mirror of
https://github.com/Mercury-Language/mercury.git
synced 2025-12-14 21:35:49 +00:00
Estimated hours taken: 40
Implement nondet pragma C codes.
runtime/mercury_stacks.h:
Define a new macro, mkpragmaframe, for use in the implementation
of nondet pragma C codes. This new macro includes space for a
struct with a given sruct tag in the nondet stack frame being created.
compiler/{prog_data.m,hlds_goal.m}:
Revise the representation of pragma C codes, both as the item and
in the HLDS.
compiler/prog_io_pragma.m:
Parse nondet pragma C declarations.
Fix the indentation in some places.
compiler/llds.m:
Include an extra argument in mkframe instructions. This extra argument
gives the details of the C structure (if any) to be included in the
nondet stack frame to be created.
Generalize the LLDS representation of pragma C codes. Instead of a
fixed sequence of <assign from inputs, user c code, assign to outputs>,
let the sequence contain these elements, as well as arbitrary
compiler-generated C code, in any order and possibly with repetitions.
This flexibility is needed for nondet pragma C codes.
Add a field to pragma C codes to say whether they can call Mercury.
Some optimizations can do a better job if they know that a pragma C
code cannot call Mercury.
Add another field to pragma C codes to give the name of the label
they refer to (if any). This is needed to prevent labelopt from
incorrectly optimizing away the label definition.
Add a new alternative to the type pragma_c_decl, to describe the
declaration of the local variable that points to the save struct.
compiler/llds_out.m:
Output mkframe instructions that specify a struct as invoking the new
mkpragmaframe macro, and make sure that the struct is declared just
before the procedure that uses it.
Other minor changes to keep up with the changes to the representation
of pragma C code in the LLDS, and to make the output look a bit nicer.
compiler/pragma_c_gen.m:
Add code to generate code for nondet pragma C codes. Revise the utility
predicates and their data structures a bit to make this possible.
compiler/code_gen.m:
Add code for the necessary special handling of prologs and epilogs
of procedures defined by nondet pragma C codes. The prologs need
to be modified to include a programmer-defined C structure in the
nondet stack frame and to communicate the location of this structure
to the pragma C code, whereas the functionality of the epilog is
taken care of by the pragma C code itself.
compiler/make_hlds.m:
When creating a proc_info for a procedure defined by a pragma C code,
we used to insert unifications between the headvars and the vars of
the pragma C code into the body goal. We now perform substitutions
instead. This removes a factor that would complicate the generation
of code for nondet pragma C codes.
Pass a moduleinfo down the procedures that warn about singletons
(and other basic scope errors). When checking whether to warn about
an argument of a pragma C code not being mentioned in the C code
fragment, we need to know whether the argument is input or output,
since input variables should appear in some code fragments in a
nondet pragma C code and must not appear in others. The
mode_is_{in,out}put checks need the moduleinfo.
(We do not need to check for any variables being mentioned where
they shouldn't be. The C compiler will fail in the presence of any
errors of that type, and since those variables could be referred
to via macros whose definitions we do not see, we couldn't implement
a reliable test anyway.)
compiler/opt_util.m:
Recognize that some sorts of pragma_c codes cannot affect the data
structures that control backtracking. This allows peepholing to
do a better job on code sequences produced for nondet pragma C codes.
Recognize that the C code strings inside some pragma_c codes refer to
other labels in the procedure. This prevents labelopt from incorrectly
optimizing away these labels.
compiler/dupelim.m:
If a label is referred to from within a C code string, then do not
attempt to optimize it away.
compiler/det_analysis.m:
Remove a now incorrect part of an error message.
compiler/*.m:
Minor changes to conform to changes to the HLDS and LLDS data
structures.
614 lines
22 KiB
Mathematica
614 lines
22 KiB
Mathematica
%-----------------------------------------------------------------------------%
|
|
% Copyright (C) 1994-1998 The University of Melbourne.
|
|
% This file may only be copied under the terms of the GNU General
|
|
% Public License - see the file COPYING in the Mercury distribution.
