof double[]) {
((double[]) Array0)[Index] = (Double) Item;
} else if (Array0 instanceof char[]) {
((char[]) Array0)[Index] = (Character) Item;
} else if (Array0 instanceof boolean[]) {
((boolean[]) Array0)[Index] = (Boolean) Item;
} else {
((Object[]) Array0)[Index] = Item;
}
Array = Array0; /* destructive update! */
").
:- pragma foreign_proc("Java",
array.unsafe_svset(Index::in, Item::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
if (Array0 instanceof int[]) {
((int[]) Array0)[Index] = (Integer) Item;
} else if (Array0 instanceof double[]) {
((double[]) Array0)[Index] = (Double) Item;
} else if (Array0 instanceof char[]) {
((char[]) Array0)[Index] = (Character) Item;
} else if (Array0 instanceof boolean[]) {
((boolean[]) Array0)[Index] = (Boolean) Item;
} else {
((Object[]) Array0)[Index] = Item;
}
Array = Array0; /* destructive update! */
").
%-----------------------------------------------------------------------------%
% lower bounds other than zero are not supported
% % array.resize takes an array and new lower and upper bounds.
% % the array is expanded or shrunk at each end to make it fit
% % the new bounds.
% :- pred array.resize(array(T), int, int, array(T)).
% :- mode array.resize(in, in, in, out) is det.
:- pragma foreign_decl("C", "
extern void
ML_resize_array(MR_ArrayPtr new_array, MR_ArrayPtr old_array,
MR_Integer array_size, MR_Word item);
").
:- pragma foreign_code("C", "
/*
** The caller is responsible for allocating the storage for the new array.
** This routine does the job of copying the old array elements to the
** new array, initializing any additional elements in the new array,
** and deallocating the old array.
*/
void
ML_resize_array(MR_ArrayPtr array, MR_ArrayPtr old_array,
MR_Integer array_size, MR_Word item)
{
MR_Integer i;
MR_Integer elements_to_copy;
elements_to_copy = old_array->size;
if (elements_to_copy > array_size) {
elements_to_copy = array_size;
}
array->size = array_size;
for (i = 0; i < elements_to_copy; i++) {
array->elements[i] = old_array->elements[i];
}
for (; i < array_size; i++) {
array->elements[i] = item;
}
/*
** Since the mode on the old array is `array_di', it is safe to
** deallocate the storage for it.
*/
#ifdef MR_CONSERVATIVE_GC
MR_GC_free_attrib(old_array);
#endif
}
").
array.resize(!.Array, N, X) = !:Array :-
array.resize(N, X, !Array).
:- pragma foreign_proc("C",
array.resize(Size::in, Item::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe, will_not_modify_trail,
does_not_affect_liveness,
sharing(yes(int, T, array(T), array(T)), [
cel(Array0, []) - cel(Array, []),
cel(Item, []) - cel(Array, [T])
])
],
"
if ((Array0)->size == Size) {
Array = Array0;
} else {
ML_alloc_array(Array, Size + 1, MR_ALLOC_ID);
ML_resize_array(Array, Array0, Size, Item);
}
").
:- pragma foreign_proc("C#",
array.resize(Size::in, Item::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
Array = array.ML_array_resize(Array0, Size, Item);
").
:- pragma foreign_proc("Erlang",
array.resize(Size::in, Item::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
InitialSize = size(Array0),
List = tuple_to_list(Array0),
if
Size < InitialSize ->
Array = list_to_tuple(lists:sublist(List, Size));
Size > InitialSize ->
Array = list_to_tuple(lists:append(List,
lists:duplicate(Size - InitialSize, Item)));
true ->
Array = Array0
end
").
:- pragma foreign_proc("Java",
array.resize(Size::in, Item::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
Array = jmercury.array.ML_array_resize(Array0, Size, Item);
").
%-----------------------------------------------------------------------------%
:- pragma foreign_decl("C", "
extern void
ML_shrink_array(MR_ArrayPtr array, MR_ArrayPtr old_array,
MR_Integer array_size);
").
:- pragma foreign_code("C", "
/*
** The caller is responsible for allocating the storage for the new array.
** This routine does the job of copying the old array elements to the
** new array and deallocating the old array.
*/
void
ML_shrink_array(MR_ArrayPtr array, MR_ArrayPtr old_array,
MR_Integer array_size)
{
MR_Integer i;
array->size = array_size;
for (i = 0; i < array_size; i++) {
array->elements[i] = old_array->elements[i];
}
/*
** Since the mode on the old array is `array_di', it is safe to
** deallocate the storage for it.
*/
#ifdef MR_CONSERVATIVE_GC
MR_GC_free_attrib(old_array);
#endif
}
").
array.shrink(!.Array, N) = !:Array :-
array.shrink(N, !Array).
array.shrink(Size, !Array) :-
OldSize = array.size(!.Array),
( Size > OldSize ->
error("array.shrink: can't shrink to a larger size")
; Size = OldSize ->
true
;
array.shrink_2(Size, !Array)
).
:- pred array.shrink_2(int::in, array(T)::array_di, array(T)::array_uo)
is det.
:- pragma foreign_proc("C",
array.shrink_2(Size::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe, will_not_modify_trail,
does_not_affect_liveness,
sharing(yes(int, array(T), array(T)), [
cel(Array0, []) - cel(Array, [])
])
],
"
ML_alloc_array(Array, Size + 1, MR_ALLOC_ID);
ML_shrink_array(Array, Array0, Size);
").
:- pragma foreign_proc("C#",
array.shrink_2(Size::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
Array = array.ML_shrink_array(Array0, Size);
").
:- pragma foreign_proc("Erlang",
array.shrink_2(Size::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
Array = list_to_tuple(lists:sublist(tuple_to_list(Array0), Size))
").
:- pragma foreign_proc("Java",
array.shrink_2(Size::in, Array0::array_di, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
if (Array0 == null) {
Array = null;
} else if (Array0 instanceof int[]) {
Array = new int[Size];
} else if (Array0 instanceof double[]) {
Array = new double[Size];
} else if (Array0 instanceof char[]) {
Array = new char[Size];
} else if (Array0 instanceof boolean[]) {
Array = new boolean[Size];
} else {
Array = new Object[Size];
}
if (Array != null) {
System.arraycopy(Array0, 0, Array, 0, Size);
}
").