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Main author: conway.
|
|
|
|
:- module inlining.
|
|
|
|
% This module inlines
|
|
%
|
|
% * (--inline-simple and --inline-simple-threshold N)
|
|
% procedures whose size is below the given threshold,
|
|
% PLUS
|
|
% procedures that are flat (ie contain no branched structures)
|
|
% and are composed of inline builtins (eg arithmetic),
|
|
% and whose size is less than three times the given threshold
|
|
% (XXX shouldn't hard-code 3)
|
|
%
|
|
% * (--inline-compound-threshold N)
|
|
% procedures where the product of the number of calls to them
|
|
% and their size is below a given threshold.
|
|
%
|
|
% * (--inline-single-use)
|
|
% procedures which are called only once
|
|
%
|
|
% * procedures which have a `:- pragma inline(name/arity).'
|
|
%
|
|
% It will not inline procedures which have a
|
|
% `:- pragma no_inline(name/arity).'
|
|
%
|
|
% If inlining a procedure takes the total number of variables over
|
|
% a given threshold (from a command-line option), then the procedure
|
|
% is not inlined - note that this means that some calls to a
|
|
% procedure may inlined while others are not.
|
|
%
|
|
% It builds the call-graph (if necessary) works from the bottom of
|
|
% the call-graph towards the top, first perfoming inlining on a
|
|
% procedure then deciding if calls to it (higher in the call-graph)
|
|
% should be inlined. SCCs get flattend and processed in the order
|
|
% returned by hlds_dependency_info_get_dependency_ordering.
|
|
%
|
|
% There are a couple of classes of procedure that we clearly want
|
|
% to inline because doing so *reduces* the size of the generated
|
|
% code:
|
|
%
|
|
% - access predicates that get or set one or more fields
|
|
% of a structure (Inlining these is almost always a win
|
|
% because the infrastructure for the call to the procedure
|
|
% is almost always larger than the code to do the access.
|
|
% In the case of `get' accessors, the call usually becomes
|
|
% a single `field' expression to get the relevant field of
|
|
% the structure. In the case of `set' accessors, it is a bit
|
|
% more complicated since the code to copy the fields can be
|
|
% quite big if there are lots of fields, however in the case
|
|
% where several `set' accessors get called one after the other,
|
|
% inlining them enables the code generator to avoid creating
|
|
% the intermediate structures which is often a win).
|
|
%
|
|
% - arithmetic predicates where the as above, the cost of the
|
|
% call will often outweigh the cost of the arithmetic.
|
|
%
|
|
% - det or semi pragma C code, where often the C operation is
|
|
% very small, inlining avoids a call and allows the C compiler
|
|
% to do a better job of optimizing it.
|
|
%
|
|
% The threshold on the size of simple goals (which covers both of the
|
|
% first two cases above), is to prevent the inlining of large goals
|
|
% such as those that construct big terms where the duplication is
|
|
% usually inappropriate (for example in nrev).
|
|
%
|
|
% The threshold on the number of variables in a procedure is to prevent
|
|
% the problem of inlining lots of calls and having a resulting
|
|
% procedure with so many variables that the back end of the compiler
|
|
% gets bogged down (for example in the pseudoknot benchmark).
|
|
%
|
|
% Due to the way in which we generate code for model_non pragma_c_code,
|
|
% procedures whose body is such a pragma_c_code must NOT be inlined.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- interface.
|
|
:- import_module hlds_module.
|
|
:- import_module io.
|
|
|
|
:- pred inlining(module_info, module_info, io__state, io__state).
|
|
:- mode inlining(in, out, di, uo) is det.
|
|
|
|
:- pred inlining__is_simple_goal(hlds_goal, int).
|
|
:- mode inlining__is_simple_goal(in, in) is semidet.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- implementation.
|
|
|
|
:- import_module hlds_pred, hlds_goal, globals, options, llds.
|
|
:- import_module dead_proc_elim, type_util, mode_util, goal_util.
|
|
:- import_module passes_aux, code_aux, quantification, det_analysis, prog_data.
|
|
|
|
:- import_module bool, int, list, assoc_list, map, set, std_util.
|
|
:- import_module term, varset, require, hlds_data, dependency_graph.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- type inline_params ---> params(bool, bool, int, int, int).
|
|
% simple, single_use,
|
|
% size-threshold, simple-goal-threshold
|
|
% var-threshold
|
|
|
|
inlining(ModuleInfo0, ModuleInfo) -->
|
|
%
|
|
% Package up all the inlining options
|
|
% - whether to inline simple conj's of builtins
|
|
% - whether to inline predicates that are
|
|
% only called once
|
|
% - the threshold for determining whether to
|
|
% inline more complicated goals
|
|
% - the threshold for determining whether to
|
|
% inline the simple conj's
|
|
% - the upper limit on the number of variables
|
|
% we want in procedures - if inlining a procedure
|
|
% would cause the number of variables to exceed
|
|
% this threshold then we don't inline it.
|
|
%
|
|
globals__io_lookup_bool_option(inline_simple, Simple),
|
|
globals__io_lookup_bool_option(inline_single_use, SingleUse),
|
|
globals__io_lookup_int_option(inline_compound_threshold,
|
|
CompoundThreshold),
|
|
globals__io_lookup_int_option(inline_simple_threshold, SimpleThreshold),
|
|
globals__io_lookup_int_option(inline_vars_threshold, VarThreshold),
|
|
{ Params = params(Simple, SingleUse, CompoundThreshold,
|
|
SimpleThreshold, VarThreshold) },
|
|
|
|
%
|
|
% Get the usage counts for predicates
|
|
% (but only if needed, i.e. only if --inline-single-use
|
|
% or --inline-compound-threshold has been specified)
|
|
%
|
|
(
|
|
( { SingleUse = yes }
|
|
; { CompoundThreshold > 0 }
|
|
)
|
|
->
|
|
{ dead_proc_elim__analyze(ModuleInfo0, NeededMap) }
|
|
;
|
|
{ map__init(NeededMap) }
|
|
),
|
|
|
|
% build the call graph and extract the topological sort
|
|
% Note: the topological sort returns a list of SCCs.
|
|
% Clearly, we want to process the SCCs bottom to top
|
|
% (which is the order that they are returned), but it
|
|
% is not easy to guess the best way to flatten each SCC
|
|
% to achieve the best result. The current implementation
|
|
% just uses the ordering of the list returned by the
|
|
% topological sort. A more sophisticated approach would be
|
|
% to break the cycle so that the procedure(s) that are called
|
|
% by higher SCCs are processed last, but we do not implement
|
|
% that yet.
|
|
{ module_info_ensure_dependency_info(ModuleInfo0, ModuleInfo1) },
|
|
{ module_info_dependency_info(ModuleInfo1, DepInfo) },
|
|
{ hlds_dependency_info_get_dependency_ordering(DepInfo, SCCs) },
|
|
{ list__condense(SCCs, PredProcs) },
|
|
{ set__init(InlinedProcs0) },
|
|
inlining__do_inlining(PredProcs, NeededMap, Params, InlinedProcs0,
|
|
ModuleInfo1, ModuleInfo).
|
|
|
|
:- pred inlining__do_inlining(list(pred_proc_id), needed_map, inline_params,
|
|
set(pred_proc_id), module_info, module_info,
|
|
io__state, io__state).
|
|
:- mode inlining__do_inlining(in, in, in, in, in, out, di, uo) is det.
|
|
|
|
inlining__do_inlining([], _Needed, _Params, _Inlined, Module, Module) --> [].
|
|
inlining__do_inlining([PPId|PPIds], Needed, Params, Inlined0,
|
|
Module0, Module) -->
|
|
inlining__in_predproc(PPId, Inlined0, Params, Module0, Module1),
|
|
inlining__mark_predproc(PPId, Needed, Params, Module1,
|
|
Inlined0, Inlined1),
|
|
inlining__do_inlining(PPIds, Needed, Params, Inlined1, Module1, Module).
|
|
|
|
:- pred inlining__mark_predproc(pred_proc_id, needed_map, inline_params,
|
|
module_info, set(pred_proc_id), set(pred_proc_id),
|
|
io__state, io__state).
|
|
:- mode inlining__mark_predproc(in, in, in, in, in, out, di, uo) is det.