%-----------------------------------------------------------------------------%
:- pragma foreign_decl("C", "
extern void
ML_copy_array(MR_ArrayPtr array, MR_ConstArrayPtr old_array);
").
:- pragma foreign_code("C", "
/*
** The caller is responsible for allocating the storage for the new array.
** This routine does the job of copying the array elements.
*/
void
ML_copy_array(MR_ArrayPtr array, MR_ConstArrayPtr old_array)
{
/*
** Any changes to this function will probably also require changes to
** - array.append below, and
** - MR_deep_copy() in runtime/mercury_deep_copy.[ch].
*/
MR_Integer i;
MR_Integer array_size;
array_size = old_array->size;
array->size = array_size;
for (i = 0; i < array_size; i++) {
array->elements[i] = old_array->elements[i];
}
}
").
array.copy(A1) = A2 :-
array.copy(A1, A2).
:- pragma foreign_proc("C",
array.copy(Array0::in, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe, will_not_modify_trail,
does_not_affect_liveness,
sharing(yes(array(T), array(T)), [
cel(Array0, [T]) - cel(Array, [T])
])
],
"
ML_alloc_array(Array, Array0->size + 1, MR_ALLOC_ID);
ML_copy_array(Array, (MR_ConstArrayPtr) Array0);
").
:- pragma foreign_proc("C#",
array.copy(Array0::in, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
Array = (System.Array) Array0.Clone();
").
:- pragma foreign_proc("Erlang",
array.copy(Array0::in, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
Array = Array0
").
:- pragma foreign_proc("Java",
array.copy(Array0::in, Array::array_uo),
[will_not_call_mercury, promise_pure, thread_safe],
"
int Size;
if (Array0 == null) {
Array = null;
Size = 0;
} else if (Array0 instanceof int[]) {
Size = ((int[]) Array0).length;
Array = new int[Size];
} else if (Array0 instanceof double[]) {
Size = ((double[]) Array0).length;
Array = new double[Size];
} else if (Array0 instanceof char[]) {
Size = ((char[]) Array0).length;
Array = new char[Size];
} else if (Array0 instanceof boolean[]) {
Size = ((boolean[]) Array0).length;
Array = new boolean[Size];
} else {
Size = ((Object[]) Array0).length;
Array = new Object[Size];
}
if (Array != null) {
System.arraycopy(Array0, 0, Array, 0, Size);
}
").
%-----------------------------------------------------------------------------%
array(List) = Array :-
array.from_list(List, Array).
array.from_list(List) = Array :-
array.from_list(List, Array).
array.from_list([], Array) :-
array.make_empty_array(Array).
array.from_list(List, Array) :-
List = [Head | Tail],
list.length(List, Len),
Array0 = array.unsafe_init(Len, Head, 0),
array.unsafe_insert_items(Tail, 1, Array0, Array).
%-----------------------------------------------------------------------------%
:- pred array.unsafe_insert_items(list(T)::in, int::in,
array(T)::array_di, array(T)::array_uo) is det.
array.unsafe_insert_items([], _N, !Array).
array.unsafe_insert_items([Head | Tail], N, !Array) :-
array.unsafe_set(N, Head, !Array),
array.unsafe_insert_items(Tail, N + 1, !Array).
%-----------------------------------------------------------------------------%
array.from_reverse_list([]) = Array :-
array.make_empty_array(Array).
array.from_reverse_list(RevList) = Array :-
RevList = [Head | Tail],
list.length(RevList, Len),
Array0 = array.unsafe_init(Len, Head, Len - 1),
array.unsafe_insert_items_reverse(Tail, Len - 2, Array0, Array).
:- pred array.unsafe_insert_items_reverse(list(T)::in, int::in,
array(T)::array_di, array(T)::array_uo) is det.
array.unsafe_insert_items_reverse([], _, !Array).
array.unsafe_insert_items_reverse([Head | Tail], N, !Array) :-
array.unsafe_set(N, Head, !Array),
array.unsafe_insert_items_reverse(Tail, N - 1, !Array).
%-----------------------------------------------------------------------------%
array.to_list(Array) = List :-
array.to_list(Array, List).
array.to_list(Array, List) :-
array.bounds(Array, Low, High),
array.fetch_items(Array, Low, High, List).
%-----------------------------------------------------------------------------%
array.fetch_items(Array, Low, High) = List :-
array.fetch_items(Array, Low, High, List).
array.fetch_items(Array, Low, High, List) :-
( High < Low ->
% If High is less than Low then there cannot be any array indexes
% within the range Low -> High (inclusive). This can happen when
% calling to_list/2 on the empty array. Testing for this condition
% here rather than in to_list/2 is more general.
List = []
;
array.in_bounds(Array, Low),
array.in_bounds(Array, High)
->
List = do_foldr_func(func(X, Xs) = [X | Xs], Array, [], Low, High)
;
error("array.fetch_items/4: One or more index is out of bounds")
).
%-----------------------------------------------------------------------------%
array.bsearch(A, X, F) = MN :-
P = (pred(X1::in, X2::in, C::out) is det :- C = F(X1, X2)),
array.bsearch(A, X, P, MN).
array.bsearch(A, El, Compare, Result) :-
array.bounds(A, Lo, Hi),
array.bsearch_2(A, Lo, Hi, El, Compare, Result).
:- pred array.bsearch_2(array(T)::in, int::in, int::in, T::in,
pred(T, T, comparison_result)::in(pred(in, in, out) is det),
maybe(int)::out) is det.
array.bsearch_2(Array, Lo, Hi, El, Compare, Result) :-
Width = Hi - Lo,
% If Width < 0, there is no range left.
( Width < 0 ->
Result = no
;
% If Width == 0, we may just have found our element.
% Do a Compare to check.