|
|
|
|
inlining__mark_predproc(PredProcId, NeededMap, Params, ModuleInfo,
|
|
InlinedProcs0, InlinedProcs) -->
|
|
(
|
|
{ Params = params(Simple, SingleUse, CompoundThreshold,
|
|
SimpleThreshold, _VarThreshold) },
|
|
{ PredProcId = proc(PredId, ProcId) },
|
|
{ module_info_pred_info(ModuleInfo, PredId, PredInfo) },
|
|
{ pred_info_procedures(PredInfo, Procs) },
|
|
{ map__lookup(Procs, ProcId, ProcInfo) },
|
|
{ proc_info_goal(ProcInfo, CalledGoal) },
|
|
{ Entity = proc(PredId, ProcId) },
|
|
|
|
%
|
|
% the heuristic represented by the following code
|
|
% could be improved
|
|
%
|
|
(
|
|
{ Simple = yes },
|
|
{ inlining__is_simple_goal(CalledGoal,
|
|
SimpleThreshold) }
|
|
;
|
|
{ CompoundThreshold > 0 },
|
|
{ map__search(NeededMap, Entity, Needed) },
|
|
{ Needed = yes(NumUses) },
|
|
{ goal_size(CalledGoal, Size) },
|
|
{ Size * NumUses =< CompoundThreshold }
|
|
;
|
|
{ SingleUse = yes },
|
|
{ map__search(NeededMap, Entity, Needed) },
|
|
{ Needed = yes(NumUses) },
|
|
{ NumUses = 1 }
|
|
),
|
|
% Don't inline recursive predicates
|
|
{ \+ goal_calls(CalledGoal, PredProcId) },
|
|
|
|
% Under no circumstances inline model_non pragma c codes.
|
|
% The resulting code would not work properly.
|
|
\+ {
|
|
CalledGoal = pragma_c_code(_,_,_,_,_,_,_) - _,
|
|
proc_info_interface_code_model(ProcInfo, model_non)
|
|
}
|
|
->
|
|
inlining__mark_proc_as_inlined(PredProcId, ModuleInfo,
|
|
InlinedProcs0, InlinedProcs)
|
|
;
|
|
{ InlinedProcs = InlinedProcs0 }
|
|
).
|
|
|
|
% this heuristic is used for both local and intermodule inlining
|
|
|
|
inlining__is_simple_goal(CalledGoal, SimpleThreshold) :-
|
|
goal_size(CalledGoal, Size),
|
|
(
|
|
Size < SimpleThreshold
|
|
;
|
|
%
|
|
% For flat goals, we are more likely to be able to
|
|
% optimize stuff away, so we use a higher threshold.
|
|
% XXX this should be a separate option, we shouldn't
|
|
% hardcode the number `3' (which is just a guess).
|
|
%
|
|
Size < SimpleThreshold * 3,
|
|
inlining__is_flat_simple_goal(CalledGoal)
|
|
).
|
|
|
|
:- pred inlining__is_flat_simple_goal(hlds_goal::in) is semidet.
|
|
|
|
inlining__is_flat_simple_goal(conj(Goals) - _) :-
|
|
inlining__is_flat_simple_goal_list(Goals).
|
|
inlining__is_flat_simple_goal(not(Goal) - _) :-
|
|
inlining__is_flat_simple_goal(Goal).
|
|
inlining__is_flat_simple_goal(some(_, Goal) - _) :-
|
|
inlining__is_flat_simple_goal(Goal).
|
|
inlining__is_flat_simple_goal(call(_, _, _, BuiltinState, _, _) - _) :-
|
|
BuiltinState = inline_builtin.
|
|
inlining__is_flat_simple_goal(unify(_, _, _, _, _) - _).
|
|
|
|
:- pred inlining__is_flat_simple_goal_list(hlds_goals::in) is semidet.
|
|
|
|
inlining__is_flat_simple_goal_list([]).
|
|
inlining__is_flat_simple_goal_list([Goal | Goals]) :-
|
|
inlining__is_flat_simple_goal(Goal),
|
|
inlining__is_flat_simple_goal_list(Goals).
|
|
|
|
:- pred inlining__mark_proc_as_inlined(pred_proc_id, module_info,
|
|
set(pred_proc_id), set(pred_proc_id), io__state, io__state).
|
|
:- mode inlining__mark_proc_as_inlined(in, in, in, out, di, uo) is det.
|
|
|
|
inlining__mark_proc_as_inlined(proc(PredId, ProcId), ModuleInfo,
|
|
InlinedProcs0, InlinedProcs) -->
|
|
{ set__insert(InlinedProcs0, proc(PredId, ProcId), InlinedProcs) },
|
|
{ module_info_pred_info(ModuleInfo, PredId, PredInfo) },
|
|
( { pred_info_requested_inlining(PredInfo) } ->
|
|
[]
|
|
;
|
|
write_proc_progress_message("% Inlining ", PredId, ProcId,
|
|
ModuleInfo)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% inline_info contains the information that is changed
|
|
% as a result of inlining. It is threaded through the
|
|
% inlining process, and when finished, contains the
|
|
% updated information associated with the new goal.
|
|
%
|
|
% It also stores some necessary information that is not
|
|
% updated.
|
|
|
|
:- type inline_info --->
|
|
|
|
inline_info(
|
|
int, % variable threshold for inlining
|
|
set(pred_proc_id), % inlined procs
|
|
module_info, % module_info
|
|
|
|
% the following fields are updated as a result
|
|
% of inlining
|
|
varset, % varset
|
|
map(var, type), % variable types
|
|
tvarset, % type variables
|
|
map(tvar, type_info_locn),% type_info varset, a mapping from
|
|
% type variables to variables
|
|
% where their type_info is
|
|
% stored.
|
|
bool % Did we change the determinism
|
|
% of any subgoal?
|
|
).
|
|
|
|
:- pred inlining__in_predproc(pred_proc_id, set(pred_proc_id), inline_params,
|
|
module_info, module_info, io__state, io__state).
|
|
:- mode inlining__in_predproc(in, in, in, in, out, di, uo) is det.
|
|
|
|
inlining__in_predproc(PredProcId, InlinedProcs, Params,
|
|
ModuleInfo0, ModuleInfo, IoState0, IoState) :-
|
|
Params = params(_Simple, _SingleUse, _CompoundThreshold,
|
|
_SimpleThreshold, VarThresh),
|
|
PredProcId = proc(PredId, ProcId),
|
|
|
|
module_info_preds(ModuleInfo0, PredTable0),
|
|
map__lookup(PredTable0, PredId, PredInfo0),
|
|
pred_info_procedures(PredInfo0, ProcTable0),
|
|
map__lookup(ProcTable0, ProcId, ProcInfo0),
|
|
|
|
pred_info_typevarset(PredInfo0, TypeVarSet0),
|
|
|
|
proc_info_goal(ProcInfo0, Goal0),
|
|
proc_info_varset(ProcInfo0, VarSet0),
|
|
proc_info_vartypes(ProcInfo0, VarTypes0),
|
|
proc_info_typeinfo_varmap(ProcInfo0, TypeInfoVarMap0),
|
|
|
|
DetChanged0 = no,
|
|
|
|
InlineInfo0 = inline_info(VarThresh, InlinedProcs, ModuleInfo0,
|
|
VarSet0, VarTypes0, TypeVarSet0, TypeInfoVarMap0, DetChanged0),
|
|
|
|
inlining__inlining_in_goal(Goal0, Goal, InlineInfo0, InlineInfo),
|
|
|
|
InlineInfo = inline_info(_, _, _, VarSet, VarTypes, TypeVarSet,
|
|
TypeInfoVarMap, DetChanged),
|
|
|
|
pred_info_set_typevarset(PredInfo0, TypeVarSet, PredInfo1),
|
|
|
|
proc_info_set_varset(ProcInfo0, VarSet, ProcInfo1),
|
|
proc_info_set_vartypes(ProcInfo1, VarTypes, ProcInfo2),
|
|
proc_info_set_typeinfo_varmap(ProcInfo2, TypeInfoVarMap, ProcInfo3),
|
|
proc_info_set_goal(ProcInfo3, Goal, ProcInfo),
|
|
|
|
map__det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
|
|
pred_info_set_procedures(PredInfo1, ProcTable, PredInfo),
|
|
map__det_update(PredTable0, PredId, PredInfo, PredTable),
|
|
module_info_set_preds(ModuleInfo0, PredTable, ModuleInfo1),
|
|
|
|
% If the determinism of some sub-goals has changed,
|
|
% then we re-run determinism analysis, because
|
|
% propagating the determinism information through
|
|
% the procedure may lead to more efficient code.