( Width = 0 ->
array.lookup(Array, Lo, X),
( Compare(El, X, (=)) ->
Result = yes(Lo)
;
Result = no
)
;
% Otherwise find the middle element of the range
% and check against that.
Mid = (Lo + Hi) >> 1, % `>> 1' is hand-optimized `div 2'.
array.lookup(Array, Mid, XMid),
Compare(XMid, El, Comp),
(
Comp = (<),
Mid1 = Mid + 1,
array.bsearch_2(Array, Mid1, Hi, El, Compare, Result)
;
Comp = (=),
array.bsearch_2(Array, Lo, Mid, El, Compare, Result)
;
Comp = (>),
Mid1 = Mid - 1,
array.bsearch_2(Array, Lo, Mid1, El, Compare, Result)
)
)
).
%-----------------------------------------------------------------------------%
array.map(F, A1) = A2 :-
P = (pred(X::in, Y::out) is det :- Y = F(X)),
array.map(P, A1, A2).
array.map(Closure, OldArray, NewArray) :-
( array.semidet_lookup(OldArray, 0, Elem0) ->
array.size(OldArray, Size),
Closure(Elem0, Elem),
NewArray0 = unsafe_init(Size, Elem, 0),
array.map_2(1, Size, Closure, OldArray, NewArray0, NewArray)
;
array.make_empty_array(NewArray)
).
:- pred array.map_2(int::in, int::in, pred(T1, T2)::in(pred(in, out) is det),
array(T1)::in, array(T2)::array_di, array(T2)::array_uo) is det.
array.map_2(N, Size, Closure, OldArray, !NewArray) :-
( N >= Size ->
true
;
array.unsafe_lookup(OldArray, N, OldElem),
Closure(OldElem, NewElem),
array.unsafe_set(N, NewElem, !NewArray),
array.map_2(N + 1, Size, Closure, OldArray, !NewArray)
).
%-----------------------------------------------------------------------------%
array.member(A, X) :-
nondet_int_in_range(array.min(A), array.max(A), I0),
X = A ^ unsafe_elem(I0).
%-----------------------------------------------------------------------------%
% array.sort/1 has type specialised versions for arrays of
% ints and strings on the expectation that these constitute
% the common case and are hence worth providing a fast-path.
%
% Experiments indicate that type specialisation improves
% array.sort/1 by a factor of 30-40%.
%
:- pragma type_spec(array.sort/1, T = int).
:- pragma type_spec(array.sort/1, T = string).
array.sort(A) = samsort_subarray(A, array.min(A), array.max(A)).
%------------------------------------------------------------------------------%
array.binary_search(A, X, I) :-
array.binary_search(ordering, A, X, I).
array.binary_search(Cmp, A, X, I) :-
array.approx_binary_search(Cmp, A, X, I),
A ^ elem(I) = X.
array.approx_binary_search(A, X, I) :-
array.approx_binary_search(ordering, A, X, I).
array.approx_binary_search(Cmp, A, X, I) :-
Lo = 0,
Hi = array.size(A) - 1,
approx_binary_search_2(Cmp, A, X, Lo, Hi, I).
:- pred approx_binary_search_2(comparison_func(T)::in, array(T)::array_ui,
T::in, int::in, int::in, int::out) is semidet.
approx_binary_search_2(Cmp, A, X, Lo, Hi, I) :-
Lo =< Hi,
Mid = (Lo + Hi) / 2,
O = Cmp(A ^ elem(Mid), X),
(
O = (>),
approx_binary_search_2(Cmp, A, X, Lo, Mid - 1, I)
;
O = (=),
I = Mid
;
O = (<),
( if ( Mid < Hi, X @< A ^ elem(Mid + 1) ; Mid = Hi ) then
I = Mid
else
approx_binary_search_2(Cmp, A, X, Mid + 1, Hi, I)
)
).
%-----------------------------------------------------------------------------%
array.append(A, B) = C :-
SizeA = array.size(A),
SizeB = array.size(B),
SizeC = SizeA + SizeB,
( if
( if SizeA > 0 then
InitElem = A ^ elem(0)
else if SizeB > 0 then
InitElem = B ^ elem(0)
else
fail
)
then
C0 = array.init(SizeC, InitElem),
copy_subarray(A, 0, SizeA - 1, 0, C0, C1),
copy_subarray(B, 0, SizeB - 1, SizeA, C1, C)
else
C = array.make_empty_array
).
:- pragma foreign_proc("C",
array.append(ArrayA::in, ArrayB::in) = (ArrayC::array_uo),
[will_not_call_mercury, promise_pure, thread_safe, will_not_modify_trail,
does_not_affect_liveness,
sharing(yes(array(T), array(T), array(T)), [
cel(ArrayA, [T]) - cel(ArrayC, [T]),
cel(ArrayB, [T]) - cel(ArrayC, [T])
])
],
"
MR_Integer sizeC;
MR_Integer i;
MR_Integer offset;
sizeC = ArrayA->size + ArrayB->size;
ML_alloc_array(ArrayC, sizeC + 1, MR_ALLOC_ID);
ArrayC->size = sizeC;
for (i = 0; i < ArrayA->size; i++) {
ArrayC->elements[i] = ArrayA->elements[i];
}
offset = ArrayA->size;
for (i = 0; i < ArrayB->size; i++) {
ArrayC->elements[offset + i] = ArrayB->elements[i];
}
").
%-----------------------------------------------------------------------------%
array.random_permutation(A0, A, RS0, RS) :-
Lo = array.min(A0),
Hi = array.max(A0),
Sz = array.size(A0),
permutation_2(Lo, Lo, Hi, Sz, A0, A, RS0, RS).
:- pred permutation_2(int::in, int::in, int::in, int::in,
array(T)::array_di, array(T)::array_uo,
random.supply::mdi, random.supply::muo) is det.
permutation_2(I, Lo, Hi, Sz, A0, A, RS0, RS) :-
( I > Hi ->
A = A0,
RS = RS0
;
random.random(R, RS0, RS1),
J = Lo + (R `rem` Sz),
A1 = swap_elems(A0, I, J),
permutation_2(I + 1, Lo, Hi, Sz, A1, A, RS1, RS)
).