|
|
( DetChanged = yes,
|
|
globals__io_get_globals(Globals, IoState0, IoState),
|
|
det_infer_proc(PredId, ProcId, ModuleInfo1, ModuleInfo,
|
|
Globals, _, _, _)
|
|
; DetChanged = no,
|
|
ModuleInfo = ModuleInfo1,
|
|
IoState = IoState0
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred inlining__inlining_in_goal(hlds_goal, hlds_goal, inline_info,
|
|
inline_info).
|
|
:- mode inlining__inlining_in_goal(in, out, in, out) is det.
|
|
|
|
inlining__inlining_in_goal(conj(Goals0) - GoalInfo, conj(Goals) - GoalInfo) -->
|
|
inlining__inlining_in_conj(Goals0, Goals).
|
|
|
|
inlining__inlining_in_goal(disj(Goals0, SM) - GoalInfo,
|
|
disj(Goals, SM) - GoalInfo) -->
|
|
inlining__inlining_in_disj(Goals0, Goals).
|
|
|
|
inlining__inlining_in_goal(switch(Var, Det, Cases0, SM) - GoalInfo,
|
|
switch(Var, Det, Cases, SM) - GoalInfo) -->
|
|
inlining__inlining_in_cases(Cases0, Cases).
|
|
|
|
inlining__inlining_in_goal(
|
|
if_then_else(Vars, Cond0, Then0, Else0, SM) - GoalInfo,
|
|
if_then_else(Vars, Cond, Then, Else, SM) - GoalInfo) -->
|
|
inlining__inlining_in_goal(Cond0, Cond),
|
|
inlining__inlining_in_goal(Then0, Then),
|
|
inlining__inlining_in_goal(Else0, Else).
|
|
|
|
inlining__inlining_in_goal(not(Goal0) - GoalInfo, not(Goal) - GoalInfo) -->
|
|
inlining__inlining_in_goal(Goal0, Goal).
|
|
|
|
inlining__inlining_in_goal(some(Vars, Goal0) - GoalInfo,
|
|
some(Vars, Goal) - GoalInfo) -->
|
|
inlining__inlining_in_goal(Goal0, Goal).
|
|
|
|
inlining__inlining_in_goal(call(PredId, ProcId, ArgVars, Builtin, Context,
|
|
Sym) - GoalInfo0, Goal - GoalInfo, InlineInfo0, InlineInfo) :-
|
|
|
|
InlineInfo0 = inline_info(VarThresh, InlinedProcs, ModuleInfo,
|
|
VarSet0, VarTypes0, TypeVarSet0, TypeInfoVarMap0,
|
|
DetChanged0),
|
|
|
|
% should we inline this call?
|
|
(
|
|
inlining__should_inline_proc(PredId, ProcId, Builtin,
|
|
InlinedProcs, ModuleInfo),
|
|
% okay, but will we exceed the number-of-variables
|
|
% threshold?
|
|
varset__vars(VarSet0, ListOfVars),
|
|
list__length(ListOfVars, ThisMany),
|
|
% We need to find out how many variables the
|
|
% Callee has
|
|
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
|
|
PredInfo, ProcInfo),
|
|
proc_info_varset(ProcInfo, CalleeVarset),
|
|
varset__vars(CalleeVarset, CalleeListOfVars),
|
|
list__length(CalleeListOfVars, CalleeThisMany),
|
|
TotalVars is ThisMany + CalleeThisMany,
|
|
TotalVars =< VarThresh
|
|
->
|
|
% Yes. So look up the rest of the info for the
|
|
% called procedure.
|
|
|
|
pred_info_typevarset(PredInfo, CalleeTypeVarSet),
|
|
proc_info_headvars(ProcInfo, HeadVars),
|
|
proc_info_goal(ProcInfo, CalledGoal),
|
|
proc_info_vartypes(ProcInfo, CalleeVarTypes0),
|
|
proc_info_typeinfo_varmap(ProcInfo, CalledTypeInfoVarMap0),
|
|
|
|
% Substitute the appropriate types into the type
|
|
% mapping of the called procedure. For example, if we
|
|
% call `:- pred foo(T)' with an argument of type
|
|
% `int', then we need to replace all occurrences of
|
|
% type `T' with type `int' when we inline it.