%------------------------------------------------------------------------------%
:- func swap_elems(array(T), int, int) = array(T).
:- mode swap_elems(array_di, in, in) = array_uo is det.
swap_elems(A0, I, J) = A :-
XI = A0 ^ elem(I),
XJ = A0 ^ elem(J),
A = ((A0 ^ elem(I) := XJ) ^ elem(J) := XI).
% ---------------------------------------------------------------------------- %
array.foldl(Fn, A, X) =
do_foldl_func(Fn, A, X, array.min(A), array.max(A)).
:- func do_foldl_func(func(T1, T2) = T2, array(T1), T2, int, int) = T2.
%:- mode do_foldl_func(func(in, in) = out is det, array_ui, in, in, in)
% = out is det.
:- mode do_foldl_func(func(in, in) = out is det, in, in, in, in) = out is det.
%:- mode do_foldl_func(func(in, di) = uo is det, array_ui, di, in, in)
% = uo is det.
:- mode do_foldl_func(func(in, di) = uo is det, in, di, in, in) = uo is det.
do_foldl_func(Fn, A, X, I, Max) =
( Max < I ->
X
;
do_foldl_func(Fn, A, Fn(A ^ unsafe_elem(I), X), I + 1, Max)
).
% ---------------------------------------------------------------------------- %
array.foldl(P, A, !Acc) :-
do_foldl_pred(P, A, array.min(A), array.max(A), !Acc).
:- pred do_foldl_pred(pred(T1, T2, T2), array(T1), int, int, T2, T2).
:- mode do_foldl_pred(pred(in, in, out) is det, in, in, in, in, out) is det.
:- mode do_foldl_pred(pred(in, mdi, muo) is det, in, in, in, mdi, muo) is det.
:- mode do_foldl_pred(pred(in, di, uo) is det, in, in, in, di, uo) is det.
:- mode do_foldl_pred(pred(in, in, out) is semidet, in, in, in, in, out)
is semidet.
:- mode do_foldl_pred(pred(in, mdi, muo) is semidet, in, in, in, mdi, muo)
is semidet.
:- mode do_foldl_pred(pred(in, di, uo) is semidet, in, in, in, di, uo)
is semidet.
do_foldl_pred(P, A, I, Max, !Acc) :-
( Max < I ->
true
;
P(A ^ unsafe_elem(I), !Acc),
do_foldl_pred(P, A, I + 1, Max, !Acc)
).
%-----------------------------------------------------------------------------%
array.foldl2(P, A, !Acc1, !Acc2) :-
do_foldl2(P, array.min(A), array.max(A), A, !Acc1, !Acc2).
:- pred do_foldl2(pred(T1, T2, T2, T3, T3), int, int, array(T1), T2, T2,
T3, T3).
:- mode do_foldl2(pred(in, in, out, in, out) is det, in, in, in, in, out,
in, out) is det.
:- mode do_foldl2(pred(in, in, out, mdi, muo) is det, in, in, in, in, out,
mdi, muo) is det.
:- mode do_foldl2(pred(in, in, out, di, uo) is det, in, in, in, in, out,
di, uo) is det.
:- mode do_foldl2(pred(in, in, out, in, out) is semidet, in, in, in, in, out,
in, out) is semidet.
:- mode do_foldl2(pred(in, in, out, mdi, muo) is semidet, in, in, in, in, out,
mdi, muo) is semidet.
:- mode do_foldl2(pred(in, in, out, di, uo) is semidet, in, in, in, in, out,
di, uo) is semidet.
do_foldl2(P, I, Max, A, !Acc1, !Acc2) :-
( Max < I ->
true
;
P(A ^ unsafe_elem(I), !Acc1, !Acc2),
do_foldl2(P, I + 1, Max, A, !Acc1, !Acc2)
).
%-----------------------------------------------------------------------------%
array.foldl3(P, A, !Acc1, !Acc2, !Acc3) :-
do_foldl3(P, array.min(A), array.max(A), A, !Acc1, !Acc2, !Acc3).
:- pred do_foldl3(pred(T1, T2, T2, T3, T3, T4, T4), int, int, array(T1),
T2, T2, T3, T3, T4, T4).
:- mode do_foldl3(pred(in, in, out, in, out, in, out) is det, in, in, in,
in, out, in, out, in, out) is det.
:- mode do_foldl3(pred(in, in, out, in, out, mdi, muo) is det, in, in, in,
in, out, in, out, mdi, muo) is det.
:- mode do_foldl3(pred(in, in, out, in, out, di, uo) is det, in, in, in,
in, out, in, out, di, uo) is det.
:- mode do_foldl3(pred(in, in, out, in, out, in, out) is semidet, in, in, in,
in, out, in, out, in, out) is semidet.
:- mode do_foldl3(pred(in, in, out, in, out, mdi, muo) is semidet, in, in, in,
in, out, in, out, mdi, muo) is semidet.
:- mode do_foldl3(pred(in, in, out, in, out, di, uo) is semidet, in, in, in,
in, out, in, out, di, uo) is semidet.
do_foldl3(P, I, Max, A, !Acc1, !Acc2, !Acc3) :-
( Max < I ->
true
;
P(A ^ unsafe_elem(I), !Acc1, !Acc2, !Acc3),
do_foldl3(P, I + 1, Max, A, !Acc1, !Acc2, !Acc3)
).
%-----------------------------------------------------------------------------%
array.foldl4(P, A, !Acc1, !Acc2, !Acc3, !Acc4) :-
do_foldl4(P, array.min(A), array.max(A), A, !Acc1, !Acc2, !Acc3, !Acc4).
:- pred do_foldl4(pred(T1, T2, T2, T3, T3, T4, T4, T5, T5), int, int,
array(T1), T2, T2, T3, T3, T4, T4, T5, T5).
:- mode do_foldl4(pred(in, in, out, in, out, in, out, in, out) is det, in, in,
in, in, out, in, out, in, out, in, out) is det.
:- mode do_foldl4(pred(in, in, out, in, out, in, out, mdi, muo) is det, in, in,
in, in, out, in, out, in, out, mdi, muo) is det.