|
|
|
|
% first, rename apart the type variables in the callee.
|
|
% (we can almost throw away the new typevarset, since we
|
|
% are about to substitute away any new type variables,
|
|
% but any unbound type variables in the callee will not
|
|
% be substituted away)
|
|
|
|
varset__merge_subst(TypeVarSet0, CalleeTypeVarSet,
|
|
TypeVarSet, TypeRenaming),
|
|
apply_substitution_to_type_map(CalleeVarTypes0, TypeRenaming,
|
|
CalleeVarTypes1),
|
|
|
|
% next, compute the type substitution and then apply it
|
|
|
|
map__apply_to_list(HeadVars, CalleeVarTypes1, HeadTypes),
|
|
map__apply_to_list(ArgVars, VarTypes0, ArgTypes),
|
|
(
|
|
type_list_subsumes(HeadTypes, ArgTypes, TypeSubn)
|
|
->
|
|
apply_rec_substitution_to_type_map(CalleeVarTypes1,
|
|
TypeSubn, CalleeVarTypes)
|
|
;
|
|
% The head types should always subsume the
|
|
% actual argument types, otherwise it is a type error
|
|
% that should have been detected by typechecking
|
|
% But polymorphism.m introduces type-incorrect code --
|
|
% e.g. compare(Res, EnumA, EnumB) gets converted
|
|
% into builtin_compare_int(Res, EnumA, EnumB), which
|
|
% is a type error since it assumes that an enumeration
|
|
% is an int. In those cases, we don't need to
|
|
% worry about the type substitution.
|
|
CalleeVarTypes = CalleeVarTypes1
|
|
),
|
|
|
|
% Now rename apart the variables in the called goal.
|
|
|
|
map__from_corresponding_lists(HeadVars, ArgVars, Subn0),
|
|
goal_util__create_variables(CalleeListOfVars, VarSet0,
|
|
VarTypes0, Subn0, CalleeVarTypes, CalleeVarset,
|
|
VarSet, VarTypes, Subn),
|
|
goal_util__must_rename_vars_in_goal(CalledGoal, Subn,
|
|
Goal - GoalInfo),
|
|
|
|
% If the inferred determinism of the called
|
|
% goal differs from the declared determinism,
|
|
% flag that we should re-run determinism analysis
|
|
% on this proc.
|
|
goal_info_get_determinism(GoalInfo0, Determinism0),
|
|
goal_info_get_determinism(GoalInfo, Determinism),
|
|
( Determinism0 = Determinism ->
|
|
DetChanged = DetChanged0
|
|
;
|
|
DetChanged = yes
|
|
),
|
|
|
|
apply_substitutions_to_var_map(CalledTypeInfoVarMap0,
|
|
TypeRenaming, Subn, CalledTypeInfoVarMap1),
|
|
map__merge(TypeInfoVarMap0, CalledTypeInfoVarMap1,
|
|
TypeInfoVarMap)
|
|
;
|
|
Goal = call(PredId, ProcId, ArgVars, Builtin, Context, Sym),
|
|
GoalInfo = GoalInfo0,
|
|
VarSet = VarSet0,
|
|
VarTypes = VarTypes0,
|
|
TypeVarSet = TypeVarSet0,
|
|
TypeInfoVarMap = TypeInfoVarMap0,
|
|
DetChanged = DetChanged0
|
|
),
|
|
InlineInfo = inline_info(VarThresh, InlinedProcs, ModuleInfo,
|
|
VarSet, VarTypes, TypeVarSet, TypeInfoVarMap, DetChanged).
|
|
|
|
inlining__inlining_in_goal(higher_order_call(A, B, C, D, E, F) - GoalInfo,
|
|
higher_order_call(A, B, C, D, E, F) - GoalInfo) --> [].
|
|
|
|
inlining__inlining_in_goal(class_method_call(A, B, C, D, E, F) - GoalInfo,
|
|
class_method_call(A, B, C, D, E, F) - GoalInfo) --> [].
|
|
|
|
inlining__inlining_in_goal(unify(A, B, C, D, E) - GoalInfo,
|
|
unify(A, B, C, D, E) - GoalInfo) --> [].
|
|
|
|
inlining__inlining_in_goal(pragma_c_code(A, B, C, D, E, F, G) - GoalInfo,
|
|
pragma_c_code(A, B, C, D, E, F, G) - GoalInfo) --> [].