:- mode do_foldl4(pred(in, in, out, in, out, in, out, di, uo) is det, in, in,
in, in, out, in, out, in, out, di, uo) is det.
:- mode do_foldl4(pred(in, in, out, in, out, in, out, in, out) is semidet,
in, in, in, in, out, in, out, in, out, in, out) is semidet.
:- mode do_foldl4(pred(in, in, out, in, out, in, out, mdi, muo) is semidet,
in, in, in, in, out, in, out, in, out, mdi, muo) is semidet.
:- mode do_foldl4(pred(in, in, out, in, out, in, out, di, uo) is semidet,
in, in, in, in, out, in, out, in, out, di, uo) is semidet.
do_foldl4(P, I, Max, A, !Acc1, !Acc2, !Acc3, !Acc4) :-
( Max < I ->
true
;
P(A ^ unsafe_elem(I), !Acc1, !Acc2, !Acc3, !Acc4),
do_foldl4(P, I + 1, Max, A, !Acc1, !Acc2, !Acc3, !Acc4)
).
%-----------------------------------------------------------------------------%
array.foldl5(P, A, !Acc1, !Acc2, !Acc3, !Acc4, !Acc5) :-
do_foldl5(P, array.min(A), array.max(A), A, !Acc1, !Acc2, !Acc3, !Acc4,
!Acc5).
:- pred do_foldl5(pred(T1, T2, T2, T3, T3, T4, T4, T5, T5, T6, T6),
int, int, array(T1), T2, T2, T3, T3, T4, T4, T5, T5, T6, T6).
:- mode do_foldl5(
pred(in, in, out, in, out, in, out, in, out, in, out) is det,
in, in, in, in, out, in, out, in, out, in, out, in, out) is det.
:- mode do_foldl5(
pred(in, in, out, in, out, in, out, in, out, mdi, muo) is det,
in, in, in, in, out, in, out, in, out, in, out, mdi, muo) is det.
:- mode do_foldl5(
pred(in, in, out, in, out, in, out, in, out, di, uo) is det,
in, in, in, in, out, in, out, in, out, in, out, di, uo) is det.
:- mode do_foldl5(
pred(in, in, out, in, out, in, out, in, out, in, out) is semidet,
in, in, in, in, out, in, out, in, out, in, out, in, out) is semidet.
:- mode do_foldl5(
pred(in, in, out, in, out, in, out, in, out, mdi, muo) is semidet,
in, in, in, in, out, in, out, in, out, in, out, mdi, muo) is semidet.
:- mode do_foldl5(
pred(in, in, out, in, out, in, out, in, out, di, uo) is semidet,
in, in, in, in, out, in, out, in, out, in, out, di, uo) is semidet.
do_foldl5(P, I, Max, A, !Acc1, !Acc2, !Acc3, !Acc4, !Acc5) :-
( Max < I ->
true
;
P(A ^ unsafe_elem(I), !Acc1, !Acc2, !Acc3, !Acc4, !Acc5),
do_foldl5(P, I + 1, Max, A, !Acc1, !Acc2, !Acc3, !Acc4, !Acc5)
).
%-----------------------------------------------------------------------------%
array.foldr(Fn, A, X) =
do_foldr_func(Fn, A, X, array.min(A), array.max(A)).
:- func do_foldr_func(func(T1, T2) = T2, array(T1), T2, int, int) = T2.
%:- mode do_foldr_func(func(in, in) = out is det, array_ui, in, in, in)
% = out is det.
:- mode do_foldr_func(func(in, in) = out is det, in, in, in, in) = out is det.
%:- mode do_foldr_func(func(in, di) = uo is det, array_ui, di, in, in)
% = uo is det.
:- mode do_foldr_func(func(in, di) = uo is det, in, di, in, in) = uo is det.
do_foldr_func(Fn, A, X, Min, I) =
( I < Min ->
X
;
do_foldr_func(Fn, A, Fn(A ^ unsafe_elem(I), X), Min, I - 1)
).
%-----------------------------------------------------------------------------%
array.foldr(P, A, !Acc) :-
do_foldr_pred(P, array.min(A), array.max(A), A, !Acc).
:- pred do_foldr_pred(pred(T1, T2, T2), int, int, array(T1), T2, T2).
:- mode do_foldr_pred(pred(in, in, out) is det, in, in, in, in, out) is det.
:- mode do_foldr_pred(pred(in, mdi, muo) is det, in, in, in, mdi, muo) is det.
:- mode do_foldr_pred(pred(in, di, uo) is det, in, in, in, di, uo) is det.
:- mode do_foldr_pred(pred(in, in, out) is semidet, in, in, in, in, out)
is semidet.
:- mode do_foldr_pred(pred(in, mdi, muo) is semidet, in, in, in, mdi, muo)
is semidet.
:- mode do_foldr_pred(pred(in, di, uo) is semidet, in, in, in, di, uo)
is semidet.
do_foldr_pred(P, Min, I, A, !Acc) :-
( I < Min ->
true
;
P(A ^ unsafe_elem(I), !Acc),
do_foldr_pred(P, Min, I - 1, A, !Acc)
).
%-----------------------------------------------------------------------------%
foldr2(P, A, !Acc1, !Acc2) :-
do_foldr2(P, array.min(A), array.max(A), A, !Acc1, !Acc2).
:- pred do_foldr2(pred(T1, T2, T2, T3, T3), int, int, array(T1), T2, T2,
T3, T3).
:- mode do_foldr2(pred(in, in, out, in, out) is det, in, in, in, in, out,
in, out) is det.
:- mode do_foldr2(pred(in, in, out, mdi, muo) is det, in, in, in, in, out,
mdi, muo) is det.
:- mode do_foldr2(pred(in, in, out, di, uo) is det, in, in, in, in, out,
di, uo) is det.
:- mode do_foldr2(pred(in, in, out, in, out) is semidet, in, in, in, in, out,
in, out) is semidet.
:- mode do_foldr2(pred(in, in, out, mdi, muo) is semidet, in, in, in, in, out,
mdi, muo) is semidet.