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred inlining__inlining_in_disj(list(hlds_goal), list(hlds_goal),
|
|
inline_info, inline_info).
|
|
:- mode inlining__inlining_in_disj(in, out, in, out) is det.
|
|
|
|
inlining__inlining_in_disj([], []) --> [].
|
|
inlining__inlining_in_disj([Goal0 | Goals0], [Goal | Goals]) -->
|
|
inlining__inlining_in_goal(Goal0, Goal),
|
|
inlining__inlining_in_disj(Goals0, Goals).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred inlining__inlining_in_cases(list(case), list(case), inline_info,
|
|
inline_info).
|
|
:- mode inlining__inlining_in_cases(in, out, in, out) is det.
|
|
|
|
inlining__inlining_in_cases([], []) --> [].
|
|
inlining__inlining_in_cases([case(Cons, Goal0) | Goals0],
|
|
[case(Cons, Goal) | Goals]) -->
|
|
inlining__inlining_in_goal(Goal0, Goal),
|
|
inlining__inlining_in_cases(Goals0, Goals).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
:- pred inlining__inlining_in_conj(list(hlds_goal), list(hlds_goal),
|
|
inline_info, inline_info).
|
|
:- mode inlining__inlining_in_conj(in, out, in, out) is det.
|
|
|
|
% Since a single goal may become a conjunction,
|
|
% we flatten the conjunction as we go.
|
|
|
|
inlining__inlining_in_conj([], []) --> [].
|
|
inlining__inlining_in_conj([Goal0 | Goals0], Goals) -->
|
|
inlining__inlining_in_goal(Goal0, Goal1),
|
|
{ goal_to_conj_list(Goal1, Goal1List) },
|
|
inlining__inlining_in_conj(Goals0, Goals1),
|
|
{ list__append(Goal1List, Goals1, Goals) }.
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
|
|
% Check to see if we should inline a call.
|
|
%
|
|
% Fails if the called predicate is a builtin or is imported.
|
|
%
|
|
% Succeeds if the called predicate has an annotation
|
|
% indicating that it should be inlined, or if the goal
|
|
% is a conjunction of builtins.
|
|
|
|
:- pred inlining__should_inline_proc(pred_id, proc_id, builtin_state,
|
|
set(pred_proc_id), module_info).
|
|
:- mode inlining__should_inline_proc(in, in, in, in, in) is semidet.
|
|
|
|
inlining__should_inline_proc(PredId, ProcId, BuiltinState, InlinedProcs,
|
|
ModuleInfo) :-
|
|
|
|
% don't inline builtins, the code generator will handle them
|
|
|
|
BuiltinState = not_builtin,
|
|
|
|
% don't try to inline imported predicates, since we don't
|
|
% have the code for them.
|
|
|
|
module_info_pred_info(ModuleInfo, PredId, PredInfo),
|
|
\+ pred_info_is_imported(PredInfo),
|
|
% this next line catches the case of locally defined
|
|
% unification predicates for imported types.
|
|
\+ (
|
|
pred_info_is_pseudo_imported(PredInfo),
|
|
hlds_pred__in_in_unification_proc_id(ProcId)
|
|
),
|
|
|
|
% don't inlining anything we have been specifically requested
|
|
% not to inline.
|
|
|
|
\+ pred_info_requested_no_inlining(PredInfo),
|
|
|
|
% OK, we could inline it - but should we? Apply our heuristic.
|
|
|
|
(
|
|
pred_info_requested_inlining(PredInfo)
|
|
;
|
|
set__member(proc(PredId, ProcId), InlinedProcs)
|
|
).
|
|
|
|
%-----------------------------------------------------------------------------%
|
|
%-----------------------------------------------------------------------------%
|