:- mode do_foldr2(pred(in, in, out, di, uo) is semidet, in, in, in, in, out,
di, uo) is semidet.
do_foldr2(P, Min, I, A, !Acc1, !Acc2) :-
( I < Min ->
true
;
P(A ^ unsafe_elem(I), !Acc1, !Acc2),
do_foldr2(P, Min, I - 1, A, !Acc1, !Acc2)
).
%-----------------------------------------------------------------------------%
foldr3(P, A, !Acc1, !Acc2, !Acc3) :-
do_foldr3(P, array.min(A), array.max(A), A, !Acc1, !Acc2, !Acc3).
:- pred do_foldr3(pred(T1, T2, T2, T3, T3, T4, T4), int, int, array(T1),
T2, T2, T3, T3, T4, T4).
:- mode do_foldr3(pred(in, in, out, in, out, in, out) is det, in, in, in,
in, out, in, out, in, out) is det.
:- mode do_foldr3(pred(in, in, out, in, out, mdi, muo) is det, in, in, in,
in, out, in, out, mdi, muo) is det.
:- mode do_foldr3(pred(in, in, out, in, out, di, uo) is det, in, in, in,
in, out, in, out, di, uo) is det.
:- mode do_foldr3(pred(in, in, out, in, out, in, out) is semidet, in, in, in,
in, out, in, out, in, out) is semidet.
:- mode do_foldr3(pred(in, in, out, in, out, mdi, muo) is semidet, in, in, in,
in, out, in, out, mdi, muo) is semidet.
:- mode do_foldr3(pred(in, in, out, in, out, di, uo) is semidet, in, in, in,
in, out, in, out, di, uo) is semidet.
do_foldr3(P, Min, I, A, !Acc1, !Acc2, !Acc3) :-
( I < Min ->
true
;
P(A ^ unsafe_elem(I), !Acc1, !Acc2, !Acc3),
do_foldr3(P, Min, I - 1, A, !Acc1, !Acc2, !Acc3)
).
%-----------------------------------------------------------------------------%
array.foldr4(P, A, !Acc1, !Acc2, !Acc3, !Acc4) :-
do_foldr4(P, array.min(A), array.max(A), A, !Acc1, !Acc2, !Acc3, !Acc4).
:- pred do_foldr4(pred(T1, T2, T2, T3, T3, T4, T4, T5, T5), int, int,
array(T1), T2, T2, T3, T3, T4, T4, T5, T5).
:- mode do_foldr4(pred(in, in, out, in, out, in, out, in, out) is det, in, in,
in, in, out, in, out, in, out, in, out) is det.
:- mode do_foldr4(pred(in, in, out, in, out, in, out, mdi, muo) is det, in, in,
in, in, out, in, out, in, out, mdi, muo) is det.
:- mode do_foldr4(pred(in, in, out, in, out, in, out, di, uo) is det, in, in,
in, in, out, in, out, in, out, di, uo) is det.
:- mode do_foldr4(pred(in, in, out, in, out, in, out, in, out) is semidet,
in, in, in, in, out, in, out, in, out, in, out) is semidet.
:- mode do_foldr4(pred(in, in, out, in, out, in, out, mdi, muo) is semidet,
in, in, in, in, out, in, out, in, out, mdi, muo) is semidet.
:- mode do_foldr4(pred(in, in, out, in, out, in, out, di, uo) is semidet,
in, in, in, in, out, in, out, in, out, di, uo) is semidet.
do_foldr4(P, Min, I, A, !Acc1, !Acc2, !Acc3, !Acc4) :-
( I < Min ->
true
;
P(A ^ unsafe_elem(I), !Acc1, !Acc2, !Acc3, !Acc4),
do_foldr4(P, Min, I - 1, A, !Acc1, !Acc2, !Acc3, !Acc4)
).
%-----------------------------------------------------------------------------%
array.foldr5(P, A, !Acc1, !Acc2, !Acc3, !Acc4, !Acc5) :-
do_foldr5(P, array.min(A), array.max(A), A, !Acc1, !Acc2, !Acc3, !Acc4,
!Acc5).
:- pred do_foldr5(pred(T1, T2, T2, T3, T3, T4, T4, T5, T5, T6, T6),
int, int, array(T1), T2, T2, T3, T3, T4, T4, T5, T5, T6, T6).
:- mode do_foldr5(
pred(in, in, out, in, out, in, out, in, out, in, out) is det,
in, in, in, in, out, in, out, in, out, in, out, in, out) is det.
:- mode do_foldr5(
pred(in, in, out, in, out, in, out, in, out, mdi, muo) is det,
in, in, in, in, out, in, out, in, out, in, out, mdi, muo) is det.
:- mode do_foldr5(
pred(in, in, out, in, out, in, out, in, out, di, uo) is det,
in, in, in, in, out, in, out, in, out, in, out, di, uo) is det.
:- mode do_foldr5(
pred(in, in, out, in, out, in, out, in, out, in, out) is semidet,
in, in, in, in, out, in, out, in, out, in, out, in, out) is semidet.
:- mode do_foldr5(
pred(in, in, out, in, out, in, out, in, out, mdi, muo) is semidet,
in, in, in, in, out, in, out, in, out, in, out, mdi, muo) is semidet.
:- mode do_foldr5(
pred(in, in, out, in, out, in, out, in, out, di, uo) is semidet,
in, in, in, in, out, in, out, in, out, in, out, di, uo) is semidet.
do_foldr5(P, Min, I, A, !Acc1, !Acc2, !Acc3, !Acc4, !Acc5) :-
( I < Min ->
true
;
P(A ^ unsafe_elem(I), !Acc1, !Acc2, !Acc3, !Acc4, !Acc5),
do_foldr5(P, Min, I - 1, A, !Acc1, !Acc2, !Acc3, !Acc4, !Acc5)
).
%-----------------------------------------------------------------------------%
map_foldl(P, A, B, !Acc) :-
N = array.size(A),
( if N =< 0 then
B = array.make_empty_array
else
X = A ^ unsafe_elem(0),
P(X, Y, !Acc),
B1 = array.init(N, Y),
map_foldl_2(P, 1, A, B1, B, !Acc)
).
:- pred map_foldl_2(pred(T1, T2, T3, T3),
int, array(T1), array(T2), array(T2), T3, T3).
:- mode map_foldl_2(in(pred(in, out, in, out) is det),
in, in, array_di, array_uo, in, out) is det.
:- mode map_foldl_2(in(pred(in, out, mdi, muo) is det),
in, in, array_di, array_uo, mdi, muo) is det.
:- mode map_foldl_2(in(pred(in, out, di, uo) is det),
in, in, array_di, array_uo, di, uo) is det.
:- mode map_foldl_2(in(pred(in, out, in, out) is semidet),
in, in, array_di, array_uo, in, out) is semidet.
map_foldl_2(P, I, A, !B, !Acc) :-
( if I < array.size(A) then
X = A ^ unsafe_elem(I),
P(X, Y, !Acc),
!B ^ unsafe_elem(I) := Y,
map_foldl_2(P, I + 1, A, !B, !Acc)
else
true
).
array.map_corresponding_foldl(P, A, B, C, !Acc) :-
N = array.size(A),
( if N =< 0 then
C = array.make_empty_array
else
X = A ^ unsafe_elem(0),
Y = B ^ unsafe_elem(0),
P(X, Y, Z, !Acc),
C1 = array.init(N, Z),
array.map_corresponding_foldl_2(P, 1, N, A, B, C1, C, !Acc)
).
:- pred array.map_corresponding_foldl_2(pred(T1, T2, T3, T4, T4),
int, int, array(T1), array(T2), array(T3), array(T3), T4, T4).
:- mode array.map_corresponding_foldl_2(
in(pred(in, in, out, in, out) is det),
in, in, in, in, array_di, array_uo, in, out) is det.
:- mode array.map_corresponding_foldl_2(
in(pred(in, in, out, mdi, muo) is det),
in, in, in, in, array_di, array_uo, mdi, muo) is det.
:- mode array.map_corresponding_foldl_2(
in(pred(in, in, out, di, uo) is det),
in, in, in, in, array_di, array_uo, di, uo) is det.
:- mode array.map_corresponding_foldl_2(
in(pred(in, in, out, in, out) is semidet),
in, in, in, in, array_di, array_uo, in, out) is semidet.
array.map_corresponding_foldl_2(P, I, N, A, B, !C, !D) :-
( if I < N then
X = A ^ unsafe_elem(I),
Y = B ^ unsafe_elem(I),
P(X, Y, Z, !D),
!C ^ unsafe_elem(I) := Z,
array.map_corresponding_foldl_2(P, I + 1, N, A, B, !C, !D)
else
true
).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% SAMsort (smooth applicative merge) invented by R.A. O'Keefe.
%
% SAMsort is a mergesort variant that works by identifying contiguous
% monotonic sequences and merging them, thereby taking advantage of
% any existing order in the input sequence.
%
:- func samsort_subarray(array(T)::array_di, int::in, int::in) =
(array(T)::array_uo) is det.
:- pragma type_spec(samsort_subarray/3, T = int).
:- pragma type_spec(samsort_subarray/3, T = string).
samsort_subarray(A0, Lo, Hi) = A :-
samsort_up(0, A0, _, array.copy(A0), A, Lo, Hi, Lo).
:- pred samsort_up(int::in, array(T)::array_di, array(T)::array_uo,
array(T)::array_di, array(T)::array_uo, int::in, int::in, int::in) is det.
:- pragma type_spec(samsort_up/8, T = int).
:- pragma type_spec(samsort_up/8, T = string).
% Precondition:
% We are N levels from the bottom (leaf nodes) of the tree.
% A0 is sorted from Lo .. I - 1.
% A0 and B0 are identical from I .. Hi.
% Postcondition:
% B is sorted from Lo .. Hi.
%
samsort_up(N, A0, A, B0, B, Lo, Hi, I) :-
( I > Hi ->
A = A0,
B = B0
; N > 0 ->
samsort_down(N - 1, B0, B1, A0, A1, I, Hi, J),
% A1 is sorted from I .. J - 1.
% A1 and B1 are identical from J .. Hi.
merge_subarrays(A1, Lo, I - 1, I, J - 1, Lo, B1, B2),
A2 = A1,
% B2 is sorted from Lo .. J - 1.
samsort_up(N + 1, B2, B, A2, A, Lo, Hi, J)
;
% N = 0, I = Lo
copy_run_ascending(A0, B0, B1, Lo, Hi, J),
% B1 is sorted from Lo .. J - 1.
samsort_up(N + 1, B1, B, A0, A, Lo, Hi, J)
).
:- pred samsort_down(int::in, array(T)::array_di, array(T)::array_uo,
array(T)::array_di, array(T)::array_uo, int::in, int::in, int::out) is det.
:- pragma type_spec(samsort_down/8, T = int).
:- pragma type_spec(samsort_down/8, T = string).
% Precondition:
% We are N levels from the bottom (leaf nodes) of the tree.
% A0 and B0 are identical from Lo .. Hi.
% Postcondition:
% B is sorted from Lo .. I - 1.
% A and B are identical from I .. Hi.
%
samsort_down(N, A0, A, B0, B, Lo, Hi, I) :-
( Lo > Hi ->
A = A0,
B = B0,
I = Lo
; N > 0 ->
samsort_down(N - 1, B0, B1, A0, A1, Lo, Hi, J),
samsort_down(N - 1, B1, B2, A1, A2, J, Hi, I),
% A2 is sorted from Lo .. J - 1.
% A2 is sorted from J .. I - 1.
A = A2,
merge_subarrays(A2, Lo, J - 1, J, I - 1, Lo, B2, B)
% B is sorted from Lo .. I - 1.
;
A = A0,
copy_run_ascending(A0, B0, B, Lo, Hi, I)
% B is sorted from Lo .. I - 1.
).
%------------------------------------------------------------------------------%
:- pred copy_run_ascending(array(T)::array_ui,
array(T)::array_di, array(T)::array_uo, int::in, int::in, int::out) is det.
:- pragma type_spec(copy_run_ascending/6, T = int).
:- pragma type_spec(copy_run_ascending/6, T = string).
copy_run_ascending(A, !B, Lo, Hi, I) :-
(
Lo < Hi,
compare((>), A ^ elem(Lo), A ^ elem(Lo + 1))
->
I = search_until((<), A, Lo, Hi),
copy_subarray_reverse(A, Lo, I - 1, I - 1, !B)
;
I = search_until((>), A, Lo, Hi),
copy_subarray(A, Lo, I - 1, Lo, !B)
).
%------------------------------------------------------------------------------%
:- func search_until(comparison_result::in, array(T)::array_ui,
int::in, int::in) = (int::out) is det.
:- pragma type_spec(search_until/4, T = int).
:- pragma type_spec(search_until/4, T = string).
search_until(R, A, Lo, Hi) =
(
Lo < Hi,
not compare(R, A ^ elem(Lo), A ^ elem(Lo + 1))
->
search_until(R, A, Lo + 1, Hi)
;
Lo + 1
).
%------------------------------------------------------------------------------%
% Assigns the subarray A[Lo..Hi] to B[InitI..Final], where InitI
% is the initial value of I, and FinalI = InitI + (Ho - Lo + 1).
% In this version, I is ascending, so B[InitI] gets A[Lo]
%
:- pred copy_subarray(array(T)::array_ui, int::in, int::in, int::in,
array(T)::array_di, array(T)::array_uo) is det.
:- pragma type_spec(copy_subarray/6, T = int).
:- pragma type_spec(copy_subarray/6, T = string).
copy_subarray(A, Lo, Hi, I, !B) :-
( Lo =< Hi ->
!B ^ elem(I) := A ^ elem(Lo),
copy_subarray(A, Lo + 1, Hi, I + 1, !B)
;
true
).
% Assigns the subarray A[Lo..Hi] to B[InitI..Final], where InitI
% is the initial value of I, and FinalI = InitI - (Ho - Lo + 1).
% In this version, I is descending, so B[InitI] gets A[Hi].
%
:- pred copy_subarray_reverse(array(T)::array_ui, int::in, int::in, int::in,
array(T)::array_di, array(T)::array_uo) is det.
:- pragma type_spec(copy_subarray_reverse/6, T = int).
:- pragma type_spec(copy_subarray_reverse/6, T = string).
copy_subarray_reverse(A, Lo, Hi, I, !B) :-
( Lo =< Hi ->
!B ^ elem(I) := A ^ elem(Lo),
copy_subarray_reverse(A, Lo + 1, Hi, I - 1, !B)
;
true
).
%------------------------------------------------------------------------------%
% merges the two sorted consecutive subarrays Lo1 .. Hi1 and
% Lo2 .. Hi2 from A into the subarray starting at I in B.
%
:- pred merge_subarrays(array(T)::array_ui,
int::in, int::in, int::in, int::in, int::in,
array(T)::array_di, array(T)::array_uo) is det.
:- pragma type_spec(merge_subarrays/8, T = int).
:- pragma type_spec(merge_subarrays/8, T = string).
merge_subarrays(A, Lo1, Hi1, Lo2, Hi2, I, !B) :-
( Lo1 > Hi1 ->
copy_subarray(A, Lo2, Hi2, I, !B)
; Lo2 > Hi2 ->
copy_subarray(A, Lo1, Hi1, I, !B)
;
X1 = A ^ elem(Lo1),
X2 = A ^ elem(Lo2),
compare(R, X1, X2),
(
R = (<),
array.set(I, X1, !B),
merge_subarrays(A, Lo1 + 1, Hi1, Lo2, Hi2, I + 1, !B)
;
R = (=),
array.set(I, X1, !B),
merge_subarrays(A, Lo1 + 1, Hi1, Lo2, Hi2, I + 1, !B)
;
R = (>),
array.set(I, X2, !B),
merge_subarrays(A, Lo1, Hi1, Lo2 + 1, Hi2, I + 1, !B)
)
).
%------------------------------------------------------------------------------%
% Throw an exception indicating an array bounds error.
%
:- pred out_of_bounds_error(array(T), int, string).
%:- mode out_of_bounds_error(array_ui, in, in) is erroneous.
:- mode out_of_bounds_error(in, in, in) is erroneous.
out_of_bounds_error(Array, Index, PredName) :-
% Note: we deliberately do not include the array element type name in the
% error message here, for performance reasons: using the type name could
% prevent the compiler from optimizing away the construction of the
% type_info in the caller, because it would prevent unused argument
% elimination. Performance is important here, because array.set and
% array.lookup are likely to be used in the inner loops of
% performance-critical applications.
array.bounds(Array, Min, Max),
string.format("%s: index %d not in range [%d, %d]",
[s(PredName), i(Index), i(Min), i(Max)], Msg),
throw(array.index_out_of_bounds(Msg)).
%-----------------------------------------------------------------------------%
array.least_index(A) = array.min(A).
array.greatest_index(A) = array.max(A).
%-----------------------------------------------------------------------------%
array.array_to_doc(A) =
indent([str("array(["), array_to_doc_2(0, A), str("])")]).
:- func array_to_doc_2(int, array(T)) = doc.
array_to_doc_2(I, A) =
( if I > array.max(A) then
str("")
else
docs([
format_arg(format(A ^ elem(I))),
( if I = array.max(A) then str("") else group([str(", "), nl]) ),
format_susp((func) = array_to_doc_2(I + 1, A))
])
).
%------------------------------------------------------------------------------%
dynamic_cast_to_array(X, A) :-
% If X is an array then it has a type with one type argument.
%
[ArgTypeDesc] = type_args(type_of(X)),
% Convert ArgTypeDesc to a type variable ArgType.
%
(_ `with_type` ArgType) `has_type` ArgTypeDesc,
% Constrain the type of A to be array(ArgType) and do the
% cast.
%
dynamic_cast(X, A `with_type` array(ArgType)).
%------------------------------------------------------------------------------%
:- end_module array.
%------------------------------------------------------------------------------%